SelectionDAG.cpp revision f06f35e30b4c4d7db304f717a3d4dc6595fbd078
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalValue.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/Assembly/Writer.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Target/MRegisterInfo.h"
22#include "llvm/Target/TargetLowering.h"
23#include "llvm/Target/TargetInstrInfo.h"
24#include "llvm/Target/TargetMachine.h"
25#include "llvm/ADT/SetVector.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringExtras.h"
28#include <iostream>
29#include <set>
30#include <cmath>
31#include <algorithm>
32using namespace llvm;
33
34static bool isCommutativeBinOp(unsigned Opcode) {
35  switch (Opcode) {
36  case ISD::ADD:
37  case ISD::MUL:
38  case ISD::MULHU:
39  case ISD::MULHS:
40  case ISD::FADD:
41  case ISD::FMUL:
42  case ISD::AND:
43  case ISD::OR:
44  case ISD::XOR: return true;
45  default: return false; // FIXME: Need commutative info for user ops!
46  }
47}
48
49// isInvertibleForFree - Return true if there is no cost to emitting the logical
50// inverse of this node.
51static bool isInvertibleForFree(SDOperand N) {
52  if (isa<ConstantSDNode>(N.Val)) return true;
53  if (N.Val->getOpcode() == ISD::SETCC && N.Val->hasOneUse())
54    return true;
55  return false;
56}
57
58//===----------------------------------------------------------------------===//
59//                              ConstantFPSDNode Class
60//===----------------------------------------------------------------------===//
61
62/// isExactlyValue - We don't rely on operator== working on double values, as
63/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
64/// As such, this method can be used to do an exact bit-for-bit comparison of
65/// two floating point values.
66bool ConstantFPSDNode::isExactlyValue(double V) const {
67  return DoubleToBits(V) == DoubleToBits(Value);
68}
69
70//===----------------------------------------------------------------------===//
71//                              ISD Namespace
72//===----------------------------------------------------------------------===//
73
74/// isBuildVectorAllOnes - Return true if the specified node is a
75/// BUILD_VECTOR where all of the elements are ~0 or undef.
76bool ISD::isBuildVectorAllOnes(const SDNode *N) {
77  // Look through a bit convert.
78  if (N->getOpcode() == ISD::BIT_CONVERT)
79    N = N->getOperand(0).Val;
80
81  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
82
83  unsigned i = 0, e = N->getNumOperands();
84
85  // Skip over all of the undef values.
86  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
87    ++i;
88
89  // Do not accept an all-undef vector.
90  if (i == e) return false;
91
92  // Do not accept build_vectors that aren't all constants or which have non-~0
93  // elements.
94  SDOperand NotZero = N->getOperand(i);
95  if (isa<ConstantSDNode>(NotZero)) {
96    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
97      return false;
98  } else if (isa<ConstantFPSDNode>(NotZero)) {
99    MVT::ValueType VT = NotZero.getValueType();
100    if (VT== MVT::f64) {
101      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
102          (uint64_t)-1)
103        return false;
104    } else {
105      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->getValue()) !=
106          (uint32_t)-1)
107        return false;
108    }
109  } else
110    return false;
111
112  // Okay, we have at least one ~0 value, check to see if the rest match or are
113  // undefs.
114  for (++i; i != e; ++i)
115    if (N->getOperand(i) != NotZero &&
116        N->getOperand(i).getOpcode() != ISD::UNDEF)
117      return false;
118  return true;
119}
120
121
122/// isBuildVectorAllZeros - Return true if the specified node is a
123/// BUILD_VECTOR where all of the elements are 0 or undef.
124bool ISD::isBuildVectorAllZeros(const SDNode *N) {
125  // Look through a bit convert.
126  if (N->getOpcode() == ISD::BIT_CONVERT)
127    N = N->getOperand(0).Val;
128
129  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
130
131  unsigned i = 0, e = N->getNumOperands();
132
133  // Skip over all of the undef values.
134  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
135    ++i;
136
137  // Do not accept an all-undef vector.
138  if (i == e) return false;
139
140  // Do not accept build_vectors that aren't all constants or which have non-~0
141  // elements.
142  SDOperand Zero = N->getOperand(i);
143  if (isa<ConstantSDNode>(Zero)) {
144    if (!cast<ConstantSDNode>(Zero)->isNullValue())
145      return false;
146  } else if (isa<ConstantFPSDNode>(Zero)) {
147    if (!cast<ConstantFPSDNode>(Zero)->isExactlyValue(0.0))
148      return false;
149  } else
150    return false;
151
152  // Okay, we have at least one ~0 value, check to see if the rest match or are
153  // undefs.
154  for (++i; i != e; ++i)
155    if (N->getOperand(i) != Zero &&
156        N->getOperand(i).getOpcode() != ISD::UNDEF)
157      return false;
158  return true;
159}
160
161/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
162/// when given the operation for (X op Y).
163ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
164  // To perform this operation, we just need to swap the L and G bits of the
165  // operation.
166  unsigned OldL = (Operation >> 2) & 1;
167  unsigned OldG = (Operation >> 1) & 1;
168  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
169                       (OldL << 1) |       // New G bit
170                       (OldG << 2));        // New L bit.
171}
172
173/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
174/// 'op' is a valid SetCC operation.
175ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
176  unsigned Operation = Op;
177  if (isInteger)
178    Operation ^= 7;   // Flip L, G, E bits, but not U.
179  else
180    Operation ^= 15;  // Flip all of the condition bits.
181  if (Operation > ISD::SETTRUE2)
182    Operation &= ~8;     // Don't let N and U bits get set.
183  return ISD::CondCode(Operation);
184}
185
186
187/// isSignedOp - For an integer comparison, return 1 if the comparison is a
188/// signed operation and 2 if the result is an unsigned comparison.  Return zero
189/// if the operation does not depend on the sign of the input (setne and seteq).
190static int isSignedOp(ISD::CondCode Opcode) {
191  switch (Opcode) {
192  default: assert(0 && "Illegal integer setcc operation!");
193  case ISD::SETEQ:
194  case ISD::SETNE: return 0;
195  case ISD::SETLT:
196  case ISD::SETLE:
197  case ISD::SETGT:
198  case ISD::SETGE: return 1;
199  case ISD::SETULT:
200  case ISD::SETULE:
201  case ISD::SETUGT:
202  case ISD::SETUGE: return 2;
203  }
204}
205
206/// getSetCCOrOperation - Return the result of a logical OR between different
207/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
208/// returns SETCC_INVALID if it is not possible to represent the resultant
209/// comparison.
210ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
211                                       bool isInteger) {
212  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
213    // Cannot fold a signed integer setcc with an unsigned integer setcc.
214    return ISD::SETCC_INVALID;
215
216  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
217
218  // If the N and U bits get set then the resultant comparison DOES suddenly
219  // care about orderedness, and is true when ordered.
220  if (Op > ISD::SETTRUE2)
221    Op &= ~16;     // Clear the U bit if the N bit is set.
222
223  // Canonicalize illegal integer setcc's.
224  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
225    Op = ISD::SETNE;
226
227  return ISD::CondCode(Op);
228}
229
230/// getSetCCAndOperation - Return the result of a logical AND between different
231/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
232/// function returns zero if it is not possible to represent the resultant
233/// comparison.
234ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
235                                        bool isInteger) {
236  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
237    // Cannot fold a signed setcc with an unsigned setcc.
238    return ISD::SETCC_INVALID;
239
240  // Combine all of the condition bits.
241  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
242
243  // Canonicalize illegal integer setcc's.
244  if (isInteger) {
245    switch (Result) {
246    default: break;
247    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
248    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
249    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
250    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
251    }
252  }
253
254  return Result;
255}
256
257const TargetMachine &SelectionDAG::getTarget() const {
258  return TLI.getTargetMachine();
259}
260
261//===----------------------------------------------------------------------===//
262//                              SelectionDAG Class
263//===----------------------------------------------------------------------===//
264
265/// RemoveDeadNodes - This method deletes all unreachable nodes in the
266/// SelectionDAG.
267void SelectionDAG::RemoveDeadNodes() {
268  // Create a dummy node (which is not added to allnodes), that adds a reference
269  // to the root node, preventing it from being deleted.
270  HandleSDNode Dummy(getRoot());
271
272  SmallVector<SDNode*, 128> DeadNodes;
273
274  // Add all obviously-dead nodes to the DeadNodes worklist.
275  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
276    if (I->use_empty())
277      DeadNodes.push_back(I);
278
279  // Process the worklist, deleting the nodes and adding their uses to the
280  // worklist.
281  while (!DeadNodes.empty()) {
282    SDNode *N = DeadNodes.back();
283    DeadNodes.pop_back();
284
285    // Take the node out of the appropriate CSE map.
286    RemoveNodeFromCSEMaps(N);
287
288    // Next, brutally remove the operand list.  This is safe to do, as there are
289    // no cycles in the graph.
290    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
291      SDNode *Operand = I->Val;
292      Operand->removeUser(N);
293
294      // Now that we removed this operand, see if there are no uses of it left.
295      if (Operand->use_empty())
296        DeadNodes.push_back(Operand);
297    }
298    delete[] N->OperandList;
299    N->OperandList = 0;
300    N->NumOperands = 0;
301
302    // Finally, remove N itself.
303    AllNodes.erase(N);
304  }
305
306  // If the root changed (e.g. it was a dead load, update the root).
307  setRoot(Dummy.getValue());
308}
309
310void SelectionDAG::DeleteNode(SDNode *N) {
311  assert(N->use_empty() && "Cannot delete a node that is not dead!");
312
313  // First take this out of the appropriate CSE map.
314  RemoveNodeFromCSEMaps(N);
315
316  // Finally, remove uses due to operands of this node, remove from the
317  // AllNodes list, and delete the node.
318  DeleteNodeNotInCSEMaps(N);
319}
320
321void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
322
323  // Remove it from the AllNodes list.
324  AllNodes.remove(N);
325
326  // Drop all of the operands and decrement used nodes use counts.
327  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
328    I->Val->removeUser(N);
329  delete[] N->OperandList;
330  N->OperandList = 0;
331  N->NumOperands = 0;
332
333  delete N;
334}
335
336/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
337/// correspond to it.  This is useful when we're about to delete or repurpose
338/// the node.  We don't want future request for structurally identical nodes
339/// to return N anymore.
340void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
341  bool Erased = false;
342  switch (N->getOpcode()) {
343  case ISD::HANDLENODE: return;  // noop.
344  case ISD::Constant:
345    Erased = Constants.erase(std::make_pair(cast<ConstantSDNode>(N)->getValue(),
346                                            N->getValueType(0)));
347    break;
348  case ISD::TargetConstant:
349    Erased = TargetConstants.erase(std::make_pair(
350                                    cast<ConstantSDNode>(N)->getValue(),
351                                                  N->getValueType(0)));
352    break;
353  case ISD::ConstantFP: {
354    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
355    Erased = ConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
356    break;
357  }
358  case ISD::TargetConstantFP: {
359    uint64_t V = DoubleToBits(cast<ConstantFPSDNode>(N)->getValue());
360    Erased = TargetConstantFPs.erase(std::make_pair(V, N->getValueType(0)));
361    break;
362  }
363  case ISD::STRING:
364    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
365    break;
366  case ISD::CONDCODE:
367    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
368           "Cond code doesn't exist!");
369    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
370    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
371    break;
372  case ISD::GlobalAddress: {
373    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
374    Erased = GlobalValues.erase(std::make_pair(GN->getGlobal(),
375                                               GN->getOffset()));
376    break;
377  }
378  case ISD::TargetGlobalAddress: {
379    GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(N);
380    Erased =TargetGlobalValues.erase(std::make_pair(GN->getGlobal(),
381                                                    GN->getOffset()));
382    break;
383  }
384  case ISD::FrameIndex:
385    Erased = FrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
386    break;
387  case ISD::TargetFrameIndex:
388    Erased = TargetFrameIndices.erase(cast<FrameIndexSDNode>(N)->getIndex());
389    break;
390  case ISD::JumpTable:
391    Erased = JumpTableIndices.erase(cast<JumpTableSDNode>(N)->getIndex());
392    break;
393  case ISD::TargetJumpTable:
394    Erased =
395      TargetJumpTableIndices.erase(cast<JumpTableSDNode>(N)->getIndex());
396    break;
397  case ISD::ConstantPool:
398    Erased = ConstantPoolIndices.
399      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
400                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
401                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
402    break;
403  case ISD::TargetConstantPool:
404    Erased = TargetConstantPoolIndices.
405      erase(std::make_pair(cast<ConstantPoolSDNode>(N)->get(),
406                        std::make_pair(cast<ConstantPoolSDNode>(N)->getOffset(),
407                                 cast<ConstantPoolSDNode>(N)->getAlignment())));
408    break;
409  case ISD::BasicBlock:
410    Erased = BBNodes.erase(cast<BasicBlockSDNode>(N)->getBasicBlock());
411    break;
412  case ISD::ExternalSymbol:
413    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
414    break;
415  case ISD::TargetExternalSymbol:
416    Erased =
417      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
418    break;
419  case ISD::VALUETYPE:
420    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
421    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
422    break;
423  case ISD::Register:
424    Erased = RegNodes.erase(std::make_pair(cast<RegisterSDNode>(N)->getReg(),
425                                           N->getValueType(0)));
426    break;
427  case ISD::SRCVALUE: {
428    SrcValueSDNode *SVN = cast<SrcValueSDNode>(N);
429    Erased =ValueNodes.erase(std::make_pair(SVN->getValue(), SVN->getOffset()));
430    break;
431  }
432  default:
433    if (N->getNumValues() == 1) {
434      if (N->getNumOperands() == 0) {
435        Erased = NullaryOps.erase(std::make_pair(N->getOpcode(),
436                                                 N->getValueType(0)));
437      } else {
438        // Remove it from the CSE Map.
439        Erased = CSEMap.RemoveNode(N);
440      }
441    } else {
442      // Remove it from the CSE Map.
443      Erased = CSEMap.RemoveNode(N);
444    }
445    break;
446  }
447#ifndef NDEBUG
448  // Verify that the node was actually in one of the CSE maps, unless it has a
449  // flag result (which cannot be CSE'd) or is one of the special cases that are
450  // not subject to CSE.
451  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
452      !N->isTargetOpcode()) {
453    N->dump();
454    std::cerr << "\n";
455    assert(0 && "Node is not in map!");
456  }
457#endif
458}
459
460/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
461/// has been taken out and modified in some way.  If the specified node already
462/// exists in the CSE maps, do not modify the maps, but return the existing node
463/// instead.  If it doesn't exist, add it and return null.
464///
465SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
466  assert(N->getNumOperands() && "This is a leaf node!");
467  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
468    return 0;    // Never add these nodes.
469
470  // Check that remaining values produced are not flags.
471  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
472    if (N->getValueType(i) == MVT::Flag)
473      return 0;   // Never CSE anything that produces a flag.
474
475  SDNode *New = CSEMap.GetOrInsertNode(N);
476  if (New != N) return New;  // Node already existed.
477  return 0;
478}
479
480/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
481/// were replaced with those specified.  If this node is never memoized,
482/// return null, otherwise return a pointer to the slot it would take.  If a
483/// node already exists with these operands, the slot will be non-null.
484SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
485                                           void *&InsertPos) {
486  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
487    return 0;    // Never add these nodes.
488
489  // Check that remaining values produced are not flags.
490  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
491    if (N->getValueType(i) == MVT::Flag)
492      return 0;   // Never CSE anything that produces a flag.
493
494  SelectionDAGCSEMap::NodeID ID;
495  ID.SetOpcode(N->getOpcode());
496  ID.SetValueTypes(N->value_begin());
497  ID.SetOperands(Op);
498  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
499}
500
501/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
502/// were replaced with those specified.  If this node is never memoized,
503/// return null, otherwise return a pointer to the slot it would take.  If a
504/// node already exists with these operands, the slot will be non-null.
505SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
506                                           SDOperand Op1, SDOperand Op2,
507                                           void *&InsertPos) {
508  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
509    return 0;    // Never add these nodes.
510
511  // Check that remaining values produced are not flags.
512  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
513    if (N->getValueType(i) == MVT::Flag)
514      return 0;   // Never CSE anything that produces a flag.
515
516  SelectionDAGCSEMap::NodeID ID;
517  ID.SetOpcode(N->getOpcode());
518  ID.SetValueTypes(N->value_begin());
519  ID.SetOperands(Op1, Op2);
520  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
521}
522
523
524/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
525/// were replaced with those specified.  If this node is never memoized,
526/// return null, otherwise return a pointer to the slot it would take.  If a
527/// node already exists with these operands, the slot will be non-null.
528SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
529                                           const SDOperand *Ops,unsigned NumOps,
530                                           void *&InsertPos) {
531  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
532    return 0;    // Never add these nodes.
533
534  // Check that remaining values produced are not flags.
535  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
536    if (N->getValueType(i) == MVT::Flag)
537      return 0;   // Never CSE anything that produces a flag.
538
539  SelectionDAGCSEMap::NodeID ID;
540  ID.SetOpcode(N->getOpcode());
541  ID.SetValueTypes(N->value_begin());
542  ID.SetOperands(Ops, NumOps);
543  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
544}
545
546
547SelectionDAG::~SelectionDAG() {
548  while (!AllNodes.empty()) {
549    SDNode *N = AllNodes.begin();
550    delete [] N->OperandList;
551    N->OperandList = 0;
552    N->NumOperands = 0;
553    AllNodes.pop_front();
554  }
555}
556
557SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
558  if (Op.getValueType() == VT) return Op;
559  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
560  return getNode(ISD::AND, Op.getValueType(), Op,
561                 getConstant(Imm, Op.getValueType()));
562}
563
564SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT) {
565  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
566  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
567
568  // Mask out any bits that are not valid for this constant.
569  if (VT != MVT::i64)
570    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
571
572  SDNode *&N = Constants[std::make_pair(Val, VT)];
573  if (N) return SDOperand(N, 0);
574  N = new ConstantSDNode(false, Val, VT);
575  AllNodes.push_back(N);
576  return SDOperand(N, 0);
577}
578
579SDOperand SelectionDAG::getString(const std::string &Val) {
580  StringSDNode *&N = StringNodes[Val];
581  if (!N) {
582    N = new StringSDNode(Val);
583    AllNodes.push_back(N);
584  }
585  return SDOperand(N, 0);
586}
587
588SDOperand SelectionDAG::getTargetConstant(uint64_t Val, MVT::ValueType VT) {
589  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
590  // Mask out any bits that are not valid for this constant.
591  if (VT != MVT::i64)
592    Val &= ((uint64_t)1 << MVT::getSizeInBits(VT)) - 1;
593
594  SDNode *&N = TargetConstants[std::make_pair(Val, VT)];
595  if (N) return SDOperand(N, 0);
596  N = new ConstantSDNode(true, Val, VT);
597  AllNodes.push_back(N);
598  return SDOperand(N, 0);
599}
600
601SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT) {
602  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
603  if (VT == MVT::f32)
604    Val = (float)Val;  // Mask out extra precision.
605
606  // Do the map lookup using the actual bit pattern for the floating point
607  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
608  // we don't have issues with SNANs.
609  SDNode *&N = ConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
610  if (N) return SDOperand(N, 0);
611  N = new ConstantFPSDNode(false, Val, VT);
612  AllNodes.push_back(N);
613  return SDOperand(N, 0);
614}
615
616SDOperand SelectionDAG::getTargetConstantFP(double Val, MVT::ValueType VT) {
617  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
618  if (VT == MVT::f32)
619    Val = (float)Val;  // Mask out extra precision.
620
621  // Do the map lookup using the actual bit pattern for the floating point
622  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
623  // we don't have issues with SNANs.
624  SDNode *&N = TargetConstantFPs[std::make_pair(DoubleToBits(Val), VT)];
625  if (N) return SDOperand(N, 0);
626  N = new ConstantFPSDNode(true, Val, VT);
627  AllNodes.push_back(N);
628  return SDOperand(N, 0);
629}
630
631SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
632                                         MVT::ValueType VT, int offset) {
633  SDNode *&N = GlobalValues[std::make_pair(GV, offset)];
634  if (N) return SDOperand(N, 0);
635  N = new GlobalAddressSDNode(false, GV, VT, offset);
636  AllNodes.push_back(N);
637  return SDOperand(N, 0);
638}
639
640SDOperand SelectionDAG::getTargetGlobalAddress(const GlobalValue *GV,
641                                               MVT::ValueType VT, int offset) {
642  SDNode *&N = TargetGlobalValues[std::make_pair(GV, offset)];
643  if (N) return SDOperand(N, 0);
644  N = new GlobalAddressSDNode(true, GV, VT, offset);
645  AllNodes.push_back(N);
646  return SDOperand(N, 0);
647}
648
649SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT) {
650  SDNode *&N = FrameIndices[FI];
651  if (N) return SDOperand(N, 0);
652  N = new FrameIndexSDNode(FI, VT, false);
653  AllNodes.push_back(N);
654  return SDOperand(N, 0);
655}
656
657SDOperand SelectionDAG::getTargetFrameIndex(int FI, MVT::ValueType VT) {
658  SDNode *&N = TargetFrameIndices[FI];
659  if (N) return SDOperand(N, 0);
660  N = new FrameIndexSDNode(FI, VT, true);
661  AllNodes.push_back(N);
662  return SDOperand(N, 0);
663}
664
665SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT) {
666  SDNode *&N = JumpTableIndices[JTI];
667  if (N) return SDOperand(N, 0);
668  N = new JumpTableSDNode(JTI, VT, false);
669  AllNodes.push_back(N);
670  return SDOperand(N, 0);
671}
672
673SDOperand SelectionDAG::getTargetJumpTable(int JTI, MVT::ValueType VT) {
674  SDNode *&N = TargetJumpTableIndices[JTI];
675  if (N) return SDOperand(N, 0);
676  N = new JumpTableSDNode(JTI, VT, true);
677  AllNodes.push_back(N);
678  return SDOperand(N, 0);
679}
680
681SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
682                                        unsigned Alignment,  int Offset) {
683  SDNode *&N = ConstantPoolIndices[std::make_pair(C,
684                                            std::make_pair(Offset, Alignment))];
685  if (N) return SDOperand(N, 0);
686  N = new ConstantPoolSDNode(false, C, VT, Offset, Alignment);
687  AllNodes.push_back(N);
688  return SDOperand(N, 0);
689}
690
691SDOperand SelectionDAG::getTargetConstantPool(Constant *C, MVT::ValueType VT,
692                                             unsigned Alignment,  int Offset) {
693  SDNode *&N = TargetConstantPoolIndices[std::make_pair(C,
694                                            std::make_pair(Offset, Alignment))];
695  if (N) return SDOperand(N, 0);
696  N = new ConstantPoolSDNode(true, C, VT, Offset, Alignment);
697  AllNodes.push_back(N);
698  return SDOperand(N, 0);
699}
700
701SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
702  SDNode *&N = BBNodes[MBB];
703  if (N) return SDOperand(N, 0);
704  N = new BasicBlockSDNode(MBB);
705  AllNodes.push_back(N);
706  return SDOperand(N, 0);
707}
708
709SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
710  if ((unsigned)VT >= ValueTypeNodes.size())
711    ValueTypeNodes.resize(VT+1);
712  if (ValueTypeNodes[VT] == 0) {
713    ValueTypeNodes[VT] = new VTSDNode(VT);
714    AllNodes.push_back(ValueTypeNodes[VT]);
715  }
716
717  return SDOperand(ValueTypeNodes[VT], 0);
718}
719
720SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
721  SDNode *&N = ExternalSymbols[Sym];
722  if (N) return SDOperand(N, 0);
723  N = new ExternalSymbolSDNode(false, Sym, VT);
724  AllNodes.push_back(N);
725  return SDOperand(N, 0);
726}
727
728SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
729                                                MVT::ValueType VT) {
730  SDNode *&N = TargetExternalSymbols[Sym];
731  if (N) return SDOperand(N, 0);
732  N = new ExternalSymbolSDNode(true, Sym, VT);
733  AllNodes.push_back(N);
734  return SDOperand(N, 0);
735}
736
737SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
738  if ((unsigned)Cond >= CondCodeNodes.size())
739    CondCodeNodes.resize(Cond+1);
740
741  if (CondCodeNodes[Cond] == 0) {
742    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
743    AllNodes.push_back(CondCodeNodes[Cond]);
744  }
745  return SDOperand(CondCodeNodes[Cond], 0);
746}
747
748SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
749  RegisterSDNode *&Reg = RegNodes[std::make_pair(RegNo, VT)];
750  if (!Reg) {
751    Reg = new RegisterSDNode(RegNo, VT);
752    AllNodes.push_back(Reg);
753  }
754  return SDOperand(Reg, 0);
755}
756
757SDOperand SelectionDAG::SimplifySetCC(MVT::ValueType VT, SDOperand N1,
758                                      SDOperand N2, ISD::CondCode Cond) {
759  // These setcc operations always fold.
760  switch (Cond) {
761  default: break;
762  case ISD::SETFALSE:
763  case ISD::SETFALSE2: return getConstant(0, VT);
764  case ISD::SETTRUE:
765  case ISD::SETTRUE2:  return getConstant(1, VT);
766
767  case ISD::SETOEQ:
768  case ISD::SETOGT:
769  case ISD::SETOGE:
770  case ISD::SETOLT:
771  case ISD::SETOLE:
772  case ISD::SETONE:
773  case ISD::SETO:
774  case ISD::SETUO:
775  case ISD::SETUEQ:
776  case ISD::SETUNE:
777    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
778    break;
779  }
780
781  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
782    uint64_t C2 = N2C->getValue();
783    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
784      uint64_t C1 = N1C->getValue();
785
786      // Sign extend the operands if required
787      if (ISD::isSignedIntSetCC(Cond)) {
788        C1 = N1C->getSignExtended();
789        C2 = N2C->getSignExtended();
790      }
791
792      switch (Cond) {
793      default: assert(0 && "Unknown integer setcc!");
794      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
795      case ISD::SETNE:  return getConstant(C1 != C2, VT);
796      case ISD::SETULT: return getConstant(C1 <  C2, VT);
797      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
798      case ISD::SETULE: return getConstant(C1 <= C2, VT);
799      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
800      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
801      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
802      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
803      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
804      }
805    } else {
806      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
807      if (N1.getOpcode() == ISD::ZERO_EXTEND) {
808        unsigned InSize = MVT::getSizeInBits(N1.getOperand(0).getValueType());
809
810        // If the comparison constant has bits in the upper part, the
811        // zero-extended value could never match.
812        if (C2 & (~0ULL << InSize)) {
813          unsigned VSize = MVT::getSizeInBits(N1.getValueType());
814          switch (Cond) {
815          case ISD::SETUGT:
816          case ISD::SETUGE:
817          case ISD::SETEQ: return getConstant(0, VT);
818          case ISD::SETULT:
819          case ISD::SETULE:
820          case ISD::SETNE: return getConstant(1, VT);
821          case ISD::SETGT:
822          case ISD::SETGE:
823            // True if the sign bit of C2 is set.
824            return getConstant((C2 & (1ULL << VSize)) != 0, VT);
825          case ISD::SETLT:
826          case ISD::SETLE:
827            // True if the sign bit of C2 isn't set.
828            return getConstant((C2 & (1ULL << VSize)) == 0, VT);
829          default:
830            break;
831          }
832        }
833
834        // Otherwise, we can perform the comparison with the low bits.
835        switch (Cond) {
836        case ISD::SETEQ:
837        case ISD::SETNE:
838        case ISD::SETUGT:
839        case ISD::SETUGE:
840        case ISD::SETULT:
841        case ISD::SETULE:
842          return getSetCC(VT, N1.getOperand(0),
843                          getConstant(C2, N1.getOperand(0).getValueType()),
844                          Cond);
845        default:
846          break;   // todo, be more careful with signed comparisons
847        }
848      } else if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG &&
849                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
850        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N1.getOperand(1))->getVT();
851        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
852        MVT::ValueType ExtDstTy = N1.getValueType();
853        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
854
855        // If the extended part has any inconsistent bits, it cannot ever
856        // compare equal.  In other words, they have to be all ones or all
857        // zeros.
858        uint64_t ExtBits =
859          (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1));
860        if ((C2 & ExtBits) != 0 && (C2 & ExtBits) != ExtBits)
861          return getConstant(Cond == ISD::SETNE, VT);
862
863        // Otherwise, make this a use of a zext.
864        return getSetCC(VT, getZeroExtendInReg(N1.getOperand(0), ExtSrcTy),
865                        getConstant(C2 & (~0ULL>>(64-ExtSrcTyBits)), ExtDstTy),
866                        Cond);
867      }
868
869      uint64_t MinVal, MaxVal;
870      unsigned OperandBitSize = MVT::getSizeInBits(N2C->getValueType(0));
871      if (ISD::isSignedIntSetCC(Cond)) {
872        MinVal = 1ULL << (OperandBitSize-1);
873        if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined.
874          MaxVal = ~0ULL >> (65-OperandBitSize);
875        else
876          MaxVal = 0;
877      } else {
878        MinVal = 0;
879        MaxVal = ~0ULL >> (64-OperandBitSize);
880      }
881
882      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
883      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
884        if (C2 == MinVal) return getConstant(1, VT);   // X >= MIN --> true
885        --C2;                                          // X >= C1 --> X > (C1-1)
886        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
887                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
888      }
889
890      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
891        if (C2 == MaxVal) return getConstant(1, VT);   // X <= MAX --> true
892        ++C2;                                          // X <= C1 --> X < (C1+1)
893        return getSetCC(VT, N1, getConstant(C2, N2.getValueType()),
894                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
895      }
896
897      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal)
898        return getConstant(0, VT);      // X < MIN --> false
899
900      // Canonicalize setgt X, Min --> setne X, Min
901      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MinVal)
902        return getSetCC(VT, N1, N2, ISD::SETNE);
903
904      // If we have setult X, 1, turn it into seteq X, 0
905      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C2 == MinVal+1)
906        return getSetCC(VT, N1, getConstant(MinVal, N1.getValueType()),
907                        ISD::SETEQ);
908      // If we have setugt X, Max-1, turn it into seteq X, Max
909      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C2 == MaxVal-1)
910        return getSetCC(VT, N1, getConstant(MaxVal, N1.getValueType()),
911                        ISD::SETEQ);
912
913      // If we have "setcc X, C1", check to see if we can shrink the immediate
914      // by changing cc.
915
916      // SETUGT X, SINTMAX  -> SETLT X, 0
917      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
918          C2 == (~0ULL >> (65-OperandBitSize)))
919        return getSetCC(VT, N1, getConstant(0, N2.getValueType()), ISD::SETLT);
920
921      // FIXME: Implement the rest of these.
922
923
924      // Fold bit comparisons when we can.
925      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
926          VT == N1.getValueType() && N1.getOpcode() == ISD::AND)
927        if (ConstantSDNode *AndRHS =
928                    dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
929          if (Cond == ISD::SETNE && C2 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
930            // Perform the xform if the AND RHS is a single bit.
931            if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) {
932              return getNode(ISD::SRL, VT, N1,
933                             getConstant(Log2_64(AndRHS->getValue()),
934                                                   TLI.getShiftAmountTy()));
935            }
936          } else if (Cond == ISD::SETEQ && C2 == AndRHS->getValue()) {
937            // (X & 8) == 8  -->  (X & 8) >> 3
938            // Perform the xform if C2 is a single bit.
939            if ((C2 & (C2-1)) == 0) {
940              return getNode(ISD::SRL, VT, N1,
941                             getConstant(Log2_64(C2),TLI.getShiftAmountTy()));
942            }
943          }
944        }
945    }
946  } else if (isa<ConstantSDNode>(N1.Val)) {
947      // Ensure that the constant occurs on the RHS.
948    return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
949  }
950
951  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
952    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
953      double C1 = N1C->getValue(), C2 = N2C->getValue();
954
955      switch (Cond) {
956      default: break; // FIXME: Implement the rest of these!
957      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
958      case ISD::SETNE:  return getConstant(C1 != C2, VT);
959      case ISD::SETLT:  return getConstant(C1 < C2, VT);
960      case ISD::SETGT:  return getConstant(C1 > C2, VT);
961      case ISD::SETLE:  return getConstant(C1 <= C2, VT);
962      case ISD::SETGE:  return getConstant(C1 >= C2, VT);
963      }
964    } else {
965      // Ensure that the constant occurs on the RHS.
966      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
967    }
968
969  // Could not fold it.
970  return SDOperand();
971}
972
973/// getNode - Gets or creates the specified node.
974///
975SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
976  SDNode *&N = NullaryOps[std::make_pair(Opcode, VT)];
977  if (!N) {
978    N = new SDNode(Opcode, VT);
979    AllNodes.push_back(N);
980  }
981  return SDOperand(N, 0);
982}
983
984SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
985                                SDOperand Operand) {
986  unsigned Tmp1;
987  // Constant fold unary operations with an integer constant operand.
988  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
989    uint64_t Val = C->getValue();
990    switch (Opcode) {
991    default: break;
992    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
993    case ISD::ANY_EXTEND:
994    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
995    case ISD::TRUNCATE:    return getConstant(Val, VT);
996    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
997    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
998    case ISD::BIT_CONVERT:
999      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1000        return getConstantFP(BitsToFloat(Val), VT);
1001      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1002        return getConstantFP(BitsToDouble(Val), VT);
1003      break;
1004    case ISD::BSWAP:
1005      switch(VT) {
1006      default: assert(0 && "Invalid bswap!"); break;
1007      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1008      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1009      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1010      }
1011      break;
1012    case ISD::CTPOP:
1013      switch(VT) {
1014      default: assert(0 && "Invalid ctpop!"); break;
1015      case MVT::i1: return getConstant(Val != 0, VT);
1016      case MVT::i8:
1017        Tmp1 = (unsigned)Val & 0xFF;
1018        return getConstant(CountPopulation_32(Tmp1), VT);
1019      case MVT::i16:
1020        Tmp1 = (unsigned)Val & 0xFFFF;
1021        return getConstant(CountPopulation_32(Tmp1), VT);
1022      case MVT::i32:
1023        return getConstant(CountPopulation_32((unsigned)Val), VT);
1024      case MVT::i64:
1025        return getConstant(CountPopulation_64(Val), VT);
1026      }
1027    case ISD::CTLZ:
1028      switch(VT) {
1029      default: assert(0 && "Invalid ctlz!"); break;
1030      case MVT::i1: return getConstant(Val == 0, VT);
1031      case MVT::i8:
1032        Tmp1 = (unsigned)Val & 0xFF;
1033        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1034      case MVT::i16:
1035        Tmp1 = (unsigned)Val & 0xFFFF;
1036        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1037      case MVT::i32:
1038        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1039      case MVT::i64:
1040        return getConstant(CountLeadingZeros_64(Val), VT);
1041      }
1042    case ISD::CTTZ:
1043      switch(VT) {
1044      default: assert(0 && "Invalid cttz!"); break;
1045      case MVT::i1: return getConstant(Val == 0, VT);
1046      case MVT::i8:
1047        Tmp1 = (unsigned)Val | 0x100;
1048        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1049      case MVT::i16:
1050        Tmp1 = (unsigned)Val | 0x10000;
1051        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1052      case MVT::i32:
1053        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1054      case MVT::i64:
1055        return getConstant(CountTrailingZeros_64(Val), VT);
1056      }
1057    }
1058  }
1059
1060  // Constant fold unary operations with an floating point constant operand.
1061  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val))
1062    switch (Opcode) {
1063    case ISD::FNEG:
1064      return getConstantFP(-C->getValue(), VT);
1065    case ISD::FABS:
1066      return getConstantFP(fabs(C->getValue()), VT);
1067    case ISD::FP_ROUND:
1068    case ISD::FP_EXTEND:
1069      return getConstantFP(C->getValue(), VT);
1070    case ISD::FP_TO_SINT:
1071      return getConstant((int64_t)C->getValue(), VT);
1072    case ISD::FP_TO_UINT:
1073      return getConstant((uint64_t)C->getValue(), VT);
1074    case ISD::BIT_CONVERT:
1075      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1076        return getConstant(FloatToBits(C->getValue()), VT);
1077      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1078        return getConstant(DoubleToBits(C->getValue()), VT);
1079      break;
1080    }
1081
1082  unsigned OpOpcode = Operand.Val->getOpcode();
1083  switch (Opcode) {
1084  case ISD::TokenFactor:
1085    return Operand;         // Factor of one node?  No factor.
1086  case ISD::SIGN_EXTEND:
1087    if (Operand.getValueType() == VT) return Operand;   // noop extension
1088    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1089    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1090      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1091    break;
1092  case ISD::ZERO_EXTEND:
1093    if (Operand.getValueType() == VT) return Operand;   // noop extension
1094    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1095    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1096      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1097    break;
1098  case ISD::ANY_EXTEND:
1099    if (Operand.getValueType() == VT) return Operand;   // noop extension
1100    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1101    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1102      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1103      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1104    break;
1105  case ISD::TRUNCATE:
1106    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1107    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1108    if (OpOpcode == ISD::TRUNCATE)
1109      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1110    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1111             OpOpcode == ISD::ANY_EXTEND) {
1112      // If the source is smaller than the dest, we still need an extend.
1113      if (Operand.Val->getOperand(0).getValueType() < VT)
1114        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1115      else if (Operand.Val->getOperand(0).getValueType() > VT)
1116        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1117      else
1118        return Operand.Val->getOperand(0);
1119    }
1120    break;
1121  case ISD::BIT_CONVERT:
1122    // Basic sanity checking.
1123    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1124           && "Cannot BIT_CONVERT between two different types!");
1125    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1126    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1127      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1128    if (OpOpcode == ISD::UNDEF)
1129      return getNode(ISD::UNDEF, VT);
1130    break;
1131  case ISD::SCALAR_TO_VECTOR:
1132    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1133           MVT::getVectorBaseType(VT) == Operand.getValueType() &&
1134           "Illegal SCALAR_TO_VECTOR node!");
1135    break;
1136  case ISD::FNEG:
1137    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1138      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1139                     Operand.Val->getOperand(0));
1140    if (OpOpcode == ISD::FNEG)  // --X -> X
1141      return Operand.Val->getOperand(0);
1142    break;
1143  case ISD::FABS:
1144    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1145      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1146    break;
1147  }
1148
1149  SDNode *N;
1150  MVT::ValueType *VTs = getNodeValueTypes(VT);
1151  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1152    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Operand);
1153    void *IP = 0;
1154    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1155      return SDOperand(E, 0);
1156    N = new SDNode(Opcode, Operand);
1157    N->setValueTypes(VTs, 1);
1158    CSEMap.InsertNode(N, IP);
1159  } else {
1160    N = new SDNode(Opcode, Operand);
1161    N->setValueTypes(VTs, 1);
1162  }
1163  AllNodes.push_back(N);
1164  return SDOperand(N, 0);
1165}
1166
1167
1168
1169SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1170                                SDOperand N1, SDOperand N2) {
1171#ifndef NDEBUG
1172  switch (Opcode) {
1173  case ISD::TokenFactor:
1174    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1175           N2.getValueType() == MVT::Other && "Invalid token factor!");
1176    break;
1177  case ISD::AND:
1178  case ISD::OR:
1179  case ISD::XOR:
1180  case ISD::UDIV:
1181  case ISD::UREM:
1182  case ISD::MULHU:
1183  case ISD::MULHS:
1184    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1185    // fall through
1186  case ISD::ADD:
1187  case ISD::SUB:
1188  case ISD::MUL:
1189  case ISD::SDIV:
1190  case ISD::SREM:
1191    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1192    // fall through.
1193  case ISD::FADD:
1194  case ISD::FSUB:
1195  case ISD::FMUL:
1196  case ISD::FDIV:
1197  case ISD::FREM:
1198    assert(N1.getValueType() == N2.getValueType() &&
1199           N1.getValueType() == VT && "Binary operator types must match!");
1200    break;
1201  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1202    assert(N1.getValueType() == VT &&
1203           MVT::isFloatingPoint(N1.getValueType()) &&
1204           MVT::isFloatingPoint(N2.getValueType()) &&
1205           "Invalid FCOPYSIGN!");
1206    break;
1207  case ISD::SHL:
1208  case ISD::SRA:
1209  case ISD::SRL:
1210  case ISD::ROTL:
1211  case ISD::ROTR:
1212    assert(VT == N1.getValueType() &&
1213           "Shift operators return type must be the same as their first arg");
1214    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1215           VT != MVT::i1 && "Shifts only work on integers");
1216    break;
1217  case ISD::FP_ROUND_INREG: {
1218    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1219    assert(VT == N1.getValueType() && "Not an inreg round!");
1220    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1221           "Cannot FP_ROUND_INREG integer types");
1222    assert(EVT <= VT && "Not rounding down!");
1223    break;
1224  }
1225  case ISD::AssertSext:
1226  case ISD::AssertZext:
1227  case ISD::SIGN_EXTEND_INREG: {
1228    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1229    assert(VT == N1.getValueType() && "Not an inreg extend!");
1230    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1231           "Cannot *_EXTEND_INREG FP types");
1232    assert(EVT <= VT && "Not extending!");
1233  }
1234
1235  default: break;
1236  }
1237#endif
1238
1239  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1240  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1241  if (N1C) {
1242    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1243      int64_t Val = N1C->getValue();
1244      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1245      Val <<= 64-FromBits;
1246      Val >>= 64-FromBits;
1247      return getConstant(Val, VT);
1248    }
1249
1250    if (N2C) {
1251      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1252      switch (Opcode) {
1253      case ISD::ADD: return getConstant(C1 + C2, VT);
1254      case ISD::SUB: return getConstant(C1 - C2, VT);
1255      case ISD::MUL: return getConstant(C1 * C2, VT);
1256      case ISD::UDIV:
1257        if (C2) return getConstant(C1 / C2, VT);
1258        break;
1259      case ISD::UREM :
1260        if (C2) return getConstant(C1 % C2, VT);
1261        break;
1262      case ISD::SDIV :
1263        if (C2) return getConstant(N1C->getSignExtended() /
1264                                   N2C->getSignExtended(), VT);
1265        break;
1266      case ISD::SREM :
1267        if (C2) return getConstant(N1C->getSignExtended() %
1268                                   N2C->getSignExtended(), VT);
1269        break;
1270      case ISD::AND  : return getConstant(C1 & C2, VT);
1271      case ISD::OR   : return getConstant(C1 | C2, VT);
1272      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1273      case ISD::SHL  : return getConstant(C1 << C2, VT);
1274      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1275      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1276      case ISD::ROTL :
1277        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1278                           VT);
1279      case ISD::ROTR :
1280        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1281                           VT);
1282      default: break;
1283      }
1284    } else {      // Cannonicalize constant to RHS if commutative
1285      if (isCommutativeBinOp(Opcode)) {
1286        std::swap(N1C, N2C);
1287        std::swap(N1, N2);
1288      }
1289    }
1290  }
1291
1292  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1293  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1294  if (N1CFP) {
1295    if (N2CFP) {
1296      double C1 = N1CFP->getValue(), C2 = N2CFP->getValue();
1297      switch (Opcode) {
1298      case ISD::FADD: return getConstantFP(C1 + C2, VT);
1299      case ISD::FSUB: return getConstantFP(C1 - C2, VT);
1300      case ISD::FMUL: return getConstantFP(C1 * C2, VT);
1301      case ISD::FDIV:
1302        if (C2) return getConstantFP(C1 / C2, VT);
1303        break;
1304      case ISD::FREM :
1305        if (C2) return getConstantFP(fmod(C1, C2), VT);
1306        break;
1307      case ISD::FCOPYSIGN: {
1308        union {
1309          double   F;
1310          uint64_t I;
1311        } u1;
1312        union {
1313          double  F;
1314          int64_t I;
1315        } u2;
1316        u1.F = C1;
1317        u2.F = C2;
1318        if (u2.I < 0)  // Sign bit of RHS set?
1319          u1.I |= 1ULL << 63;      // Set the sign bit of the LHS.
1320        else
1321          u1.I &= (1ULL << 63)-1;  // Clear the sign bit of the LHS.
1322        return getConstantFP(u1.F, VT);
1323      }
1324      default: break;
1325      }
1326    } else {      // Cannonicalize constant to RHS if commutative
1327      if (isCommutativeBinOp(Opcode)) {
1328        std::swap(N1CFP, N2CFP);
1329        std::swap(N1, N2);
1330      }
1331    }
1332  }
1333
1334  // Canonicalize an UNDEF to the RHS, even over a constant.
1335  if (N1.getOpcode() == ISD::UNDEF) {
1336    if (isCommutativeBinOp(Opcode)) {
1337      std::swap(N1, N2);
1338    } else {
1339      switch (Opcode) {
1340      case ISD::FP_ROUND_INREG:
1341      case ISD::SIGN_EXTEND_INREG:
1342      case ISD::SUB:
1343      case ISD::FSUB:
1344      case ISD::FDIV:
1345      case ISD::FREM:
1346      case ISD::SRA:
1347        return N1;     // fold op(undef, arg2) -> undef
1348      case ISD::UDIV:
1349      case ISD::SDIV:
1350      case ISD::UREM:
1351      case ISD::SREM:
1352      case ISD::SRL:
1353      case ISD::SHL:
1354        return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1355      }
1356    }
1357  }
1358
1359  // Fold a bunch of operators when the RHS is undef.
1360  if (N2.getOpcode() == ISD::UNDEF) {
1361    switch (Opcode) {
1362    case ISD::ADD:
1363    case ISD::SUB:
1364    case ISD::FADD:
1365    case ISD::FSUB:
1366    case ISD::FMUL:
1367    case ISD::FDIV:
1368    case ISD::FREM:
1369    case ISD::UDIV:
1370    case ISD::SDIV:
1371    case ISD::UREM:
1372    case ISD::SREM:
1373    case ISD::XOR:
1374      return N2;       // fold op(arg1, undef) -> undef
1375    case ISD::MUL:
1376    case ISD::AND:
1377    case ISD::SRL:
1378    case ISD::SHL:
1379      return getConstant(0, VT);  // fold op(arg1, undef) -> 0
1380    case ISD::OR:
1381      return getConstant(MVT::getIntVTBitMask(VT), VT);
1382    case ISD::SRA:
1383      return N1;
1384    }
1385  }
1386
1387  // Finally, fold operations that do not require constants.
1388  switch (Opcode) {
1389  case ISD::FP_ROUND_INREG:
1390    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
1391    break;
1392  case ISD::SIGN_EXTEND_INREG: {
1393    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1394    if (EVT == VT) return N1;  // Not actually extending
1395    break;
1396  }
1397
1398  // FIXME: figure out how to safely handle things like
1399  // int foo(int x) { return 1 << (x & 255); }
1400  // int bar() { return foo(256); }
1401#if 0
1402  case ISD::SHL:
1403  case ISD::SRL:
1404  case ISD::SRA:
1405    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1406        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
1407      return getNode(Opcode, VT, N1, N2.getOperand(0));
1408    else if (N2.getOpcode() == ISD::AND)
1409      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
1410        // If the and is only masking out bits that cannot effect the shift,
1411        // eliminate the and.
1412        unsigned NumBits = MVT::getSizeInBits(VT);
1413        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1414          return getNode(Opcode, VT, N1, N2.getOperand(0));
1415      }
1416    break;
1417#endif
1418  }
1419
1420  // Memoize this node if possible.
1421  SDNode *N;
1422  MVT::ValueType *VTs = getNodeValueTypes(VT);
1423  if (VT != MVT::Flag) {
1424    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2);
1425    void *IP = 0;
1426    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1427      return SDOperand(E, 0);
1428    N = new SDNode(Opcode, N1, N2);
1429    N->setValueTypes(VTs, 1);
1430    CSEMap.InsertNode(N, IP);
1431  } else {
1432    N = new SDNode(Opcode, N1, N2);
1433    N->setValueTypes(VTs, 1);
1434  }
1435
1436  AllNodes.push_back(N);
1437  return SDOperand(N, 0);
1438}
1439
1440SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1441                                SDOperand N1, SDOperand N2, SDOperand N3) {
1442  // Perform various simplifications.
1443  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1444  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1445  //ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val);
1446  switch (Opcode) {
1447  case ISD::SETCC: {
1448    // Use SimplifySetCC  to simplify SETCC's.
1449    SDOperand Simp = SimplifySetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
1450    if (Simp.Val) return Simp;
1451    break;
1452  }
1453  case ISD::SELECT:
1454    if (N1C)
1455      if (N1C->getValue())
1456        return N2;             // select true, X, Y -> X
1457      else
1458        return N3;             // select false, X, Y -> Y
1459
1460    if (N2 == N3) return N2;   // select C, X, X -> X
1461    break;
1462  case ISD::BRCOND:
1463    if (N2C)
1464      if (N2C->getValue()) // Unconditional branch
1465        return getNode(ISD::BR, MVT::Other, N1, N3);
1466      else
1467        return N1;         // Never-taken branch
1468    break;
1469  case ISD::VECTOR_SHUFFLE:
1470    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
1471           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
1472           N3.getOpcode() == ISD::BUILD_VECTOR &&
1473           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
1474           "Illegal VECTOR_SHUFFLE node!");
1475    break;
1476  }
1477
1478  // Memoize node if it doesn't produce a flag.
1479  SDNode *N;
1480  MVT::ValueType *VTs = getNodeValueTypes(VT);
1481
1482  if (VT != MVT::Flag) {
1483    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, N1, N2, N3);
1484    void *IP = 0;
1485    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1486      return SDOperand(E, 0);
1487    N = new SDNode(Opcode, N1, N2, N3);
1488    N->setValueTypes(VTs, 1);
1489    CSEMap.InsertNode(N, IP);
1490  } else {
1491    N = new SDNode(Opcode, N1, N2, N3);
1492    N->setValueTypes(VTs, 1);
1493  }
1494  AllNodes.push_back(N);
1495  return SDOperand(N, 0);
1496}
1497
1498SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1499                                SDOperand N1, SDOperand N2, SDOperand N3,
1500                                SDOperand N4) {
1501  SDOperand Ops[] = { N1, N2, N3, N4 };
1502  return getNode(Opcode, VT, Ops, 4);
1503}
1504
1505SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1506                                SDOperand N1, SDOperand N2, SDOperand N3,
1507                                SDOperand N4, SDOperand N5) {
1508  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
1509  return getNode(Opcode, VT, Ops, 5);
1510}
1511
1512SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
1513                                SDOperand Chain, SDOperand Ptr,
1514                                SDOperand SV) {
1515  MVT::ValueType *VTs = getNodeValueTypes(VT, MVT::Other);
1516
1517  SelectionDAGCSEMap::NodeID ID(ISD::LOAD, VTs, Chain, Ptr, SV);
1518  void *IP = 0;
1519  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1520    return SDOperand(E, 0);
1521  SDNode *N = new SDNode(ISD::LOAD, Chain, Ptr, SV);
1522  N->setValueTypes(VTs, 2);
1523  CSEMap.InsertNode(N, IP);
1524  AllNodes.push_back(N);
1525  return SDOperand(N, 0);
1526}
1527
1528SDOperand SelectionDAG::getVecLoad(unsigned Count, MVT::ValueType EVT,
1529                                   SDOperand Chain, SDOperand Ptr,
1530                                   SDOperand SV) {
1531  SDOperand Ops[] = { Chain, Ptr, SV, getConstant(Count, MVT::i32),
1532                      getValueType(EVT) };
1533  std::vector<MVT::ValueType> VTs;
1534  VTs.reserve(2);
1535  VTs.push_back(MVT::Vector); VTs.push_back(MVT::Other);  // Add token chain.
1536  return getNode(ISD::VLOAD, VTs, Ops, 5);
1537}
1538
1539SDOperand SelectionDAG::getExtLoad(unsigned Opcode, MVT::ValueType VT,
1540                                   SDOperand Chain, SDOperand Ptr, SDOperand SV,
1541                                   MVT::ValueType EVT) {
1542  std::vector<SDOperand> Ops;
1543  Ops.reserve(4);
1544  Ops.push_back(Chain);
1545  Ops.push_back(Ptr);
1546  Ops.push_back(SV);
1547  Ops.push_back(getValueType(EVT));
1548  std::vector<MVT::ValueType> VTs;
1549  VTs.reserve(2);
1550  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1551  return getNode(Opcode, VTs, Ops);
1552}
1553
1554SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
1555  assert((!V || isa<PointerType>(V->getType())) &&
1556         "SrcValue is not a pointer?");
1557  SDNode *&N = ValueNodes[std::make_pair(V, Offset)];
1558  if (N) return SDOperand(N, 0);
1559
1560  N = new SrcValueSDNode(V, Offset);
1561  AllNodes.push_back(N);
1562  return SDOperand(N, 0);
1563}
1564
1565SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
1566                                 SDOperand Chain, SDOperand Ptr,
1567                                 SDOperand SV) {
1568  std::vector<SDOperand> Ops;
1569  Ops.reserve(3);
1570  Ops.push_back(Chain);
1571  Ops.push_back(Ptr);
1572  Ops.push_back(SV);
1573  std::vector<MVT::ValueType> VTs;
1574  VTs.reserve(2);
1575  VTs.push_back(VT); VTs.push_back(MVT::Other);  // Add token chain.
1576  return getNode(ISD::VAARG, VTs, Ops);
1577}
1578
1579SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1580                                const SDOperand *Ops, unsigned NumOps) {
1581  switch (NumOps) {
1582  case 0: return getNode(Opcode, VT);
1583  case 1: return getNode(Opcode, VT, Ops[0]);
1584  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
1585  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
1586  default: break;
1587  }
1588
1589  switch (Opcode) {
1590  default: break;
1591  case ISD::TRUNCSTORE: {
1592    assert(NumOps == 5 && "TRUNCSTORE takes 5 operands!");
1593    MVT::ValueType EVT = cast<VTSDNode>(Ops[4])->getVT();
1594#if 0 // FIXME: If the target supports EVT natively, convert to a truncate/store
1595    // If this is a truncating store of a constant, convert to the desired type
1596    // and store it instead.
1597    if (isa<Constant>(Ops[0])) {
1598      SDOperand Op = getNode(ISD::TRUNCATE, EVT, N1);
1599      if (isa<Constant>(Op))
1600        N1 = Op;
1601    }
1602    // Also for ConstantFP?
1603#endif
1604    if (Ops[0].getValueType() == EVT)       // Normal store?
1605      return getNode(ISD::STORE, VT, Ops[0], Ops[1], Ops[2], Ops[3]);
1606    assert(Ops[1].getValueType() > EVT && "Not a truncation?");
1607    assert(MVT::isInteger(Ops[1].getValueType()) == MVT::isInteger(EVT) &&
1608           "Can't do FP-INT conversion!");
1609    break;
1610  }
1611  case ISD::SELECT_CC: {
1612    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
1613    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
1614           "LHS and RHS of condition must have same type!");
1615    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1616           "True and False arms of SelectCC must have same type!");
1617    assert(Ops[2].getValueType() == VT &&
1618           "select_cc node must be of same type as true and false value!");
1619    break;
1620  }
1621  case ISD::BR_CC: {
1622    assert(NumOps == 5 && "BR_CC takes 5 operands!");
1623    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
1624           "LHS/RHS of comparison should match types!");
1625    break;
1626  }
1627  }
1628
1629  // Memoize nodes.
1630  SDNode *N;
1631  MVT::ValueType *VTs = getNodeValueTypes(VT);
1632  if (VT != MVT::Flag) {
1633    SelectionDAGCSEMap::NodeID ID(Opcode, VTs, Ops, NumOps);
1634    void *IP = 0;
1635    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1636      return SDOperand(E, 0);
1637    N = new SDNode(Opcode, Ops, NumOps);
1638    N->setValueTypes(VTs, 1);
1639    CSEMap.InsertNode(N, IP);
1640  } else {
1641    N = new SDNode(Opcode, Ops, NumOps);
1642    N->setValueTypes(VTs, 1);
1643  }
1644  AllNodes.push_back(N);
1645  return SDOperand(N, 0);
1646}
1647
1648SDOperand SelectionDAG::getNode(unsigned Opcode,
1649                                std::vector<MVT::ValueType> &ResultTys,
1650                                const SDOperand *Ops, unsigned NumOps) {
1651  if (ResultTys.size() == 1)
1652    return getNode(Opcode, ResultTys[0], Ops, NumOps);
1653
1654  switch (Opcode) {
1655  case ISD::EXTLOAD:
1656  case ISD::SEXTLOAD:
1657  case ISD::ZEXTLOAD: {
1658    MVT::ValueType EVT = cast<VTSDNode>(Ops[3])->getVT();
1659    assert(NumOps == 4 && ResultTys.size() == 2 && "Bad *EXTLOAD!");
1660    // If they are asking for an extending load from/to the same thing, return a
1661    // normal load.
1662    if (ResultTys[0] == EVT)
1663      return getLoad(ResultTys[0], Ops[0], Ops[1], Ops[2]);
1664    if (MVT::isVector(ResultTys[0])) {
1665      assert(EVT == MVT::getVectorBaseType(ResultTys[0]) &&
1666             "Invalid vector extload!");
1667    } else {
1668      assert(EVT < ResultTys[0] &&
1669             "Should only be an extending load, not truncating!");
1670    }
1671    assert((Opcode == ISD::EXTLOAD || MVT::isInteger(ResultTys[0])) &&
1672           "Cannot sign/zero extend a FP/Vector load!");
1673    assert(MVT::isInteger(ResultTys[0]) == MVT::isInteger(EVT) &&
1674           "Cannot convert from FP to Int or Int -> FP!");
1675    break;
1676  }
1677
1678  // FIXME: figure out how to safely handle things like
1679  // int foo(int x) { return 1 << (x & 255); }
1680  // int bar() { return foo(256); }
1681#if 0
1682  case ISD::SRA_PARTS:
1683  case ISD::SRL_PARTS:
1684  case ISD::SHL_PARTS:
1685    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1686        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
1687      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1688    else if (N3.getOpcode() == ISD::AND)
1689      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
1690        // If the and is only masking out bits that cannot effect the shift,
1691        // eliminate the and.
1692        unsigned NumBits = MVT::getSizeInBits(VT)*2;
1693        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
1694          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
1695      }
1696    break;
1697#endif
1698  }
1699
1700  // Memoize the node unless it returns a flag.
1701  SDNode *N;
1702  MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
1703  if (ResultTys.back() != MVT::Flag) {
1704    SelectionDAGCSEMap::NodeID ID;
1705    ID.SetOpcode(Opcode);
1706    ID.SetValueTypes(VTs);
1707    ID.SetOperands(&Ops[0], NumOps);
1708    void *IP = 0;
1709    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1710      return SDOperand(E, 0);
1711    N = new SDNode(Opcode, Ops, NumOps);
1712    N->setValueTypes(VTs, ResultTys.size());
1713    CSEMap.InsertNode(N, IP);
1714  } else {
1715    N = new SDNode(Opcode, Ops, NumOps);
1716    N->setValueTypes(VTs, ResultTys.size());
1717  }
1718  AllNodes.push_back(N);
1719  return SDOperand(N, 0);
1720}
1721
1722SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1723                                std::vector<SDOperand> &Ops) {
1724  return getNode(Opcode, VT, &Ops[0], Ops.size());
1725}
1726
1727SDOperand SelectionDAG::getNode(unsigned Opcode,
1728                                std::vector<MVT::ValueType> &ResultTys,
1729                                std::vector<SDOperand> &Ops) {
1730  return getNode(Opcode, ResultTys, &Ops[0], Ops.size());
1731}
1732
1733
1734MVT::ValueType *SelectionDAG::getNodeValueTypes(MVT::ValueType VT) {
1735  return SDNode::getValueTypeList(VT);
1736}
1737
1738MVT::ValueType *SelectionDAG::getNodeValueTypes(
1739                                        std::vector<MVT::ValueType> &RetVals) {
1740  switch (RetVals.size()) {
1741  case 0: assert(0 && "Cannot have nodes without results!");
1742  case 1: return SDNode::getValueTypeList(RetVals[0]);
1743  case 2: return getNodeValueTypes(RetVals[0], RetVals[1]);
1744  default: break;
1745  }
1746
1747  std::list<std::vector<MVT::ValueType> >::iterator I =
1748    std::find(VTList.begin(), VTList.end(), RetVals);
1749  if (I == VTList.end()) {
1750    VTList.push_front(RetVals);
1751    I = VTList.begin();
1752  }
1753
1754  return &(*I)[0];
1755}
1756
1757MVT::ValueType *SelectionDAG::getNodeValueTypes(MVT::ValueType VT1,
1758                                                MVT::ValueType VT2) {
1759  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
1760       E = VTList.end(); I != E; ++I) {
1761    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
1762      return &(*I)[0];
1763  }
1764  std::vector<MVT::ValueType> V;
1765  V.push_back(VT1);
1766  V.push_back(VT2);
1767  VTList.push_front(V);
1768  return &(*VTList.begin())[0];
1769}
1770
1771/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
1772/// specified operands.  If the resultant node already exists in the DAG,
1773/// this does not modify the specified node, instead it returns the node that
1774/// already exists.  If the resultant node does not exist in the DAG, the
1775/// input node is returned.  As a degenerate case, if you specify the same
1776/// input operands as the node already has, the input node is returned.
1777SDOperand SelectionDAG::
1778UpdateNodeOperands(SDOperand InN, SDOperand Op) {
1779  SDNode *N = InN.Val;
1780  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
1781
1782  // Check to see if there is no change.
1783  if (Op == N->getOperand(0)) return InN;
1784
1785  // See if the modified node already exists.
1786  void *InsertPos = 0;
1787  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
1788    return SDOperand(Existing, InN.ResNo);
1789
1790  // Nope it doesn't.  Remove the node from it's current place in the maps.
1791  if (InsertPos)
1792    RemoveNodeFromCSEMaps(N);
1793
1794  // Now we update the operands.
1795  N->OperandList[0].Val->removeUser(N);
1796  Op.Val->addUser(N);
1797  N->OperandList[0] = Op;
1798
1799  // If this gets put into a CSE map, add it.
1800  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1801  return InN;
1802}
1803
1804SDOperand SelectionDAG::
1805UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
1806  SDNode *N = InN.Val;
1807  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
1808
1809  // Check to see if there is no change.
1810  bool AnyChange = false;
1811  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
1812    return InN;   // No operands changed, just return the input node.
1813
1814  // See if the modified node already exists.
1815  void *InsertPos = 0;
1816  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
1817    return SDOperand(Existing, InN.ResNo);
1818
1819  // Nope it doesn't.  Remove the node from it's current place in the maps.
1820  if (InsertPos)
1821    RemoveNodeFromCSEMaps(N);
1822
1823  // Now we update the operands.
1824  if (N->OperandList[0] != Op1) {
1825    N->OperandList[0].Val->removeUser(N);
1826    Op1.Val->addUser(N);
1827    N->OperandList[0] = Op1;
1828  }
1829  if (N->OperandList[1] != Op2) {
1830    N->OperandList[1].Val->removeUser(N);
1831    Op2.Val->addUser(N);
1832    N->OperandList[1] = Op2;
1833  }
1834
1835  // If this gets put into a CSE map, add it.
1836  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1837  return InN;
1838}
1839
1840SDOperand SelectionDAG::
1841UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
1842  SDOperand Ops[] = { Op1, Op2, Op3 };
1843  return UpdateNodeOperands(N, Ops, 3);
1844}
1845
1846SDOperand SelectionDAG::
1847UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1848                   SDOperand Op3, SDOperand Op4) {
1849  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
1850  return UpdateNodeOperands(N, Ops, 4);
1851}
1852
1853SDOperand SelectionDAG::
1854UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
1855                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
1856  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
1857  return UpdateNodeOperands(N, Ops, 5);
1858}
1859
1860
1861SDOperand SelectionDAG::
1862UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
1863  SDNode *N = InN.Val;
1864  assert(N->getNumOperands() == NumOps &&
1865         "Update with wrong number of operands");
1866
1867  // Check to see if there is no change.
1868  bool AnyChange = false;
1869  for (unsigned i = 0; i != NumOps; ++i) {
1870    if (Ops[i] != N->getOperand(i)) {
1871      AnyChange = true;
1872      break;
1873    }
1874  }
1875
1876  // No operands changed, just return the input node.
1877  if (!AnyChange) return InN;
1878
1879  // See if the modified node already exists.
1880  void *InsertPos = 0;
1881  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
1882    return SDOperand(Existing, InN.ResNo);
1883
1884  // Nope it doesn't.  Remove the node from it's current place in the maps.
1885  if (InsertPos)
1886    RemoveNodeFromCSEMaps(N);
1887
1888  // Now we update the operands.
1889  for (unsigned i = 0; i != NumOps; ++i) {
1890    if (N->OperandList[i] != Ops[i]) {
1891      N->OperandList[i].Val->removeUser(N);
1892      Ops[i].Val->addUser(N);
1893      N->OperandList[i] = Ops[i];
1894    }
1895  }
1896
1897  // If this gets put into a CSE map, add it.
1898  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
1899  return InN;
1900}
1901
1902
1903
1904
1905/// SelectNodeTo - These are used for target selectors to *mutate* the
1906/// specified node to have the specified return type, Target opcode, and
1907/// operands.  Note that target opcodes are stored as
1908/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
1909///
1910/// Note that SelectNodeTo returns the resultant node.  If there is already a
1911/// node of the specified opcode and operands, it returns that node instead of
1912/// the current one.
1913SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1914                                     MVT::ValueType VT) {
1915  // If an identical node already exists, use it.
1916  SDNode *&ON = NullaryOps[std::make_pair(ISD::BUILTIN_OP_END+TargetOpc, VT)];
1917  if (ON) return SDOperand(ON, 0);
1918
1919  RemoveNodeFromCSEMaps(N);
1920
1921  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1922  N->setValueTypes(getNodeValueTypes(VT), 1);
1923
1924  ON = N;   // Memoize the new node.
1925  return SDOperand(N, 0);
1926}
1927
1928SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1929                                     MVT::ValueType VT, SDOperand Op1) {
1930  // If an identical node already exists, use it.
1931  MVT::ValueType *VTs = getNodeValueTypes(VT);
1932  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1);
1933  void *IP = 0;
1934  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1935    return SDOperand(ON, 0);
1936
1937  RemoveNodeFromCSEMaps(N);
1938  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1939  N->setValueTypes(getNodeValueTypes(VT), 1);
1940  N->setOperands(Op1);
1941  CSEMap.InsertNode(N, IP);
1942  return SDOperand(N, 0);
1943}
1944
1945SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1946                                     MVT::ValueType VT, SDOperand Op1,
1947                                     SDOperand Op2) {
1948  // If an identical node already exists, use it.
1949  MVT::ValueType *VTs = getNodeValueTypes(VT);
1950  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
1951  void *IP = 0;
1952  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1953    return SDOperand(ON, 0);
1954
1955  RemoveNodeFromCSEMaps(N);
1956  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1957  N->setValueTypes(VTs, 1);
1958  N->setOperands(Op1, Op2);
1959
1960  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1961  return SDOperand(N, 0);
1962}
1963
1964SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1965                                     MVT::ValueType VT, SDOperand Op1,
1966                                     SDOperand Op2, SDOperand Op3) {
1967  // If an identical node already exists, use it.
1968  MVT::ValueType *VTs = getNodeValueTypes(VT);
1969  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2, Op3);
1970  void *IP = 0;
1971  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1972    return SDOperand(ON, 0);
1973
1974  RemoveNodeFromCSEMaps(N);
1975  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
1976  N->setValueTypes(VTs, 1);
1977  N->setOperands(Op1, Op2, Op3);
1978
1979  CSEMap.InsertNode(N, IP);   // Memoize the new node.
1980  return SDOperand(N, 0);
1981}
1982
1983SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
1984                                     MVT::ValueType VT, SDOperand Op1,
1985                                     SDOperand Op2, SDOperand Op3,
1986                                     SDOperand Op4) {
1987  // If an identical node already exists, use it.
1988  MVT::ValueType *VTs = getNodeValueTypes(VT);
1989  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
1990  ID.AddOperand(Op1);
1991  ID.AddOperand(Op2);
1992  ID.AddOperand(Op3);
1993  ID.AddOperand(Op4);
1994  void *IP = 0;
1995  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
1996    return SDOperand(ON, 0);
1997
1998  RemoveNodeFromCSEMaps(N);
1999  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2000  N->setValueTypes(VTs, 1);
2001  N->setOperands(Op1, Op2, Op3, Op4);
2002
2003  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2004  return SDOperand(N, 0);
2005}
2006
2007SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2008                                     MVT::ValueType VT, SDOperand Op1,
2009                                     SDOperand Op2, SDOperand Op3,
2010                                     SDOperand Op4, SDOperand Op5) {
2011  MVT::ValueType *VTs = getNodeValueTypes(VT);
2012  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2013  ID.AddOperand(Op1);
2014  ID.AddOperand(Op2);
2015  ID.AddOperand(Op3);
2016  ID.AddOperand(Op4);
2017  ID.AddOperand(Op5);
2018  void *IP = 0;
2019  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2020    return SDOperand(ON, 0);
2021
2022  RemoveNodeFromCSEMaps(N);
2023  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2024  N->setValueTypes(VTs, 1);
2025  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2026
2027  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2028  return SDOperand(N, 0);
2029}
2030
2031SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2032                                     MVT::ValueType VT, SDOperand Op1,
2033                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2034                                     SDOperand Op5, SDOperand Op6) {
2035  MVT::ValueType *VTs = getNodeValueTypes(VT);
2036  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2037  ID.AddOperand(Op1);
2038  ID.AddOperand(Op2);
2039  ID.AddOperand(Op3);
2040  ID.AddOperand(Op4);
2041  ID.AddOperand(Op5);
2042  ID.AddOperand(Op6);
2043  void *IP = 0;
2044  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2045    return SDOperand(ON, 0);
2046
2047  RemoveNodeFromCSEMaps(N);
2048  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2049  N->setValueTypes(VTs, 1);
2050  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6);
2051
2052  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2053  return SDOperand(N, 0);
2054}
2055
2056SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2057                                     MVT::ValueType VT, SDOperand Op1,
2058                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2059                                     SDOperand Op5, SDOperand Op6,
2060				     SDOperand Op7) {
2061  MVT::ValueType *VTs = getNodeValueTypes(VT);
2062  // If an identical node already exists, use it.
2063  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2064  ID.AddOperand(Op1);
2065  ID.AddOperand(Op2);
2066  ID.AddOperand(Op3);
2067  ID.AddOperand(Op4);
2068  ID.AddOperand(Op5);
2069  ID.AddOperand(Op6);
2070  ID.AddOperand(Op7);
2071  void *IP = 0;
2072  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2073    return SDOperand(ON, 0);
2074
2075  RemoveNodeFromCSEMaps(N);
2076  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2077  N->setValueTypes(VTs, 1);
2078  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7);
2079
2080  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2081  return SDOperand(N, 0);
2082}
2083SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2084                                     MVT::ValueType VT, SDOperand Op1,
2085                                     SDOperand Op2, SDOperand Op3,SDOperand Op4,
2086                                     SDOperand Op5, SDOperand Op6,
2087				     SDOperand Op7, SDOperand Op8) {
2088  // If an identical node already exists, use it.
2089  MVT::ValueType *VTs = getNodeValueTypes(VT);
2090  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2091  ID.AddOperand(Op1);
2092  ID.AddOperand(Op2);
2093  ID.AddOperand(Op3);
2094  ID.AddOperand(Op4);
2095  ID.AddOperand(Op5);
2096  ID.AddOperand(Op6);
2097  ID.AddOperand(Op7);
2098  ID.AddOperand(Op8);
2099  void *IP = 0;
2100  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2101    return SDOperand(ON, 0);
2102
2103  RemoveNodeFromCSEMaps(N);
2104  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2105  N->setValueTypes(VTs, 1);
2106  N->setOperands(Op1, Op2, Op3, Op4, Op5, Op6, Op7, Op8);
2107
2108  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2109  return SDOperand(N, 0);
2110}
2111
2112SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2113                                     MVT::ValueType VT1, MVT::ValueType VT2,
2114                                     SDOperand Op1, SDOperand Op2) {
2115  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2116  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs, Op1, Op2);
2117  void *IP = 0;
2118  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2119    return SDOperand(ON, 0);
2120
2121  RemoveNodeFromCSEMaps(N);
2122  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2123  N->setValueTypes(VTs, 2);
2124  N->setOperands(Op1, Op2);
2125
2126  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2127  return SDOperand(N, 0);
2128}
2129
2130SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2131                                     MVT::ValueType VT1, MVT::ValueType VT2,
2132                                     SDOperand Op1, SDOperand Op2,
2133                                     SDOperand Op3) {
2134  // If an identical node already exists, use it.
2135  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2136  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs,
2137                                Op1, Op2, Op3);
2138  void *IP = 0;
2139  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2140    return SDOperand(ON, 0);
2141
2142  RemoveNodeFromCSEMaps(N);
2143  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2144  N->setValueTypes(VTs, 2);
2145  N->setOperands(Op1, Op2, Op3);
2146
2147  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2148  return SDOperand(N, 0);
2149}
2150
2151SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2152                                     MVT::ValueType VT1, MVT::ValueType VT2,
2153                                     SDOperand Op1, SDOperand Op2,
2154                                     SDOperand Op3, SDOperand Op4) {
2155  // If an identical node already exists, use it.
2156  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2157  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2158  ID.AddOperand(Op1);
2159  ID.AddOperand(Op2);
2160  ID.AddOperand(Op3);
2161  ID.AddOperand(Op4);
2162  void *IP = 0;
2163  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2164    return SDOperand(ON, 0);
2165
2166  RemoveNodeFromCSEMaps(N);
2167  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2168  N->setValueTypes(VTs, 2);
2169  N->setOperands(Op1, Op2, Op3, Op4);
2170
2171  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2172  return SDOperand(N, 0);
2173}
2174
2175SDOperand SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2176                                     MVT::ValueType VT1, MVT::ValueType VT2,
2177                                     SDOperand Op1, SDOperand Op2,
2178                                     SDOperand Op3, SDOperand Op4,
2179                                     SDOperand Op5) {
2180  // If an identical node already exists, use it.
2181  MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
2182  SelectionDAGCSEMap::NodeID ID(ISD::BUILTIN_OP_END+TargetOpc, VTs);
2183  ID.AddOperand(Op1);
2184  ID.AddOperand(Op2);
2185  ID.AddOperand(Op3);
2186  ID.AddOperand(Op4);
2187  ID.AddOperand(Op5);
2188  void *IP = 0;
2189  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2190    return SDOperand(ON, 0);
2191
2192  RemoveNodeFromCSEMaps(N);
2193  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc);
2194  N->setValueTypes(VTs, 2);
2195  N->setOperands(Op1, Op2, Op3, Op4, Op5);
2196
2197  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2198  return SDOperand(N, 0);
2199}
2200
2201/// getTargetNode - These are used for target selectors to create a new node
2202/// with specified return type(s), target opcode, and operands.
2203///
2204/// Note that getTargetNode returns the resultant node.  If there is already a
2205/// node of the specified opcode and operands, it returns that node instead of
2206/// the current one.
2207SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2208  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2209}
2210SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2211                                    SDOperand Op1) {
2212  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2213}
2214SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2215                                    SDOperand Op1, SDOperand Op2) {
2216  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2217}
2218SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2219                                    SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2220  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2221}
2222SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2223                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2224                                    SDOperand Op4) {
2225  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4).Val;
2226}
2227SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2228                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2229                                    SDOperand Op4, SDOperand Op5) {
2230  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3, Op4, Op5).Val;
2231}
2232SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2233                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2234                                    SDOperand Op4, SDOperand Op5,
2235                                    SDOperand Op6) {
2236  std::vector<SDOperand> Ops;
2237  Ops.reserve(6);
2238  Ops.push_back(Op1);
2239  Ops.push_back(Op2);
2240  Ops.push_back(Op3);
2241  Ops.push_back(Op4);
2242  Ops.push_back(Op5);
2243  Ops.push_back(Op6);
2244  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2245}
2246SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2247                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2248                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2249                                    SDOperand Op7) {
2250  std::vector<SDOperand> Ops;
2251  Ops.reserve(7);
2252  Ops.push_back(Op1);
2253  Ops.push_back(Op2);
2254  Ops.push_back(Op3);
2255  Ops.push_back(Op4);
2256  Ops.push_back(Op5);
2257  Ops.push_back(Op6);
2258  Ops.push_back(Op7);
2259  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2260}
2261SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2262                                    SDOperand Op1, SDOperand Op2, SDOperand Op3,
2263                                    SDOperand Op4, SDOperand Op5, SDOperand Op6,
2264                                    SDOperand Op7, SDOperand Op8) {
2265  std::vector<SDOperand> Ops;
2266  Ops.reserve(8);
2267  Ops.push_back(Op1);
2268  Ops.push_back(Op2);
2269  Ops.push_back(Op3);
2270  Ops.push_back(Op4);
2271  Ops.push_back(Op5);
2272  Ops.push_back(Op6);
2273  Ops.push_back(Op7);
2274  Ops.push_back(Op8);
2275  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2276}
2277SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2278                                    std::vector<SDOperand> &Ops) {
2279  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops).Val;
2280}
2281SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2282                                    MVT::ValueType VT2, SDOperand Op1) {
2283  std::vector<MVT::ValueType> ResultTys;
2284  ResultTys.push_back(VT1);
2285  ResultTys.push_back(VT2);
2286  std::vector<SDOperand> Ops;
2287  Ops.push_back(Op1);
2288  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2289}
2290SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2291                                    MVT::ValueType VT2, SDOperand Op1,
2292                                    SDOperand Op2) {
2293  std::vector<MVT::ValueType> ResultTys;
2294  ResultTys.push_back(VT1);
2295  ResultTys.push_back(VT2);
2296  std::vector<SDOperand> Ops;
2297  Ops.push_back(Op1);
2298  Ops.push_back(Op2);
2299  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2300}
2301SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2302                                    MVT::ValueType VT2, SDOperand Op1,
2303                                    SDOperand Op2, SDOperand Op3) {
2304  std::vector<MVT::ValueType> ResultTys;
2305  ResultTys.push_back(VT1);
2306  ResultTys.push_back(VT2);
2307  std::vector<SDOperand> Ops;
2308  Ops.push_back(Op1);
2309  Ops.push_back(Op2);
2310  Ops.push_back(Op3);
2311  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2312}
2313SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2314                                    MVT::ValueType VT2, SDOperand Op1,
2315                                    SDOperand Op2, SDOperand Op3,
2316                                    SDOperand Op4) {
2317  std::vector<MVT::ValueType> ResultTys;
2318  ResultTys.push_back(VT1);
2319  ResultTys.push_back(VT2);
2320  std::vector<SDOperand> Ops;
2321  Ops.push_back(Op1);
2322  Ops.push_back(Op2);
2323  Ops.push_back(Op3);
2324  Ops.push_back(Op4);
2325  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2326}
2327SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2328                                    MVT::ValueType VT2, SDOperand Op1,
2329                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2330                                    SDOperand Op5) {
2331  std::vector<MVT::ValueType> ResultTys;
2332  ResultTys.push_back(VT1);
2333  ResultTys.push_back(VT2);
2334  std::vector<SDOperand> Ops;
2335  Ops.push_back(Op1);
2336  Ops.push_back(Op2);
2337  Ops.push_back(Op3);
2338  Ops.push_back(Op4);
2339  Ops.push_back(Op5);
2340  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2341}
2342SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2343                                    MVT::ValueType VT2, SDOperand Op1,
2344                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2345                                    SDOperand Op5, SDOperand Op6) {
2346  std::vector<MVT::ValueType> ResultTys;
2347  ResultTys.push_back(VT1);
2348  ResultTys.push_back(VT2);
2349  std::vector<SDOperand> Ops;
2350  Ops.push_back(Op1);
2351  Ops.push_back(Op2);
2352  Ops.push_back(Op3);
2353  Ops.push_back(Op4);
2354  Ops.push_back(Op5);
2355  Ops.push_back(Op6);
2356  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2357}
2358SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2359                                    MVT::ValueType VT2, SDOperand Op1,
2360                                    SDOperand Op2, SDOperand Op3, SDOperand Op4,
2361                                    SDOperand Op5, SDOperand Op6,
2362                                    SDOperand Op7) {
2363  std::vector<MVT::ValueType> ResultTys;
2364  ResultTys.push_back(VT1);
2365  ResultTys.push_back(VT2);
2366  std::vector<SDOperand> Ops;
2367  Ops.push_back(Op1);
2368  Ops.push_back(Op2);
2369  Ops.push_back(Op3);
2370  Ops.push_back(Op4);
2371  Ops.push_back(Op5);
2372  Ops.push_back(Op6);
2373  Ops.push_back(Op7);
2374  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2375}
2376SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2377                                    MVT::ValueType VT2, MVT::ValueType VT3,
2378                                    SDOperand Op1, SDOperand Op2) {
2379  std::vector<MVT::ValueType> ResultTys;
2380  ResultTys.push_back(VT1);
2381  ResultTys.push_back(VT2);
2382  ResultTys.push_back(VT3);
2383  std::vector<SDOperand> Ops;
2384  Ops.push_back(Op1);
2385  Ops.push_back(Op2);
2386  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2387}
2388SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2389                                    MVT::ValueType VT2, MVT::ValueType VT3,
2390                                    SDOperand Op1, SDOperand Op2,
2391                                    SDOperand Op3, SDOperand Op4,
2392                                    SDOperand Op5) {
2393  std::vector<MVT::ValueType> ResultTys;
2394  ResultTys.push_back(VT1);
2395  ResultTys.push_back(VT2);
2396  ResultTys.push_back(VT3);
2397  std::vector<SDOperand> Ops;
2398  Ops.push_back(Op1);
2399  Ops.push_back(Op2);
2400  Ops.push_back(Op3);
2401  Ops.push_back(Op4);
2402  Ops.push_back(Op5);
2403  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2404}
2405SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2406                                    MVT::ValueType VT2, MVT::ValueType VT3,
2407                                    SDOperand Op1, SDOperand Op2,
2408                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2409                                    SDOperand Op6) {
2410  std::vector<MVT::ValueType> ResultTys;
2411  ResultTys.push_back(VT1);
2412  ResultTys.push_back(VT2);
2413  ResultTys.push_back(VT3);
2414  std::vector<SDOperand> Ops;
2415  Ops.push_back(Op1);
2416  Ops.push_back(Op2);
2417  Ops.push_back(Op3);
2418  Ops.push_back(Op4);
2419  Ops.push_back(Op5);
2420  Ops.push_back(Op6);
2421  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2422}
2423SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2424                                    MVT::ValueType VT2, MVT::ValueType VT3,
2425                                    SDOperand Op1, SDOperand Op2,
2426                                    SDOperand Op3, SDOperand Op4, SDOperand Op5,
2427                                    SDOperand Op6, SDOperand Op7) {
2428  std::vector<MVT::ValueType> ResultTys;
2429  ResultTys.push_back(VT1);
2430  ResultTys.push_back(VT2);
2431  ResultTys.push_back(VT3);
2432  std::vector<SDOperand> Ops;
2433  Ops.push_back(Op1);
2434  Ops.push_back(Op2);
2435  Ops.push_back(Op3);
2436  Ops.push_back(Op4);
2437  Ops.push_back(Op5);
2438  Ops.push_back(Op6);
2439  Ops.push_back(Op7);
2440  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2441}
2442SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
2443                                    MVT::ValueType VT2,
2444                                    std::vector<SDOperand> &Ops) {
2445  std::vector<MVT::ValueType> ResultTys;
2446  ResultTys.push_back(VT1);
2447  ResultTys.push_back(VT2);
2448  return getNode(ISD::BUILTIN_OP_END+Opcode, ResultTys, Ops).Val;
2449}
2450
2451/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2452/// This can cause recursive merging of nodes in the DAG.
2453///
2454/// This version assumes From/To have a single result value.
2455///
2456void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
2457                                      std::vector<SDNode*> *Deleted) {
2458  SDNode *From = FromN.Val, *To = ToN.Val;
2459  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
2460         "Cannot replace with this method!");
2461  assert(From != To && "Cannot replace uses of with self");
2462
2463  while (!From->use_empty()) {
2464    // Process users until they are all gone.
2465    SDNode *U = *From->use_begin();
2466
2467    // This node is about to morph, remove its old self from the CSE maps.
2468    RemoveNodeFromCSEMaps(U);
2469
2470    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2471         I != E; ++I)
2472      if (I->Val == From) {
2473        From->removeUser(U);
2474        I->Val = To;
2475        To->addUser(U);
2476      }
2477
2478    // Now that we have modified U, add it back to the CSE maps.  If it already
2479    // exists there, recursively merge the results together.
2480    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2481      ReplaceAllUsesWith(U, Existing, Deleted);
2482      // U is now dead.
2483      if (Deleted) Deleted->push_back(U);
2484      DeleteNodeNotInCSEMaps(U);
2485    }
2486  }
2487}
2488
2489/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2490/// This can cause recursive merging of nodes in the DAG.
2491///
2492/// This version assumes From/To have matching types and numbers of result
2493/// values.
2494///
2495void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
2496                                      std::vector<SDNode*> *Deleted) {
2497  assert(From != To && "Cannot replace uses of with self");
2498  assert(From->getNumValues() == To->getNumValues() &&
2499         "Cannot use this version of ReplaceAllUsesWith!");
2500  if (From->getNumValues() == 1) {  // If possible, use the faster version.
2501    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
2502    return;
2503  }
2504
2505  while (!From->use_empty()) {
2506    // Process users until they are all gone.
2507    SDNode *U = *From->use_begin();
2508
2509    // This node is about to morph, remove its old self from the CSE maps.
2510    RemoveNodeFromCSEMaps(U);
2511
2512    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2513         I != E; ++I)
2514      if (I->Val == From) {
2515        From->removeUser(U);
2516        I->Val = To;
2517        To->addUser(U);
2518      }
2519
2520    // Now that we have modified U, add it back to the CSE maps.  If it already
2521    // exists there, recursively merge the results together.
2522    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2523      ReplaceAllUsesWith(U, Existing, Deleted);
2524      // U is now dead.
2525      if (Deleted) Deleted->push_back(U);
2526      DeleteNodeNotInCSEMaps(U);
2527    }
2528  }
2529}
2530
2531/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
2532/// This can cause recursive merging of nodes in the DAG.
2533///
2534/// This version can replace From with any result values.  To must match the
2535/// number and types of values returned by From.
2536void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
2537                                      const std::vector<SDOperand> &To,
2538                                      std::vector<SDNode*> *Deleted) {
2539  assert(From->getNumValues() == To.size() &&
2540         "Incorrect number of values to replace with!");
2541  if (To.size() == 1 && To[0].Val->getNumValues() == 1) {
2542    // Degenerate case handled above.
2543    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
2544    return;
2545  }
2546
2547  while (!From->use_empty()) {
2548    // Process users until they are all gone.
2549    SDNode *U = *From->use_begin();
2550
2551    // This node is about to morph, remove its old self from the CSE maps.
2552    RemoveNodeFromCSEMaps(U);
2553
2554    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
2555         I != E; ++I)
2556      if (I->Val == From) {
2557        const SDOperand &ToOp = To[I->ResNo];
2558        From->removeUser(U);
2559        *I = ToOp;
2560        ToOp.Val->addUser(U);
2561      }
2562
2563    // Now that we have modified U, add it back to the CSE maps.  If it already
2564    // exists there, recursively merge the results together.
2565    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
2566      ReplaceAllUsesWith(U, Existing, Deleted);
2567      // U is now dead.
2568      if (Deleted) Deleted->push_back(U);
2569      DeleteNodeNotInCSEMaps(U);
2570    }
2571  }
2572}
2573
2574/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
2575/// uses of other values produced by From.Val alone.  The Deleted vector is
2576/// handled the same was as for ReplaceAllUsesWith.
2577void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
2578                                             std::vector<SDNode*> &Deleted) {
2579  assert(From != To && "Cannot replace a value with itself");
2580  // Handle the simple, trivial, case efficiently.
2581  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
2582    ReplaceAllUsesWith(From, To, &Deleted);
2583    return;
2584  }
2585
2586  // Get all of the users in a nice, deterministically ordered, uniqued set.
2587  SetVector<SDNode*> Users(From.Val->use_begin(), From.Val->use_end());
2588
2589  while (!Users.empty()) {
2590    // We know that this user uses some value of From.  If it is the right
2591    // value, update it.
2592    SDNode *User = Users.back();
2593    Users.pop_back();
2594
2595    for (SDOperand *Op = User->OperandList,
2596         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
2597      if (*Op == From) {
2598        // Okay, we know this user needs to be updated.  Remove its old self
2599        // from the CSE maps.
2600        RemoveNodeFromCSEMaps(User);
2601
2602        // Update all operands that match "From".
2603        for (; Op != E; ++Op) {
2604          if (*Op == From) {
2605            From.Val->removeUser(User);
2606            *Op = To;
2607            To.Val->addUser(User);
2608          }
2609        }
2610
2611        // Now that we have modified User, add it back to the CSE maps.  If it
2612        // already exists there, recursively merge the results together.
2613        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
2614          unsigned NumDeleted = Deleted.size();
2615          ReplaceAllUsesWith(User, Existing, &Deleted);
2616
2617          // User is now dead.
2618          Deleted.push_back(User);
2619          DeleteNodeNotInCSEMaps(User);
2620
2621          // We have to be careful here, because ReplaceAllUsesWith could have
2622          // deleted a user of From, which means there may be dangling pointers
2623          // in the "Users" setvector.  Scan over the deleted node pointers and
2624          // remove them from the setvector.
2625          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
2626            Users.remove(Deleted[i]);
2627        }
2628        break;   // Exit the operand scanning loop.
2629      }
2630    }
2631  }
2632}
2633
2634
2635/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
2636/// their allnodes order. It returns the maximum id.
2637unsigned SelectionDAG::AssignNodeIds() {
2638  unsigned Id = 0;
2639  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
2640    SDNode *N = I;
2641    N->setNodeId(Id++);
2642  }
2643  return Id;
2644}
2645
2646/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
2647/// based on their topological order. It returns the maximum id and a vector
2648/// of the SDNodes* in assigned order by reference.
2649unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
2650  unsigned DAGSize = AllNodes.size();
2651  std::vector<unsigned> InDegree(DAGSize);
2652  std::vector<SDNode*> Sources;
2653
2654  // Use a two pass approach to avoid using a std::map which is slow.
2655  unsigned Id = 0;
2656  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
2657    SDNode *N = I;
2658    N->setNodeId(Id++);
2659    unsigned Degree = N->use_size();
2660    InDegree[N->getNodeId()] = Degree;
2661    if (Degree == 0)
2662      Sources.push_back(N);
2663  }
2664
2665  TopOrder.clear();
2666  while (!Sources.empty()) {
2667    SDNode *N = Sources.back();
2668    Sources.pop_back();
2669    TopOrder.push_back(N);
2670    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
2671      SDNode *P = I->Val;
2672      unsigned Degree = --InDegree[P->getNodeId()];
2673      if (Degree == 0)
2674        Sources.push_back(P);
2675    }
2676  }
2677
2678  // Second pass, assign the actual topological order as node ids.
2679  Id = 0;
2680  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
2681       TI != TE; ++TI)
2682    (*TI)->setNodeId(Id++);
2683
2684  return Id;
2685}
2686
2687
2688
2689//===----------------------------------------------------------------------===//
2690//                              SDNode Class
2691//===----------------------------------------------------------------------===//
2692
2693// Out-of-line virtual method to give class a home.
2694void SDNode::ANCHOR() {
2695}
2696
2697/// getValueTypeList - Return a pointer to the specified value type.
2698///
2699MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
2700  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
2701  VTs[VT] = VT;
2702  return &VTs[VT];
2703}
2704
2705/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
2706/// indicated value.  This method ignores uses of other values defined by this
2707/// operation.
2708bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
2709  assert(Value < getNumValues() && "Bad value!");
2710
2711  // If there is only one value, this is easy.
2712  if (getNumValues() == 1)
2713    return use_size() == NUses;
2714  if (Uses.size() < NUses) return false;
2715
2716  SDOperand TheValue(const_cast<SDNode *>(this), Value);
2717
2718  std::set<SDNode*> UsersHandled;
2719
2720  for (std::vector<SDNode*>::const_iterator UI = Uses.begin(), E = Uses.end();
2721       UI != E; ++UI) {
2722    SDNode *User = *UI;
2723    if (User->getNumOperands() == 1 ||
2724        UsersHandled.insert(User).second)     // First time we've seen this?
2725      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
2726        if (User->getOperand(i) == TheValue) {
2727          if (NUses == 0)
2728            return false;   // too many uses
2729          --NUses;
2730        }
2731  }
2732
2733  // Found exactly the right number of uses?
2734  return NUses == 0;
2735}
2736
2737
2738// isOnlyUse - Return true if this node is the only use of N.
2739bool SDNode::isOnlyUse(SDNode *N) const {
2740  bool Seen = false;
2741  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
2742    SDNode *User = *I;
2743    if (User == this)
2744      Seen = true;
2745    else
2746      return false;
2747  }
2748
2749  return Seen;
2750}
2751
2752// isOperand - Return true if this node is an operand of N.
2753bool SDOperand::isOperand(SDNode *N) const {
2754  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
2755    if (*this == N->getOperand(i))
2756      return true;
2757  return false;
2758}
2759
2760bool SDNode::isOperand(SDNode *N) const {
2761  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
2762    if (this == N->OperandList[i].Val)
2763      return true;
2764  return false;
2765}
2766
2767const char *SDNode::getOperationName(const SelectionDAG *G) const {
2768  switch (getOpcode()) {
2769  default:
2770    if (getOpcode() < ISD::BUILTIN_OP_END)
2771      return "<<Unknown DAG Node>>";
2772    else {
2773      if (G) {
2774        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
2775          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
2776            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
2777
2778        TargetLowering &TLI = G->getTargetLoweringInfo();
2779        const char *Name =
2780          TLI.getTargetNodeName(getOpcode());
2781        if (Name) return Name;
2782      }
2783
2784      return "<<Unknown Target Node>>";
2785    }
2786
2787  case ISD::PCMARKER:      return "PCMarker";
2788  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
2789  case ISD::SRCVALUE:      return "SrcValue";
2790  case ISD::EntryToken:    return "EntryToken";
2791  case ISD::TokenFactor:   return "TokenFactor";
2792  case ISD::AssertSext:    return "AssertSext";
2793  case ISD::AssertZext:    return "AssertZext";
2794
2795  case ISD::STRING:        return "String";
2796  case ISD::BasicBlock:    return "BasicBlock";
2797  case ISD::VALUETYPE:     return "ValueType";
2798  case ISD::Register:      return "Register";
2799
2800  case ISD::Constant:      return "Constant";
2801  case ISD::ConstantFP:    return "ConstantFP";
2802  case ISD::GlobalAddress: return "GlobalAddress";
2803  case ISD::FrameIndex:    return "FrameIndex";
2804  case ISD::JumpTable:     return "JumpTable";
2805  case ISD::ConstantPool:  return "ConstantPool";
2806  case ISD::ExternalSymbol: return "ExternalSymbol";
2807  case ISD::INTRINSIC_WO_CHAIN: {
2808    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
2809    return Intrinsic::getName((Intrinsic::ID)IID);
2810  }
2811  case ISD::INTRINSIC_VOID:
2812  case ISD::INTRINSIC_W_CHAIN: {
2813    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
2814    return Intrinsic::getName((Intrinsic::ID)IID);
2815  }
2816
2817  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
2818  case ISD::TargetConstant: return "TargetConstant";
2819  case ISD::TargetConstantFP:return "TargetConstantFP";
2820  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
2821  case ISD::TargetFrameIndex: return "TargetFrameIndex";
2822  case ISD::TargetJumpTable:  return "TargetJumpTable";
2823  case ISD::TargetConstantPool:  return "TargetConstantPool";
2824  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
2825
2826  case ISD::CopyToReg:     return "CopyToReg";
2827  case ISD::CopyFromReg:   return "CopyFromReg";
2828  case ISD::UNDEF:         return "undef";
2829  case ISD::MERGE_VALUES:  return "mergevalues";
2830  case ISD::INLINEASM:     return "inlineasm";
2831  case ISD::HANDLENODE:    return "handlenode";
2832  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
2833  case ISD::CALL:          return "call";
2834
2835  // Unary operators
2836  case ISD::FABS:   return "fabs";
2837  case ISD::FNEG:   return "fneg";
2838  case ISD::FSQRT:  return "fsqrt";
2839  case ISD::FSIN:   return "fsin";
2840  case ISD::FCOS:   return "fcos";
2841
2842  // Binary operators
2843  case ISD::ADD:    return "add";
2844  case ISD::SUB:    return "sub";
2845  case ISD::MUL:    return "mul";
2846  case ISD::MULHU:  return "mulhu";
2847  case ISD::MULHS:  return "mulhs";
2848  case ISD::SDIV:   return "sdiv";
2849  case ISD::UDIV:   return "udiv";
2850  case ISD::SREM:   return "srem";
2851  case ISD::UREM:   return "urem";
2852  case ISD::AND:    return "and";
2853  case ISD::OR:     return "or";
2854  case ISD::XOR:    return "xor";
2855  case ISD::SHL:    return "shl";
2856  case ISD::SRA:    return "sra";
2857  case ISD::SRL:    return "srl";
2858  case ISD::ROTL:   return "rotl";
2859  case ISD::ROTR:   return "rotr";
2860  case ISD::FADD:   return "fadd";
2861  case ISD::FSUB:   return "fsub";
2862  case ISD::FMUL:   return "fmul";
2863  case ISD::FDIV:   return "fdiv";
2864  case ISD::FREM:   return "frem";
2865  case ISD::FCOPYSIGN: return "fcopysign";
2866  case ISD::VADD:   return "vadd";
2867  case ISD::VSUB:   return "vsub";
2868  case ISD::VMUL:   return "vmul";
2869  case ISD::VSDIV:  return "vsdiv";
2870  case ISD::VUDIV:  return "vudiv";
2871  case ISD::VAND:   return "vand";
2872  case ISD::VOR:    return "vor";
2873  case ISD::VXOR:   return "vxor";
2874
2875  case ISD::SETCC:       return "setcc";
2876  case ISD::SELECT:      return "select";
2877  case ISD::SELECT_CC:   return "select_cc";
2878  case ISD::VSELECT:     return "vselect";
2879  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
2880  case ISD::VINSERT_VECTOR_ELT:  return "vinsert_vector_elt";
2881  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
2882  case ISD::VEXTRACT_VECTOR_ELT: return "vextract_vector_elt";
2883  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
2884  case ISD::VBUILD_VECTOR:       return "vbuild_vector";
2885  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
2886  case ISD::VVECTOR_SHUFFLE:     return "vvector_shuffle";
2887  case ISD::VBIT_CONVERT:        return "vbit_convert";
2888  case ISD::ADDC:        return "addc";
2889  case ISD::ADDE:        return "adde";
2890  case ISD::SUBC:        return "subc";
2891  case ISD::SUBE:        return "sube";
2892  case ISD::SHL_PARTS:   return "shl_parts";
2893  case ISD::SRA_PARTS:   return "sra_parts";
2894  case ISD::SRL_PARTS:   return "srl_parts";
2895
2896  // Conversion operators.
2897  case ISD::SIGN_EXTEND: return "sign_extend";
2898  case ISD::ZERO_EXTEND: return "zero_extend";
2899  case ISD::ANY_EXTEND:  return "any_extend";
2900  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
2901  case ISD::TRUNCATE:    return "truncate";
2902  case ISD::FP_ROUND:    return "fp_round";
2903  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
2904  case ISD::FP_EXTEND:   return "fp_extend";
2905
2906  case ISD::SINT_TO_FP:  return "sint_to_fp";
2907  case ISD::UINT_TO_FP:  return "uint_to_fp";
2908  case ISD::FP_TO_SINT:  return "fp_to_sint";
2909  case ISD::FP_TO_UINT:  return "fp_to_uint";
2910  case ISD::BIT_CONVERT: return "bit_convert";
2911
2912    // Control flow instructions
2913  case ISD::BR:      return "br";
2914  case ISD::BRIND:   return "brind";
2915  case ISD::BRCOND:  return "brcond";
2916  case ISD::BR_CC:   return "br_cc";
2917  case ISD::RET:     return "ret";
2918  case ISD::CALLSEQ_START:  return "callseq_start";
2919  case ISD::CALLSEQ_END:    return "callseq_end";
2920
2921    // Other operators
2922  case ISD::LOAD:               return "load";
2923  case ISD::STORE:              return "store";
2924  case ISD::VLOAD:              return "vload";
2925  case ISD::EXTLOAD:            return "extload";
2926  case ISD::SEXTLOAD:           return "sextload";
2927  case ISD::ZEXTLOAD:           return "zextload";
2928  case ISD::TRUNCSTORE:         return "truncstore";
2929  case ISD::VAARG:              return "vaarg";
2930  case ISD::VACOPY:             return "vacopy";
2931  case ISD::VAEND:              return "vaend";
2932  case ISD::VASTART:            return "vastart";
2933  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
2934  case ISD::EXTRACT_ELEMENT:    return "extract_element";
2935  case ISD::BUILD_PAIR:         return "build_pair";
2936  case ISD::STACKSAVE:          return "stacksave";
2937  case ISD::STACKRESTORE:       return "stackrestore";
2938
2939  // Block memory operations.
2940  case ISD::MEMSET:  return "memset";
2941  case ISD::MEMCPY:  return "memcpy";
2942  case ISD::MEMMOVE: return "memmove";
2943
2944  // Bit manipulation
2945  case ISD::BSWAP:   return "bswap";
2946  case ISD::CTPOP:   return "ctpop";
2947  case ISD::CTTZ:    return "cttz";
2948  case ISD::CTLZ:    return "ctlz";
2949
2950  // Debug info
2951  case ISD::LOCATION: return "location";
2952  case ISD::DEBUG_LOC: return "debug_loc";
2953  case ISD::DEBUG_LABEL: return "debug_label";
2954
2955  case ISD::CONDCODE:
2956    switch (cast<CondCodeSDNode>(this)->get()) {
2957    default: assert(0 && "Unknown setcc condition!");
2958    case ISD::SETOEQ:  return "setoeq";
2959    case ISD::SETOGT:  return "setogt";
2960    case ISD::SETOGE:  return "setoge";
2961    case ISD::SETOLT:  return "setolt";
2962    case ISD::SETOLE:  return "setole";
2963    case ISD::SETONE:  return "setone";
2964
2965    case ISD::SETO:    return "seto";
2966    case ISD::SETUO:   return "setuo";
2967    case ISD::SETUEQ:  return "setue";
2968    case ISD::SETUGT:  return "setugt";
2969    case ISD::SETUGE:  return "setuge";
2970    case ISD::SETULT:  return "setult";
2971    case ISD::SETULE:  return "setule";
2972    case ISD::SETUNE:  return "setune";
2973
2974    case ISD::SETEQ:   return "seteq";
2975    case ISD::SETGT:   return "setgt";
2976    case ISD::SETGE:   return "setge";
2977    case ISD::SETLT:   return "setlt";
2978    case ISD::SETLE:   return "setle";
2979    case ISD::SETNE:   return "setne";
2980    }
2981  }
2982}
2983
2984void SDNode::dump() const { dump(0); }
2985void SDNode::dump(const SelectionDAG *G) const {
2986  std::cerr << (void*)this << ": ";
2987
2988  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
2989    if (i) std::cerr << ",";
2990    if (getValueType(i) == MVT::Other)
2991      std::cerr << "ch";
2992    else
2993      std::cerr << MVT::getValueTypeString(getValueType(i));
2994  }
2995  std::cerr << " = " << getOperationName(G);
2996
2997  std::cerr << " ";
2998  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2999    if (i) std::cerr << ", ";
3000    std::cerr << (void*)getOperand(i).Val;
3001    if (unsigned RN = getOperand(i).ResNo)
3002      std::cerr << ":" << RN;
3003  }
3004
3005  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3006    std::cerr << "<" << CSDN->getValue() << ">";
3007  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3008    std::cerr << "<" << CSDN->getValue() << ">";
3009  } else if (const GlobalAddressSDNode *GADN =
3010             dyn_cast<GlobalAddressSDNode>(this)) {
3011    int offset = GADN->getOffset();
3012    std::cerr << "<";
3013    WriteAsOperand(std::cerr, GADN->getGlobal()) << ">";
3014    if (offset > 0)
3015      std::cerr << " + " << offset;
3016    else
3017      std::cerr << " " << offset;
3018  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3019    std::cerr << "<" << FIDN->getIndex() << ">";
3020  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3021    int offset = CP->getOffset();
3022    std::cerr << "<" << *CP->get() << ">";
3023    if (offset > 0)
3024      std::cerr << " + " << offset;
3025    else
3026      std::cerr << " " << offset;
3027  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3028    std::cerr << "<";
3029    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3030    if (LBB)
3031      std::cerr << LBB->getName() << " ";
3032    std::cerr << (const void*)BBDN->getBasicBlock() << ">";
3033  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3034    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3035      std::cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3036    } else {
3037      std::cerr << " #" << R->getReg();
3038    }
3039  } else if (const ExternalSymbolSDNode *ES =
3040             dyn_cast<ExternalSymbolSDNode>(this)) {
3041    std::cerr << "'" << ES->getSymbol() << "'";
3042  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3043    if (M->getValue())
3044      std::cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3045    else
3046      std::cerr << "<null:" << M->getOffset() << ">";
3047  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3048    std::cerr << ":" << getValueTypeString(N->getVT());
3049  }
3050}
3051
3052static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3053  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3054    if (N->getOperand(i).Val->hasOneUse())
3055      DumpNodes(N->getOperand(i).Val, indent+2, G);
3056    else
3057      std::cerr << "\n" << std::string(indent+2, ' ')
3058                << (void*)N->getOperand(i).Val << ": <multiple use>";
3059
3060
3061  std::cerr << "\n" << std::string(indent, ' ');
3062  N->dump(G);
3063}
3064
3065void SelectionDAG::dump() const {
3066  std::cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3067  std::vector<const SDNode*> Nodes;
3068  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3069       I != E; ++I)
3070    Nodes.push_back(I);
3071
3072  std::sort(Nodes.begin(), Nodes.end());
3073
3074  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3075    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3076      DumpNodes(Nodes[i], 2, this);
3077  }
3078
3079  DumpNodes(getRoot().Val, 2, this);
3080
3081  std::cerr << "\n\n";
3082}
3083
3084/// InsertISelMapEntry - A helper function to insert a key / element pair
3085/// into a SDOperand to SDOperand map. This is added to avoid the map
3086/// insertion operator from being inlined.
3087void SelectionDAG::InsertISelMapEntry(std::map<SDOperand, SDOperand> &Map,
3088                                      SDNode *Key, unsigned KeyResNo,
3089                                      SDNode *Element, unsigned ElementResNo) {
3090  Map.insert(std::make_pair(SDOperand(Key, KeyResNo),
3091                            SDOperand(Element, ElementResNo)));
3092}
3093