SelectionDAG.cpp revision f5aeb1a8e4cf272c7348376d185ef8d8267653e0
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/SetVector.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/SmallSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/StringExtras.h"
39#include <algorithm>
40#include <cmath>
41using namespace llvm;
42
43/// makeVTList - Return an instance of the SDVTList struct initialized with the
44/// specified members.
45static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
46  SDVTList Res = {VTs, NumVTs};
47  return Res;
48}
49
50static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
51  switch (VT.getSimpleVT()) {
52  default: assert(0 && "Unknown FP format");
53  case MVT::f32:     return &APFloat::IEEEsingle;
54  case MVT::f64:     return &APFloat::IEEEdouble;
55  case MVT::f80:     return &APFloat::x87DoubleExtended;
56  case MVT::f128:    return &APFloat::IEEEquad;
57  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
58  }
59}
60
61SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
62
63//===----------------------------------------------------------------------===//
64//                              ConstantFPSDNode Class
65//===----------------------------------------------------------------------===//
66
67/// isExactlyValue - We don't rely on operator== working on double values, as
68/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
69/// As such, this method can be used to do an exact bit-for-bit comparison of
70/// two floating point values.
71bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
72  return Value.bitwiseIsEqual(V);
73}
74
75bool ConstantFPSDNode::isValueValidForType(MVT VT,
76                                           const APFloat& Val) {
77  assert(VT.isFloatingPoint() && "Can only convert between FP types");
78
79  // PPC long double cannot be converted to any other type.
80  if (VT == MVT::ppcf128 ||
81      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
82    return false;
83
84  // convert modifies in place, so make a copy.
85  APFloat Val2 = APFloat(Val);
86  return Val2.convert(*MVTToAPFloatSemantics(VT),
87                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
88}
89
90//===----------------------------------------------------------------------===//
91//                              ISD Namespace
92//===----------------------------------------------------------------------===//
93
94/// isBuildVectorAllOnes - Return true if the specified node is a
95/// BUILD_VECTOR where all of the elements are ~0 or undef.
96bool ISD::isBuildVectorAllOnes(const SDNode *N) {
97  // Look through a bit convert.
98  if (N->getOpcode() == ISD::BIT_CONVERT)
99    N = N->getOperand(0).getNode();
100
101  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
102
103  unsigned i = 0, e = N->getNumOperands();
104
105  // Skip over all of the undef values.
106  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
107    ++i;
108
109  // Do not accept an all-undef vector.
110  if (i == e) return false;
111
112  // Do not accept build_vectors that aren't all constants or which have non-~0
113  // elements.
114  SDValue NotZero = N->getOperand(i);
115  if (isa<ConstantSDNode>(NotZero)) {
116    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
117      return false;
118  } else if (isa<ConstantFPSDNode>(NotZero)) {
119    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
120                convertToAPInt().isAllOnesValue())
121      return false;
122  } else
123    return false;
124
125  // Okay, we have at least one ~0 value, check to see if the rest match or are
126  // undefs.
127  for (++i; i != e; ++i)
128    if (N->getOperand(i) != NotZero &&
129        N->getOperand(i).getOpcode() != ISD::UNDEF)
130      return false;
131  return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138  // Look through a bit convert.
139  if (N->getOpcode() == ISD::BIT_CONVERT)
140    N = N->getOperand(0).getNode();
141
142  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144  unsigned i = 0, e = N->getNumOperands();
145
146  // Skip over all of the undef values.
147  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148    ++i;
149
150  // Do not accept an all-undef vector.
151  if (i == e) return false;
152
153  // Do not accept build_vectors that aren't all constants or which have non-~0
154  // elements.
155  SDValue Zero = N->getOperand(i);
156  if (isa<ConstantSDNode>(Zero)) {
157    if (!cast<ConstantSDNode>(Zero)->isNullValue())
158      return false;
159  } else if (isa<ConstantFPSDNode>(Zero)) {
160    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
161      return false;
162  } else
163    return false;
164
165  // Okay, we have at least one ~0 value, check to see if the rest match or are
166  // undefs.
167  for (++i; i != e; ++i)
168    if (N->getOperand(i) != Zero &&
169        N->getOperand(i).getOpcode() != ISD::UNDEF)
170      return false;
171  return true;
172}
173
174/// isScalarToVector - Return true if the specified node is a
175/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
176/// element is not an undef.
177bool ISD::isScalarToVector(const SDNode *N) {
178  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
179    return true;
180
181  if (N->getOpcode() != ISD::BUILD_VECTOR)
182    return false;
183  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
184    return false;
185  unsigned NumElems = N->getNumOperands();
186  for (unsigned i = 1; i < NumElems; ++i) {
187    SDValue V = N->getOperand(i);
188    if (V.getOpcode() != ISD::UNDEF)
189      return false;
190  }
191  return true;
192}
193
194
195/// isDebugLabel - Return true if the specified node represents a debug
196/// label (i.e. ISD::DBG_LABEL or TargetInstrInfo::DBG_LABEL node).
197bool ISD::isDebugLabel(const SDNode *N) {
198  SDValue Zero;
199  if (N->getOpcode() == ISD::DBG_LABEL)
200    return true;
201  if (N->isMachineOpcode() &&
202      N->getMachineOpcode() == TargetInstrInfo::DBG_LABEL)
203    return true;
204  return false;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));        // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227  if (Operation > ISD::SETTRUE2)
228    Operation &= ~8;     // Don't let N and U bits get set.
229  return ISD::CondCode(Operation);
230}
231
232
233/// isSignedOp - For an integer comparison, return 1 if the comparison is a
234/// signed operation and 2 if the result is an unsigned comparison.  Return zero
235/// if the operation does not depend on the sign of the input (setne and seteq).
236static int isSignedOp(ISD::CondCode Opcode) {
237  switch (Opcode) {
238  default: assert(0 && "Illegal integer setcc operation!");
239  case ISD::SETEQ:
240  case ISD::SETNE: return 0;
241  case ISD::SETLT:
242  case ISD::SETLE:
243  case ISD::SETGT:
244  case ISD::SETGE: return 1;
245  case ISD::SETULT:
246  case ISD::SETULE:
247  case ISD::SETUGT:
248  case ISD::SETUGE: return 2;
249  }
250}
251
252/// getSetCCOrOperation - Return the result of a logical OR between different
253/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
254/// returns SETCC_INVALID if it is not possible to represent the resultant
255/// comparison.
256ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
257                                       bool isInteger) {
258  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
259    // Cannot fold a signed integer setcc with an unsigned integer setcc.
260    return ISD::SETCC_INVALID;
261
262  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
263
264  // If the N and U bits get set then the resultant comparison DOES suddenly
265  // care about orderedness, and is true when ordered.
266  if (Op > ISD::SETTRUE2)
267    Op &= ~16;     // Clear the U bit if the N bit is set.
268
269  // Canonicalize illegal integer setcc's.
270  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
271    Op = ISD::SETNE;
272
273  return ISD::CondCode(Op);
274}
275
276/// getSetCCAndOperation - Return the result of a logical AND between different
277/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
278/// function returns zero if it is not possible to represent the resultant
279/// comparison.
280ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
281                                        bool isInteger) {
282  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
283    // Cannot fold a signed setcc with an unsigned setcc.
284    return ISD::SETCC_INVALID;
285
286  // Combine all of the condition bits.
287  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
288
289  // Canonicalize illegal integer setcc's.
290  if (isInteger) {
291    switch (Result) {
292    default: break;
293    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
294    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
295    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
296    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
297    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
298    }
299  }
300
301  return Result;
302}
303
304const TargetMachine &SelectionDAG::getTarget() const {
305  return MF->getTarget();
306}
307
308//===----------------------------------------------------------------------===//
309//                           SDNode Profile Support
310//===----------------------------------------------------------------------===//
311
312/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
313///
314static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
315  ID.AddInteger(OpC);
316}
317
318/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
319/// solely with their pointer.
320static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
321  ID.AddPointer(VTList.VTs);
322}
323
324/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
325///
326static void AddNodeIDOperands(FoldingSetNodeID &ID,
327                              const SDValue *Ops, unsigned NumOps) {
328  for (; NumOps; --NumOps, ++Ops) {
329    ID.AddPointer(Ops->getNode());
330    ID.AddInteger(Ops->getResNo());
331  }
332}
333
334/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
335///
336static void AddNodeIDOperands(FoldingSetNodeID &ID,
337                              const SDUse *Ops, unsigned NumOps) {
338  for (; NumOps; --NumOps, ++Ops) {
339    ID.AddPointer(Ops->getVal());
340    ID.AddInteger(Ops->getSDValue().getResNo());
341  }
342}
343
344static void AddNodeIDNode(FoldingSetNodeID &ID,
345                          unsigned short OpC, SDVTList VTList,
346                          const SDValue *OpList, unsigned N) {
347  AddNodeIDOpcode(ID, OpC);
348  AddNodeIDValueTypes(ID, VTList);
349  AddNodeIDOperands(ID, OpList, N);
350}
351
352
353/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
354/// data.
355static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
356  AddNodeIDOpcode(ID, N->getOpcode());
357  // Add the return value info.
358  AddNodeIDValueTypes(ID, N->getVTList());
359  // Add the operand info.
360  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
361
362  // Handle SDNode leafs with special info.
363  switch (N->getOpcode()) {
364  default: break;  // Normal nodes don't need extra info.
365  case ISD::ARG_FLAGS:
366    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
367    break;
368  case ISD::TargetConstant:
369  case ISD::Constant:
370    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
371    break;
372  case ISD::TargetConstantFP:
373  case ISD::ConstantFP: {
374    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
375    break;
376  }
377  case ISD::TargetGlobalAddress:
378  case ISD::GlobalAddress:
379  case ISD::TargetGlobalTLSAddress:
380  case ISD::GlobalTLSAddress: {
381    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
382    ID.AddPointer(GA->getGlobal());
383    ID.AddInteger(GA->getOffset());
384    break;
385  }
386  case ISD::BasicBlock:
387    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
388    break;
389  case ISD::Register:
390    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
391    break;
392  case ISD::DBG_STOPPOINT: {
393    const DbgStopPointSDNode *DSP = cast<DbgStopPointSDNode>(N);
394    ID.AddInteger(DSP->getLine());
395    ID.AddInteger(DSP->getColumn());
396    ID.AddPointer(DSP->getCompileUnit());
397    break;
398  }
399  case ISD::SRCVALUE:
400    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
401    break;
402  case ISD::MEMOPERAND: {
403    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
404    MO.Profile(ID);
405    break;
406  }
407  case ISD::FrameIndex:
408  case ISD::TargetFrameIndex:
409    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
410    break;
411  case ISD::JumpTable:
412  case ISD::TargetJumpTable:
413    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
414    break;
415  case ISD::ConstantPool:
416  case ISD::TargetConstantPool: {
417    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
418    ID.AddInteger(CP->getAlignment());
419    ID.AddInteger(CP->getOffset());
420    if (CP->isMachineConstantPoolEntry())
421      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
422    else
423      ID.AddPointer(CP->getConstVal());
424    break;
425  }
426  case ISD::LOAD: {
427    const LoadSDNode *LD = cast<LoadSDNode>(N);
428    ID.AddInteger(LD->getAddressingMode());
429    ID.AddInteger(LD->getExtensionType());
430    ID.AddInteger(LD->getMemoryVT().getRawBits());
431    ID.AddInteger(LD->getRawFlags());
432    break;
433  }
434  case ISD::STORE: {
435    const StoreSDNode *ST = cast<StoreSDNode>(N);
436    ID.AddInteger(ST->getAddressingMode());
437    ID.AddInteger(ST->isTruncatingStore());
438    ID.AddInteger(ST->getMemoryVT().getRawBits());
439    ID.AddInteger(ST->getRawFlags());
440    break;
441  }
442  case ISD::ATOMIC_CMP_SWAP_8:
443  case ISD::ATOMIC_SWAP_8:
444  case ISD::ATOMIC_LOAD_ADD_8:
445  case ISD::ATOMIC_LOAD_SUB_8:
446  case ISD::ATOMIC_LOAD_AND_8:
447  case ISD::ATOMIC_LOAD_OR_8:
448  case ISD::ATOMIC_LOAD_XOR_8:
449  case ISD::ATOMIC_LOAD_NAND_8:
450  case ISD::ATOMIC_LOAD_MIN_8:
451  case ISD::ATOMIC_LOAD_MAX_8:
452  case ISD::ATOMIC_LOAD_UMIN_8:
453  case ISD::ATOMIC_LOAD_UMAX_8:
454  case ISD::ATOMIC_CMP_SWAP_16:
455  case ISD::ATOMIC_SWAP_16:
456  case ISD::ATOMIC_LOAD_ADD_16:
457  case ISD::ATOMIC_LOAD_SUB_16:
458  case ISD::ATOMIC_LOAD_AND_16:
459  case ISD::ATOMIC_LOAD_OR_16:
460  case ISD::ATOMIC_LOAD_XOR_16:
461  case ISD::ATOMIC_LOAD_NAND_16:
462  case ISD::ATOMIC_LOAD_MIN_16:
463  case ISD::ATOMIC_LOAD_MAX_16:
464  case ISD::ATOMIC_LOAD_UMIN_16:
465  case ISD::ATOMIC_LOAD_UMAX_16:
466  case ISD::ATOMIC_CMP_SWAP_32:
467  case ISD::ATOMIC_SWAP_32:
468  case ISD::ATOMIC_LOAD_ADD_32:
469  case ISD::ATOMIC_LOAD_SUB_32:
470  case ISD::ATOMIC_LOAD_AND_32:
471  case ISD::ATOMIC_LOAD_OR_32:
472  case ISD::ATOMIC_LOAD_XOR_32:
473  case ISD::ATOMIC_LOAD_NAND_32:
474  case ISD::ATOMIC_LOAD_MIN_32:
475  case ISD::ATOMIC_LOAD_MAX_32:
476  case ISD::ATOMIC_LOAD_UMIN_32:
477  case ISD::ATOMIC_LOAD_UMAX_32:
478  case ISD::ATOMIC_CMP_SWAP_64:
479  case ISD::ATOMIC_SWAP_64:
480  case ISD::ATOMIC_LOAD_ADD_64:
481  case ISD::ATOMIC_LOAD_SUB_64:
482  case ISD::ATOMIC_LOAD_AND_64:
483  case ISD::ATOMIC_LOAD_OR_64:
484  case ISD::ATOMIC_LOAD_XOR_64:
485  case ISD::ATOMIC_LOAD_NAND_64:
486  case ISD::ATOMIC_LOAD_MIN_64:
487  case ISD::ATOMIC_LOAD_MAX_64:
488  case ISD::ATOMIC_LOAD_UMIN_64:
489  case ISD::ATOMIC_LOAD_UMAX_64: {
490    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
491    ID.AddInteger(AT->getRawFlags());
492    break;
493  }
494  } // end switch (N->getOpcode())
495}
496
497/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
498/// the CSE map that carries both alignment and volatility information.
499///
500static unsigned encodeMemSDNodeFlags(bool isVolatile, unsigned Alignment) {
501  return isVolatile | ((Log2_32(Alignment) + 1) << 1);
502}
503
504//===----------------------------------------------------------------------===//
505//                              SelectionDAG Class
506//===----------------------------------------------------------------------===//
507
508/// RemoveDeadNodes - This method deletes all unreachable nodes in the
509/// SelectionDAG.
510void SelectionDAG::RemoveDeadNodes() {
511  // Create a dummy node (which is not added to allnodes), that adds a reference
512  // to the root node, preventing it from being deleted.
513  HandleSDNode Dummy(getRoot());
514
515  SmallVector<SDNode*, 128> DeadNodes;
516
517  // Add all obviously-dead nodes to the DeadNodes worklist.
518  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
519    if (I->use_empty())
520      DeadNodes.push_back(I);
521
522  RemoveDeadNodes(DeadNodes);
523
524  // If the root changed (e.g. it was a dead load, update the root).
525  setRoot(Dummy.getValue());
526}
527
528/// RemoveDeadNodes - This method deletes the unreachable nodes in the
529/// given list, and any nodes that become unreachable as a result.
530void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
531                                   DAGUpdateListener *UpdateListener) {
532
533  // Process the worklist, deleting the nodes and adding their uses to the
534  // worklist.
535  while (!DeadNodes.empty()) {
536    SDNode *N = DeadNodes.back();
537    DeadNodes.pop_back();
538
539    if (UpdateListener)
540      UpdateListener->NodeDeleted(N, 0);
541
542    // Take the node out of the appropriate CSE map.
543    RemoveNodeFromCSEMaps(N);
544
545    // Next, brutally remove the operand list.  This is safe to do, as there are
546    // no cycles in the graph.
547    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
548      SDNode *Operand = I->getVal();
549      Operand->removeUser(std::distance(N->op_begin(), I), N);
550
551      // Now that we removed this operand, see if there are no uses of it left.
552      if (Operand->use_empty())
553        DeadNodes.push_back(Operand);
554    }
555    if (N->OperandsNeedDelete) {
556      delete[] N->OperandList;
557    }
558    N->OperandList = 0;
559    N->NumOperands = 0;
560
561    // Finally, remove N itself.
562    NodeAllocator.Deallocate(AllNodes.remove(N));
563  }
564}
565
566void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
567  SmallVector<SDNode*, 16> DeadNodes(1, N);
568  RemoveDeadNodes(DeadNodes, UpdateListener);
569}
570
571void SelectionDAG::DeleteNode(SDNode *N) {
572  assert(N->use_empty() && "Cannot delete a node that is not dead!");
573
574  // First take this out of the appropriate CSE map.
575  RemoveNodeFromCSEMaps(N);
576
577  // Finally, remove uses due to operands of this node, remove from the
578  // AllNodes list, and delete the node.
579  DeleteNodeNotInCSEMaps(N);
580}
581
582void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
583
584  // Drop all of the operands and decrement used nodes use counts.
585  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
586    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
587  if (N->OperandsNeedDelete)
588    delete[] N->OperandList;
589
590  assert(N != AllNodes.begin());
591  NodeAllocator.Deallocate(AllNodes.remove(N));
592}
593
594/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
595/// correspond to it.  This is useful when we're about to delete or repurpose
596/// the node.  We don't want future request for structurally identical nodes
597/// to return N anymore.
598void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
599  bool Erased = false;
600  switch (N->getOpcode()) {
601  case ISD::EntryToken:
602    assert(0 && "EntryToken should not be in CSEMaps!");
603    return;
604  case ISD::HANDLENODE: return;  // noop.
605  case ISD::CONDCODE:
606    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
607           "Cond code doesn't exist!");
608    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
609    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
610    break;
611  case ISD::ExternalSymbol:
612    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
613    break;
614  case ISD::TargetExternalSymbol:
615    Erased =
616      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
617    break;
618  case ISD::VALUETYPE: {
619    MVT VT = cast<VTSDNode>(N)->getVT();
620    if (VT.isExtended()) {
621      Erased = ExtendedValueTypeNodes.erase(VT);
622    } else {
623      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
624      ValueTypeNodes[VT.getSimpleVT()] = 0;
625    }
626    break;
627  }
628  default:
629    // Remove it from the CSE Map.
630    Erased = CSEMap.RemoveNode(N);
631    break;
632  }
633#ifndef NDEBUG
634  // Verify that the node was actually in one of the CSE maps, unless it has a
635  // flag result (which cannot be CSE'd) or is one of the special cases that are
636  // not subject to CSE.
637  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
638      !N->isTargetOpcode() &&
639      N->getOpcode() != ISD::DBG_LABEL &&
640      N->getOpcode() != ISD::DBG_STOPPOINT &&
641      N->getOpcode() != ISD::EH_LABEL &&
642      N->getOpcode() != ISD::DECLARE) {
643    N->dump(this);
644    cerr << "\n";
645    assert(0 && "Node is not in map!");
646  }
647#endif
648}
649
650/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
651/// has been taken out and modified in some way.  If the specified node already
652/// exists in the CSE maps, do not modify the maps, but return the existing node
653/// instead.  If it doesn't exist, add it and return null.
654///
655SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
656  assert(N->getNumOperands() && "This is a leaf node!");
657
658  if (N->getValueType(0) == MVT::Flag)
659    return 0;   // Never CSE anything that produces a flag.
660
661  switch (N->getOpcode()) {
662  default: break;
663  case ISD::HANDLENODE:
664  case ISD::DBG_LABEL:
665  case ISD::DBG_STOPPOINT:
666  case ISD::EH_LABEL:
667  case ISD::DECLARE:
668    return 0;    // Never add these nodes.
669  }
670
671  // Check that remaining values produced are not flags.
672  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
673    if (N->getValueType(i) == MVT::Flag)
674      return 0;   // Never CSE anything that produces a flag.
675
676  SDNode *New = CSEMap.GetOrInsertNode(N);
677  if (New != N) return New;  // Node already existed.
678  return 0;
679}
680
681/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
682/// were replaced with those specified.  If this node is never memoized,
683/// return null, otherwise return a pointer to the slot it would take.  If a
684/// node already exists with these operands, the slot will be non-null.
685SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
686                                           void *&InsertPos) {
687  if (N->getValueType(0) == MVT::Flag)
688    return 0;   // Never CSE anything that produces a flag.
689
690  switch (N->getOpcode()) {
691  default: break;
692  case ISD::HANDLENODE:
693  case ISD::DBG_LABEL:
694  case ISD::DBG_STOPPOINT:
695  case ISD::EH_LABEL:
696    return 0;    // Never add these nodes.
697  }
698
699  // Check that remaining values produced are not flags.
700  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
701    if (N->getValueType(i) == MVT::Flag)
702      return 0;   // Never CSE anything that produces a flag.
703
704  SDValue Ops[] = { Op };
705  FoldingSetNodeID ID;
706  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
707  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
708}
709
710/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
711/// were replaced with those specified.  If this node is never memoized,
712/// return null, otherwise return a pointer to the slot it would take.  If a
713/// node already exists with these operands, the slot will be non-null.
714SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
715                                           SDValue Op1, SDValue Op2,
716                                           void *&InsertPos) {
717  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
718
719  // Check that remaining values produced are not flags.
720  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
721    if (N->getValueType(i) == MVT::Flag)
722      return 0;   // Never CSE anything that produces a flag.
723
724  SDValue Ops[] = { Op1, Op2 };
725  FoldingSetNodeID ID;
726  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
727  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
728}
729
730
731/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
732/// were replaced with those specified.  If this node is never memoized,
733/// return null, otherwise return a pointer to the slot it would take.  If a
734/// node already exists with these operands, the slot will be non-null.
735SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
736                                           const SDValue *Ops,unsigned NumOps,
737                                           void *&InsertPos) {
738  if (N->getValueType(0) == MVT::Flag)
739    return 0;   // Never CSE anything that produces a flag.
740
741  switch (N->getOpcode()) {
742  default: break;
743  case ISD::HANDLENODE:
744  case ISD::DBG_LABEL:
745  case ISD::DBG_STOPPOINT:
746  case ISD::EH_LABEL:
747  case ISD::DECLARE:
748    return 0;    // Never add these nodes.
749  }
750
751  // Check that remaining values produced are not flags.
752  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
753    if (N->getValueType(i) == MVT::Flag)
754      return 0;   // Never CSE anything that produces a flag.
755
756  FoldingSetNodeID ID;
757  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
758
759  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
760    ID.AddInteger(LD->getAddressingMode());
761    ID.AddInteger(LD->getExtensionType());
762    ID.AddInteger(LD->getMemoryVT().getRawBits());
763    ID.AddInteger(LD->getRawFlags());
764  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
765    ID.AddInteger(ST->getAddressingMode());
766    ID.AddInteger(ST->isTruncatingStore());
767    ID.AddInteger(ST->getMemoryVT().getRawBits());
768    ID.AddInteger(ST->getRawFlags());
769  }
770
771  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
772}
773
774/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
775void SelectionDAG::VerifyNode(SDNode *N) {
776  switch (N->getOpcode()) {
777  default:
778    break;
779  case ISD::BUILD_VECTOR: {
780    assert(N->getNumValues() == 1 && "Too many results for BUILD_VECTOR!");
781    assert(N->getValueType(0).isVector() && "Wrong BUILD_VECTOR return type!");
782    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
783           "Wrong number of BUILD_VECTOR operands!");
784    MVT EltVT = N->getValueType(0).getVectorElementType();
785    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
786      assert(I->getSDValue().getValueType() == EltVT &&
787             "Wrong BUILD_VECTOR operand type!");
788    break;
789  }
790  }
791}
792
793/// getMVTAlignment - Compute the default alignment value for the
794/// given type.
795///
796unsigned SelectionDAG::getMVTAlignment(MVT VT) const {
797  const Type *Ty = VT == MVT::iPTR ?
798                   PointerType::get(Type::Int8Ty, 0) :
799                   VT.getTypeForMVT();
800
801  return TLI.getTargetData()->getABITypeAlignment(Ty);
802}
803
804SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
805  : TLI(tli), FLI(fli),
806    EntryNode(ISD::EntryToken, getVTList(MVT::Other)),
807    Root(getEntryNode()) {
808  AllNodes.push_back(&EntryNode);
809}
810
811void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi) {
812  MF = &mf;
813  MMI = mmi;
814}
815
816SelectionDAG::~SelectionDAG() {
817  allnodes_clear();
818}
819
820void SelectionDAG::allnodes_clear() {
821  assert(&*AllNodes.begin() == &EntryNode);
822  AllNodes.remove(AllNodes.begin());
823  while (!AllNodes.empty()) {
824    SDNode *N = AllNodes.remove(AllNodes.begin());
825    N->SetNextInBucket(0);
826    if (N->OperandsNeedDelete)
827      delete [] N->OperandList;
828    NodeAllocator.Deallocate(N);
829  }
830}
831
832void SelectionDAG::clear() {
833  allnodes_clear();
834  OperandAllocator.Reset();
835  CSEMap.clear();
836
837  ExtendedValueTypeNodes.clear();
838  ExternalSymbols.clear();
839  TargetExternalSymbols.clear();
840  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
841            static_cast<CondCodeSDNode*>(0));
842  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
843            static_cast<SDNode*>(0));
844
845  EntryNode.Uses = 0;
846  AllNodes.push_back(&EntryNode);
847  Root = getEntryNode();
848}
849
850SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, MVT VT) {
851  if (Op.getValueType() == VT) return Op;
852  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
853                                   VT.getSizeInBits());
854  return getNode(ISD::AND, Op.getValueType(), Op,
855                 getConstant(Imm, Op.getValueType()));
856}
857
858SDValue SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
859  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
860  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
861}
862
863SDValue SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
864  assert(VT.isInteger() && "Cannot create FP integer constant!");
865
866  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
867  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
868         "APInt size does not match type size!");
869
870  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
871  FoldingSetNodeID ID;
872  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
873  ID.Add(Val);
874  void *IP = 0;
875  SDNode *N = NULL;
876  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
877    if (!VT.isVector())
878      return SDValue(N, 0);
879  if (!N) {
880    N = NodeAllocator.Allocate<ConstantSDNode>();
881    new (N) ConstantSDNode(isT, Val, EltVT);
882    CSEMap.InsertNode(N, IP);
883    AllNodes.push_back(N);
884  }
885
886  SDValue Result(N, 0);
887  if (VT.isVector()) {
888    SmallVector<SDValue, 8> Ops;
889    Ops.assign(VT.getVectorNumElements(), Result);
890    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
891  }
892  return Result;
893}
894
895SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
896  return getConstant(Val, TLI.getPointerTy(), isTarget);
897}
898
899
900SDValue SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
901  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
902
903  MVT EltVT =
904    VT.isVector() ? VT.getVectorElementType() : VT;
905
906  // Do the map lookup using the actual bit pattern for the floating point
907  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
908  // we don't have issues with SNANs.
909  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
910  FoldingSetNodeID ID;
911  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
912  ID.Add(V);
913  void *IP = 0;
914  SDNode *N = NULL;
915  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
916    if (!VT.isVector())
917      return SDValue(N, 0);
918  if (!N) {
919    N = NodeAllocator.Allocate<ConstantFPSDNode>();
920    new (N) ConstantFPSDNode(isTarget, V, EltVT);
921    CSEMap.InsertNode(N, IP);
922    AllNodes.push_back(N);
923  }
924
925  SDValue Result(N, 0);
926  if (VT.isVector()) {
927    SmallVector<SDValue, 8> Ops;
928    Ops.assign(VT.getVectorNumElements(), Result);
929    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
930  }
931  return Result;
932}
933
934SDValue SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
935  MVT EltVT =
936    VT.isVector() ? VT.getVectorElementType() : VT;
937  if (EltVT==MVT::f32)
938    return getConstantFP(APFloat((float)Val), VT, isTarget);
939  else
940    return getConstantFP(APFloat(Val), VT, isTarget);
941}
942
943SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
944                                       MVT VT, int Offset,
945                                       bool isTargetGA) {
946  unsigned Opc;
947
948  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
949  if (!GVar) {
950    // If GV is an alias then use the aliasee for determining thread-localness.
951    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
952      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
953  }
954
955  if (GVar && GVar->isThreadLocal())
956    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
957  else
958    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
959
960  FoldingSetNodeID ID;
961  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
962  ID.AddPointer(GV);
963  ID.AddInteger(Offset);
964  void *IP = 0;
965  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
966   return SDValue(E, 0);
967  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
968  new (N) GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
969  CSEMap.InsertNode(N, IP);
970  AllNodes.push_back(N);
971  return SDValue(N, 0);
972}
973
974SDValue SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
975  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
976  FoldingSetNodeID ID;
977  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
978  ID.AddInteger(FI);
979  void *IP = 0;
980  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
981    return SDValue(E, 0);
982  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
983  new (N) FrameIndexSDNode(FI, VT, isTarget);
984  CSEMap.InsertNode(N, IP);
985  AllNodes.push_back(N);
986  return SDValue(N, 0);
987}
988
989SDValue SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
990  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
991  FoldingSetNodeID ID;
992  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
993  ID.AddInteger(JTI);
994  void *IP = 0;
995  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
996    return SDValue(E, 0);
997  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
998  new (N) JumpTableSDNode(JTI, VT, isTarget);
999  CSEMap.InsertNode(N, IP);
1000  AllNodes.push_back(N);
1001  return SDValue(N, 0);
1002}
1003
1004SDValue SelectionDAG::getConstantPool(Constant *C, MVT VT,
1005                                      unsigned Alignment, int Offset,
1006                                      bool isTarget) {
1007  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1008  FoldingSetNodeID ID;
1009  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1010  ID.AddInteger(Alignment);
1011  ID.AddInteger(Offset);
1012  ID.AddPointer(C);
1013  void *IP = 0;
1014  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1015    return SDValue(E, 0);
1016  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1017  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1018  CSEMap.InsertNode(N, IP);
1019  AllNodes.push_back(N);
1020  return SDValue(N, 0);
1021}
1022
1023
1024SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
1025                                      unsigned Alignment, int Offset,
1026                                      bool isTarget) {
1027  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1028  FoldingSetNodeID ID;
1029  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1030  ID.AddInteger(Alignment);
1031  ID.AddInteger(Offset);
1032  C->AddSelectionDAGCSEId(ID);
1033  void *IP = 0;
1034  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1035    return SDValue(E, 0);
1036  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1037  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
1038  CSEMap.InsertNode(N, IP);
1039  AllNodes.push_back(N);
1040  return SDValue(N, 0);
1041}
1042
1043
1044SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1045  FoldingSetNodeID ID;
1046  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1047  ID.AddPointer(MBB);
1048  void *IP = 0;
1049  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1050    return SDValue(E, 0);
1051  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1052  new (N) BasicBlockSDNode(MBB);
1053  CSEMap.InsertNode(N, IP);
1054  AllNodes.push_back(N);
1055  return SDValue(N, 0);
1056}
1057
1058SDValue SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
1059  FoldingSetNodeID ID;
1060  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), 0, 0);
1061  ID.AddInteger(Flags.getRawBits());
1062  void *IP = 0;
1063  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1064    return SDValue(E, 0);
1065  SDNode *N = NodeAllocator.Allocate<ARG_FLAGSSDNode>();
1066  new (N) ARG_FLAGSSDNode(Flags);
1067  CSEMap.InsertNode(N, IP);
1068  AllNodes.push_back(N);
1069  return SDValue(N, 0);
1070}
1071
1072SDValue SelectionDAG::getValueType(MVT VT) {
1073  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
1074    ValueTypeNodes.resize(VT.getSimpleVT()+1);
1075
1076  SDNode *&N = VT.isExtended() ?
1077    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
1078
1079  if (N) return SDValue(N, 0);
1080  N = NodeAllocator.Allocate<VTSDNode>();
1081  new (N) VTSDNode(VT);
1082  AllNodes.push_back(N);
1083  return SDValue(N, 0);
1084}
1085
1086SDValue SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
1087  SDNode *&N = ExternalSymbols[Sym];
1088  if (N) return SDValue(N, 0);
1089  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1090  new (N) ExternalSymbolSDNode(false, Sym, VT);
1091  AllNodes.push_back(N);
1092  return SDValue(N, 0);
1093}
1094
1095SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
1096  SDNode *&N = TargetExternalSymbols[Sym];
1097  if (N) return SDValue(N, 0);
1098  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1099  new (N) ExternalSymbolSDNode(true, Sym, VT);
1100  AllNodes.push_back(N);
1101  return SDValue(N, 0);
1102}
1103
1104SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1105  if ((unsigned)Cond >= CondCodeNodes.size())
1106    CondCodeNodes.resize(Cond+1);
1107
1108  if (CondCodeNodes[Cond] == 0) {
1109    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1110    new (N) CondCodeSDNode(Cond);
1111    CondCodeNodes[Cond] = N;
1112    AllNodes.push_back(N);
1113  }
1114  return SDValue(CondCodeNodes[Cond], 0);
1115}
1116
1117SDValue SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
1118  FoldingSetNodeID ID;
1119  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1120  ID.AddInteger(RegNo);
1121  void *IP = 0;
1122  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1123    return SDValue(E, 0);
1124  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1125  new (N) RegisterSDNode(RegNo, VT);
1126  CSEMap.InsertNode(N, IP);
1127  AllNodes.push_back(N);
1128  return SDValue(N, 0);
1129}
1130
1131SDValue SelectionDAG::getDbgStopPoint(SDValue Root,
1132                                        unsigned Line, unsigned Col,
1133                                        const CompileUnitDesc *CU) {
1134  SDNode *N = NodeAllocator.Allocate<DbgStopPointSDNode>();
1135  new (N) DbgStopPointSDNode(Root, Line, Col, CU);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getLabel(unsigned Opcode,
1141                               SDValue Root,
1142                               unsigned LabelID) {
1143  FoldingSetNodeID ID;
1144  SDValue Ops[] = { Root };
1145  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1146  ID.AddInteger(LabelID);
1147  void *IP = 0;
1148  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1149    return SDValue(E, 0);
1150  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1151  new (N) LabelSDNode(Opcode, Root, LabelID);
1152  CSEMap.InsertNode(N, IP);
1153  AllNodes.push_back(N);
1154  return SDValue(N, 0);
1155}
1156
1157SDValue SelectionDAG::getSrcValue(const Value *V) {
1158  assert((!V || isa<PointerType>(V->getType())) &&
1159         "SrcValue is not a pointer?");
1160
1161  FoldingSetNodeID ID;
1162  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1163  ID.AddPointer(V);
1164
1165  void *IP = 0;
1166  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1167    return SDValue(E, 0);
1168
1169  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1170  new (N) SrcValueSDNode(V);
1171  CSEMap.InsertNode(N, IP);
1172  AllNodes.push_back(N);
1173  return SDValue(N, 0);
1174}
1175
1176SDValue SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1177  const Value *v = MO.getValue();
1178  assert((!v || isa<PointerType>(v->getType())) &&
1179         "SrcValue is not a pointer?");
1180
1181  FoldingSetNodeID ID;
1182  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), 0, 0);
1183  MO.Profile(ID);
1184
1185  void *IP = 0;
1186  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1187    return SDValue(E, 0);
1188
1189  SDNode *N = NodeAllocator.Allocate<MemOperandSDNode>();
1190  new (N) MemOperandSDNode(MO);
1191  CSEMap.InsertNode(N, IP);
1192  AllNodes.push_back(N);
1193  return SDValue(N, 0);
1194}
1195
1196/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1197/// specified value type.
1198SDValue SelectionDAG::CreateStackTemporary(MVT VT, unsigned minAlign) {
1199  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1200  unsigned ByteSize = VT.getSizeInBits()/8;
1201  const Type *Ty = VT.getTypeForMVT();
1202  unsigned StackAlign =
1203  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1204
1205  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1206  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1207}
1208
1209SDValue SelectionDAG::FoldSetCC(MVT VT, SDValue N1,
1210                                SDValue N2, ISD::CondCode Cond) {
1211  // These setcc operations always fold.
1212  switch (Cond) {
1213  default: break;
1214  case ISD::SETFALSE:
1215  case ISD::SETFALSE2: return getConstant(0, VT);
1216  case ISD::SETTRUE:
1217  case ISD::SETTRUE2:  return getConstant(1, VT);
1218
1219  case ISD::SETOEQ:
1220  case ISD::SETOGT:
1221  case ISD::SETOGE:
1222  case ISD::SETOLT:
1223  case ISD::SETOLE:
1224  case ISD::SETONE:
1225  case ISD::SETO:
1226  case ISD::SETUO:
1227  case ISD::SETUEQ:
1228  case ISD::SETUNE:
1229    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1230    break;
1231  }
1232
1233  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1234    const APInt &C2 = N2C->getAPIntValue();
1235    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1236      const APInt &C1 = N1C->getAPIntValue();
1237
1238      switch (Cond) {
1239      default: assert(0 && "Unknown integer setcc!");
1240      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1241      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1242      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1243      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1244      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1245      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1246      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1247      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1248      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1249      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1250      }
1251    }
1252  }
1253  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1254    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1255      // No compile time operations on this type yet.
1256      if (N1C->getValueType(0) == MVT::ppcf128)
1257        return SDValue();
1258
1259      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1260      switch (Cond) {
1261      default: break;
1262      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1263                          return getNode(ISD::UNDEF, VT);
1264                        // fall through
1265      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1266      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1267                          return getNode(ISD::UNDEF, VT);
1268                        // fall through
1269      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1270                                           R==APFloat::cmpLessThan, VT);
1271      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1272                          return getNode(ISD::UNDEF, VT);
1273                        // fall through
1274      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1275      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1276                          return getNode(ISD::UNDEF, VT);
1277                        // fall through
1278      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1279      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1280                          return getNode(ISD::UNDEF, VT);
1281                        // fall through
1282      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1283                                           R==APFloat::cmpEqual, VT);
1284      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1285                          return getNode(ISD::UNDEF, VT);
1286                        // fall through
1287      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1288                                           R==APFloat::cmpEqual, VT);
1289      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1290      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1291      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1292                                           R==APFloat::cmpEqual, VT);
1293      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1294      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1295                                           R==APFloat::cmpLessThan, VT);
1296      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1297                                           R==APFloat::cmpUnordered, VT);
1298      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1299      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1300      }
1301    } else {
1302      // Ensure that the constant occurs on the RHS.
1303      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1304    }
1305  }
1306
1307  // Could not fold it.
1308  return SDValue();
1309}
1310
1311/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1312/// use this predicate to simplify operations downstream.
1313bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1314  unsigned BitWidth = Op.getValueSizeInBits();
1315  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1316}
1317
1318/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1319/// this predicate to simplify operations downstream.  Mask is known to be zero
1320/// for bits that V cannot have.
1321bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1322                                     unsigned Depth) const {
1323  APInt KnownZero, KnownOne;
1324  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1325  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1326  return (KnownZero & Mask) == Mask;
1327}
1328
1329/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1330/// known to be either zero or one and return them in the KnownZero/KnownOne
1331/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1332/// processing.
1333void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1334                                     APInt &KnownZero, APInt &KnownOne,
1335                                     unsigned Depth) const {
1336  unsigned BitWidth = Mask.getBitWidth();
1337  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1338         "Mask size mismatches value type size!");
1339
1340  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1341  if (Depth == 6 || Mask == 0)
1342    return;  // Limit search depth.
1343
1344  APInt KnownZero2, KnownOne2;
1345
1346  switch (Op.getOpcode()) {
1347  case ISD::Constant:
1348    // We know all of the bits for a constant!
1349    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1350    KnownZero = ~KnownOne & Mask;
1351    return;
1352  case ISD::AND:
1353    // If either the LHS or the RHS are Zero, the result is zero.
1354    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1355    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1356                      KnownZero2, KnownOne2, Depth+1);
1357    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1358    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1359
1360    // Output known-1 bits are only known if set in both the LHS & RHS.
1361    KnownOne &= KnownOne2;
1362    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1363    KnownZero |= KnownZero2;
1364    return;
1365  case ISD::OR:
1366    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1367    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1368                      KnownZero2, KnownOne2, Depth+1);
1369    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1370    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1371
1372    // Output known-0 bits are only known if clear in both the LHS & RHS.
1373    KnownZero &= KnownZero2;
1374    // Output known-1 are known to be set if set in either the LHS | RHS.
1375    KnownOne |= KnownOne2;
1376    return;
1377  case ISD::XOR: {
1378    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1379    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1380    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1381    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1382
1383    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1384    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1385    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1386    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1387    KnownZero = KnownZeroOut;
1388    return;
1389  }
1390  case ISD::MUL: {
1391    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1392    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1393    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1394    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1395    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1396
1397    // If low bits are zero in either operand, output low known-0 bits.
1398    // Also compute a conserative estimate for high known-0 bits.
1399    // More trickiness is possible, but this is sufficient for the
1400    // interesting case of alignment computation.
1401    KnownOne.clear();
1402    unsigned TrailZ = KnownZero.countTrailingOnes() +
1403                      KnownZero2.countTrailingOnes();
1404    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1405                               KnownZero2.countLeadingOnes(),
1406                               BitWidth) - BitWidth;
1407
1408    TrailZ = std::min(TrailZ, BitWidth);
1409    LeadZ = std::min(LeadZ, BitWidth);
1410    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1411                APInt::getHighBitsSet(BitWidth, LeadZ);
1412    KnownZero &= Mask;
1413    return;
1414  }
1415  case ISD::UDIV: {
1416    // For the purposes of computing leading zeros we can conservatively
1417    // treat a udiv as a logical right shift by the power of 2 known to
1418    // be less than the denominator.
1419    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1420    ComputeMaskedBits(Op.getOperand(0),
1421                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1422    unsigned LeadZ = KnownZero2.countLeadingOnes();
1423
1424    KnownOne2.clear();
1425    KnownZero2.clear();
1426    ComputeMaskedBits(Op.getOperand(1),
1427                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1428    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1429    if (RHSUnknownLeadingOnes != BitWidth)
1430      LeadZ = std::min(BitWidth,
1431                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1432
1433    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1434    return;
1435  }
1436  case ISD::SELECT:
1437    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1438    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1439    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1440    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1441
1442    // Only known if known in both the LHS and RHS.
1443    KnownOne &= KnownOne2;
1444    KnownZero &= KnownZero2;
1445    return;
1446  case ISD::SELECT_CC:
1447    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1448    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1449    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1450    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1451
1452    // Only known if known in both the LHS and RHS.
1453    KnownOne &= KnownOne2;
1454    KnownZero &= KnownZero2;
1455    return;
1456  case ISD::SETCC:
1457    // If we know the result of a setcc has the top bits zero, use this info.
1458    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1459        BitWidth > 1)
1460      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1461    return;
1462  case ISD::SHL:
1463    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1464    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1465      unsigned ShAmt = SA->getZExtValue();
1466
1467      // If the shift count is an invalid immediate, don't do anything.
1468      if (ShAmt >= BitWidth)
1469        return;
1470
1471      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1472                        KnownZero, KnownOne, Depth+1);
1473      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1474      KnownZero <<= ShAmt;
1475      KnownOne  <<= ShAmt;
1476      // low bits known zero.
1477      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1478    }
1479    return;
1480  case ISD::SRL:
1481    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1482    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1483      unsigned ShAmt = SA->getZExtValue();
1484
1485      // If the shift count is an invalid immediate, don't do anything.
1486      if (ShAmt >= BitWidth)
1487        return;
1488
1489      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1490                        KnownZero, KnownOne, Depth+1);
1491      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1492      KnownZero = KnownZero.lshr(ShAmt);
1493      KnownOne  = KnownOne.lshr(ShAmt);
1494
1495      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1496      KnownZero |= HighBits;  // High bits known zero.
1497    }
1498    return;
1499  case ISD::SRA:
1500    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1501      unsigned ShAmt = SA->getZExtValue();
1502
1503      // If the shift count is an invalid immediate, don't do anything.
1504      if (ShAmt >= BitWidth)
1505        return;
1506
1507      APInt InDemandedMask = (Mask << ShAmt);
1508      // If any of the demanded bits are produced by the sign extension, we also
1509      // demand the input sign bit.
1510      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1511      if (HighBits.getBoolValue())
1512        InDemandedMask |= APInt::getSignBit(BitWidth);
1513
1514      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1515                        Depth+1);
1516      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1517      KnownZero = KnownZero.lshr(ShAmt);
1518      KnownOne  = KnownOne.lshr(ShAmt);
1519
1520      // Handle the sign bits.
1521      APInt SignBit = APInt::getSignBit(BitWidth);
1522      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1523
1524      if (KnownZero.intersects(SignBit)) {
1525        KnownZero |= HighBits;  // New bits are known zero.
1526      } else if (KnownOne.intersects(SignBit)) {
1527        KnownOne  |= HighBits;  // New bits are known one.
1528      }
1529    }
1530    return;
1531  case ISD::SIGN_EXTEND_INREG: {
1532    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1533    unsigned EBits = EVT.getSizeInBits();
1534
1535    // Sign extension.  Compute the demanded bits in the result that are not
1536    // present in the input.
1537    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1538
1539    APInt InSignBit = APInt::getSignBit(EBits);
1540    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1541
1542    // If the sign extended bits are demanded, we know that the sign
1543    // bit is demanded.
1544    InSignBit.zext(BitWidth);
1545    if (NewBits.getBoolValue())
1546      InputDemandedBits |= InSignBit;
1547
1548    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1549                      KnownZero, KnownOne, Depth+1);
1550    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1551
1552    // If the sign bit of the input is known set or clear, then we know the
1553    // top bits of the result.
1554    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1555      KnownZero |= NewBits;
1556      KnownOne  &= ~NewBits;
1557    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1558      KnownOne  |= NewBits;
1559      KnownZero &= ~NewBits;
1560    } else {                              // Input sign bit unknown
1561      KnownZero &= ~NewBits;
1562      KnownOne  &= ~NewBits;
1563    }
1564    return;
1565  }
1566  case ISD::CTTZ:
1567  case ISD::CTLZ:
1568  case ISD::CTPOP: {
1569    unsigned LowBits = Log2_32(BitWidth)+1;
1570    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1571    KnownOne.clear();
1572    return;
1573  }
1574  case ISD::LOAD: {
1575    if (ISD::isZEXTLoad(Op.getNode())) {
1576      LoadSDNode *LD = cast<LoadSDNode>(Op);
1577      MVT VT = LD->getMemoryVT();
1578      unsigned MemBits = VT.getSizeInBits();
1579      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1580    }
1581    return;
1582  }
1583  case ISD::ZERO_EXTEND: {
1584    MVT InVT = Op.getOperand(0).getValueType();
1585    unsigned InBits = InVT.getSizeInBits();
1586    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1587    APInt InMask    = Mask;
1588    InMask.trunc(InBits);
1589    KnownZero.trunc(InBits);
1590    KnownOne.trunc(InBits);
1591    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1592    KnownZero.zext(BitWidth);
1593    KnownOne.zext(BitWidth);
1594    KnownZero |= NewBits;
1595    return;
1596  }
1597  case ISD::SIGN_EXTEND: {
1598    MVT InVT = Op.getOperand(0).getValueType();
1599    unsigned InBits = InVT.getSizeInBits();
1600    APInt InSignBit = APInt::getSignBit(InBits);
1601    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1602    APInt InMask = Mask;
1603    InMask.trunc(InBits);
1604
1605    // If any of the sign extended bits are demanded, we know that the sign
1606    // bit is demanded. Temporarily set this bit in the mask for our callee.
1607    if (NewBits.getBoolValue())
1608      InMask |= InSignBit;
1609
1610    KnownZero.trunc(InBits);
1611    KnownOne.trunc(InBits);
1612    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1613
1614    // Note if the sign bit is known to be zero or one.
1615    bool SignBitKnownZero = KnownZero.isNegative();
1616    bool SignBitKnownOne  = KnownOne.isNegative();
1617    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1618           "Sign bit can't be known to be both zero and one!");
1619
1620    // If the sign bit wasn't actually demanded by our caller, we don't
1621    // want it set in the KnownZero and KnownOne result values. Reset the
1622    // mask and reapply it to the result values.
1623    InMask = Mask;
1624    InMask.trunc(InBits);
1625    KnownZero &= InMask;
1626    KnownOne  &= InMask;
1627
1628    KnownZero.zext(BitWidth);
1629    KnownOne.zext(BitWidth);
1630
1631    // If the sign bit is known zero or one, the top bits match.
1632    if (SignBitKnownZero)
1633      KnownZero |= NewBits;
1634    else if (SignBitKnownOne)
1635      KnownOne  |= NewBits;
1636    return;
1637  }
1638  case ISD::ANY_EXTEND: {
1639    MVT InVT = Op.getOperand(0).getValueType();
1640    unsigned InBits = InVT.getSizeInBits();
1641    APInt InMask = Mask;
1642    InMask.trunc(InBits);
1643    KnownZero.trunc(InBits);
1644    KnownOne.trunc(InBits);
1645    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1646    KnownZero.zext(BitWidth);
1647    KnownOne.zext(BitWidth);
1648    return;
1649  }
1650  case ISD::TRUNCATE: {
1651    MVT InVT = Op.getOperand(0).getValueType();
1652    unsigned InBits = InVT.getSizeInBits();
1653    APInt InMask = Mask;
1654    InMask.zext(InBits);
1655    KnownZero.zext(InBits);
1656    KnownOne.zext(InBits);
1657    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1658    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1659    KnownZero.trunc(BitWidth);
1660    KnownOne.trunc(BitWidth);
1661    break;
1662  }
1663  case ISD::AssertZext: {
1664    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1665    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1666    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1667                      KnownOne, Depth+1);
1668    KnownZero |= (~InMask) & Mask;
1669    return;
1670  }
1671  case ISD::FGETSIGN:
1672    // All bits are zero except the low bit.
1673    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1674    return;
1675
1676  case ISD::SUB: {
1677    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1678      // We know that the top bits of C-X are clear if X contains less bits
1679      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1680      // positive if we can prove that X is >= 0 and < 16.
1681      if (CLHS->getAPIntValue().isNonNegative()) {
1682        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1683        // NLZ can't be BitWidth with no sign bit
1684        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1685        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1686                          Depth+1);
1687
1688        // If all of the MaskV bits are known to be zero, then we know the
1689        // output top bits are zero, because we now know that the output is
1690        // from [0-C].
1691        if ((KnownZero2 & MaskV) == MaskV) {
1692          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1693          // Top bits known zero.
1694          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1695        }
1696      }
1697    }
1698  }
1699  // fall through
1700  case ISD::ADD: {
1701    // Output known-0 bits are known if clear or set in both the low clear bits
1702    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1703    // low 3 bits clear.
1704    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1705    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1706    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1707    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1708
1709    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1710    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1711    KnownZeroOut = std::min(KnownZeroOut,
1712                            KnownZero2.countTrailingOnes());
1713
1714    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1715    return;
1716  }
1717  case ISD::SREM:
1718    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1719      const APInt &RA = Rem->getAPIntValue();
1720      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1721        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1722        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1723        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1724
1725        // If the sign bit of the first operand is zero, the sign bit of
1726        // the result is zero. If the first operand has no one bits below
1727        // the second operand's single 1 bit, its sign will be zero.
1728        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1729          KnownZero2 |= ~LowBits;
1730
1731        KnownZero |= KnownZero2 & Mask;
1732
1733        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1734      }
1735    }
1736    return;
1737  case ISD::UREM: {
1738    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1739      const APInt &RA = Rem->getAPIntValue();
1740      if (RA.isPowerOf2()) {
1741        APInt LowBits = (RA - 1);
1742        APInt Mask2 = LowBits & Mask;
1743        KnownZero |= ~LowBits & Mask;
1744        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1745        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1746        break;
1747      }
1748    }
1749
1750    // Since the result is less than or equal to either operand, any leading
1751    // zero bits in either operand must also exist in the result.
1752    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1753    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1754                      Depth+1);
1755    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1756                      Depth+1);
1757
1758    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1759                                KnownZero2.countLeadingOnes());
1760    KnownOne.clear();
1761    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1762    return;
1763  }
1764  default:
1765    // Allow the target to implement this method for its nodes.
1766    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1767  case ISD::INTRINSIC_WO_CHAIN:
1768  case ISD::INTRINSIC_W_CHAIN:
1769  case ISD::INTRINSIC_VOID:
1770      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1771    }
1772    return;
1773  }
1774}
1775
1776/// ComputeNumSignBits - Return the number of times the sign bit of the
1777/// register is replicated into the other bits.  We know that at least 1 bit
1778/// is always equal to the sign bit (itself), but other cases can give us
1779/// information.  For example, immediately after an "SRA X, 2", we know that
1780/// the top 3 bits are all equal to each other, so we return 3.
1781unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
1782  MVT VT = Op.getValueType();
1783  assert(VT.isInteger() && "Invalid VT!");
1784  unsigned VTBits = VT.getSizeInBits();
1785  unsigned Tmp, Tmp2;
1786  unsigned FirstAnswer = 1;
1787
1788  if (Depth == 6)
1789    return 1;  // Limit search depth.
1790
1791  switch (Op.getOpcode()) {
1792  default: break;
1793  case ISD::AssertSext:
1794    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1795    return VTBits-Tmp+1;
1796  case ISD::AssertZext:
1797    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1798    return VTBits-Tmp;
1799
1800  case ISD::Constant: {
1801    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1802    // If negative, return # leading ones.
1803    if (Val.isNegative())
1804      return Val.countLeadingOnes();
1805
1806    // Return # leading zeros.
1807    return Val.countLeadingZeros();
1808  }
1809
1810  case ISD::SIGN_EXTEND:
1811    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1812    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1813
1814  case ISD::SIGN_EXTEND_INREG:
1815    // Max of the input and what this extends.
1816    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1817    Tmp = VTBits-Tmp+1;
1818
1819    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1820    return std::max(Tmp, Tmp2);
1821
1822  case ISD::SRA:
1823    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1824    // SRA X, C   -> adds C sign bits.
1825    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1826      Tmp += C->getZExtValue();
1827      if (Tmp > VTBits) Tmp = VTBits;
1828    }
1829    return Tmp;
1830  case ISD::SHL:
1831    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1832      // shl destroys sign bits.
1833      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1834      if (C->getZExtValue() >= VTBits ||      // Bad shift.
1835          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
1836      return Tmp - C->getZExtValue();
1837    }
1838    break;
1839  case ISD::AND:
1840  case ISD::OR:
1841  case ISD::XOR:    // NOT is handled here.
1842    // Logical binary ops preserve the number of sign bits at the worst.
1843    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1844    if (Tmp != 1) {
1845      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1846      FirstAnswer = std::min(Tmp, Tmp2);
1847      // We computed what we know about the sign bits as our first
1848      // answer. Now proceed to the generic code that uses
1849      // ComputeMaskedBits, and pick whichever answer is better.
1850    }
1851    break;
1852
1853  case ISD::SELECT:
1854    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1855    if (Tmp == 1) return 1;  // Early out.
1856    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1857    return std::min(Tmp, Tmp2);
1858
1859  case ISD::SETCC:
1860    // If setcc returns 0/-1, all bits are sign bits.
1861    if (TLI.getSetCCResultContents() ==
1862        TargetLowering::ZeroOrNegativeOneSetCCResult)
1863      return VTBits;
1864    break;
1865  case ISD::ROTL:
1866  case ISD::ROTR:
1867    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1868      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
1869
1870      // Handle rotate right by N like a rotate left by 32-N.
1871      if (Op.getOpcode() == ISD::ROTR)
1872        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1873
1874      // If we aren't rotating out all of the known-in sign bits, return the
1875      // number that are left.  This handles rotl(sext(x), 1) for example.
1876      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1877      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1878    }
1879    break;
1880  case ISD::ADD:
1881    // Add can have at most one carry bit.  Thus we know that the output
1882    // is, at worst, one more bit than the inputs.
1883    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1884    if (Tmp == 1) return 1;  // Early out.
1885
1886    // Special case decrementing a value (ADD X, -1):
1887    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1888      if (CRHS->isAllOnesValue()) {
1889        APInt KnownZero, KnownOne;
1890        APInt Mask = APInt::getAllOnesValue(VTBits);
1891        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1892
1893        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1894        // sign bits set.
1895        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1896          return VTBits;
1897
1898        // If we are subtracting one from a positive number, there is no carry
1899        // out of the result.
1900        if (KnownZero.isNegative())
1901          return Tmp;
1902      }
1903
1904    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1905    if (Tmp2 == 1) return 1;
1906      return std::min(Tmp, Tmp2)-1;
1907    break;
1908
1909  case ISD::SUB:
1910    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1911    if (Tmp2 == 1) return 1;
1912
1913    // Handle NEG.
1914    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1915      if (CLHS->isNullValue()) {
1916        APInt KnownZero, KnownOne;
1917        APInt Mask = APInt::getAllOnesValue(VTBits);
1918        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1919        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1920        // sign bits set.
1921        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1922          return VTBits;
1923
1924        // If the input is known to be positive (the sign bit is known clear),
1925        // the output of the NEG has the same number of sign bits as the input.
1926        if (KnownZero.isNegative())
1927          return Tmp2;
1928
1929        // Otherwise, we treat this like a SUB.
1930      }
1931
1932    // Sub can have at most one carry bit.  Thus we know that the output
1933    // is, at worst, one more bit than the inputs.
1934    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1935    if (Tmp == 1) return 1;  // Early out.
1936      return std::min(Tmp, Tmp2)-1;
1937    break;
1938  case ISD::TRUNCATE:
1939    // FIXME: it's tricky to do anything useful for this, but it is an important
1940    // case for targets like X86.
1941    break;
1942  }
1943
1944  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1945  if (Op.getOpcode() == ISD::LOAD) {
1946    LoadSDNode *LD = cast<LoadSDNode>(Op);
1947    unsigned ExtType = LD->getExtensionType();
1948    switch (ExtType) {
1949    default: break;
1950    case ISD::SEXTLOAD:    // '17' bits known
1951      Tmp = LD->getMemoryVT().getSizeInBits();
1952      return VTBits-Tmp+1;
1953    case ISD::ZEXTLOAD:    // '16' bits known
1954      Tmp = LD->getMemoryVT().getSizeInBits();
1955      return VTBits-Tmp;
1956    }
1957  }
1958
1959  // Allow the target to implement this method for its nodes.
1960  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1961      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1962      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1963      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1964    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1965    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1966  }
1967
1968  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1969  // use this information.
1970  APInt KnownZero, KnownOne;
1971  APInt Mask = APInt::getAllOnesValue(VTBits);
1972  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1973
1974  if (KnownZero.isNegative()) {        // sign bit is 0
1975    Mask = KnownZero;
1976  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1977    Mask = KnownOne;
1978  } else {
1979    // Nothing known.
1980    return FirstAnswer;
1981  }
1982
1983  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1984  // the number of identical bits in the top of the input value.
1985  Mask = ~Mask;
1986  Mask <<= Mask.getBitWidth()-VTBits;
1987  // Return # leading zeros.  We use 'min' here in case Val was zero before
1988  // shifting.  We don't want to return '64' as for an i32 "0".
1989  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1990}
1991
1992
1993bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
1994  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1995  if (!GA) return false;
1996  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1997  if (!GV) return false;
1998  MachineModuleInfo *MMI = getMachineModuleInfo();
1999  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
2000}
2001
2002
2003/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2004/// element of the result of the vector shuffle.
2005SDValue SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
2006  MVT VT = N->getValueType(0);
2007  SDValue PermMask = N->getOperand(2);
2008  SDValue Idx = PermMask.getOperand(i);
2009  if (Idx.getOpcode() == ISD::UNDEF)
2010    return getNode(ISD::UNDEF, VT.getVectorElementType());
2011  unsigned Index = cast<ConstantSDNode>(Idx)->getZExtValue();
2012  unsigned NumElems = PermMask.getNumOperands();
2013  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2014  Index %= NumElems;
2015
2016  if (V.getOpcode() == ISD::BIT_CONVERT) {
2017    V = V.getOperand(0);
2018    if (V.getValueType().getVectorNumElements() != NumElems)
2019      return SDValue();
2020  }
2021  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2022    return (Index == 0) ? V.getOperand(0)
2023                      : getNode(ISD::UNDEF, VT.getVectorElementType());
2024  if (V.getOpcode() == ISD::BUILD_VECTOR)
2025    return V.getOperand(Index);
2026  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
2027    return getShuffleScalarElt(V.getNode(), Index);
2028  return SDValue();
2029}
2030
2031
2032/// getNode - Gets or creates the specified node.
2033///
2034SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT) {
2035  FoldingSetNodeID ID;
2036  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2037  void *IP = 0;
2038  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2039    return SDValue(E, 0);
2040  SDNode *N = NodeAllocator.Allocate<SDNode>();
2041  new (N) SDNode(Opcode, SDNode::getSDVTList(VT));
2042  CSEMap.InsertNode(N, IP);
2043
2044  AllNodes.push_back(N);
2045#ifndef NDEBUG
2046  VerifyNode(N);
2047#endif
2048  return SDValue(N, 0);
2049}
2050
2051SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT, SDValue Operand) {
2052  // Constant fold unary operations with an integer constant operand.
2053  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2054    const APInt &Val = C->getAPIntValue();
2055    unsigned BitWidth = VT.getSizeInBits();
2056    switch (Opcode) {
2057    default: break;
2058    case ISD::SIGN_EXTEND:
2059      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2060    case ISD::ANY_EXTEND:
2061    case ISD::ZERO_EXTEND:
2062    case ISD::TRUNCATE:
2063      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2064    case ISD::UINT_TO_FP:
2065    case ISD::SINT_TO_FP: {
2066      const uint64_t zero[] = {0, 0};
2067      // No compile time operations on this type.
2068      if (VT==MVT::ppcf128)
2069        break;
2070      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2071      (void)apf.convertFromAPInt(Val,
2072                                 Opcode==ISD::SINT_TO_FP,
2073                                 APFloat::rmNearestTiesToEven);
2074      return getConstantFP(apf, VT);
2075    }
2076    case ISD::BIT_CONVERT:
2077      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2078        return getConstantFP(Val.bitsToFloat(), VT);
2079      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2080        return getConstantFP(Val.bitsToDouble(), VT);
2081      break;
2082    case ISD::BSWAP:
2083      return getConstant(Val.byteSwap(), VT);
2084    case ISD::CTPOP:
2085      return getConstant(Val.countPopulation(), VT);
2086    case ISD::CTLZ:
2087      return getConstant(Val.countLeadingZeros(), VT);
2088    case ISD::CTTZ:
2089      return getConstant(Val.countTrailingZeros(), VT);
2090    }
2091  }
2092
2093  // Constant fold unary operations with a floating point constant operand.
2094  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2095    APFloat V = C->getValueAPF();    // make copy
2096    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2097      switch (Opcode) {
2098      case ISD::FNEG:
2099        V.changeSign();
2100        return getConstantFP(V, VT);
2101      case ISD::FABS:
2102        V.clearSign();
2103        return getConstantFP(V, VT);
2104      case ISD::FP_ROUND:
2105      case ISD::FP_EXTEND:
2106        // This can return overflow, underflow, or inexact; we don't care.
2107        // FIXME need to be more flexible about rounding mode.
2108        (void)V.convert(*MVTToAPFloatSemantics(VT),
2109                        APFloat::rmNearestTiesToEven);
2110        return getConstantFP(V, VT);
2111      case ISD::FP_TO_SINT:
2112      case ISD::FP_TO_UINT: {
2113        integerPart x;
2114        assert(integerPartWidth >= 64);
2115        // FIXME need to be more flexible about rounding mode.
2116        APFloat::opStatus s = V.convertToInteger(&x, 64U,
2117                              Opcode==ISD::FP_TO_SINT,
2118                              APFloat::rmTowardZero);
2119        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2120          break;
2121        return getConstant(x, VT);
2122      }
2123      case ISD::BIT_CONVERT:
2124        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2125          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
2126        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2127          return getConstant(V.convertToAPInt().getZExtValue(), VT);
2128        break;
2129      }
2130    }
2131  }
2132
2133  unsigned OpOpcode = Operand.getNode()->getOpcode();
2134  switch (Opcode) {
2135  case ISD::TokenFactor:
2136  case ISD::CONCAT_VECTORS:
2137    return Operand;         // Factor or concat of one node?  No need.
2138  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
2139  case ISD::FP_EXTEND:
2140    assert(VT.isFloatingPoint() &&
2141           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2142    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2143    if (Operand.getOpcode() == ISD::UNDEF)
2144      return getNode(ISD::UNDEF, VT);
2145    break;
2146  case ISD::SIGN_EXTEND:
2147    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2148           "Invalid SIGN_EXTEND!");
2149    if (Operand.getValueType() == VT) return Operand;   // noop extension
2150    assert(Operand.getValueType().bitsLT(VT)
2151           && "Invalid sext node, dst < src!");
2152    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2153      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2154    break;
2155  case ISD::ZERO_EXTEND:
2156    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2157           "Invalid ZERO_EXTEND!");
2158    if (Operand.getValueType() == VT) return Operand;   // noop extension
2159    assert(Operand.getValueType().bitsLT(VT)
2160           && "Invalid zext node, dst < src!");
2161    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2162      return getNode(ISD::ZERO_EXTEND, VT, Operand.getNode()->getOperand(0));
2163    break;
2164  case ISD::ANY_EXTEND:
2165    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2166           "Invalid ANY_EXTEND!");
2167    if (Operand.getValueType() == VT) return Operand;   // noop extension
2168    assert(Operand.getValueType().bitsLT(VT)
2169           && "Invalid anyext node, dst < src!");
2170    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2171      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2172      return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2173    break;
2174  case ISD::TRUNCATE:
2175    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2176           "Invalid TRUNCATE!");
2177    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2178    assert(Operand.getValueType().bitsGT(VT)
2179           && "Invalid truncate node, src < dst!");
2180    if (OpOpcode == ISD::TRUNCATE)
2181      return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2182    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2183             OpOpcode == ISD::ANY_EXTEND) {
2184      // If the source is smaller than the dest, we still need an extend.
2185      if (Operand.getNode()->getOperand(0).getValueType().bitsLT(VT))
2186        return getNode(OpOpcode, VT, Operand.getNode()->getOperand(0));
2187      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2188        return getNode(ISD::TRUNCATE, VT, Operand.getNode()->getOperand(0));
2189      else
2190        return Operand.getNode()->getOperand(0);
2191    }
2192    break;
2193  case ISD::BIT_CONVERT:
2194    // Basic sanity checking.
2195    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2196           && "Cannot BIT_CONVERT between types of different sizes!");
2197    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2198    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2199      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2200    if (OpOpcode == ISD::UNDEF)
2201      return getNode(ISD::UNDEF, VT);
2202    break;
2203  case ISD::SCALAR_TO_VECTOR:
2204    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2205           VT.getVectorElementType() == Operand.getValueType() &&
2206           "Illegal SCALAR_TO_VECTOR node!");
2207    if (OpOpcode == ISD::UNDEF)
2208      return getNode(ISD::UNDEF, VT);
2209    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2210    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2211        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2212        Operand.getConstantOperandVal(1) == 0 &&
2213        Operand.getOperand(0).getValueType() == VT)
2214      return Operand.getOperand(0);
2215    break;
2216  case ISD::FNEG:
2217    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2218      return getNode(ISD::FSUB, VT, Operand.getNode()->getOperand(1),
2219                     Operand.getNode()->getOperand(0));
2220    if (OpOpcode == ISD::FNEG)  // --X -> X
2221      return Operand.getNode()->getOperand(0);
2222    break;
2223  case ISD::FABS:
2224    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2225      return getNode(ISD::FABS, VT, Operand.getNode()->getOperand(0));
2226    break;
2227  }
2228
2229  SDNode *N;
2230  SDVTList VTs = getVTList(VT);
2231  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2232    FoldingSetNodeID ID;
2233    SDValue Ops[1] = { Operand };
2234    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2235    void *IP = 0;
2236    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2237      return SDValue(E, 0);
2238    N = NodeAllocator.Allocate<UnarySDNode>();
2239    new (N) UnarySDNode(Opcode, VTs, Operand);
2240    CSEMap.InsertNode(N, IP);
2241  } else {
2242    N = NodeAllocator.Allocate<UnarySDNode>();
2243    new (N) UnarySDNode(Opcode, VTs, Operand);
2244  }
2245
2246  AllNodes.push_back(N);
2247#ifndef NDEBUG
2248  VerifyNode(N);
2249#endif
2250  return SDValue(N, 0);
2251}
2252
2253SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2254                              SDValue N1, SDValue N2) {
2255  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2256  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2257  switch (Opcode) {
2258  default: break;
2259  case ISD::TokenFactor:
2260    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2261           N2.getValueType() == MVT::Other && "Invalid token factor!");
2262    // Fold trivial token factors.
2263    if (N1.getOpcode() == ISD::EntryToken) return N2;
2264    if (N2.getOpcode() == ISD::EntryToken) return N1;
2265    break;
2266  case ISD::CONCAT_VECTORS:
2267    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2268    // one big BUILD_VECTOR.
2269    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2270        N2.getOpcode() == ISD::BUILD_VECTOR) {
2271      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2272      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2273      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2274    }
2275    break;
2276  case ISD::AND:
2277    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2278           N1.getValueType() == VT && "Binary operator types must match!");
2279    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2280    // worth handling here.
2281    if (N2C && N2C->isNullValue())
2282      return N2;
2283    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2284      return N1;
2285    break;
2286  case ISD::OR:
2287  case ISD::XOR:
2288  case ISD::ADD:
2289  case ISD::SUB:
2290    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2291           N1.getValueType() == VT && "Binary operator types must match!");
2292    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2293    // it's worth handling here.
2294    if (N2C && N2C->isNullValue())
2295      return N1;
2296    break;
2297  case ISD::UDIV:
2298  case ISD::UREM:
2299  case ISD::MULHU:
2300  case ISD::MULHS:
2301    assert(VT.isInteger() && "This operator does not apply to FP types!");
2302    // fall through
2303  case ISD::MUL:
2304  case ISD::SDIV:
2305  case ISD::SREM:
2306  case ISD::FADD:
2307  case ISD::FSUB:
2308  case ISD::FMUL:
2309  case ISD::FDIV:
2310  case ISD::FREM:
2311    assert(N1.getValueType() == N2.getValueType() &&
2312           N1.getValueType() == VT && "Binary operator types must match!");
2313    break;
2314  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2315    assert(N1.getValueType() == VT &&
2316           N1.getValueType().isFloatingPoint() &&
2317           N2.getValueType().isFloatingPoint() &&
2318           "Invalid FCOPYSIGN!");
2319    break;
2320  case ISD::SHL:
2321  case ISD::SRA:
2322  case ISD::SRL:
2323  case ISD::ROTL:
2324  case ISD::ROTR:
2325    assert(VT == N1.getValueType() &&
2326           "Shift operators return type must be the same as their first arg");
2327    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2328           "Shifts only work on integers");
2329
2330    // Always fold shifts of i1 values so the code generator doesn't need to
2331    // handle them.  Since we know the size of the shift has to be less than the
2332    // size of the value, the shift/rotate count is guaranteed to be zero.
2333    if (VT == MVT::i1)
2334      return N1;
2335    break;
2336  case ISD::FP_ROUND_INREG: {
2337    MVT EVT = cast<VTSDNode>(N2)->getVT();
2338    assert(VT == N1.getValueType() && "Not an inreg round!");
2339    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2340           "Cannot FP_ROUND_INREG integer types");
2341    assert(EVT.bitsLE(VT) && "Not rounding down!");
2342    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2343    break;
2344  }
2345  case ISD::FP_ROUND:
2346    assert(VT.isFloatingPoint() &&
2347           N1.getValueType().isFloatingPoint() &&
2348           VT.bitsLE(N1.getValueType()) &&
2349           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2350    if (N1.getValueType() == VT) return N1;  // noop conversion.
2351    break;
2352  case ISD::AssertSext:
2353  case ISD::AssertZext: {
2354    MVT EVT = cast<VTSDNode>(N2)->getVT();
2355    assert(VT == N1.getValueType() && "Not an inreg extend!");
2356    assert(VT.isInteger() && EVT.isInteger() &&
2357           "Cannot *_EXTEND_INREG FP types");
2358    assert(EVT.bitsLE(VT) && "Not extending!");
2359    if (VT == EVT) return N1; // noop assertion.
2360    break;
2361  }
2362  case ISD::SIGN_EXTEND_INREG: {
2363    MVT EVT = cast<VTSDNode>(N2)->getVT();
2364    assert(VT == N1.getValueType() && "Not an inreg extend!");
2365    assert(VT.isInteger() && EVT.isInteger() &&
2366           "Cannot *_EXTEND_INREG FP types");
2367    assert(EVT.bitsLE(VT) && "Not extending!");
2368    if (EVT == VT) return N1;  // Not actually extending
2369
2370    if (N1C) {
2371      APInt Val = N1C->getAPIntValue();
2372      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2373      Val <<= Val.getBitWidth()-FromBits;
2374      Val = Val.ashr(Val.getBitWidth()-FromBits);
2375      return getConstant(Val, VT);
2376    }
2377    break;
2378  }
2379  case ISD::EXTRACT_VECTOR_ELT:
2380    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2381    if (N1.getOpcode() == ISD::UNDEF)
2382      return getNode(ISD::UNDEF, VT);
2383
2384    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2385    // expanding copies of large vectors from registers.
2386    if (N2C &&
2387        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2388        N1.getNumOperands() > 0) {
2389      unsigned Factor =
2390        N1.getOperand(0).getValueType().getVectorNumElements();
2391      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2392                     N1.getOperand(N2C->getZExtValue() / Factor),
2393                     getConstant(N2C->getZExtValue() % Factor,
2394                                 N2.getValueType()));
2395    }
2396
2397    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2398    // expanding large vector constants.
2399    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR)
2400      return N1.getOperand(N2C->getZExtValue());
2401
2402    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2403    // operations are lowered to scalars.
2404    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2405      if (N1.getOperand(2) == N2)
2406        return N1.getOperand(1);
2407      else
2408        return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2409    }
2410    break;
2411  case ISD::EXTRACT_ELEMENT:
2412    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2413    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2414           (N1.getValueType().isInteger() == VT.isInteger()) &&
2415           "Wrong types for EXTRACT_ELEMENT!");
2416
2417    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2418    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2419    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2420    if (N1.getOpcode() == ISD::BUILD_PAIR)
2421      return N1.getOperand(N2C->getZExtValue());
2422
2423    // EXTRACT_ELEMENT of a constant int is also very common.
2424    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2425      unsigned ElementSize = VT.getSizeInBits();
2426      unsigned Shift = ElementSize * N2C->getZExtValue();
2427      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2428      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2429    }
2430    break;
2431  case ISD::EXTRACT_SUBVECTOR:
2432    if (N1.getValueType() == VT) // Trivial extraction.
2433      return N1;
2434    break;
2435  }
2436
2437  if (N1C) {
2438    if (N2C) {
2439      const APInt &C1 = N1C->getAPIntValue(), &C2 = N2C->getAPIntValue();
2440      switch (Opcode) {
2441      case ISD::ADD: return getConstant(C1 + C2, VT);
2442      case ISD::SUB: return getConstant(C1 - C2, VT);
2443      case ISD::MUL: return getConstant(C1 * C2, VT);
2444      case ISD::UDIV:
2445        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2446        break;
2447      case ISD::UREM :
2448        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2449        break;
2450      case ISD::SDIV :
2451        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2452        break;
2453      case ISD::SREM :
2454        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2455        break;
2456      case ISD::AND  : return getConstant(C1 & C2, VT);
2457      case ISD::OR   : return getConstant(C1 | C2, VT);
2458      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2459      case ISD::SHL  : return getConstant(C1 << C2, VT);
2460      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2461      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2462      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2463      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2464      default: break;
2465      }
2466    } else {      // Cannonicalize constant to RHS if commutative
2467      if (isCommutativeBinOp(Opcode)) {
2468        std::swap(N1C, N2C);
2469        std::swap(N1, N2);
2470      }
2471    }
2472  }
2473
2474  // Constant fold FP operations.
2475  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2476  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2477  if (N1CFP) {
2478    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2479      // Cannonicalize constant to RHS if commutative
2480      std::swap(N1CFP, N2CFP);
2481      std::swap(N1, N2);
2482    } else if (N2CFP && VT != MVT::ppcf128) {
2483      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2484      APFloat::opStatus s;
2485      switch (Opcode) {
2486      case ISD::FADD:
2487        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2488        if (s != APFloat::opInvalidOp)
2489          return getConstantFP(V1, VT);
2490        break;
2491      case ISD::FSUB:
2492        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2493        if (s!=APFloat::opInvalidOp)
2494          return getConstantFP(V1, VT);
2495        break;
2496      case ISD::FMUL:
2497        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2498        if (s!=APFloat::opInvalidOp)
2499          return getConstantFP(V1, VT);
2500        break;
2501      case ISD::FDIV:
2502        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2503        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2504          return getConstantFP(V1, VT);
2505        break;
2506      case ISD::FREM :
2507        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2508        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2509          return getConstantFP(V1, VT);
2510        break;
2511      case ISD::FCOPYSIGN:
2512        V1.copySign(V2);
2513        return getConstantFP(V1, VT);
2514      default: break;
2515      }
2516    }
2517  }
2518
2519  // Canonicalize an UNDEF to the RHS, even over a constant.
2520  if (N1.getOpcode() == ISD::UNDEF) {
2521    if (isCommutativeBinOp(Opcode)) {
2522      std::swap(N1, N2);
2523    } else {
2524      switch (Opcode) {
2525      case ISD::FP_ROUND_INREG:
2526      case ISD::SIGN_EXTEND_INREG:
2527      case ISD::SUB:
2528      case ISD::FSUB:
2529      case ISD::FDIV:
2530      case ISD::FREM:
2531      case ISD::SRA:
2532        return N1;     // fold op(undef, arg2) -> undef
2533      case ISD::UDIV:
2534      case ISD::SDIV:
2535      case ISD::UREM:
2536      case ISD::SREM:
2537      case ISD::SRL:
2538      case ISD::SHL:
2539        if (!VT.isVector())
2540          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2541        // For vectors, we can't easily build an all zero vector, just return
2542        // the LHS.
2543        return N2;
2544      }
2545    }
2546  }
2547
2548  // Fold a bunch of operators when the RHS is undef.
2549  if (N2.getOpcode() == ISD::UNDEF) {
2550    switch (Opcode) {
2551    case ISD::XOR:
2552      if (N1.getOpcode() == ISD::UNDEF)
2553        // Handle undef ^ undef -> 0 special case. This is a common
2554        // idiom (misuse).
2555        return getConstant(0, VT);
2556      // fallthrough
2557    case ISD::ADD:
2558    case ISD::ADDC:
2559    case ISD::ADDE:
2560    case ISD::SUB:
2561    case ISD::FADD:
2562    case ISD::FSUB:
2563    case ISD::FMUL:
2564    case ISD::FDIV:
2565    case ISD::FREM:
2566    case ISD::UDIV:
2567    case ISD::SDIV:
2568    case ISD::UREM:
2569    case ISD::SREM:
2570      return N2;       // fold op(arg1, undef) -> undef
2571    case ISD::MUL:
2572    case ISD::AND:
2573    case ISD::SRL:
2574    case ISD::SHL:
2575      if (!VT.isVector())
2576        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2577      // For vectors, we can't easily build an all zero vector, just return
2578      // the LHS.
2579      return N1;
2580    case ISD::OR:
2581      if (!VT.isVector())
2582        return getConstant(VT.getIntegerVTBitMask(), VT);
2583      // For vectors, we can't easily build an all one vector, just return
2584      // the LHS.
2585      return N1;
2586    case ISD::SRA:
2587      return N1;
2588    }
2589  }
2590
2591  // Memoize this node if possible.
2592  SDNode *N;
2593  SDVTList VTs = getVTList(VT);
2594  if (VT != MVT::Flag) {
2595    SDValue Ops[] = { N1, N2 };
2596    FoldingSetNodeID ID;
2597    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2598    void *IP = 0;
2599    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2600      return SDValue(E, 0);
2601    N = NodeAllocator.Allocate<BinarySDNode>();
2602    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2603    CSEMap.InsertNode(N, IP);
2604  } else {
2605    N = NodeAllocator.Allocate<BinarySDNode>();
2606    new (N) BinarySDNode(Opcode, VTs, N1, N2);
2607  }
2608
2609  AllNodes.push_back(N);
2610#ifndef NDEBUG
2611  VerifyNode(N);
2612#endif
2613  return SDValue(N, 0);
2614}
2615
2616SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2617                              SDValue N1, SDValue N2, SDValue N3) {
2618  // Perform various simplifications.
2619  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2620  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2621  switch (Opcode) {
2622  case ISD::CONCAT_VECTORS:
2623    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2624    // one big BUILD_VECTOR.
2625    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2626        N2.getOpcode() == ISD::BUILD_VECTOR &&
2627        N3.getOpcode() == ISD::BUILD_VECTOR) {
2628      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2629      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2630      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2631      return getNode(ISD::BUILD_VECTOR, VT, &Elts[0], Elts.size());
2632    }
2633    break;
2634  case ISD::SETCC: {
2635    // Use FoldSetCC to simplify SETCC's.
2636    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2637    if (Simp.getNode()) return Simp;
2638    break;
2639  }
2640  case ISD::SELECT:
2641    if (N1C) {
2642     if (N1C->getZExtValue())
2643        return N2;             // select true, X, Y -> X
2644      else
2645        return N3;             // select false, X, Y -> Y
2646    }
2647
2648    if (N2 == N3) return N2;   // select C, X, X -> X
2649    break;
2650  case ISD::BRCOND:
2651    if (N2C) {
2652      if (N2C->getZExtValue()) // Unconditional branch
2653        return getNode(ISD::BR, MVT::Other, N1, N3);
2654      else
2655        return N1;         // Never-taken branch
2656    }
2657    break;
2658  case ISD::VECTOR_SHUFFLE:
2659    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2660           VT.isVector() && N3.getValueType().isVector() &&
2661           N3.getOpcode() == ISD::BUILD_VECTOR &&
2662           VT.getVectorNumElements() == N3.getNumOperands() &&
2663           "Illegal VECTOR_SHUFFLE node!");
2664    break;
2665  case ISD::BIT_CONVERT:
2666    // Fold bit_convert nodes from a type to themselves.
2667    if (N1.getValueType() == VT)
2668      return N1;
2669    break;
2670  }
2671
2672  // Memoize node if it doesn't produce a flag.
2673  SDNode *N;
2674  SDVTList VTs = getVTList(VT);
2675  if (VT != MVT::Flag) {
2676    SDValue Ops[] = { N1, N2, N3 };
2677    FoldingSetNodeID ID;
2678    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2679    void *IP = 0;
2680    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2681      return SDValue(E, 0);
2682    N = NodeAllocator.Allocate<TernarySDNode>();
2683    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2684    CSEMap.InsertNode(N, IP);
2685  } else {
2686    N = NodeAllocator.Allocate<TernarySDNode>();
2687    new (N) TernarySDNode(Opcode, VTs, N1, N2, N3);
2688  }
2689  AllNodes.push_back(N);
2690#ifndef NDEBUG
2691  VerifyNode(N);
2692#endif
2693  return SDValue(N, 0);
2694}
2695
2696SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2697                              SDValue N1, SDValue N2, SDValue N3,
2698                              SDValue N4) {
2699  SDValue Ops[] = { N1, N2, N3, N4 };
2700  return getNode(Opcode, VT, Ops, 4);
2701}
2702
2703SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
2704                              SDValue N1, SDValue N2, SDValue N3,
2705                              SDValue N4, SDValue N5) {
2706  SDValue Ops[] = { N1, N2, N3, N4, N5 };
2707  return getNode(Opcode, VT, Ops, 5);
2708}
2709
2710/// getMemsetValue - Vectorized representation of the memset value
2711/// operand.
2712static SDValue getMemsetValue(SDValue Value, MVT VT, SelectionDAG &DAG) {
2713  unsigned NumBits = VT.isVector() ?
2714    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2715  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2716    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
2717    unsigned Shift = 8;
2718    for (unsigned i = NumBits; i > 8; i >>= 1) {
2719      Val = (Val << Shift) | Val;
2720      Shift <<= 1;
2721    }
2722    if (VT.isInteger())
2723      return DAG.getConstant(Val, VT);
2724    return DAG.getConstantFP(APFloat(Val), VT);
2725  }
2726
2727  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2728  unsigned Shift = 8;
2729  for (unsigned i = NumBits; i > 8; i >>= 1) {
2730    Value = DAG.getNode(ISD::OR, VT,
2731                        DAG.getNode(ISD::SHL, VT, Value,
2732                                    DAG.getConstant(Shift, MVT::i8)), Value);
2733    Shift <<= 1;
2734  }
2735
2736  return Value;
2737}
2738
2739/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2740/// used when a memcpy is turned into a memset when the source is a constant
2741/// string ptr.
2742static SDValue getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2743                                    const TargetLowering &TLI,
2744                                    std::string &Str, unsigned Offset) {
2745  // Handle vector with all elements zero.
2746  if (Str.empty()) {
2747    if (VT.isInteger())
2748      return DAG.getConstant(0, VT);
2749    unsigned NumElts = VT.getVectorNumElements();
2750    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2751    return DAG.getNode(ISD::BIT_CONVERT, VT,
2752                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2753  }
2754
2755  assert(!VT.isVector() && "Can't handle vector type here!");
2756  unsigned NumBits = VT.getSizeInBits();
2757  unsigned MSB = NumBits / 8;
2758  uint64_t Val = 0;
2759  if (TLI.isLittleEndian())
2760    Offset = Offset + MSB - 1;
2761  for (unsigned i = 0; i != MSB; ++i) {
2762    Val = (Val << 8) | (unsigned char)Str[Offset];
2763    Offset += TLI.isLittleEndian() ? -1 : 1;
2764  }
2765  return DAG.getConstant(Val, VT);
2766}
2767
2768/// getMemBasePlusOffset - Returns base and offset node for the
2769///
2770static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
2771                                      SelectionDAG &DAG) {
2772  MVT VT = Base.getValueType();
2773  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2774}
2775
2776/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2777///
2778static bool isMemSrcFromString(SDValue Src, std::string &Str) {
2779  unsigned SrcDelta = 0;
2780  GlobalAddressSDNode *G = NULL;
2781  if (Src.getOpcode() == ISD::GlobalAddress)
2782    G = cast<GlobalAddressSDNode>(Src);
2783  else if (Src.getOpcode() == ISD::ADD &&
2784           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2785           Src.getOperand(1).getOpcode() == ISD::Constant) {
2786    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2787    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
2788  }
2789  if (!G)
2790    return false;
2791
2792  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2793  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2794    return true;
2795
2796  return false;
2797}
2798
2799/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2800/// to replace the memset / memcpy is below the threshold. It also returns the
2801/// types of the sequence of memory ops to perform memset / memcpy.
2802static
2803bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2804                              SDValue Dst, SDValue Src,
2805                              unsigned Limit, uint64_t Size, unsigned &Align,
2806                              std::string &Str, bool &isSrcStr,
2807                              SelectionDAG &DAG,
2808                              const TargetLowering &TLI) {
2809  isSrcStr = isMemSrcFromString(Src, Str);
2810  bool isSrcConst = isa<ConstantSDNode>(Src);
2811  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2812  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2813  if (VT != MVT::iAny) {
2814    unsigned NewAlign = (unsigned)
2815      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2816    // If source is a string constant, this will require an unaligned load.
2817    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2818      if (Dst.getOpcode() != ISD::FrameIndex) {
2819        // Can't change destination alignment. It requires a unaligned store.
2820        if (AllowUnalign)
2821          VT = MVT::iAny;
2822      } else {
2823        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2824        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2825        if (MFI->isFixedObjectIndex(FI)) {
2826          // Can't change destination alignment. It requires a unaligned store.
2827          if (AllowUnalign)
2828            VT = MVT::iAny;
2829        } else {
2830          // Give the stack frame object a larger alignment if needed.
2831          if (MFI->getObjectAlignment(FI) < NewAlign)
2832            MFI->setObjectAlignment(FI, NewAlign);
2833          Align = NewAlign;
2834        }
2835      }
2836    }
2837  }
2838
2839  if (VT == MVT::iAny) {
2840    if (AllowUnalign) {
2841      VT = MVT::i64;
2842    } else {
2843      switch (Align & 7) {
2844      case 0:  VT = MVT::i64; break;
2845      case 4:  VT = MVT::i32; break;
2846      case 2:  VT = MVT::i16; break;
2847      default: VT = MVT::i8;  break;
2848      }
2849    }
2850
2851    MVT LVT = MVT::i64;
2852    while (!TLI.isTypeLegal(LVT))
2853      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2854    assert(LVT.isInteger());
2855
2856    if (VT.bitsGT(LVT))
2857      VT = LVT;
2858  }
2859
2860  unsigned NumMemOps = 0;
2861  while (Size != 0) {
2862    unsigned VTSize = VT.getSizeInBits() / 8;
2863    while (VTSize > Size) {
2864      // For now, only use non-vector load / store's for the left-over pieces.
2865      if (VT.isVector()) {
2866        VT = MVT::i64;
2867        while (!TLI.isTypeLegal(VT))
2868          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2869        VTSize = VT.getSizeInBits() / 8;
2870      } else {
2871        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2872        VTSize >>= 1;
2873      }
2874    }
2875
2876    if (++NumMemOps > Limit)
2877      return false;
2878    MemOps.push_back(VT);
2879    Size -= VTSize;
2880  }
2881
2882  return true;
2883}
2884
2885static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG,
2886                                         SDValue Chain, SDValue Dst,
2887                                         SDValue Src, uint64_t Size,
2888                                         unsigned Align, bool AlwaysInline,
2889                                         const Value *DstSV, uint64_t DstSVOff,
2890                                         const Value *SrcSV, uint64_t SrcSVOff){
2891  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2892
2893  // Expand memcpy to a series of load and store ops if the size operand falls
2894  // below a certain threshold.
2895  std::vector<MVT> MemOps;
2896  uint64_t Limit = -1;
2897  if (!AlwaysInline)
2898    Limit = TLI.getMaxStoresPerMemcpy();
2899  unsigned DstAlign = Align;  // Destination alignment can change.
2900  std::string Str;
2901  bool CopyFromStr;
2902  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2903                                Str, CopyFromStr, DAG, TLI))
2904    return SDValue();
2905
2906
2907  bool isZeroStr = CopyFromStr && Str.empty();
2908  SmallVector<SDValue, 8> OutChains;
2909  unsigned NumMemOps = MemOps.size();
2910  uint64_t SrcOff = 0, DstOff = 0;
2911  for (unsigned i = 0; i < NumMemOps; i++) {
2912    MVT VT = MemOps[i];
2913    unsigned VTSize = VT.getSizeInBits() / 8;
2914    SDValue Value, Store;
2915
2916    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2917      // It's unlikely a store of a vector immediate can be done in a single
2918      // instruction. It would require a load from a constantpool first.
2919      // We also handle store a vector with all zero's.
2920      // FIXME: Handle other cases where store of vector immediate is done in
2921      // a single instruction.
2922      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2923      Store = DAG.getStore(Chain, Value,
2924                           getMemBasePlusOffset(Dst, DstOff, DAG),
2925                           DstSV, DstSVOff + DstOff, false, DstAlign);
2926    } else {
2927      Value = DAG.getLoad(VT, Chain,
2928                          getMemBasePlusOffset(Src, SrcOff, DAG),
2929                          SrcSV, SrcSVOff + SrcOff, false, Align);
2930      Store = DAG.getStore(Chain, Value,
2931                           getMemBasePlusOffset(Dst, DstOff, DAG),
2932                           DstSV, DstSVOff + DstOff, false, DstAlign);
2933    }
2934    OutChains.push_back(Store);
2935    SrcOff += VTSize;
2936    DstOff += VTSize;
2937  }
2938
2939  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2940                     &OutChains[0], OutChains.size());
2941}
2942
2943static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG,
2944                                          SDValue Chain, SDValue Dst,
2945                                          SDValue Src, uint64_t Size,
2946                                          unsigned Align, bool AlwaysInline,
2947                                          const Value *DstSV, uint64_t DstSVOff,
2948                                          const Value *SrcSV, uint64_t SrcSVOff){
2949  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2950
2951  // Expand memmove to a series of load and store ops if the size operand falls
2952  // below a certain threshold.
2953  std::vector<MVT> MemOps;
2954  uint64_t Limit = -1;
2955  if (!AlwaysInline)
2956    Limit = TLI.getMaxStoresPerMemmove();
2957  unsigned DstAlign = Align;  // Destination alignment can change.
2958  std::string Str;
2959  bool CopyFromStr;
2960  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2961                                Str, CopyFromStr, DAG, TLI))
2962    return SDValue();
2963
2964  uint64_t SrcOff = 0, DstOff = 0;
2965
2966  SmallVector<SDValue, 8> LoadValues;
2967  SmallVector<SDValue, 8> LoadChains;
2968  SmallVector<SDValue, 8> OutChains;
2969  unsigned NumMemOps = MemOps.size();
2970  for (unsigned i = 0; i < NumMemOps; i++) {
2971    MVT VT = MemOps[i];
2972    unsigned VTSize = VT.getSizeInBits() / 8;
2973    SDValue Value, Store;
2974
2975    Value = DAG.getLoad(VT, Chain,
2976                        getMemBasePlusOffset(Src, SrcOff, DAG),
2977                        SrcSV, SrcSVOff + SrcOff, false, Align);
2978    LoadValues.push_back(Value);
2979    LoadChains.push_back(Value.getValue(1));
2980    SrcOff += VTSize;
2981  }
2982  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2983                      &LoadChains[0], LoadChains.size());
2984  OutChains.clear();
2985  for (unsigned i = 0; i < NumMemOps; i++) {
2986    MVT VT = MemOps[i];
2987    unsigned VTSize = VT.getSizeInBits() / 8;
2988    SDValue Value, Store;
2989
2990    Store = DAG.getStore(Chain, LoadValues[i],
2991                         getMemBasePlusOffset(Dst, DstOff, DAG),
2992                         DstSV, DstSVOff + DstOff, false, DstAlign);
2993    OutChains.push_back(Store);
2994    DstOff += VTSize;
2995  }
2996
2997  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2998                     &OutChains[0], OutChains.size());
2999}
3000
3001static SDValue getMemsetStores(SelectionDAG &DAG,
3002                                 SDValue Chain, SDValue Dst,
3003                                 SDValue Src, uint64_t Size,
3004                                 unsigned Align,
3005                                 const Value *DstSV, uint64_t DstSVOff) {
3006  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3007
3008  // Expand memset to a series of load/store ops if the size operand
3009  // falls below a certain threshold.
3010  std::vector<MVT> MemOps;
3011  std::string Str;
3012  bool CopyFromStr;
3013  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3014                                Size, Align, Str, CopyFromStr, DAG, TLI))
3015    return SDValue();
3016
3017  SmallVector<SDValue, 8> OutChains;
3018  uint64_t DstOff = 0;
3019
3020  unsigned NumMemOps = MemOps.size();
3021  for (unsigned i = 0; i < NumMemOps; i++) {
3022    MVT VT = MemOps[i];
3023    unsigned VTSize = VT.getSizeInBits() / 8;
3024    SDValue Value = getMemsetValue(Src, VT, DAG);
3025    SDValue Store = DAG.getStore(Chain, Value,
3026                                   getMemBasePlusOffset(Dst, DstOff, DAG),
3027                                   DstSV, DstSVOff + DstOff);
3028    OutChains.push_back(Store);
3029    DstOff += VTSize;
3030  }
3031
3032  return DAG.getNode(ISD::TokenFactor, MVT::Other,
3033                     &OutChains[0], OutChains.size());
3034}
3035
3036SDValue SelectionDAG::getMemcpy(SDValue Chain, SDValue Dst,
3037                                SDValue Src, SDValue Size,
3038                                unsigned Align, bool AlwaysInline,
3039                                const Value *DstSV, uint64_t DstSVOff,
3040                                const Value *SrcSV, uint64_t SrcSVOff) {
3041
3042  // Check to see if we should lower the memcpy to loads and stores first.
3043  // For cases within the target-specified limits, this is the best choice.
3044  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3045  if (ConstantSize) {
3046    // Memcpy with size zero? Just return the original chain.
3047    if (ConstantSize->isNullValue())
3048      return Chain;
3049
3050    SDValue Result =
3051      getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3052                              ConstantSize->getZExtValue(),
3053                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3054    if (Result.getNode())
3055      return Result;
3056  }
3057
3058  // Then check to see if we should lower the memcpy with target-specific
3059  // code. If the target chooses to do this, this is the next best.
3060  SDValue Result =
3061    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
3062                                AlwaysInline,
3063                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3064  if (Result.getNode())
3065    return Result;
3066
3067  // If we really need inline code and the target declined to provide it,
3068  // use a (potentially long) sequence of loads and stores.
3069  if (AlwaysInline) {
3070    assert(ConstantSize && "AlwaysInline requires a constant size!");
3071    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
3072                                   ConstantSize->getZExtValue(), Align, true,
3073                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3074  }
3075
3076  // Emit a library call.
3077  TargetLowering::ArgListTy Args;
3078  TargetLowering::ArgListEntry Entry;
3079  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3080  Entry.Node = Dst; Args.push_back(Entry);
3081  Entry.Node = Src; Args.push_back(Entry);
3082  Entry.Node = Size; Args.push_back(Entry);
3083  std::pair<SDValue,SDValue> CallResult =
3084    TLI.LowerCallTo(Chain, Type::VoidTy,
3085                    false, false, false, CallingConv::C, false,
3086                    getExternalSymbol("memcpy", TLI.getPointerTy()),
3087                    Args, *this);
3088  return CallResult.second;
3089}
3090
3091SDValue SelectionDAG::getMemmove(SDValue Chain, SDValue Dst,
3092                                 SDValue Src, SDValue Size,
3093                                 unsigned Align,
3094                                 const Value *DstSV, uint64_t DstSVOff,
3095                                 const Value *SrcSV, uint64_t SrcSVOff) {
3096
3097  // Check to see if we should lower the memmove to loads and stores first.
3098  // For cases within the target-specified limits, this is the best choice.
3099  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3100  if (ConstantSize) {
3101    // Memmove with size zero? Just return the original chain.
3102    if (ConstantSize->isNullValue())
3103      return Chain;
3104
3105    SDValue Result =
3106      getMemmoveLoadsAndStores(*this, Chain, Dst, Src,
3107                               ConstantSize->getZExtValue(),
3108                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3109    if (Result.getNode())
3110      return Result;
3111  }
3112
3113  // Then check to see if we should lower the memmove with target-specific
3114  // code. If the target chooses to do this, this is the next best.
3115  SDValue Result =
3116    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
3117                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3118  if (Result.getNode())
3119    return Result;
3120
3121  // Emit a library call.
3122  TargetLowering::ArgListTy Args;
3123  TargetLowering::ArgListEntry Entry;
3124  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3125  Entry.Node = Dst; Args.push_back(Entry);
3126  Entry.Node = Src; Args.push_back(Entry);
3127  Entry.Node = Size; Args.push_back(Entry);
3128  std::pair<SDValue,SDValue> CallResult =
3129    TLI.LowerCallTo(Chain, Type::VoidTy,
3130                    false, false, false, CallingConv::C, false,
3131                    getExternalSymbol("memmove", TLI.getPointerTy()),
3132                    Args, *this);
3133  return CallResult.second;
3134}
3135
3136SDValue SelectionDAG::getMemset(SDValue Chain, SDValue Dst,
3137                                SDValue Src, SDValue Size,
3138                                unsigned Align,
3139                                const Value *DstSV, uint64_t DstSVOff) {
3140
3141  // Check to see if we should lower the memset to stores first.
3142  // For cases within the target-specified limits, this is the best choice.
3143  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3144  if (ConstantSize) {
3145    // Memset with size zero? Just return the original chain.
3146    if (ConstantSize->isNullValue())
3147      return Chain;
3148
3149    SDValue Result =
3150      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getZExtValue(),
3151                      Align, DstSV, DstSVOff);
3152    if (Result.getNode())
3153      return Result;
3154  }
3155
3156  // Then check to see if we should lower the memset with target-specific
3157  // code. If the target chooses to do this, this is the next best.
3158  SDValue Result =
3159    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
3160                                DstSV, DstSVOff);
3161  if (Result.getNode())
3162    return Result;
3163
3164  // Emit a library call.
3165  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
3166  TargetLowering::ArgListTy Args;
3167  TargetLowering::ArgListEntry Entry;
3168  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3169  Args.push_back(Entry);
3170  // Extend or truncate the argument to be an i32 value for the call.
3171  if (Src.getValueType().bitsGT(MVT::i32))
3172    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
3173  else
3174    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
3175  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
3176  Args.push_back(Entry);
3177  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
3178  Args.push_back(Entry);
3179  std::pair<SDValue,SDValue> CallResult =
3180    TLI.LowerCallTo(Chain, Type::VoidTy,
3181                    false, false, false, CallingConv::C, false,
3182                    getExternalSymbol("memset", TLI.getPointerTy()),
3183                    Args, *this);
3184  return CallResult.second;
3185}
3186
3187SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3188                                SDValue Ptr, SDValue Cmp,
3189                                SDValue Swp, const Value* PtrVal,
3190                                unsigned Alignment) {
3191  assert((Opcode == ISD::ATOMIC_CMP_SWAP_8  ||
3192          Opcode == ISD::ATOMIC_CMP_SWAP_16 ||
3193          Opcode == ISD::ATOMIC_CMP_SWAP_32 ||
3194          Opcode == ISD::ATOMIC_CMP_SWAP_64) && "Invalid Atomic Op");
3195  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3196
3197  MVT VT = Cmp.getValueType();
3198
3199  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3200    Alignment = getMVTAlignment(VT);
3201
3202  SDVTList VTs = getVTList(VT, MVT::Other);
3203  FoldingSetNodeID ID;
3204  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3205  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3206  void* IP = 0;
3207  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3208    return SDValue(E, 0);
3209  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3210  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, PtrVal, Alignment);
3211  CSEMap.InsertNode(N, IP);
3212  AllNodes.push_back(N);
3213  return SDValue(N, 0);
3214}
3215
3216SDValue SelectionDAG::getAtomic(unsigned Opcode, SDValue Chain,
3217                                SDValue Ptr, SDValue Val,
3218                                const Value* PtrVal,
3219                                unsigned Alignment) {
3220  assert((Opcode == ISD::ATOMIC_LOAD_ADD_8 ||
3221          Opcode == ISD::ATOMIC_LOAD_SUB_8 ||
3222          Opcode == ISD::ATOMIC_LOAD_AND_8 ||
3223          Opcode == ISD::ATOMIC_LOAD_OR_8 ||
3224          Opcode == ISD::ATOMIC_LOAD_XOR_8 ||
3225          Opcode == ISD::ATOMIC_LOAD_NAND_8 ||
3226          Opcode == ISD::ATOMIC_LOAD_MIN_8 ||
3227          Opcode == ISD::ATOMIC_LOAD_MAX_8 ||
3228          Opcode == ISD::ATOMIC_LOAD_UMIN_8 ||
3229          Opcode == ISD::ATOMIC_LOAD_UMAX_8 ||
3230          Opcode == ISD::ATOMIC_SWAP_8 ||
3231          Opcode == ISD::ATOMIC_LOAD_ADD_16 ||
3232          Opcode == ISD::ATOMIC_LOAD_SUB_16 ||
3233          Opcode == ISD::ATOMIC_LOAD_AND_16 ||
3234          Opcode == ISD::ATOMIC_LOAD_OR_16 ||
3235          Opcode == ISD::ATOMIC_LOAD_XOR_16 ||
3236          Opcode == ISD::ATOMIC_LOAD_NAND_16 ||
3237          Opcode == ISD::ATOMIC_LOAD_MIN_16 ||
3238          Opcode == ISD::ATOMIC_LOAD_MAX_16 ||
3239          Opcode == ISD::ATOMIC_LOAD_UMIN_16 ||
3240          Opcode == ISD::ATOMIC_LOAD_UMAX_16 ||
3241          Opcode == ISD::ATOMIC_SWAP_16 ||
3242          Opcode == ISD::ATOMIC_LOAD_ADD_32 ||
3243          Opcode == ISD::ATOMIC_LOAD_SUB_32 ||
3244          Opcode == ISD::ATOMIC_LOAD_AND_32 ||
3245          Opcode == ISD::ATOMIC_LOAD_OR_32 ||
3246          Opcode == ISD::ATOMIC_LOAD_XOR_32 ||
3247          Opcode == ISD::ATOMIC_LOAD_NAND_32 ||
3248          Opcode == ISD::ATOMIC_LOAD_MIN_32 ||
3249          Opcode == ISD::ATOMIC_LOAD_MAX_32 ||
3250          Opcode == ISD::ATOMIC_LOAD_UMIN_32 ||
3251          Opcode == ISD::ATOMIC_LOAD_UMAX_32 ||
3252          Opcode == ISD::ATOMIC_SWAP_32 ||
3253          Opcode == ISD::ATOMIC_LOAD_ADD_64 ||
3254          Opcode == ISD::ATOMIC_LOAD_SUB_64 ||
3255          Opcode == ISD::ATOMIC_LOAD_AND_64 ||
3256          Opcode == ISD::ATOMIC_LOAD_OR_64 ||
3257          Opcode == ISD::ATOMIC_LOAD_XOR_64 ||
3258          Opcode == ISD::ATOMIC_LOAD_NAND_64 ||
3259          Opcode == ISD::ATOMIC_LOAD_MIN_64 ||
3260          Opcode == ISD::ATOMIC_LOAD_MAX_64 ||
3261          Opcode == ISD::ATOMIC_LOAD_UMIN_64 ||
3262          Opcode == ISD::ATOMIC_LOAD_UMAX_64 ||
3263          Opcode == ISD::ATOMIC_SWAP_64)        && "Invalid Atomic Op");
3264
3265  MVT VT = Val.getValueType();
3266
3267  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3268    Alignment = getMVTAlignment(VT);
3269
3270  SDVTList VTs = getVTList(VT, MVT::Other);
3271  FoldingSetNodeID ID;
3272  SDValue Ops[] = {Chain, Ptr, Val};
3273  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3274  void* IP = 0;
3275  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3276    return SDValue(E, 0);
3277  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3278  new (N) AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, PtrVal, Alignment);
3279  CSEMap.InsertNode(N, IP);
3280  AllNodes.push_back(N);
3281  return SDValue(N, 0);
3282}
3283
3284/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3285/// Allowed to return something different (and simpler) if Simplify is true.
3286SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3287                                     bool Simplify) {
3288  if (Simplify && NumOps == 1)
3289    return Ops[0];
3290
3291  SmallVector<MVT, 4> VTs;
3292  VTs.reserve(NumOps);
3293  for (unsigned i = 0; i < NumOps; ++i)
3294    VTs.push_back(Ops[i].getValueType());
3295  return getNode(ISD::MERGE_VALUES, getVTList(&VTs[0], NumOps), Ops, NumOps);
3296}
3297
3298SDValue
3299SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3300                      MVT VT, SDValue Chain,
3301                      SDValue Ptr, SDValue Offset,
3302                      const Value *SV, int SVOffset, MVT EVT,
3303                      bool isVolatile, unsigned Alignment) {
3304  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3305    Alignment = getMVTAlignment(VT);
3306
3307  if (VT == EVT) {
3308    ExtType = ISD::NON_EXTLOAD;
3309  } else if (ExtType == ISD::NON_EXTLOAD) {
3310    assert(VT == EVT && "Non-extending load from different memory type!");
3311  } else {
3312    // Extending load.
3313    if (VT.isVector())
3314      assert(EVT.getVectorNumElements() == VT.getVectorNumElements() &&
3315             "Invalid vector extload!");
3316    else
3317      assert(EVT.bitsLT(VT) &&
3318             "Should only be an extending load, not truncating!");
3319    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3320           "Cannot sign/zero extend a FP/Vector load!");
3321    assert(VT.isInteger() == EVT.isInteger() &&
3322           "Cannot convert from FP to Int or Int -> FP!");
3323  }
3324
3325  bool Indexed = AM != ISD::UNINDEXED;
3326  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3327         "Unindexed load with an offset!");
3328
3329  SDVTList VTs = Indexed ?
3330    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3331  SDValue Ops[] = { Chain, Ptr, Offset };
3332  FoldingSetNodeID ID;
3333  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3334  ID.AddInteger(AM);
3335  ID.AddInteger(ExtType);
3336  ID.AddInteger(EVT.getRawBits());
3337  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3338  void *IP = 0;
3339  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3340    return SDValue(E, 0);
3341  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3342  new (N) LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3343                     Alignment, isVolatile);
3344  CSEMap.InsertNode(N, IP);
3345  AllNodes.push_back(N);
3346  return SDValue(N, 0);
3347}
3348
3349SDValue SelectionDAG::getLoad(MVT VT,
3350                              SDValue Chain, SDValue Ptr,
3351                              const Value *SV, int SVOffset,
3352                              bool isVolatile, unsigned Alignment) {
3353  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3354  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3355                 SV, SVOffset, VT, isVolatile, Alignment);
3356}
3357
3358SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3359                                 SDValue Chain, SDValue Ptr,
3360                                 const Value *SV,
3361                                 int SVOffset, MVT EVT,
3362                                 bool isVolatile, unsigned Alignment) {
3363  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3364  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3365                 SV, SVOffset, EVT, isVolatile, Alignment);
3366}
3367
3368SDValue
3369SelectionDAG::getIndexedLoad(SDValue OrigLoad, SDValue Base,
3370                             SDValue Offset, ISD::MemIndexedMode AM) {
3371  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3372  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3373         "Load is already a indexed load!");
3374  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3375                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3376                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3377                 LD->isVolatile(), LD->getAlignment());
3378}
3379
3380SDValue SelectionDAG::getStore(SDValue Chain, SDValue Val,
3381                               SDValue Ptr, const Value *SV, int SVOffset,
3382                               bool isVolatile, unsigned Alignment) {
3383  MVT VT = Val.getValueType();
3384
3385  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3386    Alignment = getMVTAlignment(VT);
3387
3388  SDVTList VTs = getVTList(MVT::Other);
3389  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3390  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3391  FoldingSetNodeID ID;
3392  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3393  ID.AddInteger(ISD::UNINDEXED);
3394  ID.AddInteger(false);
3395  ID.AddInteger(VT.getRawBits());
3396  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3397  void *IP = 0;
3398  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3399    return SDValue(E, 0);
3400  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3401  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3402                      VT, SV, SVOffset, Alignment, isVolatile);
3403  CSEMap.InsertNode(N, IP);
3404  AllNodes.push_back(N);
3405  return SDValue(N, 0);
3406}
3407
3408SDValue SelectionDAG::getTruncStore(SDValue Chain, SDValue Val,
3409                                    SDValue Ptr, const Value *SV,
3410                                    int SVOffset, MVT SVT,
3411                                    bool isVolatile, unsigned Alignment) {
3412  MVT VT = Val.getValueType();
3413
3414  if (VT == SVT)
3415    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3416
3417  assert(VT.bitsGT(SVT) && "Not a truncation?");
3418  assert(VT.isInteger() == SVT.isInteger() &&
3419         "Can't do FP-INT conversion!");
3420
3421  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3422    Alignment = getMVTAlignment(VT);
3423
3424  SDVTList VTs = getVTList(MVT::Other);
3425  SDValue Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3426  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3427  FoldingSetNodeID ID;
3428  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3429  ID.AddInteger(ISD::UNINDEXED);
3430  ID.AddInteger(1);
3431  ID.AddInteger(SVT.getRawBits());
3432  ID.AddInteger(encodeMemSDNodeFlags(isVolatile, Alignment));
3433  void *IP = 0;
3434  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3435    return SDValue(E, 0);
3436  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3437  new (N) StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3438                      SVT, SV, SVOffset, Alignment, isVolatile);
3439  CSEMap.InsertNode(N, IP);
3440  AllNodes.push_back(N);
3441  return SDValue(N, 0);
3442}
3443
3444SDValue
3445SelectionDAG::getIndexedStore(SDValue OrigStore, SDValue Base,
3446                              SDValue Offset, ISD::MemIndexedMode AM) {
3447  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3448  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3449         "Store is already a indexed store!");
3450  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3451  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3452  FoldingSetNodeID ID;
3453  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3454  ID.AddInteger(AM);
3455  ID.AddInteger(ST->isTruncatingStore());
3456  ID.AddInteger(ST->getMemoryVT().getRawBits());
3457  ID.AddInteger(ST->getRawFlags());
3458  void *IP = 0;
3459  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3460    return SDValue(E, 0);
3461  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3462  new (N) StoreSDNode(Ops, VTs, AM,
3463                      ST->isTruncatingStore(), ST->getMemoryVT(),
3464                      ST->getSrcValue(), ST->getSrcValueOffset(),
3465                      ST->getAlignment(), ST->isVolatile());
3466  CSEMap.InsertNode(N, IP);
3467  AllNodes.push_back(N);
3468  return SDValue(N, 0);
3469}
3470
3471SDValue SelectionDAG::getVAArg(MVT VT,
3472                               SDValue Chain, SDValue Ptr,
3473                               SDValue SV) {
3474  SDValue Ops[] = { Chain, Ptr, SV };
3475  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3476}
3477
3478SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3479                              const SDUse *Ops, unsigned NumOps) {
3480  switch (NumOps) {
3481  case 0: return getNode(Opcode, VT);
3482  case 1: return getNode(Opcode, VT, Ops[0]);
3483  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3484  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3485  default: break;
3486  }
3487
3488  // Copy from an SDUse array into an SDValue array for use with
3489  // the regular getNode logic.
3490  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
3491  return getNode(Opcode, VT, &NewOps[0], NumOps);
3492}
3493
3494SDValue SelectionDAG::getNode(unsigned Opcode, MVT VT,
3495                              const SDValue *Ops, unsigned NumOps) {
3496  switch (NumOps) {
3497  case 0: return getNode(Opcode, VT);
3498  case 1: return getNode(Opcode, VT, Ops[0]);
3499  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3500  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3501  default: break;
3502  }
3503
3504  switch (Opcode) {
3505  default: break;
3506  case ISD::SELECT_CC: {
3507    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3508    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3509           "LHS and RHS of condition must have same type!");
3510    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3511           "True and False arms of SelectCC must have same type!");
3512    assert(Ops[2].getValueType() == VT &&
3513           "select_cc node must be of same type as true and false value!");
3514    break;
3515  }
3516  case ISD::BR_CC: {
3517    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3518    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3519           "LHS/RHS of comparison should match types!");
3520    break;
3521  }
3522  }
3523
3524  // Memoize nodes.
3525  SDNode *N;
3526  SDVTList VTs = getVTList(VT);
3527  if (VT != MVT::Flag) {
3528    FoldingSetNodeID ID;
3529    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3530    void *IP = 0;
3531    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3532      return SDValue(E, 0);
3533    N = NodeAllocator.Allocate<SDNode>();
3534    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3535    CSEMap.InsertNode(N, IP);
3536  } else {
3537    N = NodeAllocator.Allocate<SDNode>();
3538    new (N) SDNode(Opcode, VTs, Ops, NumOps);
3539  }
3540  AllNodes.push_back(N);
3541#ifndef NDEBUG
3542  VerifyNode(N);
3543#endif
3544  return SDValue(N, 0);
3545}
3546
3547SDValue SelectionDAG::getNode(unsigned Opcode,
3548                              const std::vector<MVT> &ResultTys,
3549                              const SDValue *Ops, unsigned NumOps) {
3550  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3551                 Ops, NumOps);
3552}
3553
3554SDValue SelectionDAG::getNode(unsigned Opcode,
3555                              const MVT *VTs, unsigned NumVTs,
3556                              const SDValue *Ops, unsigned NumOps) {
3557  if (NumVTs == 1)
3558    return getNode(Opcode, VTs[0], Ops, NumOps);
3559  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3560}
3561
3562SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3563                              const SDValue *Ops, unsigned NumOps) {
3564  if (VTList.NumVTs == 1)
3565    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3566
3567  switch (Opcode) {
3568  // FIXME: figure out how to safely handle things like
3569  // int foo(int x) { return 1 << (x & 255); }
3570  // int bar() { return foo(256); }
3571#if 0
3572  case ISD::SRA_PARTS:
3573  case ISD::SRL_PARTS:
3574  case ISD::SHL_PARTS:
3575    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3576        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3577      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3578    else if (N3.getOpcode() == ISD::AND)
3579      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3580        // If the and is only masking out bits that cannot effect the shift,
3581        // eliminate the and.
3582        unsigned NumBits = VT.getSizeInBits()*2;
3583        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3584          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3585      }
3586    break;
3587#endif
3588  }
3589
3590  // Memoize the node unless it returns a flag.
3591  SDNode *N;
3592  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3593    FoldingSetNodeID ID;
3594    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3595    void *IP = 0;
3596    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3597      return SDValue(E, 0);
3598    if (NumOps == 1) {
3599      N = NodeAllocator.Allocate<UnarySDNode>();
3600      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3601    } else if (NumOps == 2) {
3602      N = NodeAllocator.Allocate<BinarySDNode>();
3603      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3604    } else if (NumOps == 3) {
3605      N = NodeAllocator.Allocate<TernarySDNode>();
3606      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3607    } else {
3608      N = NodeAllocator.Allocate<SDNode>();
3609      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3610    }
3611    CSEMap.InsertNode(N, IP);
3612  } else {
3613    if (NumOps == 1) {
3614      N = NodeAllocator.Allocate<UnarySDNode>();
3615      new (N) UnarySDNode(Opcode, VTList, Ops[0]);
3616    } else if (NumOps == 2) {
3617      N = NodeAllocator.Allocate<BinarySDNode>();
3618      new (N) BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3619    } else if (NumOps == 3) {
3620      N = NodeAllocator.Allocate<TernarySDNode>();
3621      new (N) TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3622    } else {
3623      N = NodeAllocator.Allocate<SDNode>();
3624      new (N) SDNode(Opcode, VTList, Ops, NumOps);
3625    }
3626  }
3627  AllNodes.push_back(N);
3628#ifndef NDEBUG
3629  VerifyNode(N);
3630#endif
3631  return SDValue(N, 0);
3632}
3633
3634SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3635  return getNode(Opcode, VTList, 0, 0);
3636}
3637
3638SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3639                                SDValue N1) {
3640  SDValue Ops[] = { N1 };
3641  return getNode(Opcode, VTList, Ops, 1);
3642}
3643
3644SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3645                              SDValue N1, SDValue N2) {
3646  SDValue Ops[] = { N1, N2 };
3647  return getNode(Opcode, VTList, Ops, 2);
3648}
3649
3650SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3651                              SDValue N1, SDValue N2, SDValue N3) {
3652  SDValue Ops[] = { N1, N2, N3 };
3653  return getNode(Opcode, VTList, Ops, 3);
3654}
3655
3656SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3657                              SDValue N1, SDValue N2, SDValue N3,
3658                              SDValue N4) {
3659  SDValue Ops[] = { N1, N2, N3, N4 };
3660  return getNode(Opcode, VTList, Ops, 4);
3661}
3662
3663SDValue SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3664                              SDValue N1, SDValue N2, SDValue N3,
3665                              SDValue N4, SDValue N5) {
3666  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3667  return getNode(Opcode, VTList, Ops, 5);
3668}
3669
3670SDVTList SelectionDAG::getVTList(MVT VT) {
3671  return makeVTList(SDNode::getValueTypeList(VT), 1);
3672}
3673
3674SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3675  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3676       E = VTList.rend(); I != E; ++I)
3677    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
3678      return *I;
3679
3680  MVT *Array = Allocator.Allocate<MVT>(2);
3681  Array[0] = VT1;
3682  Array[1] = VT2;
3683  SDVTList Result = makeVTList(Array, 2);
3684  VTList.push_back(Result);
3685  return Result;
3686}
3687
3688SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2, MVT VT3) {
3689  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3690       E = VTList.rend(); I != E; ++I)
3691    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
3692                          I->VTs[2] == VT3)
3693      return *I;
3694
3695  MVT *Array = Allocator.Allocate<MVT>(3);
3696  Array[0] = VT1;
3697  Array[1] = VT2;
3698  Array[2] = VT3;
3699  SDVTList Result = makeVTList(Array, 3);
3700  VTList.push_back(Result);
3701  return Result;
3702}
3703
3704SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3705  switch (NumVTs) {
3706    case 0: assert(0 && "Cannot have nodes without results!");
3707    case 1: return getVTList(VTs[0]);
3708    case 2: return getVTList(VTs[0], VTs[1]);
3709    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3710    default: break;
3711  }
3712
3713  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
3714       E = VTList.rend(); I != E; ++I) {
3715    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
3716      continue;
3717
3718    bool NoMatch = false;
3719    for (unsigned i = 2; i != NumVTs; ++i)
3720      if (VTs[i] != I->VTs[i]) {
3721        NoMatch = true;
3722        break;
3723      }
3724    if (!NoMatch)
3725      return *I;
3726  }
3727
3728  MVT *Array = Allocator.Allocate<MVT>(NumVTs);
3729  std::copy(VTs, VTs+NumVTs, Array);
3730  SDVTList Result = makeVTList(Array, NumVTs);
3731  VTList.push_back(Result);
3732  return Result;
3733}
3734
3735
3736/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3737/// specified operands.  If the resultant node already exists in the DAG,
3738/// this does not modify the specified node, instead it returns the node that
3739/// already exists.  If the resultant node does not exist in the DAG, the
3740/// input node is returned.  As a degenerate case, if you specify the same
3741/// input operands as the node already has, the input node is returned.
3742SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
3743  SDNode *N = InN.getNode();
3744  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3745
3746  // Check to see if there is no change.
3747  if (Op == N->getOperand(0)) return InN;
3748
3749  // See if the modified node already exists.
3750  void *InsertPos = 0;
3751  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3752    return SDValue(Existing, InN.getResNo());
3753
3754  // Nope it doesn't.  Remove the node from its current place in the maps.
3755  if (InsertPos)
3756    RemoveNodeFromCSEMaps(N);
3757
3758  // Now we update the operands.
3759  N->OperandList[0].getVal()->removeUser(0, N);
3760  N->OperandList[0] = Op;
3761  N->OperandList[0].setUser(N);
3762  Op.getNode()->addUser(0, N);
3763
3764  // If this gets put into a CSE map, add it.
3765  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3766  return InN;
3767}
3768
3769SDValue SelectionDAG::
3770UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
3771  SDNode *N = InN.getNode();
3772  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3773
3774  // Check to see if there is no change.
3775  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3776    return InN;   // No operands changed, just return the input node.
3777
3778  // See if the modified node already exists.
3779  void *InsertPos = 0;
3780  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3781    return SDValue(Existing, InN.getResNo());
3782
3783  // Nope it doesn't.  Remove the node from its current place in the maps.
3784  if (InsertPos)
3785    RemoveNodeFromCSEMaps(N);
3786
3787  // Now we update the operands.
3788  if (N->OperandList[0] != Op1) {
3789    N->OperandList[0].getVal()->removeUser(0, N);
3790    N->OperandList[0] = Op1;
3791    N->OperandList[0].setUser(N);
3792    Op1.getNode()->addUser(0, N);
3793  }
3794  if (N->OperandList[1] != Op2) {
3795    N->OperandList[1].getVal()->removeUser(1, N);
3796    N->OperandList[1] = Op2;
3797    N->OperandList[1].setUser(N);
3798    Op2.getNode()->addUser(1, N);
3799  }
3800
3801  // If this gets put into a CSE map, add it.
3802  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3803  return InN;
3804}
3805
3806SDValue SelectionDAG::
3807UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
3808  SDValue Ops[] = { Op1, Op2, Op3 };
3809  return UpdateNodeOperands(N, Ops, 3);
3810}
3811
3812SDValue SelectionDAG::
3813UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3814                   SDValue Op3, SDValue Op4) {
3815  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
3816  return UpdateNodeOperands(N, Ops, 4);
3817}
3818
3819SDValue SelectionDAG::
3820UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
3821                   SDValue Op3, SDValue Op4, SDValue Op5) {
3822  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3823  return UpdateNodeOperands(N, Ops, 5);
3824}
3825
3826SDValue SelectionDAG::
3827UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
3828  SDNode *N = InN.getNode();
3829  assert(N->getNumOperands() == NumOps &&
3830         "Update with wrong number of operands");
3831
3832  // Check to see if there is no change.
3833  bool AnyChange = false;
3834  for (unsigned i = 0; i != NumOps; ++i) {
3835    if (Ops[i] != N->getOperand(i)) {
3836      AnyChange = true;
3837      break;
3838    }
3839  }
3840
3841  // No operands changed, just return the input node.
3842  if (!AnyChange) return InN;
3843
3844  // See if the modified node already exists.
3845  void *InsertPos = 0;
3846  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3847    return SDValue(Existing, InN.getResNo());
3848
3849  // Nope it doesn't.  Remove the node from its current place in the maps.
3850  if (InsertPos)
3851    RemoveNodeFromCSEMaps(N);
3852
3853  // Now we update the operands.
3854  for (unsigned i = 0; i != NumOps; ++i) {
3855    if (N->OperandList[i] != Ops[i]) {
3856      N->OperandList[i].getVal()->removeUser(i, N);
3857      N->OperandList[i] = Ops[i];
3858      N->OperandList[i].setUser(N);
3859      Ops[i].getNode()->addUser(i, N);
3860    }
3861  }
3862
3863  // If this gets put into a CSE map, add it.
3864  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3865  return InN;
3866}
3867
3868/// DropOperands - Release the operands and set this node to have
3869/// zero operands.
3870void SDNode::DropOperands() {
3871  // Unlike the code in MorphNodeTo that does this, we don't need to
3872  // watch for dead nodes here.
3873  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3874    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3875
3876  NumOperands = 0;
3877}
3878
3879/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
3880/// machine opcode.
3881///
3882SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3883                                   MVT VT) {
3884  SDVTList VTs = getVTList(VT);
3885  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
3886}
3887
3888SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3889                                   MVT VT, SDValue Op1) {
3890  SDVTList VTs = getVTList(VT);
3891  SDValue Ops[] = { Op1 };
3892  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3893}
3894
3895SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3896                                   MVT VT, SDValue Op1,
3897                                   SDValue Op2) {
3898  SDVTList VTs = getVTList(VT);
3899  SDValue Ops[] = { Op1, Op2 };
3900  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3901}
3902
3903SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3904                                   MVT VT, SDValue Op1,
3905                                   SDValue Op2, SDValue Op3) {
3906  SDVTList VTs = getVTList(VT);
3907  SDValue Ops[] = { Op1, Op2, Op3 };
3908  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3909}
3910
3911SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3912                                   MVT VT, const SDValue *Ops,
3913                                   unsigned NumOps) {
3914  SDVTList VTs = getVTList(VT);
3915  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3916}
3917
3918SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3919                                   MVT VT1, MVT VT2, const SDValue *Ops,
3920                                   unsigned NumOps) {
3921  SDVTList VTs = getVTList(VT1, VT2);
3922  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3923}
3924
3925SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3926                                   MVT VT1, MVT VT2) {
3927  SDVTList VTs = getVTList(VT1, VT2);
3928  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
3929}
3930
3931SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3932                                   MVT VT1, MVT VT2, MVT VT3,
3933                                   const SDValue *Ops, unsigned NumOps) {
3934  SDVTList VTs = getVTList(VT1, VT2, VT3);
3935  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
3936}
3937
3938SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3939                                   MVT VT1, MVT VT2,
3940                                   SDValue Op1) {
3941  SDVTList VTs = getVTList(VT1, VT2);
3942  SDValue Ops[] = { Op1 };
3943  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
3944}
3945
3946SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3947                                   MVT VT1, MVT VT2,
3948                                   SDValue Op1, SDValue Op2) {
3949  SDVTList VTs = getVTList(VT1, VT2);
3950  SDValue Ops[] = { Op1, Op2 };
3951  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
3952}
3953
3954SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3955                                   MVT VT1, MVT VT2,
3956                                   SDValue Op1, SDValue Op2,
3957                                   SDValue Op3) {
3958  SDVTList VTs = getVTList(VT1, VT2);
3959  SDValue Ops[] = { Op1, Op2, Op3 };
3960  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
3961}
3962
3963SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
3964                                   SDVTList VTs, const SDValue *Ops,
3965                                   unsigned NumOps) {
3966  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
3967}
3968
3969SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3970                                  MVT VT) {
3971  SDVTList VTs = getVTList(VT);
3972  return MorphNodeTo(N, Opc, VTs, 0, 0);
3973}
3974
3975SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3976                                  MVT VT, SDValue Op1) {
3977  SDVTList VTs = getVTList(VT);
3978  SDValue Ops[] = { Op1 };
3979  return MorphNodeTo(N, Opc, VTs, Ops, 1);
3980}
3981
3982SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3983                                  MVT VT, SDValue Op1,
3984                                  SDValue Op2) {
3985  SDVTList VTs = getVTList(VT);
3986  SDValue Ops[] = { Op1, Op2 };
3987  return MorphNodeTo(N, Opc, VTs, Ops, 2);
3988}
3989
3990SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3991                                  MVT VT, SDValue Op1,
3992                                  SDValue Op2, SDValue Op3) {
3993  SDVTList VTs = getVTList(VT);
3994  SDValue Ops[] = { Op1, Op2, Op3 };
3995  return MorphNodeTo(N, Opc, VTs, Ops, 3);
3996}
3997
3998SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
3999                                  MVT VT, const SDValue *Ops,
4000                                  unsigned NumOps) {
4001  SDVTList VTs = getVTList(VT);
4002  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4003}
4004
4005SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4006                                  MVT VT1, MVT VT2, const SDValue *Ops,
4007                                  unsigned NumOps) {
4008  SDVTList VTs = getVTList(VT1, VT2);
4009  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4010}
4011
4012SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4013                                  MVT VT1, MVT VT2) {
4014  SDVTList VTs = getVTList(VT1, VT2);
4015  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4016}
4017
4018SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4019                                  MVT VT1, MVT VT2, MVT VT3,
4020                                  const SDValue *Ops, unsigned NumOps) {
4021  SDVTList VTs = getVTList(VT1, VT2, VT3);
4022  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4023}
4024
4025SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4026                                  MVT VT1, MVT VT2,
4027                                  SDValue Op1) {
4028  SDVTList VTs = getVTList(VT1, VT2);
4029  SDValue Ops[] = { Op1 };
4030  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4031}
4032
4033SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4034                                  MVT VT1, MVT VT2,
4035                                  SDValue Op1, SDValue Op2) {
4036  SDVTList VTs = getVTList(VT1, VT2);
4037  SDValue Ops[] = { Op1, Op2 };
4038  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4039}
4040
4041SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4042                                  MVT VT1, MVT VT2,
4043                                  SDValue Op1, SDValue Op2,
4044                                  SDValue Op3) {
4045  SDVTList VTs = getVTList(VT1, VT2);
4046  SDValue Ops[] = { Op1, Op2, Op3 };
4047  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4048}
4049
4050/// MorphNodeTo - These *mutate* the specified node to have the specified
4051/// return type, opcode, and operands.
4052///
4053/// Note that MorphNodeTo returns the resultant node.  If there is already a
4054/// node of the specified opcode and operands, it returns that node instead of
4055/// the current one.
4056///
4057/// Using MorphNodeTo is faster than creating a new node and swapping it in
4058/// with ReplaceAllUsesWith both because it often avoids allocating a new
4059/// node, and because it doesn't require CSE recalculation for any of
4060/// the node's users.
4061///
4062SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4063                                  SDVTList VTs, const SDValue *Ops,
4064                                  unsigned NumOps) {
4065  // If an identical node already exists, use it.
4066  void *IP = 0;
4067  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4068    FoldingSetNodeID ID;
4069    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4070    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4071      return ON;
4072  }
4073
4074  RemoveNodeFromCSEMaps(N);
4075
4076  // Start the morphing.
4077  N->NodeType = Opc;
4078  N->ValueList = VTs.VTs;
4079  N->NumValues = VTs.NumVTs;
4080
4081  // Clear the operands list, updating used nodes to remove this from their
4082  // use list.  Keep track of any operands that become dead as a result.
4083  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4084  for (SDNode::op_iterator B = N->op_begin(), I = B, E = N->op_end();
4085       I != E; ++I) {
4086    SDNode *Used = I->getVal();
4087    Used->removeUser(std::distance(B, I), N);
4088    if (Used->use_empty())
4089      DeadNodeSet.insert(Used);
4090  }
4091
4092  // If NumOps is larger than the # of operands we currently have, reallocate
4093  // the operand list.
4094  if (NumOps > N->NumOperands) {
4095    if (N->OperandsNeedDelete)
4096      delete[] N->OperandList;
4097    if (N->isMachineOpcode()) {
4098      // We're creating a final node that will live unmorphed for the
4099      // remainder of the current SelectionDAG iteration, so we can allocate
4100      // the operands directly out of a pool with no recycling metadata.
4101      N->OperandList = OperandAllocator.Allocate<SDUse>(NumOps);
4102      N->OperandsNeedDelete = false;
4103    } else {
4104      N->OperandList = new SDUse[NumOps];
4105      N->OperandsNeedDelete = true;
4106    }
4107  }
4108
4109  // Assign the new operands.
4110  N->NumOperands = NumOps;
4111  for (unsigned i = 0, e = NumOps; i != e; ++i) {
4112    N->OperandList[i] = Ops[i];
4113    N->OperandList[i].setUser(N);
4114    SDNode *ToUse = N->OperandList[i].getVal();
4115    ToUse->addUser(i, N);
4116  }
4117
4118  // Delete any nodes that are still dead after adding the uses for the
4119  // new operands.
4120  SmallVector<SDNode *, 16> DeadNodes;
4121  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4122       E = DeadNodeSet.end(); I != E; ++I)
4123    if ((*I)->use_empty())
4124      DeadNodes.push_back(*I);
4125  RemoveDeadNodes(DeadNodes);
4126
4127  if (IP)
4128    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4129  return N;
4130}
4131
4132
4133/// getTargetNode - These are used for target selectors to create a new node
4134/// with specified return type(s), target opcode, and operands.
4135///
4136/// Note that getTargetNode returns the resultant node.  If there is already a
4137/// node of the specified opcode and operands, it returns that node instead of
4138/// the current one.
4139SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
4140  return getNode(~Opcode, VT).getNode();
4141}
4142SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDValue Op1) {
4143  return getNode(~Opcode, VT, Op1).getNode();
4144}
4145SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4146                                    SDValue Op1, SDValue Op2) {
4147  return getNode(~Opcode, VT, Op1, Op2).getNode();
4148}
4149SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4150                                    SDValue Op1, SDValue Op2,
4151                                    SDValue Op3) {
4152  return getNode(~Opcode, VT, Op1, Op2, Op3).getNode();
4153}
4154SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
4155                                    const SDValue *Ops, unsigned NumOps) {
4156  return getNode(~Opcode, VT, Ops, NumOps).getNode();
4157}
4158SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
4159  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4160  SDValue Op;
4161  return getNode(~Opcode, VTs, 2, &Op, 0).getNode();
4162}
4163SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4164                                    MVT VT2, SDValue Op1) {
4165  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4166  return getNode(~Opcode, VTs, 2, &Op1, 1).getNode();
4167}
4168SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4169                                    MVT VT2, SDValue Op1,
4170                                    SDValue Op2) {
4171  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4172  SDValue Ops[] = { Op1, Op2 };
4173  return getNode(~Opcode, VTs, 2, Ops, 2).getNode();
4174}
4175SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4176                                    MVT VT2, SDValue Op1,
4177                                    SDValue Op2, SDValue Op3) {
4178  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4179  SDValue Ops[] = { Op1, Op2, Op3 };
4180  return getNode(~Opcode, VTs, 2, Ops, 3).getNode();
4181}
4182SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
4183                                    const SDValue *Ops, unsigned NumOps) {
4184  const MVT *VTs = getNodeValueTypes(VT1, VT2);
4185  return getNode(~Opcode, VTs, 2, Ops, NumOps).getNode();
4186}
4187SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4188                                    SDValue Op1, SDValue Op2) {
4189  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4190  SDValue Ops[] = { Op1, Op2 };
4191  return getNode(~Opcode, VTs, 3, Ops, 2).getNode();
4192}
4193SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4194                                    SDValue Op1, SDValue Op2,
4195                                    SDValue Op3) {
4196  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4197  SDValue Ops[] = { Op1, Op2, Op3 };
4198  return getNode(~Opcode, VTs, 3, Ops, 3).getNode();
4199}
4200SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
4201                                    const SDValue *Ops, unsigned NumOps) {
4202  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
4203  return getNode(~Opcode, VTs, 3, Ops, NumOps).getNode();
4204}
4205SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
4206                                    MVT VT2, MVT VT3, MVT VT4,
4207                                    const SDValue *Ops, unsigned NumOps) {
4208  std::vector<MVT> VTList;
4209  VTList.push_back(VT1);
4210  VTList.push_back(VT2);
4211  VTList.push_back(VT3);
4212  VTList.push_back(VT4);
4213  const MVT *VTs = getNodeValueTypes(VTList);
4214  return getNode(~Opcode, VTs, 4, Ops, NumOps).getNode();
4215}
4216SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
4217                                    const std::vector<MVT> &ResultTys,
4218                                    const SDValue *Ops, unsigned NumOps) {
4219  const MVT *VTs = getNodeValueTypes(ResultTys);
4220  return getNode(~Opcode, VTs, ResultTys.size(),
4221                 Ops, NumOps).getNode();
4222}
4223
4224/// getNodeIfExists - Get the specified node if it's already available, or
4225/// else return NULL.
4226SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4227                                      const SDValue *Ops, unsigned NumOps) {
4228  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4229    FoldingSetNodeID ID;
4230    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4231    void *IP = 0;
4232    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4233      return E;
4234  }
4235  return NULL;
4236}
4237
4238
4239/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4240/// This can cause recursive merging of nodes in the DAG.
4241///
4242/// This version assumes From has a single result value.
4243///
4244void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4245                                      DAGUpdateListener *UpdateListener) {
4246  SDNode *From = FromN.getNode();
4247  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4248         "Cannot replace with this method!");
4249  assert(From != To.getNode() && "Cannot replace uses of with self");
4250
4251  while (!From->use_empty()) {
4252    SDNode::use_iterator UI = From->use_begin();
4253    SDNode *U = *UI;
4254
4255    // This node is about to morph, remove its old self from the CSE maps.
4256    RemoveNodeFromCSEMaps(U);
4257    int operandNum = 0;
4258    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4259         I != E; ++I, ++operandNum)
4260      if (I->getVal() == From) {
4261        From->removeUser(operandNum, U);
4262        *I = To;
4263        I->setUser(U);
4264        To.getNode()->addUser(operandNum, U);
4265      }
4266
4267    // Now that we have modified U, add it back to the CSE maps.  If it already
4268    // exists there, recursively merge the results together.
4269    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4270      ReplaceAllUsesWith(U, Existing, UpdateListener);
4271      // U is now dead.  Inform the listener if it exists and delete it.
4272      if (UpdateListener)
4273        UpdateListener->NodeDeleted(U, Existing);
4274      DeleteNodeNotInCSEMaps(U);
4275    } else {
4276      // If the node doesn't already exist, we updated it.  Inform a listener if
4277      // it exists.
4278      if (UpdateListener)
4279        UpdateListener->NodeUpdated(U);
4280    }
4281  }
4282}
4283
4284/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4285/// This can cause recursive merging of nodes in the DAG.
4286///
4287/// This version assumes From/To have matching types and numbers of result
4288/// values.
4289///
4290void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4291                                      DAGUpdateListener *UpdateListener) {
4292  assert(From->getVTList().VTs == To->getVTList().VTs &&
4293         From->getNumValues() == To->getNumValues() &&
4294         "Cannot use this version of ReplaceAllUsesWith!");
4295
4296  // Handle the trivial case.
4297  if (From == To)
4298    return;
4299
4300  while (!From->use_empty()) {
4301    SDNode::use_iterator UI = From->use_begin();
4302    SDNode *U = *UI;
4303
4304    // This node is about to morph, remove its old self from the CSE maps.
4305    RemoveNodeFromCSEMaps(U);
4306    int operandNum = 0;
4307    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4308         I != E; ++I, ++operandNum)
4309      if (I->getVal() == From) {
4310        From->removeUser(operandNum, U);
4311        I->getSDValue().setNode(To);
4312        To->addUser(operandNum, U);
4313      }
4314
4315    // Now that we have modified U, add it back to the CSE maps.  If it already
4316    // exists there, recursively merge the results together.
4317    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4318      ReplaceAllUsesWith(U, Existing, UpdateListener);
4319      // U is now dead.  Inform the listener if it exists and delete it.
4320      if (UpdateListener)
4321        UpdateListener->NodeDeleted(U, Existing);
4322      DeleteNodeNotInCSEMaps(U);
4323    } else {
4324      // If the node doesn't already exist, we updated it.  Inform a listener if
4325      // it exists.
4326      if (UpdateListener)
4327        UpdateListener->NodeUpdated(U);
4328    }
4329  }
4330}
4331
4332/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4333/// This can cause recursive merging of nodes in the DAG.
4334///
4335/// This version can replace From with any result values.  To must match the
4336/// number and types of values returned by From.
4337void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
4338                                      const SDValue *To,
4339                                      DAGUpdateListener *UpdateListener) {
4340  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
4341    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
4342
4343  while (!From->use_empty()) {
4344    SDNode::use_iterator UI = From->use_begin();
4345    SDNode *U = *UI;
4346
4347    // This node is about to morph, remove its old self from the CSE maps.
4348    RemoveNodeFromCSEMaps(U);
4349    int operandNum = 0;
4350    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
4351         I != E; ++I, ++operandNum)
4352      if (I->getVal() == From) {
4353        const SDValue &ToOp = To[I->getSDValue().getResNo()];
4354        From->removeUser(operandNum, U);
4355        *I = ToOp;
4356        I->setUser(U);
4357        ToOp.getNode()->addUser(operandNum, U);
4358      }
4359
4360    // Now that we have modified U, add it back to the CSE maps.  If it already
4361    // exists there, recursively merge the results together.
4362    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4363      ReplaceAllUsesWith(U, Existing, UpdateListener);
4364      // U is now dead.  Inform the listener if it exists and delete it.
4365      if (UpdateListener)
4366        UpdateListener->NodeDeleted(U, Existing);
4367      DeleteNodeNotInCSEMaps(U);
4368    } else {
4369      // If the node doesn't already exist, we updated it.  Inform a listener if
4370      // it exists.
4371      if (UpdateListener)
4372        UpdateListener->NodeUpdated(U);
4373    }
4374  }
4375}
4376
4377/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4378/// uses of other values produced by From.getVal() alone.  The Deleted vector is
4379/// handled the same way as for ReplaceAllUsesWith.
4380void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
4381                                             DAGUpdateListener *UpdateListener){
4382  // Handle the really simple, really trivial case efficiently.
4383  if (From == To) return;
4384
4385  // Handle the simple, trivial, case efficiently.
4386  if (From.getNode()->getNumValues() == 1) {
4387    ReplaceAllUsesWith(From, To, UpdateListener);
4388    return;
4389  }
4390
4391  // Get all of the users of From.getNode().  We want these in a nice,
4392  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4393  SmallSetVector<SDNode*, 16> Users(From.getNode()->use_begin(), From.getNode()->use_end());
4394
4395  while (!Users.empty()) {
4396    // We know that this user uses some value of From.  If it is the right
4397    // value, update it.
4398    SDNode *User = Users.back();
4399    Users.pop_back();
4400
4401    // Scan for an operand that matches From.
4402    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4403    for (; Op != E; ++Op)
4404      if (*Op == From) break;
4405
4406    // If there are no matches, the user must use some other result of From.
4407    if (Op == E) continue;
4408
4409    // Okay, we know this user needs to be updated.  Remove its old self
4410    // from the CSE maps.
4411    RemoveNodeFromCSEMaps(User);
4412
4413    // Update all operands that match "From" in case there are multiple uses.
4414    for (; Op != E; ++Op) {
4415      if (*Op == From) {
4416        From.getNode()->removeUser(Op-User->op_begin(), User);
4417        *Op = To;
4418        Op->setUser(User);
4419        To.getNode()->addUser(Op-User->op_begin(), User);
4420      }
4421    }
4422
4423    // Now that we have modified User, add it back to the CSE maps.  If it
4424    // already exists there, recursively merge the results together.
4425    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4426    if (!Existing) {
4427      if (UpdateListener) UpdateListener->NodeUpdated(User);
4428      continue;  // Continue on to next user.
4429    }
4430
4431    // If there was already an existing matching node, use ReplaceAllUsesWith
4432    // to replace the dead one with the existing one.  This can cause
4433    // recursive merging of other unrelated nodes down the line.
4434    ReplaceAllUsesWith(User, Existing, UpdateListener);
4435
4436    // User is now dead.  Notify a listener if present.
4437    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4438    DeleteNodeNotInCSEMaps(User);
4439  }
4440}
4441
4442/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
4443/// uses of other values produced by From.getVal() alone.  The same value may
4444/// appear in both the From and To list.  The Deleted vector is
4445/// handled the same way as for ReplaceAllUsesWith.
4446void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
4447                                              const SDValue *To,
4448                                              unsigned Num,
4449                                              DAGUpdateListener *UpdateListener){
4450  // Handle the simple, trivial case efficiently.
4451  if (Num == 1)
4452    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
4453
4454  SmallVector<std::pair<SDNode *, unsigned>, 16> Users;
4455  for (unsigned i = 0; i != Num; ++i)
4456    for (SDNode::use_iterator UI = From[i].getNode()->use_begin(),
4457         E = From[i].getNode()->use_end(); UI != E; ++UI)
4458      Users.push_back(std::make_pair(*UI, i));
4459
4460  while (!Users.empty()) {
4461    // We know that this user uses some value of From.  If it is the right
4462    // value, update it.
4463    SDNode *User = Users.back().first;
4464    unsigned i = Users.back().second;
4465    Users.pop_back();
4466
4467    // Scan for an operand that matches From.
4468    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4469    for (; Op != E; ++Op)
4470      if (*Op == From[i]) break;
4471
4472    // If there are no matches, the user must use some other result of From.
4473    if (Op == E) continue;
4474
4475    // Okay, we know this user needs to be updated.  Remove its old self
4476    // from the CSE maps.
4477    RemoveNodeFromCSEMaps(User);
4478
4479    // Update all operands that match "From" in case there are multiple uses.
4480    for (; Op != E; ++Op) {
4481      if (*Op == From[i]) {
4482        From[i].getNode()->removeUser(Op-User->op_begin(), User);
4483        *Op = To[i];
4484        Op->setUser(User);
4485        To[i].getNode()->addUser(Op-User->op_begin(), User);
4486      }
4487    }
4488
4489    // Now that we have modified User, add it back to the CSE maps.  If it
4490    // already exists there, recursively merge the results together.
4491    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4492    if (!Existing) {
4493      if (UpdateListener) UpdateListener->NodeUpdated(User);
4494      continue;  // Continue on to next user.
4495    }
4496
4497    // If there was already an existing matching node, use ReplaceAllUsesWith
4498    // to replace the dead one with the existing one.  This can cause
4499    // recursive merging of other unrelated nodes down the line.
4500    ReplaceAllUsesWith(User, Existing, UpdateListener);
4501
4502    // User is now dead.  Notify a listener if present.
4503    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4504    DeleteNodeNotInCSEMaps(User);
4505  }
4506}
4507
4508/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4509/// based on their topological order. It returns the maximum id and a vector
4510/// of the SDNodes* in assigned order by reference.
4511unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4512  unsigned DAGSize = AllNodes.size();
4513  std::vector<SDNode*> Sources;
4514
4515  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4516    SDNode *N = I;
4517    unsigned Degree = N->use_size();
4518    // Temporarily use the Node Id as scratch space for the degree count.
4519    N->setNodeId(Degree);
4520    if (Degree == 0)
4521      Sources.push_back(N);
4522  }
4523
4524  TopOrder.clear();
4525  TopOrder.reserve(DAGSize);
4526  int Id = 0;
4527  while (!Sources.empty()) {
4528    SDNode *N = Sources.back();
4529    Sources.pop_back();
4530    TopOrder.push_back(N);
4531    N->setNodeId(Id++);
4532    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4533      SDNode *P = I->getVal();
4534      unsigned Degree = P->getNodeId();
4535      --Degree;
4536      P->setNodeId(Degree);
4537      if (Degree == 0)
4538        Sources.push_back(P);
4539    }
4540  }
4541
4542  return Id;
4543}
4544
4545
4546
4547//===----------------------------------------------------------------------===//
4548//                              SDNode Class
4549//===----------------------------------------------------------------------===//
4550
4551// Out-of-line virtual method to give class a home.
4552void SDNode::ANCHOR() {}
4553void UnarySDNode::ANCHOR() {}
4554void BinarySDNode::ANCHOR() {}
4555void TernarySDNode::ANCHOR() {}
4556void HandleSDNode::ANCHOR() {}
4557void ConstantSDNode::ANCHOR() {}
4558void ConstantFPSDNode::ANCHOR() {}
4559void GlobalAddressSDNode::ANCHOR() {}
4560void FrameIndexSDNode::ANCHOR() {}
4561void JumpTableSDNode::ANCHOR() {}
4562void ConstantPoolSDNode::ANCHOR() {}
4563void BasicBlockSDNode::ANCHOR() {}
4564void SrcValueSDNode::ANCHOR() {}
4565void MemOperandSDNode::ANCHOR() {}
4566void RegisterSDNode::ANCHOR() {}
4567void DbgStopPointSDNode::ANCHOR() {}
4568void LabelSDNode::ANCHOR() {}
4569void ExternalSymbolSDNode::ANCHOR() {}
4570void CondCodeSDNode::ANCHOR() {}
4571void ARG_FLAGSSDNode::ANCHOR() {}
4572void VTSDNode::ANCHOR() {}
4573void MemSDNode::ANCHOR() {}
4574void LoadSDNode::ANCHOR() {}
4575void StoreSDNode::ANCHOR() {}
4576void AtomicSDNode::ANCHOR() {}
4577
4578HandleSDNode::~HandleSDNode() {
4579  DropOperands();
4580}
4581
4582GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4583                                         MVT VT, int o)
4584  : SDNode(isa<GlobalVariable>(GA) &&
4585           cast<GlobalVariable>(GA)->isThreadLocal() ?
4586           // Thread Local
4587           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4588           // Non Thread Local
4589           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4590           getSDVTList(VT)), Offset(o) {
4591  TheGlobal = const_cast<GlobalValue*>(GA);
4592}
4593
4594MemSDNode::MemSDNode(unsigned Opc, SDVTList VTs, MVT memvt,
4595                     const Value *srcValue, int SVO,
4596                     unsigned alignment, bool vol)
4597 : SDNode(Opc, VTs), MemoryVT(memvt), SrcValue(srcValue), SVOffset(SVO),
4598   Flags(encodeMemSDNodeFlags(vol, alignment)) {
4599
4600  assert(isPowerOf2_32(alignment) && "Alignment is not a power of 2!");
4601  assert(getAlignment() == alignment && "Alignment representation error!");
4602  assert(isVolatile() == vol && "Volatile representation error!");
4603}
4604
4605/// getMemOperand - Return a MachineMemOperand object describing the memory
4606/// reference performed by this memory reference.
4607MachineMemOperand MemSDNode::getMemOperand() const {
4608  int Flags;
4609  if (isa<LoadSDNode>(this))
4610    Flags = MachineMemOperand::MOLoad;
4611  else if (isa<StoreSDNode>(this))
4612    Flags = MachineMemOperand::MOStore;
4613  else {
4614    assert(isa<AtomicSDNode>(this) && "Unknown MemSDNode opcode!");
4615    Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4616  }
4617
4618  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4619  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4620
4621  // Check if the memory reference references a frame index
4622  const FrameIndexSDNode *FI =
4623  dyn_cast<const FrameIndexSDNode>(getBasePtr().getNode());
4624  if (!getSrcValue() && FI)
4625    return MachineMemOperand(PseudoSourceValue::getFixedStack(FI->getIndex()),
4626                             Flags, 0, Size, getAlignment());
4627  else
4628    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4629                             Size, getAlignment());
4630}
4631
4632/// Profile - Gather unique data for the node.
4633///
4634void SDNode::Profile(FoldingSetNodeID &ID) const {
4635  AddNodeIDNode(ID, this);
4636}
4637
4638/// getValueTypeList - Return a pointer to the specified value type.
4639///
4640const MVT *SDNode::getValueTypeList(MVT VT) {
4641  if (VT.isExtended()) {
4642    static std::set<MVT, MVT::compareRawBits> EVTs;
4643    return &(*EVTs.insert(VT).first);
4644  } else {
4645    static MVT VTs[MVT::LAST_VALUETYPE];
4646    VTs[VT.getSimpleVT()] = VT;
4647    return &VTs[VT.getSimpleVT()];
4648  }
4649}
4650
4651/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4652/// indicated value.  This method ignores uses of other values defined by this
4653/// operation.
4654bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4655  assert(Value < getNumValues() && "Bad value!");
4656
4657  // TODO: Only iterate over uses of a given value of the node
4658  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4659    if (UI.getUse().getSDValue().getResNo() == Value) {
4660      if (NUses == 0)
4661        return false;
4662      --NUses;
4663    }
4664  }
4665
4666  // Found exactly the right number of uses?
4667  return NUses == 0;
4668}
4669
4670
4671/// hasAnyUseOfValue - Return true if there are any use of the indicated
4672/// value. This method ignores uses of other values defined by this operation.
4673bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4674  assert(Value < getNumValues() && "Bad value!");
4675
4676  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
4677    if (UI.getUse().getSDValue().getResNo() == Value)
4678      return true;
4679
4680  return false;
4681}
4682
4683
4684/// isOnlyUserOf - Return true if this node is the only use of N.
4685///
4686bool SDNode::isOnlyUserOf(SDNode *N) const {
4687  bool Seen = false;
4688  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4689    SDNode *User = *I;
4690    if (User == this)
4691      Seen = true;
4692    else
4693      return false;
4694  }
4695
4696  return Seen;
4697}
4698
4699/// isOperand - Return true if this node is an operand of N.
4700///
4701bool SDValue::isOperandOf(SDNode *N) const {
4702  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4703    if (*this == N->getOperand(i))
4704      return true;
4705  return false;
4706}
4707
4708bool SDNode::isOperandOf(SDNode *N) const {
4709  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4710    if (this == N->OperandList[i].getVal())
4711      return true;
4712  return false;
4713}
4714
4715/// reachesChainWithoutSideEffects - Return true if this operand (which must
4716/// be a chain) reaches the specified operand without crossing any
4717/// side-effecting instructions.  In practice, this looks through token
4718/// factors and non-volatile loads.  In order to remain efficient, this only
4719/// looks a couple of nodes in, it does not do an exhaustive search.
4720bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
4721                                               unsigned Depth) const {
4722  if (*this == Dest) return true;
4723
4724  // Don't search too deeply, we just want to be able to see through
4725  // TokenFactor's etc.
4726  if (Depth == 0) return false;
4727
4728  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4729  // of the operands of the TF reach dest, then we can do the xform.
4730  if (getOpcode() == ISD::TokenFactor) {
4731    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4732      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4733        return true;
4734    return false;
4735  }
4736
4737  // Loads don't have side effects, look through them.
4738  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4739    if (!Ld->isVolatile())
4740      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4741  }
4742  return false;
4743}
4744
4745
4746static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4747                            SmallPtrSet<SDNode *, 32> &Visited) {
4748  if (found || !Visited.insert(N))
4749    return;
4750
4751  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4752    SDNode *Op = N->getOperand(i).getNode();
4753    if (Op == P) {
4754      found = true;
4755      return;
4756    }
4757    findPredecessor(Op, P, found, Visited);
4758  }
4759}
4760
4761/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4762/// is either an operand of N or it can be reached by recursively traversing
4763/// up the operands.
4764/// NOTE: this is an expensive method. Use it carefully.
4765bool SDNode::isPredecessorOf(SDNode *N) const {
4766  SmallPtrSet<SDNode *, 32> Visited;
4767  bool found = false;
4768  findPredecessor(N, this, found, Visited);
4769  return found;
4770}
4771
4772uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4773  assert(Num < NumOperands && "Invalid child # of SDNode!");
4774  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
4775}
4776
4777std::string SDNode::getOperationName(const SelectionDAG *G) const {
4778  switch (getOpcode()) {
4779  default:
4780    if (getOpcode() < ISD::BUILTIN_OP_END)
4781      return "<<Unknown DAG Node>>";
4782    if (isMachineOpcode()) {
4783      if (G)
4784        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4785          if (getMachineOpcode() < TII->getNumOpcodes())
4786            return TII->get(getMachineOpcode()).getName();
4787      return "<<Unknown Machine Node>>";
4788    }
4789    if (G) {
4790      TargetLowering &TLI = G->getTargetLoweringInfo();
4791      const char *Name = TLI.getTargetNodeName(getOpcode());
4792      if (Name) return Name;
4793      return "<<Unknown Target Node>>";
4794    }
4795    return "<<Unknown Node>>";
4796
4797#ifndef NDEBUG
4798  case ISD::DELETED_NODE:
4799    return "<<Deleted Node!>>";
4800#endif
4801  case ISD::PREFETCH:      return "Prefetch";
4802  case ISD::MEMBARRIER:    return "MemBarrier";
4803  case ISD::ATOMIC_CMP_SWAP_8:  return "AtomicCmpSwap8";
4804  case ISD::ATOMIC_SWAP_8:      return "AtomicSwap8";
4805  case ISD::ATOMIC_LOAD_ADD_8:  return "AtomicLoadAdd8";
4806  case ISD::ATOMIC_LOAD_SUB_8:  return "AtomicLoadSub8";
4807  case ISD::ATOMIC_LOAD_AND_8:  return "AtomicLoadAnd8";
4808  case ISD::ATOMIC_LOAD_OR_8:   return "AtomicLoadOr8";
4809  case ISD::ATOMIC_LOAD_XOR_8:  return "AtomicLoadXor8";
4810  case ISD::ATOMIC_LOAD_NAND_8: return "AtomicLoadNand8";
4811  case ISD::ATOMIC_LOAD_MIN_8:  return "AtomicLoadMin8";
4812  case ISD::ATOMIC_LOAD_MAX_8:  return "AtomicLoadMax8";
4813  case ISD::ATOMIC_LOAD_UMIN_8: return "AtomicLoadUMin8";
4814  case ISD::ATOMIC_LOAD_UMAX_8: return "AtomicLoadUMax8";
4815  case ISD::ATOMIC_CMP_SWAP_16:  return "AtomicCmpSwap16";
4816  case ISD::ATOMIC_SWAP_16:      return "AtomicSwap16";
4817  case ISD::ATOMIC_LOAD_ADD_16:  return "AtomicLoadAdd16";
4818  case ISD::ATOMIC_LOAD_SUB_16:  return "AtomicLoadSub16";
4819  case ISD::ATOMIC_LOAD_AND_16:  return "AtomicLoadAnd16";
4820  case ISD::ATOMIC_LOAD_OR_16:   return "AtomicLoadOr16";
4821  case ISD::ATOMIC_LOAD_XOR_16:  return "AtomicLoadXor16";
4822  case ISD::ATOMIC_LOAD_NAND_16: return "AtomicLoadNand16";
4823  case ISD::ATOMIC_LOAD_MIN_16:  return "AtomicLoadMin16";
4824  case ISD::ATOMIC_LOAD_MAX_16:  return "AtomicLoadMax16";
4825  case ISD::ATOMIC_LOAD_UMIN_16: return "AtomicLoadUMin16";
4826  case ISD::ATOMIC_LOAD_UMAX_16: return "AtomicLoadUMax16";
4827  case ISD::ATOMIC_CMP_SWAP_32:  return "AtomicCmpSwap32";
4828  case ISD::ATOMIC_SWAP_32:      return "AtomicSwap32";
4829  case ISD::ATOMIC_LOAD_ADD_32:  return "AtomicLoadAdd32";
4830  case ISD::ATOMIC_LOAD_SUB_32:  return "AtomicLoadSub32";
4831  case ISD::ATOMIC_LOAD_AND_32:  return "AtomicLoadAnd32";
4832  case ISD::ATOMIC_LOAD_OR_32:   return "AtomicLoadOr32";
4833  case ISD::ATOMIC_LOAD_XOR_32:  return "AtomicLoadXor32";
4834  case ISD::ATOMIC_LOAD_NAND_32: return "AtomicLoadNand32";
4835  case ISD::ATOMIC_LOAD_MIN_32:  return "AtomicLoadMin32";
4836  case ISD::ATOMIC_LOAD_MAX_32:  return "AtomicLoadMax32";
4837  case ISD::ATOMIC_LOAD_UMIN_32: return "AtomicLoadUMin32";
4838  case ISD::ATOMIC_LOAD_UMAX_32: return "AtomicLoadUMax32";
4839  case ISD::ATOMIC_CMP_SWAP_64:  return "AtomicCmpSwap64";
4840  case ISD::ATOMIC_SWAP_64:      return "AtomicSwap64";
4841  case ISD::ATOMIC_LOAD_ADD_64:  return "AtomicLoadAdd64";
4842  case ISD::ATOMIC_LOAD_SUB_64:  return "AtomicLoadSub64";
4843  case ISD::ATOMIC_LOAD_AND_64:  return "AtomicLoadAnd64";
4844  case ISD::ATOMIC_LOAD_OR_64:   return "AtomicLoadOr64";
4845  case ISD::ATOMIC_LOAD_XOR_64:  return "AtomicLoadXor64";
4846  case ISD::ATOMIC_LOAD_NAND_64: return "AtomicLoadNand64";
4847  case ISD::ATOMIC_LOAD_MIN_64:  return "AtomicLoadMin64";
4848  case ISD::ATOMIC_LOAD_MAX_64:  return "AtomicLoadMax64";
4849  case ISD::ATOMIC_LOAD_UMIN_64: return "AtomicLoadUMin64";
4850  case ISD::ATOMIC_LOAD_UMAX_64: return "AtomicLoadUMax64";
4851  case ISD::PCMARKER:      return "PCMarker";
4852  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4853  case ISD::SRCVALUE:      return "SrcValue";
4854  case ISD::MEMOPERAND:    return "MemOperand";
4855  case ISD::EntryToken:    return "EntryToken";
4856  case ISD::TokenFactor:   return "TokenFactor";
4857  case ISD::AssertSext:    return "AssertSext";
4858  case ISD::AssertZext:    return "AssertZext";
4859
4860  case ISD::BasicBlock:    return "BasicBlock";
4861  case ISD::ARG_FLAGS:     return "ArgFlags";
4862  case ISD::VALUETYPE:     return "ValueType";
4863  case ISD::Register:      return "Register";
4864
4865  case ISD::Constant:      return "Constant";
4866  case ISD::ConstantFP:    return "ConstantFP";
4867  case ISD::GlobalAddress: return "GlobalAddress";
4868  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4869  case ISD::FrameIndex:    return "FrameIndex";
4870  case ISD::JumpTable:     return "JumpTable";
4871  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4872  case ISD::RETURNADDR: return "RETURNADDR";
4873  case ISD::FRAMEADDR: return "FRAMEADDR";
4874  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4875  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4876  case ISD::EHSELECTION: return "EHSELECTION";
4877  case ISD::EH_RETURN: return "EH_RETURN";
4878  case ISD::ConstantPool:  return "ConstantPool";
4879  case ISD::ExternalSymbol: return "ExternalSymbol";
4880  case ISD::INTRINSIC_WO_CHAIN: {
4881    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getZExtValue();
4882    return Intrinsic::getName((Intrinsic::ID)IID);
4883  }
4884  case ISD::INTRINSIC_VOID:
4885  case ISD::INTRINSIC_W_CHAIN: {
4886    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getZExtValue();
4887    return Intrinsic::getName((Intrinsic::ID)IID);
4888  }
4889
4890  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4891  case ISD::TargetConstant: return "TargetConstant";
4892  case ISD::TargetConstantFP:return "TargetConstantFP";
4893  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4894  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4895  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4896  case ISD::TargetJumpTable:  return "TargetJumpTable";
4897  case ISD::TargetConstantPool:  return "TargetConstantPool";
4898  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4899
4900  case ISD::CopyToReg:     return "CopyToReg";
4901  case ISD::CopyFromReg:   return "CopyFromReg";
4902  case ISD::UNDEF:         return "undef";
4903  case ISD::MERGE_VALUES:  return "merge_values";
4904  case ISD::INLINEASM:     return "inlineasm";
4905  case ISD::DBG_LABEL:     return "dbg_label";
4906  case ISD::EH_LABEL:      return "eh_label";
4907  case ISD::DECLARE:       return "declare";
4908  case ISD::HANDLENODE:    return "handlenode";
4909  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4910  case ISD::CALL:          return "call";
4911
4912  // Unary operators
4913  case ISD::FABS:   return "fabs";
4914  case ISD::FNEG:   return "fneg";
4915  case ISD::FSQRT:  return "fsqrt";
4916  case ISD::FSIN:   return "fsin";
4917  case ISD::FCOS:   return "fcos";
4918  case ISD::FPOWI:  return "fpowi";
4919  case ISD::FPOW:   return "fpow";
4920  case ISD::FTRUNC: return "ftrunc";
4921  case ISD::FFLOOR: return "ffloor";
4922  case ISD::FCEIL:  return "fceil";
4923  case ISD::FRINT:  return "frint";
4924  case ISD::FNEARBYINT: return "fnearbyint";
4925
4926  // Binary operators
4927  case ISD::ADD:    return "add";
4928  case ISD::SUB:    return "sub";
4929  case ISD::MUL:    return "mul";
4930  case ISD::MULHU:  return "mulhu";
4931  case ISD::MULHS:  return "mulhs";
4932  case ISD::SDIV:   return "sdiv";
4933  case ISD::UDIV:   return "udiv";
4934  case ISD::SREM:   return "srem";
4935  case ISD::UREM:   return "urem";
4936  case ISD::SMUL_LOHI:  return "smul_lohi";
4937  case ISD::UMUL_LOHI:  return "umul_lohi";
4938  case ISD::SDIVREM:    return "sdivrem";
4939  case ISD::UDIVREM:    return "udivrem";
4940  case ISD::AND:    return "and";
4941  case ISD::OR:     return "or";
4942  case ISD::XOR:    return "xor";
4943  case ISD::SHL:    return "shl";
4944  case ISD::SRA:    return "sra";
4945  case ISD::SRL:    return "srl";
4946  case ISD::ROTL:   return "rotl";
4947  case ISD::ROTR:   return "rotr";
4948  case ISD::FADD:   return "fadd";
4949  case ISD::FSUB:   return "fsub";
4950  case ISD::FMUL:   return "fmul";
4951  case ISD::FDIV:   return "fdiv";
4952  case ISD::FREM:   return "frem";
4953  case ISD::FCOPYSIGN: return "fcopysign";
4954  case ISD::FGETSIGN:  return "fgetsign";
4955
4956  case ISD::SETCC:       return "setcc";
4957  case ISD::VSETCC:      return "vsetcc";
4958  case ISD::SELECT:      return "select";
4959  case ISD::SELECT_CC:   return "select_cc";
4960  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4961  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4962  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4963  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4964  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4965  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4966  case ISD::CARRY_FALSE:         return "carry_false";
4967  case ISD::ADDC:        return "addc";
4968  case ISD::ADDE:        return "adde";
4969  case ISD::SUBC:        return "subc";
4970  case ISD::SUBE:        return "sube";
4971  case ISD::SHL_PARTS:   return "shl_parts";
4972  case ISD::SRA_PARTS:   return "sra_parts";
4973  case ISD::SRL_PARTS:   return "srl_parts";
4974
4975  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4976  case ISD::INSERT_SUBREG:      return "insert_subreg";
4977
4978  // Conversion operators.
4979  case ISD::SIGN_EXTEND: return "sign_extend";
4980  case ISD::ZERO_EXTEND: return "zero_extend";
4981  case ISD::ANY_EXTEND:  return "any_extend";
4982  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4983  case ISD::TRUNCATE:    return "truncate";
4984  case ISD::FP_ROUND:    return "fp_round";
4985  case ISD::FLT_ROUNDS_: return "flt_rounds";
4986  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4987  case ISD::FP_EXTEND:   return "fp_extend";
4988
4989  case ISD::SINT_TO_FP:  return "sint_to_fp";
4990  case ISD::UINT_TO_FP:  return "uint_to_fp";
4991  case ISD::FP_TO_SINT:  return "fp_to_sint";
4992  case ISD::FP_TO_UINT:  return "fp_to_uint";
4993  case ISD::BIT_CONVERT: return "bit_convert";
4994
4995    // Control flow instructions
4996  case ISD::BR:      return "br";
4997  case ISD::BRIND:   return "brind";
4998  case ISD::BR_JT:   return "br_jt";
4999  case ISD::BRCOND:  return "brcond";
5000  case ISD::BR_CC:   return "br_cc";
5001  case ISD::RET:     return "ret";
5002  case ISD::CALLSEQ_START:  return "callseq_start";
5003  case ISD::CALLSEQ_END:    return "callseq_end";
5004
5005    // Other operators
5006  case ISD::LOAD:               return "load";
5007  case ISD::STORE:              return "store";
5008  case ISD::VAARG:              return "vaarg";
5009  case ISD::VACOPY:             return "vacopy";
5010  case ISD::VAEND:              return "vaend";
5011  case ISD::VASTART:            return "vastart";
5012  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5013  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5014  case ISD::BUILD_PAIR:         return "build_pair";
5015  case ISD::STACKSAVE:          return "stacksave";
5016  case ISD::STACKRESTORE:       return "stackrestore";
5017  case ISD::TRAP:               return "trap";
5018
5019  // Bit manipulation
5020  case ISD::BSWAP:   return "bswap";
5021  case ISD::CTPOP:   return "ctpop";
5022  case ISD::CTTZ:    return "cttz";
5023  case ISD::CTLZ:    return "ctlz";
5024
5025  // Debug info
5026  case ISD::DBG_STOPPOINT: return "dbg_stoppoint";
5027  case ISD::DEBUG_LOC: return "debug_loc";
5028
5029  // Trampolines
5030  case ISD::TRAMPOLINE: return "trampoline";
5031
5032  case ISD::CONDCODE:
5033    switch (cast<CondCodeSDNode>(this)->get()) {
5034    default: assert(0 && "Unknown setcc condition!");
5035    case ISD::SETOEQ:  return "setoeq";
5036    case ISD::SETOGT:  return "setogt";
5037    case ISD::SETOGE:  return "setoge";
5038    case ISD::SETOLT:  return "setolt";
5039    case ISD::SETOLE:  return "setole";
5040    case ISD::SETONE:  return "setone";
5041
5042    case ISD::SETO:    return "seto";
5043    case ISD::SETUO:   return "setuo";
5044    case ISD::SETUEQ:  return "setue";
5045    case ISD::SETUGT:  return "setugt";
5046    case ISD::SETUGE:  return "setuge";
5047    case ISD::SETULT:  return "setult";
5048    case ISD::SETULE:  return "setule";
5049    case ISD::SETUNE:  return "setune";
5050
5051    case ISD::SETEQ:   return "seteq";
5052    case ISD::SETGT:   return "setgt";
5053    case ISD::SETGE:   return "setge";
5054    case ISD::SETLT:   return "setlt";
5055    case ISD::SETLE:   return "setle";
5056    case ISD::SETNE:   return "setne";
5057    }
5058  }
5059}
5060
5061const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5062  switch (AM) {
5063  default:
5064    return "";
5065  case ISD::PRE_INC:
5066    return "<pre-inc>";
5067  case ISD::PRE_DEC:
5068    return "<pre-dec>";
5069  case ISD::POST_INC:
5070    return "<post-inc>";
5071  case ISD::POST_DEC:
5072    return "<post-dec>";
5073  }
5074}
5075
5076std::string ISD::ArgFlagsTy::getArgFlagsString() {
5077  std::string S = "< ";
5078
5079  if (isZExt())
5080    S += "zext ";
5081  if (isSExt())
5082    S += "sext ";
5083  if (isInReg())
5084    S += "inreg ";
5085  if (isSRet())
5086    S += "sret ";
5087  if (isByVal())
5088    S += "byval ";
5089  if (isNest())
5090    S += "nest ";
5091  if (getByValAlign())
5092    S += "byval-align:" + utostr(getByValAlign()) + " ";
5093  if (getOrigAlign())
5094    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5095  if (getByValSize())
5096    S += "byval-size:" + utostr(getByValSize()) + " ";
5097  return S + ">";
5098}
5099
5100void SDNode::dump() const { dump(0); }
5101void SDNode::dump(const SelectionDAG *G) const {
5102  print(errs(), G);
5103  errs().flush();
5104}
5105
5106void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5107  OS << (void*)this << ": ";
5108
5109  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5110    if (i) OS << ",";
5111    if (getValueType(i) == MVT::Other)
5112      OS << "ch";
5113    else
5114      OS << getValueType(i).getMVTString();
5115  }
5116  OS << " = " << getOperationName(G);
5117
5118  OS << " ";
5119  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5120    if (i) OS << ", ";
5121    OS << (void*)getOperand(i).getNode();
5122    if (unsigned RN = getOperand(i).getResNo())
5123      OS << ":" << RN;
5124  }
5125
5126  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
5127    SDNode *Mask = getOperand(2).getNode();
5128    OS << "<";
5129    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
5130      if (i) OS << ",";
5131      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
5132        OS << "u";
5133      else
5134        OS << cast<ConstantSDNode>(Mask->getOperand(i))->getZExtValue();
5135    }
5136    OS << ">";
5137  }
5138
5139  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5140    OS << '<' << CSDN->getAPIntValue() << '>';
5141  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5142    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5143      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5144    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5145      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5146    else {
5147      OS << "<APFloat(";
5148      CSDN->getValueAPF().convertToAPInt().dump();
5149      OS << ")>";
5150    }
5151  } else if (const GlobalAddressSDNode *GADN =
5152             dyn_cast<GlobalAddressSDNode>(this)) {
5153    int offset = GADN->getOffset();
5154    OS << '<';
5155    WriteAsOperand(OS, GADN->getGlobal());
5156    OS << '>';
5157    if (offset > 0)
5158      OS << " + " << offset;
5159    else
5160      OS << " " << offset;
5161  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5162    OS << "<" << FIDN->getIndex() << ">";
5163  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5164    OS << "<" << JTDN->getIndex() << ">";
5165  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5166    int offset = CP->getOffset();
5167    if (CP->isMachineConstantPoolEntry())
5168      OS << "<" << *CP->getMachineCPVal() << ">";
5169    else
5170      OS << "<" << *CP->getConstVal() << ">";
5171    if (offset > 0)
5172      OS << " + " << offset;
5173    else
5174      OS << " " << offset;
5175  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5176    OS << "<";
5177    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5178    if (LBB)
5179      OS << LBB->getName() << " ";
5180    OS << (const void*)BBDN->getBasicBlock() << ">";
5181  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5182    if (G && R->getReg() &&
5183        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5184      OS << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
5185    } else {
5186      OS << " #" << R->getReg();
5187    }
5188  } else if (const ExternalSymbolSDNode *ES =
5189             dyn_cast<ExternalSymbolSDNode>(this)) {
5190    OS << "'" << ES->getSymbol() << "'";
5191  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5192    if (M->getValue())
5193      OS << "<" << M->getValue() << ">";
5194    else
5195      OS << "<null>";
5196  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
5197    if (M->MO.getValue())
5198      OS << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
5199    else
5200      OS << "<null:" << M->MO.getOffset() << ">";
5201  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
5202    OS << N->getArgFlags().getArgFlagsString();
5203  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5204    OS << ":" << N->getVT().getMVTString();
5205  }
5206  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5207    const Value *SrcValue = LD->getSrcValue();
5208    int SrcOffset = LD->getSrcValueOffset();
5209    OS << " <";
5210    if (SrcValue)
5211      OS << SrcValue;
5212    else
5213      OS << "null";
5214    OS << ":" << SrcOffset << ">";
5215
5216    bool doExt = true;
5217    switch (LD->getExtensionType()) {
5218    default: doExt = false; break;
5219    case ISD::EXTLOAD: OS << " <anyext "; break;
5220    case ISD::SEXTLOAD: OS << " <sext "; break;
5221    case ISD::ZEXTLOAD: OS << " <zext "; break;
5222    }
5223    if (doExt)
5224      OS << LD->getMemoryVT().getMVTString() << ">";
5225
5226    const char *AM = getIndexedModeName(LD->getAddressingMode());
5227    if (*AM)
5228      OS << " " << AM;
5229    if (LD->isVolatile())
5230      OS << " <volatile>";
5231    OS << " alignment=" << LD->getAlignment();
5232  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5233    const Value *SrcValue = ST->getSrcValue();
5234    int SrcOffset = ST->getSrcValueOffset();
5235    OS << " <";
5236    if (SrcValue)
5237      OS << SrcValue;
5238    else
5239      OS << "null";
5240    OS << ":" << SrcOffset << ">";
5241
5242    if (ST->isTruncatingStore())
5243      OS << " <trunc " << ST->getMemoryVT().getMVTString() << ">";
5244
5245    const char *AM = getIndexedModeName(ST->getAddressingMode());
5246    if (*AM)
5247      OS << " " << AM;
5248    if (ST->isVolatile())
5249      OS << " <volatile>";
5250    OS << " alignment=" << ST->getAlignment();
5251  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
5252    const Value *SrcValue = AT->getSrcValue();
5253    int SrcOffset = AT->getSrcValueOffset();
5254    OS << " <";
5255    if (SrcValue)
5256      OS << SrcValue;
5257    else
5258      OS << "null";
5259    OS << ":" << SrcOffset << ">";
5260    if (AT->isVolatile())
5261      OS << " <volatile>";
5262    OS << " alignment=" << AT->getAlignment();
5263  }
5264}
5265
5266static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5267  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5268    if (N->getOperand(i).getNode()->hasOneUse())
5269      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5270    else
5271      cerr << "\n" << std::string(indent+2, ' ')
5272           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5273
5274
5275  cerr << "\n" << std::string(indent, ' ');
5276  N->dump(G);
5277}
5278
5279void SelectionDAG::dump() const {
5280  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
5281
5282  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
5283       I != E; ++I) {
5284    const SDNode *N = I;
5285    if (!N->hasOneUse() && N != getRoot().getNode())
5286      DumpNodes(N, 2, this);
5287  }
5288
5289  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
5290
5291  cerr << "\n\n";
5292}
5293
5294const Type *ConstantPoolSDNode::getType() const {
5295  if (isMachineConstantPoolEntry())
5296    return Val.MachineCPVal->getType();
5297  return Val.ConstVal->getType();
5298}
5299