SelectionDAG.cpp revision f7331b3dd72409e644833ecaf62a0f6db03c97ee
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
22#include "llvm/Support/MathExtras.h"
23#include "llvm/Target/MRegisterInfo.h"
24#include "llvm/Target/TargetData.h"
25#include "llvm/Target/TargetLowering.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Target/TargetMachine.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/StringExtras.h"
32#include <algorithm>
33#include <cmath>
34using namespace llvm;
35
36/// makeVTList - Return an instance of the SDVTList struct initialized with the
37/// specified members.
38static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
39  SDVTList Res = {VTs, NumVTs};
40  return Res;
41}
42
43//===----------------------------------------------------------------------===//
44//                              ConstantFPSDNode Class
45//===----------------------------------------------------------------------===//
46
47/// isExactlyValue - We don't rely on operator== working on double values, as
48/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
49/// As such, this method can be used to do an exact bit-for-bit comparison of
50/// two floating point values.
51bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
52  return Value.bitwiseIsEqual(V);
53}
54
55bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
56                                           const APFloat& Val) {
57  // convert modifies in place, so make a copy.
58  APFloat Val2 = APFloat(Val);
59  switch (VT) {
60  default:
61    return false;         // These can't be represented as floating point!
62
63  // FIXME rounding mode needs to be more flexible
64  case MVT::f32:
65    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
66           Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
67              APFloat::opOK;
68  case MVT::f64:
69    return &Val2.getSemantics() == &APFloat::IEEEsingle ||
70           &Val2.getSemantics() == &APFloat::IEEEdouble ||
71           Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
72             APFloat::opOK;
73  // TODO: Figure out how to test if we can use a shorter type instead!
74  case MVT::f80:
75  case MVT::f128:
76  case MVT::ppcf128:
77    return true;
78  }
79}
80
81//===----------------------------------------------------------------------===//
82//                              ISD Namespace
83//===----------------------------------------------------------------------===//
84
85/// isBuildVectorAllOnes - Return true if the specified node is a
86/// BUILD_VECTOR where all of the elements are ~0 or undef.
87bool ISD::isBuildVectorAllOnes(const SDNode *N) {
88  // Look through a bit convert.
89  if (N->getOpcode() == ISD::BIT_CONVERT)
90    N = N->getOperand(0).Val;
91
92  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
93
94  unsigned i = 0, e = N->getNumOperands();
95
96  // Skip over all of the undef values.
97  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
98    ++i;
99
100  // Do not accept an all-undef vector.
101  if (i == e) return false;
102
103  // Do not accept build_vectors that aren't all constants or which have non-~0
104  // elements.
105  SDOperand NotZero = N->getOperand(i);
106  if (isa<ConstantSDNode>(NotZero)) {
107    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
108      return false;
109  } else if (isa<ConstantFPSDNode>(NotZero)) {
110    MVT::ValueType VT = NotZero.getValueType();
111    if (VT== MVT::f64) {
112      if (DoubleToBits(cast<ConstantFPSDNode>(NotZero)->
113                       getValueAPF().convertToDouble()) !=
114          (uint64_t)-1)
115        return false;
116    } else {
117      if (FloatToBits(cast<ConstantFPSDNode>(NotZero)->
118                      getValueAPF().convertToFloat()) !=
119          (uint32_t)-1)
120        return false;
121    }
122  } else
123    return false;
124
125  // Okay, we have at least one ~0 value, check to see if the rest match or are
126  // undefs.
127  for (++i; i != e; ++i)
128    if (N->getOperand(i) != NotZero &&
129        N->getOperand(i).getOpcode() != ISD::UNDEF)
130      return false;
131  return true;
132}
133
134
135/// isBuildVectorAllZeros - Return true if the specified node is a
136/// BUILD_VECTOR where all of the elements are 0 or undef.
137bool ISD::isBuildVectorAllZeros(const SDNode *N) {
138  // Look through a bit convert.
139  if (N->getOpcode() == ISD::BIT_CONVERT)
140    N = N->getOperand(0).Val;
141
142  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
143
144  unsigned i = 0, e = N->getNumOperands();
145
146  // Skip over all of the undef values.
147  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
148    ++i;
149
150  // Do not accept an all-undef vector.
151  if (i == e) return false;
152
153  // Do not accept build_vectors that aren't all constants or which have non-~0
154  // elements.
155  SDOperand Zero = N->getOperand(i);
156  if (isa<ConstantSDNode>(Zero)) {
157    if (!cast<ConstantSDNode>(Zero)->isNullValue())
158      return false;
159  } else if (isa<ConstantFPSDNode>(Zero)) {
160    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
161      return false;
162  } else
163    return false;
164
165  // Okay, we have at least one ~0 value, check to see if the rest match or are
166  // undefs.
167  for (++i; i != e; ++i)
168    if (N->getOperand(i) != Zero &&
169        N->getOperand(i).getOpcode() != ISD::UNDEF)
170      return false;
171  return true;
172}
173
174/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
175/// when given the operation for (X op Y).
176ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
177  // To perform this operation, we just need to swap the L and G bits of the
178  // operation.
179  unsigned OldL = (Operation >> 2) & 1;
180  unsigned OldG = (Operation >> 1) & 1;
181  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
182                       (OldL << 1) |       // New G bit
183                       (OldG << 2));        // New L bit.
184}
185
186/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
187/// 'op' is a valid SetCC operation.
188ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
189  unsigned Operation = Op;
190  if (isInteger)
191    Operation ^= 7;   // Flip L, G, E bits, but not U.
192  else
193    Operation ^= 15;  // Flip all of the condition bits.
194  if (Operation > ISD::SETTRUE2)
195    Operation &= ~8;     // Don't let N and U bits get set.
196  return ISD::CondCode(Operation);
197}
198
199
200/// isSignedOp - For an integer comparison, return 1 if the comparison is a
201/// signed operation and 2 if the result is an unsigned comparison.  Return zero
202/// if the operation does not depend on the sign of the input (setne and seteq).
203static int isSignedOp(ISD::CondCode Opcode) {
204  switch (Opcode) {
205  default: assert(0 && "Illegal integer setcc operation!");
206  case ISD::SETEQ:
207  case ISD::SETNE: return 0;
208  case ISD::SETLT:
209  case ISD::SETLE:
210  case ISD::SETGT:
211  case ISD::SETGE: return 1;
212  case ISD::SETULT:
213  case ISD::SETULE:
214  case ISD::SETUGT:
215  case ISD::SETUGE: return 2;
216  }
217}
218
219/// getSetCCOrOperation - Return the result of a logical OR between different
220/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
221/// returns SETCC_INVALID if it is not possible to represent the resultant
222/// comparison.
223ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
224                                       bool isInteger) {
225  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
226    // Cannot fold a signed integer setcc with an unsigned integer setcc.
227    return ISD::SETCC_INVALID;
228
229  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
230
231  // If the N and U bits get set then the resultant comparison DOES suddenly
232  // care about orderedness, and is true when ordered.
233  if (Op > ISD::SETTRUE2)
234    Op &= ~16;     // Clear the U bit if the N bit is set.
235
236  // Canonicalize illegal integer setcc's.
237  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
238    Op = ISD::SETNE;
239
240  return ISD::CondCode(Op);
241}
242
243/// getSetCCAndOperation - Return the result of a logical AND between different
244/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
245/// function returns zero if it is not possible to represent the resultant
246/// comparison.
247ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
248                                        bool isInteger) {
249  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
250    // Cannot fold a signed setcc with an unsigned setcc.
251    return ISD::SETCC_INVALID;
252
253  // Combine all of the condition bits.
254  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
255
256  // Canonicalize illegal integer setcc's.
257  if (isInteger) {
258    switch (Result) {
259    default: break;
260    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
261    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
262    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
263    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
264    }
265  }
266
267  return Result;
268}
269
270const TargetMachine &SelectionDAG::getTarget() const {
271  return TLI.getTargetMachine();
272}
273
274//===----------------------------------------------------------------------===//
275//                           SDNode Profile Support
276//===----------------------------------------------------------------------===//
277
278/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
279///
280static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
281  ID.AddInteger(OpC);
282}
283
284/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
285/// solely with their pointer.
286void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
287  ID.AddPointer(VTList.VTs);
288}
289
290/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
291///
292static void AddNodeIDOperands(FoldingSetNodeID &ID,
293                              const SDOperand *Ops, unsigned NumOps) {
294  for (; NumOps; --NumOps, ++Ops) {
295    ID.AddPointer(Ops->Val);
296    ID.AddInteger(Ops->ResNo);
297  }
298}
299
300static void AddNodeIDNode(FoldingSetNodeID &ID,
301                          unsigned short OpC, SDVTList VTList,
302                          const SDOperand *OpList, unsigned N) {
303  AddNodeIDOpcode(ID, OpC);
304  AddNodeIDValueTypes(ID, VTList);
305  AddNodeIDOperands(ID, OpList, N);
306}
307
308/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
309/// data.
310static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
311  AddNodeIDOpcode(ID, N->getOpcode());
312  // Add the return value info.
313  AddNodeIDValueTypes(ID, N->getVTList());
314  // Add the operand info.
315  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
316
317  // Handle SDNode leafs with special info.
318  switch (N->getOpcode()) {
319  default: break;  // Normal nodes don't need extra info.
320  case ISD::TargetConstant:
321  case ISD::Constant:
322    ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
323    break;
324  case ISD::TargetConstantFP:
325  case ISD::ConstantFP: {
326    APFloat V = cast<ConstantFPSDNode>(N)->getValueAPF();
327    if (&V.getSemantics() == &APFloat::IEEEdouble)
328      ID.AddDouble(V.convertToDouble());
329    else if (&V.getSemantics() == &APFloat::IEEEsingle)
330      ID.AddDouble((double)V.convertToFloat());
331    else
332      assert(0);
333    break;
334  }
335  case ISD::TargetGlobalAddress:
336  case ISD::GlobalAddress:
337  case ISD::TargetGlobalTLSAddress:
338  case ISD::GlobalTLSAddress: {
339    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
340    ID.AddPointer(GA->getGlobal());
341    ID.AddInteger(GA->getOffset());
342    break;
343  }
344  case ISD::BasicBlock:
345    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
346    break;
347  case ISD::Register:
348    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
349    break;
350  case ISD::SRCVALUE: {
351    SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
352    ID.AddPointer(SV->getValue());
353    ID.AddInteger(SV->getOffset());
354    break;
355  }
356  case ISD::FrameIndex:
357  case ISD::TargetFrameIndex:
358    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
359    break;
360  case ISD::JumpTable:
361  case ISD::TargetJumpTable:
362    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
363    break;
364  case ISD::ConstantPool:
365  case ISD::TargetConstantPool: {
366    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
367    ID.AddInteger(CP->getAlignment());
368    ID.AddInteger(CP->getOffset());
369    if (CP->isMachineConstantPoolEntry())
370      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
371    else
372      ID.AddPointer(CP->getConstVal());
373    break;
374  }
375  case ISD::LOAD: {
376    LoadSDNode *LD = cast<LoadSDNode>(N);
377    ID.AddInteger(LD->getAddressingMode());
378    ID.AddInteger(LD->getExtensionType());
379    ID.AddInteger(LD->getLoadedVT());
380    ID.AddPointer(LD->getSrcValue());
381    ID.AddInteger(LD->getSrcValueOffset());
382    ID.AddInteger(LD->getAlignment());
383    ID.AddInteger(LD->isVolatile());
384    break;
385  }
386  case ISD::STORE: {
387    StoreSDNode *ST = cast<StoreSDNode>(N);
388    ID.AddInteger(ST->getAddressingMode());
389    ID.AddInteger(ST->isTruncatingStore());
390    ID.AddInteger(ST->getStoredVT());
391    ID.AddPointer(ST->getSrcValue());
392    ID.AddInteger(ST->getSrcValueOffset());
393    ID.AddInteger(ST->getAlignment());
394    ID.AddInteger(ST->isVolatile());
395    break;
396  }
397  }
398}
399
400//===----------------------------------------------------------------------===//
401//                              SelectionDAG Class
402//===----------------------------------------------------------------------===//
403
404/// RemoveDeadNodes - This method deletes all unreachable nodes in the
405/// SelectionDAG.
406void SelectionDAG::RemoveDeadNodes() {
407  // Create a dummy node (which is not added to allnodes), that adds a reference
408  // to the root node, preventing it from being deleted.
409  HandleSDNode Dummy(getRoot());
410
411  SmallVector<SDNode*, 128> DeadNodes;
412
413  // Add all obviously-dead nodes to the DeadNodes worklist.
414  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
415    if (I->use_empty())
416      DeadNodes.push_back(I);
417
418  // Process the worklist, deleting the nodes and adding their uses to the
419  // worklist.
420  while (!DeadNodes.empty()) {
421    SDNode *N = DeadNodes.back();
422    DeadNodes.pop_back();
423
424    // Take the node out of the appropriate CSE map.
425    RemoveNodeFromCSEMaps(N);
426
427    // Next, brutally remove the operand list.  This is safe to do, as there are
428    // no cycles in the graph.
429    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
430      SDNode *Operand = I->Val;
431      Operand->removeUser(N);
432
433      // Now that we removed this operand, see if there are no uses of it left.
434      if (Operand->use_empty())
435        DeadNodes.push_back(Operand);
436    }
437    if (N->OperandsNeedDelete)
438      delete[] N->OperandList;
439    N->OperandList = 0;
440    N->NumOperands = 0;
441
442    // Finally, remove N itself.
443    AllNodes.erase(N);
444  }
445
446  // If the root changed (e.g. it was a dead load, update the root).
447  setRoot(Dummy.getValue());
448}
449
450void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
451  SmallVector<SDNode*, 16> DeadNodes;
452  DeadNodes.push_back(N);
453
454  // Process the worklist, deleting the nodes and adding their uses to the
455  // worklist.
456  while (!DeadNodes.empty()) {
457    SDNode *N = DeadNodes.back();
458    DeadNodes.pop_back();
459
460    // Take the node out of the appropriate CSE map.
461    RemoveNodeFromCSEMaps(N);
462
463    // Next, brutally remove the operand list.  This is safe to do, as there are
464    // no cycles in the graph.
465    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
466      SDNode *Operand = I->Val;
467      Operand->removeUser(N);
468
469      // Now that we removed this operand, see if there are no uses of it left.
470      if (Operand->use_empty())
471        DeadNodes.push_back(Operand);
472    }
473    if (N->OperandsNeedDelete)
474      delete[] N->OperandList;
475    N->OperandList = 0;
476    N->NumOperands = 0;
477
478    // Finally, remove N itself.
479    Deleted.push_back(N);
480    AllNodes.erase(N);
481  }
482}
483
484void SelectionDAG::DeleteNode(SDNode *N) {
485  assert(N->use_empty() && "Cannot delete a node that is not dead!");
486
487  // First take this out of the appropriate CSE map.
488  RemoveNodeFromCSEMaps(N);
489
490  // Finally, remove uses due to operands of this node, remove from the
491  // AllNodes list, and delete the node.
492  DeleteNodeNotInCSEMaps(N);
493}
494
495void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
496
497  // Remove it from the AllNodes list.
498  AllNodes.remove(N);
499
500  // Drop all of the operands and decrement used nodes use counts.
501  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
502    I->Val->removeUser(N);
503  if (N->OperandsNeedDelete)
504    delete[] N->OperandList;
505  N->OperandList = 0;
506  N->NumOperands = 0;
507
508  delete N;
509}
510
511/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
512/// correspond to it.  This is useful when we're about to delete or repurpose
513/// the node.  We don't want future request for structurally identical nodes
514/// to return N anymore.
515void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
516  bool Erased = false;
517  switch (N->getOpcode()) {
518  case ISD::HANDLENODE: return;  // noop.
519  case ISD::STRING:
520    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
521    break;
522  case ISD::CONDCODE:
523    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
524           "Cond code doesn't exist!");
525    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
526    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
527    break;
528  case ISD::ExternalSymbol:
529    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
530    break;
531  case ISD::TargetExternalSymbol:
532    Erased =
533      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
534    break;
535  case ISD::VALUETYPE:
536    Erased = ValueTypeNodes[cast<VTSDNode>(N)->getVT()] != 0;
537    ValueTypeNodes[cast<VTSDNode>(N)->getVT()] = 0;
538    break;
539  default:
540    // Remove it from the CSE Map.
541    Erased = CSEMap.RemoveNode(N);
542    break;
543  }
544#ifndef NDEBUG
545  // Verify that the node was actually in one of the CSE maps, unless it has a
546  // flag result (which cannot be CSE'd) or is one of the special cases that are
547  // not subject to CSE.
548  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
549      !N->isTargetOpcode()) {
550    N->dump(this);
551    cerr << "\n";
552    assert(0 && "Node is not in map!");
553  }
554#endif
555}
556
557/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
558/// has been taken out and modified in some way.  If the specified node already
559/// exists in the CSE maps, do not modify the maps, but return the existing node
560/// instead.  If it doesn't exist, add it and return null.
561///
562SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
563  assert(N->getNumOperands() && "This is a leaf node!");
564  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
565    return 0;    // Never add these nodes.
566
567  // Check that remaining values produced are not flags.
568  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
569    if (N->getValueType(i) == MVT::Flag)
570      return 0;   // Never CSE anything that produces a flag.
571
572  SDNode *New = CSEMap.GetOrInsertNode(N);
573  if (New != N) return New;  // Node already existed.
574  return 0;
575}
576
577/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
578/// were replaced with those specified.  If this node is never memoized,
579/// return null, otherwise return a pointer to the slot it would take.  If a
580/// node already exists with these operands, the slot will be non-null.
581SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
582                                           void *&InsertPos) {
583  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
584    return 0;    // Never add these nodes.
585
586  // Check that remaining values produced are not flags.
587  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
588    if (N->getValueType(i) == MVT::Flag)
589      return 0;   // Never CSE anything that produces a flag.
590
591  SDOperand Ops[] = { Op };
592  FoldingSetNodeID ID;
593  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
594  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
595}
596
597/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
598/// were replaced with those specified.  If this node is never memoized,
599/// return null, otherwise return a pointer to the slot it would take.  If a
600/// node already exists with these operands, the slot will be non-null.
601SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
602                                           SDOperand Op1, SDOperand Op2,
603                                           void *&InsertPos) {
604  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
605    return 0;    // Never add these nodes.
606
607  // Check that remaining values produced are not flags.
608  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
609    if (N->getValueType(i) == MVT::Flag)
610      return 0;   // Never CSE anything that produces a flag.
611
612  SDOperand Ops[] = { Op1, Op2 };
613  FoldingSetNodeID ID;
614  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
615  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
616}
617
618
619/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
620/// were replaced with those specified.  If this node is never memoized,
621/// return null, otherwise return a pointer to the slot it would take.  If a
622/// node already exists with these operands, the slot will be non-null.
623SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
624                                           const SDOperand *Ops,unsigned NumOps,
625                                           void *&InsertPos) {
626  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
627    return 0;    // Never add these nodes.
628
629  // Check that remaining values produced are not flags.
630  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
631    if (N->getValueType(i) == MVT::Flag)
632      return 0;   // Never CSE anything that produces a flag.
633
634  FoldingSetNodeID ID;
635  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
636
637  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
638    ID.AddInteger(LD->getAddressingMode());
639    ID.AddInteger(LD->getExtensionType());
640    ID.AddInteger(LD->getLoadedVT());
641    ID.AddPointer(LD->getSrcValue());
642    ID.AddInteger(LD->getSrcValueOffset());
643    ID.AddInteger(LD->getAlignment());
644    ID.AddInteger(LD->isVolatile());
645  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
646    ID.AddInteger(ST->getAddressingMode());
647    ID.AddInteger(ST->isTruncatingStore());
648    ID.AddInteger(ST->getStoredVT());
649    ID.AddPointer(ST->getSrcValue());
650    ID.AddInteger(ST->getSrcValueOffset());
651    ID.AddInteger(ST->getAlignment());
652    ID.AddInteger(ST->isVolatile());
653  }
654
655  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
656}
657
658
659SelectionDAG::~SelectionDAG() {
660  while (!AllNodes.empty()) {
661    SDNode *N = AllNodes.begin();
662    N->SetNextInBucket(0);
663    if (N->OperandsNeedDelete)
664      delete [] N->OperandList;
665    N->OperandList = 0;
666    N->NumOperands = 0;
667    AllNodes.pop_front();
668  }
669}
670
671SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
672  if (Op.getValueType() == VT) return Op;
673  int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
674  return getNode(ISD::AND, Op.getValueType(), Op,
675                 getConstant(Imm, Op.getValueType()));
676}
677
678SDOperand SelectionDAG::getString(const std::string &Val) {
679  StringSDNode *&N = StringNodes[Val];
680  if (!N) {
681    N = new StringSDNode(Val);
682    AllNodes.push_back(N);
683  }
684  return SDOperand(N, 0);
685}
686
687SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
688  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
689  assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!");
690
691  // Mask out any bits that are not valid for this constant.
692  Val &= MVT::getIntVTBitMask(VT);
693
694  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
695  FoldingSetNodeID ID;
696  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
697  ID.AddInteger(Val);
698  void *IP = 0;
699  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
700    return SDOperand(E, 0);
701  SDNode *N = new ConstantSDNode(isT, Val, VT);
702  CSEMap.InsertNode(N, IP);
703  AllNodes.push_back(N);
704  return SDOperand(N, 0);
705}
706
707SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
708                                      bool isTarget) {
709  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
710
711  MVT::ValueType EltVT =
712    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
713  bool isDouble = (EltVT == MVT::f64);
714  double Val = isDouble ? V.convertToDouble() : (double)V.convertToFloat();
715
716  // Do the map lookup using the actual bit pattern for the floating point
717  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
718  // we don't have issues with SNANs.
719  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
720  // ?? Should we store float/double/longdouble separately in ID?
721  FoldingSetNodeID ID;
722  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
723  ID.AddDouble(Val);
724  void *IP = 0;
725  SDNode *N = NULL;
726  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
727    if (!MVT::isVector(VT))
728      return SDOperand(N, 0);
729  if (!N) {
730    N = new ConstantFPSDNode(isTarget,
731      isDouble ? APFloat(Val) : APFloat((float)Val), EltVT);
732    CSEMap.InsertNode(N, IP);
733    AllNodes.push_back(N);
734  }
735
736  SDOperand Result(N, 0);
737  if (MVT::isVector(VT)) {
738    SmallVector<SDOperand, 8> Ops;
739    Ops.assign(MVT::getVectorNumElements(VT), Result);
740    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
741  }
742  return Result;
743}
744
745SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
746                                      bool isTarget) {
747  MVT::ValueType EltVT =
748    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
749  if (EltVT==MVT::f32)
750    return getConstantFP(APFloat((float)Val), VT, isTarget);
751  else
752    return getConstantFP(APFloat(Val), VT, isTarget);
753}
754
755SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
756                                         MVT::ValueType VT, int Offset,
757                                         bool isTargetGA) {
758  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
759  unsigned Opc;
760  if (GVar && GVar->isThreadLocal())
761    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
762  else
763    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
764  FoldingSetNodeID ID;
765  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
766  ID.AddPointer(GV);
767  ID.AddInteger(Offset);
768  void *IP = 0;
769  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
770   return SDOperand(E, 0);
771  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
772  CSEMap.InsertNode(N, IP);
773  AllNodes.push_back(N);
774  return SDOperand(N, 0);
775}
776
777SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
778                                      bool isTarget) {
779  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
780  FoldingSetNodeID ID;
781  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
782  ID.AddInteger(FI);
783  void *IP = 0;
784  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
785    return SDOperand(E, 0);
786  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
787  CSEMap.InsertNode(N, IP);
788  AllNodes.push_back(N);
789  return SDOperand(N, 0);
790}
791
792SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
793  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
794  FoldingSetNodeID ID;
795  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
796  ID.AddInteger(JTI);
797  void *IP = 0;
798  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
799    return SDOperand(E, 0);
800  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
801  CSEMap.InsertNode(N, IP);
802  AllNodes.push_back(N);
803  return SDOperand(N, 0);
804}
805
806SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
807                                        unsigned Alignment, int Offset,
808                                        bool isTarget) {
809  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
810  FoldingSetNodeID ID;
811  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
812  ID.AddInteger(Alignment);
813  ID.AddInteger(Offset);
814  ID.AddPointer(C);
815  void *IP = 0;
816  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
817    return SDOperand(E, 0);
818  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
819  CSEMap.InsertNode(N, IP);
820  AllNodes.push_back(N);
821  return SDOperand(N, 0);
822}
823
824
825SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
826                                        MVT::ValueType VT,
827                                        unsigned Alignment, int Offset,
828                                        bool isTarget) {
829  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
830  FoldingSetNodeID ID;
831  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
832  ID.AddInteger(Alignment);
833  ID.AddInteger(Offset);
834  C->AddSelectionDAGCSEId(ID);
835  void *IP = 0;
836  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
837    return SDOperand(E, 0);
838  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
839  CSEMap.InsertNode(N, IP);
840  AllNodes.push_back(N);
841  return SDOperand(N, 0);
842}
843
844
845SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
846  FoldingSetNodeID ID;
847  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
848  ID.AddPointer(MBB);
849  void *IP = 0;
850  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
851    return SDOperand(E, 0);
852  SDNode *N = new BasicBlockSDNode(MBB);
853  CSEMap.InsertNode(N, IP);
854  AllNodes.push_back(N);
855  return SDOperand(N, 0);
856}
857
858SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
859  if ((unsigned)VT >= ValueTypeNodes.size())
860    ValueTypeNodes.resize(VT+1);
861  if (ValueTypeNodes[VT] == 0) {
862    ValueTypeNodes[VT] = new VTSDNode(VT);
863    AllNodes.push_back(ValueTypeNodes[VT]);
864  }
865
866  return SDOperand(ValueTypeNodes[VT], 0);
867}
868
869SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
870  SDNode *&N = ExternalSymbols[Sym];
871  if (N) return SDOperand(N, 0);
872  N = new ExternalSymbolSDNode(false, Sym, VT);
873  AllNodes.push_back(N);
874  return SDOperand(N, 0);
875}
876
877SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
878                                                MVT::ValueType VT) {
879  SDNode *&N = TargetExternalSymbols[Sym];
880  if (N) return SDOperand(N, 0);
881  N = new ExternalSymbolSDNode(true, Sym, VT);
882  AllNodes.push_back(N);
883  return SDOperand(N, 0);
884}
885
886SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
887  if ((unsigned)Cond >= CondCodeNodes.size())
888    CondCodeNodes.resize(Cond+1);
889
890  if (CondCodeNodes[Cond] == 0) {
891    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
892    AllNodes.push_back(CondCodeNodes[Cond]);
893  }
894  return SDOperand(CondCodeNodes[Cond], 0);
895}
896
897SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
898  FoldingSetNodeID ID;
899  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
900  ID.AddInteger(RegNo);
901  void *IP = 0;
902  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
903    return SDOperand(E, 0);
904  SDNode *N = new RegisterSDNode(RegNo, VT);
905  CSEMap.InsertNode(N, IP);
906  AllNodes.push_back(N);
907  return SDOperand(N, 0);
908}
909
910SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
911  assert((!V || isa<PointerType>(V->getType())) &&
912         "SrcValue is not a pointer?");
913
914  FoldingSetNodeID ID;
915  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
916  ID.AddPointer(V);
917  ID.AddInteger(Offset);
918  void *IP = 0;
919  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
920    return SDOperand(E, 0);
921  SDNode *N = new SrcValueSDNode(V, Offset);
922  CSEMap.InsertNode(N, IP);
923  AllNodes.push_back(N);
924  return SDOperand(N, 0);
925}
926
927SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
928                                  SDOperand N2, ISD::CondCode Cond) {
929  // These setcc operations always fold.
930  switch (Cond) {
931  default: break;
932  case ISD::SETFALSE:
933  case ISD::SETFALSE2: return getConstant(0, VT);
934  case ISD::SETTRUE:
935  case ISD::SETTRUE2:  return getConstant(1, VT);
936
937  case ISD::SETOEQ:
938  case ISD::SETOGT:
939  case ISD::SETOGE:
940  case ISD::SETOLT:
941  case ISD::SETOLE:
942  case ISD::SETONE:
943  case ISD::SETO:
944  case ISD::SETUO:
945  case ISD::SETUEQ:
946  case ISD::SETUNE:
947    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
948    break;
949  }
950
951  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
952    uint64_t C2 = N2C->getValue();
953    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
954      uint64_t C1 = N1C->getValue();
955
956      // Sign extend the operands if required
957      if (ISD::isSignedIntSetCC(Cond)) {
958        C1 = N1C->getSignExtended();
959        C2 = N2C->getSignExtended();
960      }
961
962      switch (Cond) {
963      default: assert(0 && "Unknown integer setcc!");
964      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
965      case ISD::SETNE:  return getConstant(C1 != C2, VT);
966      case ISD::SETULT: return getConstant(C1 <  C2, VT);
967      case ISD::SETUGT: return getConstant(C1 >  C2, VT);
968      case ISD::SETULE: return getConstant(C1 <= C2, VT);
969      case ISD::SETUGE: return getConstant(C1 >= C2, VT);
970      case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT);
971      case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT);
972      case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT);
973      case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT);
974      }
975    }
976  }
977  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
978    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
979
980      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
981      switch (Cond) {
982      default: break;
983      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
984                          return getNode(ISD::UNDEF, VT);
985                        // fall through
986      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
987      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
988                          return getNode(ISD::UNDEF, VT);
989                        // fall through
990      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
991                                           R==APFloat::cmpLessThan, VT);
992      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
993                          return getNode(ISD::UNDEF, VT);
994                        // fall through
995      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
996      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
997                          return getNode(ISD::UNDEF, VT);
998                        // fall through
999      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1000      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1001                          return getNode(ISD::UNDEF, VT);
1002                        // fall through
1003      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1004                                           R==APFloat::cmpEqual, VT);
1005      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1006                          return getNode(ISD::UNDEF, VT);
1007                        // fall through
1008      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1009                                           R==APFloat::cmpEqual, VT);
1010      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1011      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1012      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1013                                           R==APFloat::cmpEqual, VT);
1014      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1015      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1016                                           R==APFloat::cmpLessThan, VT);
1017      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1018                                           R==APFloat::cmpUnordered, VT);
1019      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1020      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1021      }
1022    } else {
1023      // Ensure that the constant occurs on the RHS.
1024      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1025    }
1026
1027  // Could not fold it.
1028  return SDOperand();
1029}
1030
1031/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1032/// this predicate to simplify operations downstream.  Mask is known to be zero
1033/// for bits that V cannot have.
1034bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1035                                     unsigned Depth) const {
1036  // The masks are not wide enough to represent this type!  Should use APInt.
1037  if (Op.getValueType() == MVT::i128)
1038    return false;
1039
1040  uint64_t KnownZero, KnownOne;
1041  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1042  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1043  return (KnownZero & Mask) == Mask;
1044}
1045
1046/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1047/// known to be either zero or one and return them in the KnownZero/KnownOne
1048/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1049/// processing.
1050void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1051                                     uint64_t &KnownZero, uint64_t &KnownOne,
1052                                     unsigned Depth) const {
1053  KnownZero = KnownOne = 0;   // Don't know anything.
1054  if (Depth == 6 || Mask == 0)
1055    return;  // Limit search depth.
1056
1057  // The masks are not wide enough to represent this type!  Should use APInt.
1058  if (Op.getValueType() == MVT::i128)
1059    return;
1060
1061  uint64_t KnownZero2, KnownOne2;
1062
1063  switch (Op.getOpcode()) {
1064  case ISD::Constant:
1065    // We know all of the bits for a constant!
1066    KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1067    KnownZero = ~KnownOne & Mask;
1068    return;
1069  case ISD::AND:
1070    // If either the LHS or the RHS are Zero, the result is zero.
1071    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1072    Mask &= ~KnownZero;
1073    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1074    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1075    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1076
1077    // Output known-1 bits are only known if set in both the LHS & RHS.
1078    KnownOne &= KnownOne2;
1079    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1080    KnownZero |= KnownZero2;
1081    return;
1082  case ISD::OR:
1083    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1084    Mask &= ~KnownOne;
1085    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1086    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1087    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1088
1089    // Output known-0 bits are only known if clear in both the LHS & RHS.
1090    KnownZero &= KnownZero2;
1091    // Output known-1 are known to be set if set in either the LHS | RHS.
1092    KnownOne |= KnownOne2;
1093    return;
1094  case ISD::XOR: {
1095    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1096    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1097    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1098    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1099
1100    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1101    uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1102    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1103    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1104    KnownZero = KnownZeroOut;
1105    return;
1106  }
1107  case ISD::SELECT:
1108    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1109    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1110    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1111    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1112
1113    // Only known if known in both the LHS and RHS.
1114    KnownOne &= KnownOne2;
1115    KnownZero &= KnownZero2;
1116    return;
1117  case ISD::SELECT_CC:
1118    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1119    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1120    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1121    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1122
1123    // Only known if known in both the LHS and RHS.
1124    KnownOne &= KnownOne2;
1125    KnownZero &= KnownZero2;
1126    return;
1127  case ISD::SETCC:
1128    // If we know the result of a setcc has the top bits zero, use this info.
1129    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1130      KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1131    return;
1132  case ISD::SHL:
1133    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1134    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1135      ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1136                        KnownZero, KnownOne, Depth+1);
1137      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1138      KnownZero <<= SA->getValue();
1139      KnownOne  <<= SA->getValue();
1140      KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero.
1141    }
1142    return;
1143  case ISD::SRL:
1144    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1145    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1146      MVT::ValueType VT = Op.getValueType();
1147      unsigned ShAmt = SA->getValue();
1148
1149      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1150      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1151                        KnownZero, KnownOne, Depth+1);
1152      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1153      KnownZero &= TypeMask;
1154      KnownOne  &= TypeMask;
1155      KnownZero >>= ShAmt;
1156      KnownOne  >>= ShAmt;
1157
1158      uint64_t HighBits = (1ULL << ShAmt)-1;
1159      HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1160      KnownZero |= HighBits;  // High bits known zero.
1161    }
1162    return;
1163  case ISD::SRA:
1164    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1165      MVT::ValueType VT = Op.getValueType();
1166      unsigned ShAmt = SA->getValue();
1167
1168      // Compute the new bits that are at the top now.
1169      uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1170
1171      uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1172      // If any of the demanded bits are produced by the sign extension, we also
1173      // demand the input sign bit.
1174      uint64_t HighBits = (1ULL << ShAmt)-1;
1175      HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1176      if (HighBits & Mask)
1177        InDemandedMask |= MVT::getIntVTSignBit(VT);
1178
1179      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1180                        Depth+1);
1181      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1182      KnownZero &= TypeMask;
1183      KnownOne  &= TypeMask;
1184      KnownZero >>= ShAmt;
1185      KnownOne  >>= ShAmt;
1186
1187      // Handle the sign bits.
1188      uint64_t SignBit = MVT::getIntVTSignBit(VT);
1189      SignBit >>= ShAmt;  // Adjust to where it is now in the mask.
1190
1191      if (KnownZero & SignBit) {
1192        KnownZero |= HighBits;  // New bits are known zero.
1193      } else if (KnownOne & SignBit) {
1194        KnownOne  |= HighBits;  // New bits are known one.
1195      }
1196    }
1197    return;
1198  case ISD::SIGN_EXTEND_INREG: {
1199    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1200
1201    // Sign extension.  Compute the demanded bits in the result that are not
1202    // present in the input.
1203    uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1204
1205    uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1206    int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1207
1208    // If the sign extended bits are demanded, we know that the sign
1209    // bit is demanded.
1210    if (NewBits)
1211      InputDemandedBits |= InSignBit;
1212
1213    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1214                      KnownZero, KnownOne, Depth+1);
1215    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1216
1217    // If the sign bit of the input is known set or clear, then we know the
1218    // top bits of the result.
1219    if (KnownZero & InSignBit) {          // Input sign bit known clear
1220      KnownZero |= NewBits;
1221      KnownOne  &= ~NewBits;
1222    } else if (KnownOne & InSignBit) {    // Input sign bit known set
1223      KnownOne  |= NewBits;
1224      KnownZero &= ~NewBits;
1225    } else {                              // Input sign bit unknown
1226      KnownZero &= ~NewBits;
1227      KnownOne  &= ~NewBits;
1228    }
1229    return;
1230  }
1231  case ISD::CTTZ:
1232  case ISD::CTLZ:
1233  case ISD::CTPOP: {
1234    MVT::ValueType VT = Op.getValueType();
1235    unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1236    KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1237    KnownOne  = 0;
1238    return;
1239  }
1240  case ISD::LOAD: {
1241    if (ISD::isZEXTLoad(Op.Val)) {
1242      LoadSDNode *LD = cast<LoadSDNode>(Op);
1243      MVT::ValueType VT = LD->getLoadedVT();
1244      KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1245    }
1246    return;
1247  }
1248  case ISD::ZERO_EXTEND: {
1249    uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1250    uint64_t NewBits = (~InMask) & Mask;
1251    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1252                      KnownOne, Depth+1);
1253    KnownZero |= NewBits & Mask;
1254    KnownOne  &= ~NewBits;
1255    return;
1256  }
1257  case ISD::SIGN_EXTEND: {
1258    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1259    unsigned InBits    = MVT::getSizeInBits(InVT);
1260    uint64_t InMask    = MVT::getIntVTBitMask(InVT);
1261    uint64_t InSignBit = 1ULL << (InBits-1);
1262    uint64_t NewBits   = (~InMask) & Mask;
1263    uint64_t InDemandedBits = Mask & InMask;
1264
1265    // If any of the sign extended bits are demanded, we know that the sign
1266    // bit is demanded.
1267    if (NewBits & Mask)
1268      InDemandedBits |= InSignBit;
1269
1270    ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1271                      KnownOne, Depth+1);
1272    // If the sign bit is known zero or one, the  top bits match.
1273    if (KnownZero & InSignBit) {
1274      KnownZero |= NewBits;
1275      KnownOne  &= ~NewBits;
1276    } else if (KnownOne & InSignBit) {
1277      KnownOne  |= NewBits;
1278      KnownZero &= ~NewBits;
1279    } else {   // Otherwise, top bits aren't known.
1280      KnownOne  &= ~NewBits;
1281      KnownZero &= ~NewBits;
1282    }
1283    return;
1284  }
1285  case ISD::ANY_EXTEND: {
1286    MVT::ValueType VT = Op.getOperand(0).getValueType();
1287    ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1288                      KnownZero, KnownOne, Depth+1);
1289    return;
1290  }
1291  case ISD::TRUNCATE: {
1292    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1293    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1294    uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1295    KnownZero &= OutMask;
1296    KnownOne &= OutMask;
1297    break;
1298  }
1299  case ISD::AssertZext: {
1300    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1301    uint64_t InMask = MVT::getIntVTBitMask(VT);
1302    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1303                      KnownOne, Depth+1);
1304    KnownZero |= (~InMask) & Mask;
1305    return;
1306  }
1307  case ISD::ADD: {
1308    // If either the LHS or the RHS are Zero, the result is zero.
1309    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1310    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1311    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1312    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1313
1314    // Output known-0 bits are known if clear or set in both the low clear bits
1315    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1316    // low 3 bits clear.
1317    uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1318                                     CountTrailingZeros_64(~KnownZero2));
1319
1320    KnownZero = (1ULL << KnownZeroOut) - 1;
1321    KnownOne = 0;
1322    return;
1323  }
1324  case ISD::SUB: {
1325    ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1326    if (!CLHS) return;
1327
1328    // We know that the top bits of C-X are clear if X contains less bits
1329    // than C (i.e. no wrap-around can happen).  For example, 20-X is
1330    // positive if we can prove that X is >= 0 and < 16.
1331    MVT::ValueType VT = CLHS->getValueType(0);
1332    if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear
1333      unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1334      uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1335      MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1336      ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1337
1338      // If all of the MaskV bits are known to be zero, then we know the output
1339      // top bits are zero, because we now know that the output is from [0-C].
1340      if ((KnownZero & MaskV) == MaskV) {
1341        unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1342        KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero.
1343        KnownOne = 0;   // No one bits known.
1344      } else {
1345        KnownZero = KnownOne = 0;  // Otherwise, nothing known.
1346      }
1347    }
1348    return;
1349  }
1350  default:
1351    // Allow the target to implement this method for its nodes.
1352    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1353  case ISD::INTRINSIC_WO_CHAIN:
1354  case ISD::INTRINSIC_W_CHAIN:
1355  case ISD::INTRINSIC_VOID:
1356      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1357    }
1358    return;
1359  }
1360}
1361
1362/// ComputeNumSignBits - Return the number of times the sign bit of the
1363/// register is replicated into the other bits.  We know that at least 1 bit
1364/// is always equal to the sign bit (itself), but other cases can give us
1365/// information.  For example, immediately after an "SRA X, 2", we know that
1366/// the top 3 bits are all equal to each other, so we return 3.
1367unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1368  MVT::ValueType VT = Op.getValueType();
1369  assert(MVT::isInteger(VT) && "Invalid VT!");
1370  unsigned VTBits = MVT::getSizeInBits(VT);
1371  unsigned Tmp, Tmp2;
1372
1373  if (Depth == 6)
1374    return 1;  // Limit search depth.
1375
1376  switch (Op.getOpcode()) {
1377  default: break;
1378  case ISD::AssertSext:
1379    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1380    return VTBits-Tmp+1;
1381  case ISD::AssertZext:
1382    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1383    return VTBits-Tmp;
1384
1385  case ISD::Constant: {
1386    uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1387    // If negative, invert the bits, then look at it.
1388    if (Val & MVT::getIntVTSignBit(VT))
1389      Val = ~Val;
1390
1391    // Shift the bits so they are the leading bits in the int64_t.
1392    Val <<= 64-VTBits;
1393
1394    // Return # leading zeros.  We use 'min' here in case Val was zero before
1395    // shifting.  We don't want to return '64' as for an i32 "0".
1396    return std::min(VTBits, CountLeadingZeros_64(Val));
1397  }
1398
1399  case ISD::SIGN_EXTEND:
1400    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1401    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1402
1403  case ISD::SIGN_EXTEND_INREG:
1404    // Max of the input and what this extends.
1405    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1406    Tmp = VTBits-Tmp+1;
1407
1408    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1409    return std::max(Tmp, Tmp2);
1410
1411  case ISD::SRA:
1412    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1413    // SRA X, C   -> adds C sign bits.
1414    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1415      Tmp += C->getValue();
1416      if (Tmp > VTBits) Tmp = VTBits;
1417    }
1418    return Tmp;
1419  case ISD::SHL:
1420    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1421      // shl destroys sign bits.
1422      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1423      if (C->getValue() >= VTBits ||      // Bad shift.
1424          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1425      return Tmp - C->getValue();
1426    }
1427    break;
1428  case ISD::AND:
1429  case ISD::OR:
1430  case ISD::XOR:    // NOT is handled here.
1431    // Logical binary ops preserve the number of sign bits.
1432    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1433    if (Tmp == 1) return 1;  // Early out.
1434    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1435    return std::min(Tmp, Tmp2);
1436
1437  case ISD::SELECT:
1438    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1439    if (Tmp == 1) return 1;  // Early out.
1440    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1441    return std::min(Tmp, Tmp2);
1442
1443  case ISD::SETCC:
1444    // If setcc returns 0/-1, all bits are sign bits.
1445    if (TLI.getSetCCResultContents() ==
1446        TargetLowering::ZeroOrNegativeOneSetCCResult)
1447      return VTBits;
1448    break;
1449  case ISD::ROTL:
1450  case ISD::ROTR:
1451    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1452      unsigned RotAmt = C->getValue() & (VTBits-1);
1453
1454      // Handle rotate right by N like a rotate left by 32-N.
1455      if (Op.getOpcode() == ISD::ROTR)
1456        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1457
1458      // If we aren't rotating out all of the known-in sign bits, return the
1459      // number that are left.  This handles rotl(sext(x), 1) for example.
1460      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1461      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1462    }
1463    break;
1464  case ISD::ADD:
1465    // Add can have at most one carry bit.  Thus we know that the output
1466    // is, at worst, one more bit than the inputs.
1467    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1468    if (Tmp == 1) return 1;  // Early out.
1469
1470    // Special case decrementing a value (ADD X, -1):
1471    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1472      if (CRHS->isAllOnesValue()) {
1473        uint64_t KnownZero, KnownOne;
1474        uint64_t Mask = MVT::getIntVTBitMask(VT);
1475        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1476
1477        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1478        // sign bits set.
1479        if ((KnownZero|1) == Mask)
1480          return VTBits;
1481
1482        // If we are subtracting one from a positive number, there is no carry
1483        // out of the result.
1484        if (KnownZero & MVT::getIntVTSignBit(VT))
1485          return Tmp;
1486      }
1487
1488    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1489    if (Tmp2 == 1) return 1;
1490      return std::min(Tmp, Tmp2)-1;
1491    break;
1492
1493  case ISD::SUB:
1494    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1495    if (Tmp2 == 1) return 1;
1496
1497    // Handle NEG.
1498    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1499      if (CLHS->getValue() == 0) {
1500        uint64_t KnownZero, KnownOne;
1501        uint64_t Mask = MVT::getIntVTBitMask(VT);
1502        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1503        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1504        // sign bits set.
1505        if ((KnownZero|1) == Mask)
1506          return VTBits;
1507
1508        // If the input is known to be positive (the sign bit is known clear),
1509        // the output of the NEG has the same number of sign bits as the input.
1510        if (KnownZero & MVT::getIntVTSignBit(VT))
1511          return Tmp2;
1512
1513        // Otherwise, we treat this like a SUB.
1514      }
1515
1516    // Sub can have at most one carry bit.  Thus we know that the output
1517    // is, at worst, one more bit than the inputs.
1518    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1519    if (Tmp == 1) return 1;  // Early out.
1520      return std::min(Tmp, Tmp2)-1;
1521    break;
1522  case ISD::TRUNCATE:
1523    // FIXME: it's tricky to do anything useful for this, but it is an important
1524    // case for targets like X86.
1525    break;
1526  }
1527
1528  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1529  if (Op.getOpcode() == ISD::LOAD) {
1530    LoadSDNode *LD = cast<LoadSDNode>(Op);
1531    unsigned ExtType = LD->getExtensionType();
1532    switch (ExtType) {
1533    default: break;
1534    case ISD::SEXTLOAD:    // '17' bits known
1535      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1536      return VTBits-Tmp+1;
1537    case ISD::ZEXTLOAD:    // '16' bits known
1538      Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1539      return VTBits-Tmp;
1540    }
1541  }
1542
1543  // Allow the target to implement this method for its nodes.
1544  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1545      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1546      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1547      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1548    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1549    if (NumBits > 1) return NumBits;
1550  }
1551
1552  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1553  // use this information.
1554  uint64_t KnownZero, KnownOne;
1555  uint64_t Mask = MVT::getIntVTBitMask(VT);
1556  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1557
1558  uint64_t SignBit = MVT::getIntVTSignBit(VT);
1559  if (KnownZero & SignBit) {        // SignBit is 0
1560    Mask = KnownZero;
1561  } else if (KnownOne & SignBit) {  // SignBit is 1;
1562    Mask = KnownOne;
1563  } else {
1564    // Nothing known.
1565    return 1;
1566  }
1567
1568  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1569  // the number of identical bits in the top of the input value.
1570  Mask ^= ~0ULL;
1571  Mask <<= 64-VTBits;
1572  // Return # leading zeros.  We use 'min' here in case Val was zero before
1573  // shifting.  We don't want to return '64' as for an i32 "0".
1574  return std::min(VTBits, CountLeadingZeros_64(Mask));
1575}
1576
1577
1578/// getNode - Gets or creates the specified node.
1579///
1580SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1581  FoldingSetNodeID ID;
1582  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1583  void *IP = 0;
1584  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1585    return SDOperand(E, 0);
1586  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1587  CSEMap.InsertNode(N, IP);
1588
1589  AllNodes.push_back(N);
1590  return SDOperand(N, 0);
1591}
1592
1593SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1594                                SDOperand Operand) {
1595  unsigned Tmp1;
1596  // Constant fold unary operations with an integer constant operand.
1597  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1598    uint64_t Val = C->getValue();
1599    switch (Opcode) {
1600    default: break;
1601    case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1602    case ISD::ANY_EXTEND:
1603    case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1604    case ISD::TRUNCATE:    return getConstant(Val, VT);
1605    case ISD::SINT_TO_FP:  return getConstantFP(C->getSignExtended(), VT);
1606    case ISD::UINT_TO_FP:  return getConstantFP(C->getValue(), VT);
1607    case ISD::BIT_CONVERT:
1608      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1609        return getConstantFP(BitsToFloat(Val), VT);
1610      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1611        return getConstantFP(BitsToDouble(Val), VT);
1612      break;
1613    case ISD::BSWAP:
1614      switch(VT) {
1615      default: assert(0 && "Invalid bswap!"); break;
1616      case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1617      case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1618      case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1619      }
1620      break;
1621    case ISD::CTPOP:
1622      switch(VT) {
1623      default: assert(0 && "Invalid ctpop!"); break;
1624      case MVT::i1: return getConstant(Val != 0, VT);
1625      case MVT::i8:
1626        Tmp1 = (unsigned)Val & 0xFF;
1627        return getConstant(CountPopulation_32(Tmp1), VT);
1628      case MVT::i16:
1629        Tmp1 = (unsigned)Val & 0xFFFF;
1630        return getConstant(CountPopulation_32(Tmp1), VT);
1631      case MVT::i32:
1632        return getConstant(CountPopulation_32((unsigned)Val), VT);
1633      case MVT::i64:
1634        return getConstant(CountPopulation_64(Val), VT);
1635      }
1636    case ISD::CTLZ:
1637      switch(VT) {
1638      default: assert(0 && "Invalid ctlz!"); break;
1639      case MVT::i1: return getConstant(Val == 0, VT);
1640      case MVT::i8:
1641        Tmp1 = (unsigned)Val & 0xFF;
1642        return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1643      case MVT::i16:
1644        Tmp1 = (unsigned)Val & 0xFFFF;
1645        return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1646      case MVT::i32:
1647        return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1648      case MVT::i64:
1649        return getConstant(CountLeadingZeros_64(Val), VT);
1650      }
1651    case ISD::CTTZ:
1652      switch(VT) {
1653      default: assert(0 && "Invalid cttz!"); break;
1654      case MVT::i1: return getConstant(Val == 0, VT);
1655      case MVT::i8:
1656        Tmp1 = (unsigned)Val | 0x100;
1657        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1658      case MVT::i16:
1659        Tmp1 = (unsigned)Val | 0x10000;
1660        return getConstant(CountTrailingZeros_32(Tmp1), VT);
1661      case MVT::i32:
1662        return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1663      case MVT::i64:
1664        return getConstant(CountTrailingZeros_64(Val), VT);
1665      }
1666    }
1667  }
1668
1669  // Constant fold unary operations with a floating point constant operand.
1670  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1671    APFloat V = C->getValueAPF();    // make copy
1672    switch (Opcode) {
1673    case ISD::FNEG:
1674      V.changeSign();
1675      return getConstantFP(V, VT);
1676    case ISD::FABS:
1677      V.clearSign();
1678      return getConstantFP(V, VT);
1679    case ISD::FP_ROUND:
1680    case ISD::FP_EXTEND:
1681      // This can return overflow, underflow, or inexact; we don't care.
1682      // FIXME need to be more flexible about rounding mode.
1683      (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1684                                      APFloat::IEEEdouble,
1685                       APFloat::rmNearestTiesToEven);
1686      return getConstantFP(V, VT);
1687    case ISD::FP_TO_SINT:
1688    case ISD::FP_TO_UINT: {
1689      integerPart x;
1690      assert(integerPartWidth >= 64);
1691      // FIXME need to be more flexible about rounding mode.
1692      APFloat::opStatus s = V.convertToInteger(&x, 64U,
1693                            Opcode==ISD::FP_TO_SINT,
1694                            APFloat::rmTowardZero);
1695      if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1696        break;
1697      return getConstant(x, VT);
1698    }
1699    case ISD::BIT_CONVERT:
1700      if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1701        return getConstant(FloatToBits(V.convertToFloat()), VT);
1702      else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1703        return getConstant(DoubleToBits(V.convertToDouble()), VT);
1704      break;
1705    }
1706  }
1707
1708  unsigned OpOpcode = Operand.Val->getOpcode();
1709  switch (Opcode) {
1710  case ISD::TokenFactor:
1711    return Operand;         // Factor of one node?  No factor.
1712  case ISD::FP_ROUND:
1713  case ISD::FP_EXTEND:
1714    assert(MVT::isFloatingPoint(VT) &&
1715           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1716    break;
1717  case ISD::SIGN_EXTEND:
1718    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1719           "Invalid SIGN_EXTEND!");
1720    if (Operand.getValueType() == VT) return Operand;   // noop extension
1721    assert(Operand.getValueType() < VT && "Invalid sext node, dst < src!");
1722    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1723      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1724    break;
1725  case ISD::ZERO_EXTEND:
1726    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1727           "Invalid ZERO_EXTEND!");
1728    if (Operand.getValueType() == VT) return Operand;   // noop extension
1729    assert(Operand.getValueType() < VT && "Invalid zext node, dst < src!");
1730    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
1731      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1732    break;
1733  case ISD::ANY_EXTEND:
1734    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1735           "Invalid ANY_EXTEND!");
1736    if (Operand.getValueType() == VT) return Operand;   // noop extension
1737    assert(Operand.getValueType() < VT && "Invalid anyext node, dst < src!");
1738    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1739      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
1740      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1741    break;
1742  case ISD::TRUNCATE:
1743    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1744           "Invalid TRUNCATE!");
1745    if (Operand.getValueType() == VT) return Operand;   // noop truncate
1746    assert(Operand.getValueType() > VT && "Invalid truncate node, src < dst!");
1747    if (OpOpcode == ISD::TRUNCATE)
1748      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1749    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1750             OpOpcode == ISD::ANY_EXTEND) {
1751      // If the source is smaller than the dest, we still need an extend.
1752      if (Operand.Val->getOperand(0).getValueType() < VT)
1753        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1754      else if (Operand.Val->getOperand(0).getValueType() > VT)
1755        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1756      else
1757        return Operand.Val->getOperand(0);
1758    }
1759    break;
1760  case ISD::BIT_CONVERT:
1761    // Basic sanity checking.
1762    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1763           && "Cannot BIT_CONVERT between types of different sizes!");
1764    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
1765    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
1766      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1767    if (OpOpcode == ISD::UNDEF)
1768      return getNode(ISD::UNDEF, VT);
1769    break;
1770  case ISD::SCALAR_TO_VECTOR:
1771    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1772           MVT::getVectorElementType(VT) == Operand.getValueType() &&
1773           "Illegal SCALAR_TO_VECTOR node!");
1774    break;
1775  case ISD::FNEG:
1776    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
1777      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1778                     Operand.Val->getOperand(0));
1779    if (OpOpcode == ISD::FNEG)  // --X -> X
1780      return Operand.Val->getOperand(0);
1781    break;
1782  case ISD::FABS:
1783    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
1784      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1785    break;
1786  }
1787
1788  SDNode *N;
1789  SDVTList VTs = getVTList(VT);
1790  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1791    FoldingSetNodeID ID;
1792    SDOperand Ops[1] = { Operand };
1793    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1794    void *IP = 0;
1795    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1796      return SDOperand(E, 0);
1797    N = new UnarySDNode(Opcode, VTs, Operand);
1798    CSEMap.InsertNode(N, IP);
1799  } else {
1800    N = new UnarySDNode(Opcode, VTs, Operand);
1801  }
1802  AllNodes.push_back(N);
1803  return SDOperand(N, 0);
1804}
1805
1806
1807
1808SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1809                                SDOperand N1, SDOperand N2) {
1810#ifndef NDEBUG
1811  switch (Opcode) {
1812  case ISD::TokenFactor:
1813    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1814           N2.getValueType() == MVT::Other && "Invalid token factor!");
1815    break;
1816  case ISD::AND:
1817  case ISD::OR:
1818  case ISD::XOR:
1819  case ISD::UDIV:
1820  case ISD::UREM:
1821  case ISD::MULHU:
1822  case ISD::MULHS:
1823    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1824    // fall through
1825  case ISD::ADD:
1826  case ISD::SUB:
1827  case ISD::MUL:
1828  case ISD::SDIV:
1829  case ISD::SREM:
1830    assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1831    // fall through.
1832  case ISD::FADD:
1833  case ISD::FSUB:
1834  case ISD::FMUL:
1835  case ISD::FDIV:
1836  case ISD::FREM:
1837    assert(N1.getValueType() == N2.getValueType() &&
1838           N1.getValueType() == VT && "Binary operator types must match!");
1839    break;
1840  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
1841    assert(N1.getValueType() == VT &&
1842           MVT::isFloatingPoint(N1.getValueType()) &&
1843           MVT::isFloatingPoint(N2.getValueType()) &&
1844           "Invalid FCOPYSIGN!");
1845    break;
1846  case ISD::SHL:
1847  case ISD::SRA:
1848  case ISD::SRL:
1849  case ISD::ROTL:
1850  case ISD::ROTR:
1851    assert(VT == N1.getValueType() &&
1852           "Shift operators return type must be the same as their first arg");
1853    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1854           VT != MVT::i1 && "Shifts only work on integers");
1855    break;
1856  case ISD::FP_ROUND_INREG: {
1857    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1858    assert(VT == N1.getValueType() && "Not an inreg round!");
1859    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1860           "Cannot FP_ROUND_INREG integer types");
1861    assert(EVT <= VT && "Not rounding down!");
1862    break;
1863  }
1864  case ISD::AssertSext:
1865  case ISD::AssertZext:
1866  case ISD::SIGN_EXTEND_INREG: {
1867    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1868    assert(VT == N1.getValueType() && "Not an inreg extend!");
1869    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1870           "Cannot *_EXTEND_INREG FP types");
1871    assert(EVT <= VT && "Not extending!");
1872  }
1873
1874  default: break;
1875  }
1876#endif
1877
1878  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1879  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1880  if (N1C) {
1881    if (Opcode == ISD::SIGN_EXTEND_INREG) {
1882      int64_t Val = N1C->getValue();
1883      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1884      Val <<= 64-FromBits;
1885      Val >>= 64-FromBits;
1886      return getConstant(Val, VT);
1887    }
1888
1889    if (N2C) {
1890      uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1891      switch (Opcode) {
1892      case ISD::ADD: return getConstant(C1 + C2, VT);
1893      case ISD::SUB: return getConstant(C1 - C2, VT);
1894      case ISD::MUL: return getConstant(C1 * C2, VT);
1895      case ISD::UDIV:
1896        if (C2) return getConstant(C1 / C2, VT);
1897        break;
1898      case ISD::UREM :
1899        if (C2) return getConstant(C1 % C2, VT);
1900        break;
1901      case ISD::SDIV :
1902        if (C2) return getConstant(N1C->getSignExtended() /
1903                                   N2C->getSignExtended(), VT);
1904        break;
1905      case ISD::SREM :
1906        if (C2) return getConstant(N1C->getSignExtended() %
1907                                   N2C->getSignExtended(), VT);
1908        break;
1909      case ISD::AND  : return getConstant(C1 & C2, VT);
1910      case ISD::OR   : return getConstant(C1 | C2, VT);
1911      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
1912      case ISD::SHL  : return getConstant(C1 << C2, VT);
1913      case ISD::SRL  : return getConstant(C1 >> C2, VT);
1914      case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1915      case ISD::ROTL :
1916        return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1917                           VT);
1918      case ISD::ROTR :
1919        return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1920                           VT);
1921      default: break;
1922      }
1923    } else {      // Cannonicalize constant to RHS if commutative
1924      if (isCommutativeBinOp(Opcode)) {
1925        std::swap(N1C, N2C);
1926        std::swap(N1, N2);
1927      }
1928    }
1929  }
1930
1931  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1932  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1933  if (N1CFP) {
1934    if (N2CFP) {
1935      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1936      APFloat::opStatus s;
1937      switch (Opcode) {
1938      case ISD::FADD:
1939        s = V1.add(V2, APFloat::rmNearestTiesToEven);
1940        if (s!=APFloat::opInvalidOp)
1941          return getConstantFP(V1, VT);
1942        break;
1943      case ISD::FSUB:
1944        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1945        if (s!=APFloat::opInvalidOp)
1946          return getConstantFP(V1, VT);
1947        break;
1948      case ISD::FMUL:
1949        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1950        if (s!=APFloat::opInvalidOp)
1951          return getConstantFP(V1, VT);
1952        break;
1953      case ISD::FDIV:
1954        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
1955        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1956          return getConstantFP(V1, VT);
1957        break;
1958      case ISD::FREM :
1959        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
1960        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
1961          return getConstantFP(V1, VT);
1962        break;
1963      case ISD::FCOPYSIGN:
1964        V1.copySign(V2);
1965        return getConstantFP(V1, VT);
1966      default: break;
1967      }
1968    } else {      // Cannonicalize constant to RHS if commutative
1969      if (isCommutativeBinOp(Opcode)) {
1970        std::swap(N1CFP, N2CFP);
1971        std::swap(N1, N2);
1972      }
1973    }
1974  }
1975
1976  // Canonicalize an UNDEF to the RHS, even over a constant.
1977  if (N1.getOpcode() == ISD::UNDEF) {
1978    if (isCommutativeBinOp(Opcode)) {
1979      std::swap(N1, N2);
1980    } else {
1981      switch (Opcode) {
1982      case ISD::FP_ROUND_INREG:
1983      case ISD::SIGN_EXTEND_INREG:
1984      case ISD::SUB:
1985      case ISD::FSUB:
1986      case ISD::FDIV:
1987      case ISD::FREM:
1988      case ISD::SRA:
1989        return N1;     // fold op(undef, arg2) -> undef
1990      case ISD::UDIV:
1991      case ISD::SDIV:
1992      case ISD::UREM:
1993      case ISD::SREM:
1994      case ISD::SRL:
1995      case ISD::SHL:
1996        if (!MVT::isVector(VT))
1997          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
1998        // For vectors, we can't easily build an all zero vector, just return
1999        // the LHS.
2000        return N2;
2001      }
2002    }
2003  }
2004
2005  // Fold a bunch of operators when the RHS is undef.
2006  if (N2.getOpcode() == ISD::UNDEF) {
2007    switch (Opcode) {
2008    case ISD::ADD:
2009    case ISD::ADDC:
2010    case ISD::ADDE:
2011    case ISD::SUB:
2012    case ISD::FADD:
2013    case ISD::FSUB:
2014    case ISD::FMUL:
2015    case ISD::FDIV:
2016    case ISD::FREM:
2017    case ISD::UDIV:
2018    case ISD::SDIV:
2019    case ISD::UREM:
2020    case ISD::SREM:
2021    case ISD::XOR:
2022      return N2;       // fold op(arg1, undef) -> undef
2023    case ISD::MUL:
2024    case ISD::AND:
2025    case ISD::SRL:
2026    case ISD::SHL:
2027      if (!MVT::isVector(VT))
2028        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2029      // For vectors, we can't easily build an all zero vector, just return
2030      // the LHS.
2031      return N1;
2032    case ISD::OR:
2033      if (!MVT::isVector(VT))
2034        return getConstant(MVT::getIntVTBitMask(VT), VT);
2035      // For vectors, we can't easily build an all one vector, just return
2036      // the LHS.
2037      return N1;
2038    case ISD::SRA:
2039      return N1;
2040    }
2041  }
2042
2043  // Fold operations.
2044  switch (Opcode) {
2045  case ISD::TokenFactor:
2046    // Fold trivial token factors.
2047    if (N1.getOpcode() == ISD::EntryToken) return N2;
2048    if (N2.getOpcode() == ISD::EntryToken) return N1;
2049    break;
2050
2051  case ISD::AND:
2052    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2053    // worth handling here.
2054    if (N2C && N2C->getValue() == 0)
2055      return N2;
2056    break;
2057  case ISD::OR:
2058  case ISD::XOR:
2059    // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's
2060    // worth handling here.
2061    if (N2C && N2C->getValue() == 0)
2062      return N1;
2063    break;
2064  case ISD::FP_ROUND_INREG:
2065    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2066    break;
2067  case ISD::SIGN_EXTEND_INREG: {
2068    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2069    if (EVT == VT) return N1;  // Not actually extending
2070    break;
2071  }
2072  case ISD::EXTRACT_VECTOR_ELT:
2073    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2074
2075    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2076    // expanding copies of large vectors from registers.
2077    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2078        N1.getNumOperands() > 0) {
2079      unsigned Factor =
2080        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2081      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2082                     N1.getOperand(N2C->getValue() / Factor),
2083                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2084    }
2085
2086    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2087    // expanding large vector constants.
2088    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2089      return N1.getOperand(N2C->getValue());
2090
2091    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2092    // operations are lowered to scalars.
2093    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2094      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2095        if (IEC == N2C)
2096          return N1.getOperand(1);
2097        else
2098          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2099      }
2100    break;
2101  case ISD::EXTRACT_ELEMENT:
2102    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2103
2104    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2105    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2106    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2107    if (N1.getOpcode() == ISD::BUILD_PAIR)
2108      return N1.getOperand(N2C->getValue());
2109
2110    // EXTRACT_ELEMENT of a constant int is also very common.
2111    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2112      unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2113      return getConstant(C->getValue() >> Shift, VT);
2114    }
2115    break;
2116
2117  // FIXME: figure out how to safely handle things like
2118  // int foo(int x) { return 1 << (x & 255); }
2119  // int bar() { return foo(256); }
2120#if 0
2121  case ISD::SHL:
2122  case ISD::SRL:
2123  case ISD::SRA:
2124    if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2125        cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2126      return getNode(Opcode, VT, N1, N2.getOperand(0));
2127    else if (N2.getOpcode() == ISD::AND)
2128      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2129        // If the and is only masking out bits that cannot effect the shift,
2130        // eliminate the and.
2131        unsigned NumBits = MVT::getSizeInBits(VT);
2132        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2133          return getNode(Opcode, VT, N1, N2.getOperand(0));
2134      }
2135    break;
2136#endif
2137  }
2138
2139  // Memoize this node if possible.
2140  SDNode *N;
2141  SDVTList VTs = getVTList(VT);
2142  if (VT != MVT::Flag) {
2143    SDOperand Ops[] = { N1, N2 };
2144    FoldingSetNodeID ID;
2145    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2146    void *IP = 0;
2147    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2148      return SDOperand(E, 0);
2149    N = new BinarySDNode(Opcode, VTs, N1, N2);
2150    CSEMap.InsertNode(N, IP);
2151  } else {
2152    N = new BinarySDNode(Opcode, VTs, N1, N2);
2153  }
2154
2155  AllNodes.push_back(N);
2156  return SDOperand(N, 0);
2157}
2158
2159SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2160                                SDOperand N1, SDOperand N2, SDOperand N3) {
2161  // Perform various simplifications.
2162  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2163  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2164  switch (Opcode) {
2165  case ISD::SETCC: {
2166    // Use FoldSetCC to simplify SETCC's.
2167    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2168    if (Simp.Val) return Simp;
2169    break;
2170  }
2171  case ISD::SELECT:
2172    if (N1C)
2173      if (N1C->getValue())
2174        return N2;             // select true, X, Y -> X
2175      else
2176        return N3;             // select false, X, Y -> Y
2177
2178    if (N2 == N3) return N2;   // select C, X, X -> X
2179    break;
2180  case ISD::BRCOND:
2181    if (N2C)
2182      if (N2C->getValue()) // Unconditional branch
2183        return getNode(ISD::BR, MVT::Other, N1, N3);
2184      else
2185        return N1;         // Never-taken branch
2186    break;
2187  case ISD::VECTOR_SHUFFLE:
2188    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2189           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2190           N3.getOpcode() == ISD::BUILD_VECTOR &&
2191           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2192           "Illegal VECTOR_SHUFFLE node!");
2193    break;
2194  case ISD::BIT_CONVERT:
2195    // Fold bit_convert nodes from a type to themselves.
2196    if (N1.getValueType() == VT)
2197      return N1;
2198    break;
2199  }
2200
2201  // Memoize node if it doesn't produce a flag.
2202  SDNode *N;
2203  SDVTList VTs = getVTList(VT);
2204  if (VT != MVT::Flag) {
2205    SDOperand Ops[] = { N1, N2, N3 };
2206    FoldingSetNodeID ID;
2207    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2208    void *IP = 0;
2209    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2210      return SDOperand(E, 0);
2211    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2212    CSEMap.InsertNode(N, IP);
2213  } else {
2214    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2215  }
2216  AllNodes.push_back(N);
2217  return SDOperand(N, 0);
2218}
2219
2220SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2221                                SDOperand N1, SDOperand N2, SDOperand N3,
2222                                SDOperand N4) {
2223  SDOperand Ops[] = { N1, N2, N3, N4 };
2224  return getNode(Opcode, VT, Ops, 4);
2225}
2226
2227SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2228                                SDOperand N1, SDOperand N2, SDOperand N3,
2229                                SDOperand N4, SDOperand N5) {
2230  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2231  return getNode(Opcode, VT, Ops, 5);
2232}
2233
2234SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2235                                SDOperand Chain, SDOperand Ptr,
2236                                const Value *SV, int SVOffset,
2237                                bool isVolatile, unsigned Alignment) {
2238  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2239    const Type *Ty = 0;
2240    if (VT != MVT::iPTR) {
2241      Ty = MVT::getTypeForValueType(VT);
2242    } else if (SV) {
2243      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2244      assert(PT && "Value for load must be a pointer");
2245      Ty = PT->getElementType();
2246    }
2247    assert(Ty && "Could not get type information for load");
2248    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2249  }
2250  SDVTList VTs = getVTList(VT, MVT::Other);
2251  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2252  SDOperand Ops[] = { Chain, Ptr, Undef };
2253  FoldingSetNodeID ID;
2254  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2255  ID.AddInteger(ISD::UNINDEXED);
2256  ID.AddInteger(ISD::NON_EXTLOAD);
2257  ID.AddInteger(VT);
2258  ID.AddPointer(SV);
2259  ID.AddInteger(SVOffset);
2260  ID.AddInteger(Alignment);
2261  ID.AddInteger(isVolatile);
2262  void *IP = 0;
2263  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2264    return SDOperand(E, 0);
2265  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2266                             ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2267                             isVolatile);
2268  CSEMap.InsertNode(N, IP);
2269  AllNodes.push_back(N);
2270  return SDOperand(N, 0);
2271}
2272
2273SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2274                                   SDOperand Chain, SDOperand Ptr,
2275                                   const Value *SV,
2276                                   int SVOffset, MVT::ValueType EVT,
2277                                   bool isVolatile, unsigned Alignment) {
2278  // If they are asking for an extending load from/to the same thing, return a
2279  // normal load.
2280  if (VT == EVT)
2281    ExtType = ISD::NON_EXTLOAD;
2282
2283  if (MVT::isVector(VT))
2284    assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2285  else
2286    assert(EVT < VT && "Should only be an extending load, not truncating!");
2287  assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2288         "Cannot sign/zero extend a FP/Vector load!");
2289  assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2290         "Cannot convert from FP to Int or Int -> FP!");
2291
2292  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2293    const Type *Ty = 0;
2294    if (VT != MVT::iPTR) {
2295      Ty = MVT::getTypeForValueType(VT);
2296    } else if (SV) {
2297      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2298      assert(PT && "Value for load must be a pointer");
2299      Ty = PT->getElementType();
2300    }
2301    assert(Ty && "Could not get type information for load");
2302    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2303  }
2304  SDVTList VTs = getVTList(VT, MVT::Other);
2305  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2306  SDOperand Ops[] = { Chain, Ptr, Undef };
2307  FoldingSetNodeID ID;
2308  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2309  ID.AddInteger(ISD::UNINDEXED);
2310  ID.AddInteger(ExtType);
2311  ID.AddInteger(EVT);
2312  ID.AddPointer(SV);
2313  ID.AddInteger(SVOffset);
2314  ID.AddInteger(Alignment);
2315  ID.AddInteger(isVolatile);
2316  void *IP = 0;
2317  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2318    return SDOperand(E, 0);
2319  SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2320                             SV, SVOffset, Alignment, isVolatile);
2321  CSEMap.InsertNode(N, IP);
2322  AllNodes.push_back(N);
2323  return SDOperand(N, 0);
2324}
2325
2326SDOperand
2327SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2328                             SDOperand Offset, ISD::MemIndexedMode AM) {
2329  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2330  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2331         "Load is already a indexed load!");
2332  MVT::ValueType VT = OrigLoad.getValueType();
2333  SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2334  SDOperand Ops[] = { LD->getChain(), Base, Offset };
2335  FoldingSetNodeID ID;
2336  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2337  ID.AddInteger(AM);
2338  ID.AddInteger(LD->getExtensionType());
2339  ID.AddInteger(LD->getLoadedVT());
2340  ID.AddPointer(LD->getSrcValue());
2341  ID.AddInteger(LD->getSrcValueOffset());
2342  ID.AddInteger(LD->getAlignment());
2343  ID.AddInteger(LD->isVolatile());
2344  void *IP = 0;
2345  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2346    return SDOperand(E, 0);
2347  SDNode *N = new LoadSDNode(Ops, VTs, AM,
2348                             LD->getExtensionType(), LD->getLoadedVT(),
2349                             LD->getSrcValue(), LD->getSrcValueOffset(),
2350                             LD->getAlignment(), LD->isVolatile());
2351  CSEMap.InsertNode(N, IP);
2352  AllNodes.push_back(N);
2353  return SDOperand(N, 0);
2354}
2355
2356SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2357                                 SDOperand Ptr, const Value *SV, int SVOffset,
2358                                 bool isVolatile, unsigned Alignment) {
2359  MVT::ValueType VT = Val.getValueType();
2360
2361  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2362    const Type *Ty = 0;
2363    if (VT != MVT::iPTR) {
2364      Ty = MVT::getTypeForValueType(VT);
2365    } else if (SV) {
2366      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2367      assert(PT && "Value for store must be a pointer");
2368      Ty = PT->getElementType();
2369    }
2370    assert(Ty && "Could not get type information for store");
2371    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2372  }
2373  SDVTList VTs = getVTList(MVT::Other);
2374  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2375  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2376  FoldingSetNodeID ID;
2377  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2378  ID.AddInteger(ISD::UNINDEXED);
2379  ID.AddInteger(false);
2380  ID.AddInteger(VT);
2381  ID.AddPointer(SV);
2382  ID.AddInteger(SVOffset);
2383  ID.AddInteger(Alignment);
2384  ID.AddInteger(isVolatile);
2385  void *IP = 0;
2386  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2387    return SDOperand(E, 0);
2388  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2389                              VT, SV, SVOffset, Alignment, isVolatile);
2390  CSEMap.InsertNode(N, IP);
2391  AllNodes.push_back(N);
2392  return SDOperand(N, 0);
2393}
2394
2395SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2396                                      SDOperand Ptr, const Value *SV,
2397                                      int SVOffset, MVT::ValueType SVT,
2398                                      bool isVolatile, unsigned Alignment) {
2399  MVT::ValueType VT = Val.getValueType();
2400  bool isTrunc = VT != SVT;
2401
2402  assert(VT > SVT && "Not a truncation?");
2403  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2404         "Can't do FP-INT conversion!");
2405
2406  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2407    const Type *Ty = 0;
2408    if (VT != MVT::iPTR) {
2409      Ty = MVT::getTypeForValueType(VT);
2410    } else if (SV) {
2411      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2412      assert(PT && "Value for store must be a pointer");
2413      Ty = PT->getElementType();
2414    }
2415    assert(Ty && "Could not get type information for store");
2416    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2417  }
2418  SDVTList VTs = getVTList(MVT::Other);
2419  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2420  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2421  FoldingSetNodeID ID;
2422  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2423  ID.AddInteger(ISD::UNINDEXED);
2424  ID.AddInteger(isTrunc);
2425  ID.AddInteger(SVT);
2426  ID.AddPointer(SV);
2427  ID.AddInteger(SVOffset);
2428  ID.AddInteger(Alignment);
2429  ID.AddInteger(isVolatile);
2430  void *IP = 0;
2431  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2432    return SDOperand(E, 0);
2433  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, isTrunc,
2434                              SVT, SV, SVOffset, Alignment, isVolatile);
2435  CSEMap.InsertNode(N, IP);
2436  AllNodes.push_back(N);
2437  return SDOperand(N, 0);
2438}
2439
2440SDOperand
2441SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2442                              SDOperand Offset, ISD::MemIndexedMode AM) {
2443  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2444  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2445         "Store is already a indexed store!");
2446  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2447  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2448  FoldingSetNodeID ID;
2449  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2450  ID.AddInteger(AM);
2451  ID.AddInteger(ST->isTruncatingStore());
2452  ID.AddInteger(ST->getStoredVT());
2453  ID.AddPointer(ST->getSrcValue());
2454  ID.AddInteger(ST->getSrcValueOffset());
2455  ID.AddInteger(ST->getAlignment());
2456  ID.AddInteger(ST->isVolatile());
2457  void *IP = 0;
2458  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2459    return SDOperand(E, 0);
2460  SDNode *N = new StoreSDNode(Ops, VTs, AM,
2461                              ST->isTruncatingStore(), ST->getStoredVT(),
2462                              ST->getSrcValue(), ST->getSrcValueOffset(),
2463                              ST->getAlignment(), ST->isVolatile());
2464  CSEMap.InsertNode(N, IP);
2465  AllNodes.push_back(N);
2466  return SDOperand(N, 0);
2467}
2468
2469SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2470                                 SDOperand Chain, SDOperand Ptr,
2471                                 SDOperand SV) {
2472  SDOperand Ops[] = { Chain, Ptr, SV };
2473  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2474}
2475
2476SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2477                                const SDOperand *Ops, unsigned NumOps) {
2478  switch (NumOps) {
2479  case 0: return getNode(Opcode, VT);
2480  case 1: return getNode(Opcode, VT, Ops[0]);
2481  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2482  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2483  default: break;
2484  }
2485
2486  switch (Opcode) {
2487  default: break;
2488  case ISD::SELECT_CC: {
2489    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2490    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2491           "LHS and RHS of condition must have same type!");
2492    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2493           "True and False arms of SelectCC must have same type!");
2494    assert(Ops[2].getValueType() == VT &&
2495           "select_cc node must be of same type as true and false value!");
2496    break;
2497  }
2498  case ISD::BR_CC: {
2499    assert(NumOps == 5 && "BR_CC takes 5 operands!");
2500    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2501           "LHS/RHS of comparison should match types!");
2502    break;
2503  }
2504  }
2505
2506  // Memoize nodes.
2507  SDNode *N;
2508  SDVTList VTs = getVTList(VT);
2509  if (VT != MVT::Flag) {
2510    FoldingSetNodeID ID;
2511    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2512    void *IP = 0;
2513    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2514      return SDOperand(E, 0);
2515    N = new SDNode(Opcode, VTs, Ops, NumOps);
2516    CSEMap.InsertNode(N, IP);
2517  } else {
2518    N = new SDNode(Opcode, VTs, Ops, NumOps);
2519  }
2520  AllNodes.push_back(N);
2521  return SDOperand(N, 0);
2522}
2523
2524SDOperand SelectionDAG::getNode(unsigned Opcode,
2525                                std::vector<MVT::ValueType> &ResultTys,
2526                                const SDOperand *Ops, unsigned NumOps) {
2527  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2528                 Ops, NumOps);
2529}
2530
2531SDOperand SelectionDAG::getNode(unsigned Opcode,
2532                                const MVT::ValueType *VTs, unsigned NumVTs,
2533                                const SDOperand *Ops, unsigned NumOps) {
2534  if (NumVTs == 1)
2535    return getNode(Opcode, VTs[0], Ops, NumOps);
2536  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2537}
2538
2539SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2540                                const SDOperand *Ops, unsigned NumOps) {
2541  if (VTList.NumVTs == 1)
2542    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2543
2544  switch (Opcode) {
2545  // FIXME: figure out how to safely handle things like
2546  // int foo(int x) { return 1 << (x & 255); }
2547  // int bar() { return foo(256); }
2548#if 0
2549  case ISD::SRA_PARTS:
2550  case ISD::SRL_PARTS:
2551  case ISD::SHL_PARTS:
2552    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2553        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2554      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2555    else if (N3.getOpcode() == ISD::AND)
2556      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2557        // If the and is only masking out bits that cannot effect the shift,
2558        // eliminate the and.
2559        unsigned NumBits = MVT::getSizeInBits(VT)*2;
2560        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2561          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2562      }
2563    break;
2564#endif
2565  }
2566
2567  // Memoize the node unless it returns a flag.
2568  SDNode *N;
2569  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2570    FoldingSetNodeID ID;
2571    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2572    void *IP = 0;
2573    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2574      return SDOperand(E, 0);
2575    if (NumOps == 1)
2576      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2577    else if (NumOps == 2)
2578      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2579    else if (NumOps == 3)
2580      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2581    else
2582      N = new SDNode(Opcode, VTList, Ops, NumOps);
2583    CSEMap.InsertNode(N, IP);
2584  } else {
2585    if (NumOps == 1)
2586      N = new UnarySDNode(Opcode, VTList, Ops[0]);
2587    else if (NumOps == 2)
2588      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2589    else if (NumOps == 3)
2590      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2591    else
2592      N = new SDNode(Opcode, VTList, Ops, NumOps);
2593  }
2594  AllNodes.push_back(N);
2595  return SDOperand(N, 0);
2596}
2597
2598SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
2599  if (!MVT::isExtendedVT(VT))
2600    return makeVTList(SDNode::getValueTypeList(VT), 1);
2601
2602  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2603       E = VTList.end(); I != E; ++I) {
2604    if (I->size() == 1 && (*I)[0] == VT)
2605      return makeVTList(&(*I)[0], 1);
2606  }
2607  std::vector<MVT::ValueType> V;
2608  V.push_back(VT);
2609  VTList.push_front(V);
2610  return makeVTList(&(*VTList.begin())[0], 1);
2611}
2612
2613SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2614  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2615       E = VTList.end(); I != E; ++I) {
2616    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2617      return makeVTList(&(*I)[0], 2);
2618  }
2619  std::vector<MVT::ValueType> V;
2620  V.push_back(VT1);
2621  V.push_back(VT2);
2622  VTList.push_front(V);
2623  return makeVTList(&(*VTList.begin())[0], 2);
2624}
2625SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2626                                 MVT::ValueType VT3) {
2627  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2628       E = VTList.end(); I != E; ++I) {
2629    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2630        (*I)[2] == VT3)
2631      return makeVTList(&(*I)[0], 3);
2632  }
2633  std::vector<MVT::ValueType> V;
2634  V.push_back(VT1);
2635  V.push_back(VT2);
2636  V.push_back(VT3);
2637  VTList.push_front(V);
2638  return makeVTList(&(*VTList.begin())[0], 3);
2639}
2640
2641SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2642  switch (NumVTs) {
2643    case 0: assert(0 && "Cannot have nodes without results!");
2644    case 1: return getVTList(VTs[0]);
2645    case 2: return getVTList(VTs[0], VTs[1]);
2646    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2647    default: break;
2648  }
2649
2650  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2651       E = VTList.end(); I != E; ++I) {
2652    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2653
2654    bool NoMatch = false;
2655    for (unsigned i = 2; i != NumVTs; ++i)
2656      if (VTs[i] != (*I)[i]) {
2657        NoMatch = true;
2658        break;
2659      }
2660    if (!NoMatch)
2661      return makeVTList(&*I->begin(), NumVTs);
2662  }
2663
2664  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2665  return makeVTList(&*VTList.begin()->begin(), NumVTs);
2666}
2667
2668
2669/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2670/// specified operands.  If the resultant node already exists in the DAG,
2671/// this does not modify the specified node, instead it returns the node that
2672/// already exists.  If the resultant node does not exist in the DAG, the
2673/// input node is returned.  As a degenerate case, if you specify the same
2674/// input operands as the node already has, the input node is returned.
2675SDOperand SelectionDAG::
2676UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2677  SDNode *N = InN.Val;
2678  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2679
2680  // Check to see if there is no change.
2681  if (Op == N->getOperand(0)) return InN;
2682
2683  // See if the modified node already exists.
2684  void *InsertPos = 0;
2685  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2686    return SDOperand(Existing, InN.ResNo);
2687
2688  // Nope it doesn't.  Remove the node from it's current place in the maps.
2689  if (InsertPos)
2690    RemoveNodeFromCSEMaps(N);
2691
2692  // Now we update the operands.
2693  N->OperandList[0].Val->removeUser(N);
2694  Op.Val->addUser(N);
2695  N->OperandList[0] = Op;
2696
2697  // If this gets put into a CSE map, add it.
2698  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2699  return InN;
2700}
2701
2702SDOperand SelectionDAG::
2703UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2704  SDNode *N = InN.Val;
2705  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2706
2707  // Check to see if there is no change.
2708  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2709    return InN;   // No operands changed, just return the input node.
2710
2711  // See if the modified node already exists.
2712  void *InsertPos = 0;
2713  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2714    return SDOperand(Existing, InN.ResNo);
2715
2716  // Nope it doesn't.  Remove the node from it's current place in the maps.
2717  if (InsertPos)
2718    RemoveNodeFromCSEMaps(N);
2719
2720  // Now we update the operands.
2721  if (N->OperandList[0] != Op1) {
2722    N->OperandList[0].Val->removeUser(N);
2723    Op1.Val->addUser(N);
2724    N->OperandList[0] = Op1;
2725  }
2726  if (N->OperandList[1] != Op2) {
2727    N->OperandList[1].Val->removeUser(N);
2728    Op2.Val->addUser(N);
2729    N->OperandList[1] = Op2;
2730  }
2731
2732  // If this gets put into a CSE map, add it.
2733  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2734  return InN;
2735}
2736
2737SDOperand SelectionDAG::
2738UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2739  SDOperand Ops[] = { Op1, Op2, Op3 };
2740  return UpdateNodeOperands(N, Ops, 3);
2741}
2742
2743SDOperand SelectionDAG::
2744UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2745                   SDOperand Op3, SDOperand Op4) {
2746  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2747  return UpdateNodeOperands(N, Ops, 4);
2748}
2749
2750SDOperand SelectionDAG::
2751UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2752                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2753  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2754  return UpdateNodeOperands(N, Ops, 5);
2755}
2756
2757
2758SDOperand SelectionDAG::
2759UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2760  SDNode *N = InN.Val;
2761  assert(N->getNumOperands() == NumOps &&
2762         "Update with wrong number of operands");
2763
2764  // Check to see if there is no change.
2765  bool AnyChange = false;
2766  for (unsigned i = 0; i != NumOps; ++i) {
2767    if (Ops[i] != N->getOperand(i)) {
2768      AnyChange = true;
2769      break;
2770    }
2771  }
2772
2773  // No operands changed, just return the input node.
2774  if (!AnyChange) return InN;
2775
2776  // See if the modified node already exists.
2777  void *InsertPos = 0;
2778  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2779    return SDOperand(Existing, InN.ResNo);
2780
2781  // Nope it doesn't.  Remove the node from it's current place in the maps.
2782  if (InsertPos)
2783    RemoveNodeFromCSEMaps(N);
2784
2785  // Now we update the operands.
2786  for (unsigned i = 0; i != NumOps; ++i) {
2787    if (N->OperandList[i] != Ops[i]) {
2788      N->OperandList[i].Val->removeUser(N);
2789      Ops[i].Val->addUser(N);
2790      N->OperandList[i] = Ops[i];
2791    }
2792  }
2793
2794  // If this gets put into a CSE map, add it.
2795  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2796  return InN;
2797}
2798
2799
2800/// MorphNodeTo - This frees the operands of the current node, resets the
2801/// opcode, types, and operands to the specified value.  This should only be
2802/// used by the SelectionDAG class.
2803void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2804                         const SDOperand *Ops, unsigned NumOps) {
2805  NodeType = Opc;
2806  ValueList = L.VTs;
2807  NumValues = L.NumVTs;
2808
2809  // Clear the operands list, updating used nodes to remove this from their
2810  // use list.
2811  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2812    I->Val->removeUser(this);
2813
2814  // If NumOps is larger than the # of operands we currently have, reallocate
2815  // the operand list.
2816  if (NumOps > NumOperands) {
2817    if (OperandsNeedDelete)
2818      delete [] OperandList;
2819    OperandList = new SDOperand[NumOps];
2820    OperandsNeedDelete = true;
2821  }
2822
2823  // Assign the new operands.
2824  NumOperands = NumOps;
2825
2826  for (unsigned i = 0, e = NumOps; i != e; ++i) {
2827    OperandList[i] = Ops[i];
2828    SDNode *N = OperandList[i].Val;
2829    N->Uses.push_back(this);
2830  }
2831}
2832
2833/// SelectNodeTo - These are used for target selectors to *mutate* the
2834/// specified node to have the specified return type, Target opcode, and
2835/// operands.  Note that target opcodes are stored as
2836/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2837///
2838/// Note that SelectNodeTo returns the resultant node.  If there is already a
2839/// node of the specified opcode and operands, it returns that node instead of
2840/// the current one.
2841SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2842                                   MVT::ValueType VT) {
2843  SDVTList VTs = getVTList(VT);
2844  FoldingSetNodeID ID;
2845  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2846  void *IP = 0;
2847  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2848    return ON;
2849
2850  RemoveNodeFromCSEMaps(N);
2851
2852  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2853
2854  CSEMap.InsertNode(N, IP);
2855  return N;
2856}
2857
2858SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2859                                   MVT::ValueType VT, SDOperand Op1) {
2860  // If an identical node already exists, use it.
2861  SDVTList VTs = getVTList(VT);
2862  SDOperand Ops[] = { Op1 };
2863
2864  FoldingSetNodeID ID;
2865  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2866  void *IP = 0;
2867  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2868    return ON;
2869
2870  RemoveNodeFromCSEMaps(N);
2871  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2872  CSEMap.InsertNode(N, IP);
2873  return N;
2874}
2875
2876SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2877                                   MVT::ValueType VT, SDOperand Op1,
2878                                   SDOperand Op2) {
2879  // If an identical node already exists, use it.
2880  SDVTList VTs = getVTList(VT);
2881  SDOperand Ops[] = { Op1, Op2 };
2882
2883  FoldingSetNodeID ID;
2884  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2885  void *IP = 0;
2886  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2887    return ON;
2888
2889  RemoveNodeFromCSEMaps(N);
2890
2891  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2892
2893  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2894  return N;
2895}
2896
2897SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2898                                   MVT::ValueType VT, SDOperand Op1,
2899                                   SDOperand Op2, SDOperand Op3) {
2900  // If an identical node already exists, use it.
2901  SDVTList VTs = getVTList(VT);
2902  SDOperand Ops[] = { Op1, Op2, Op3 };
2903  FoldingSetNodeID ID;
2904  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2905  void *IP = 0;
2906  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2907    return ON;
2908
2909  RemoveNodeFromCSEMaps(N);
2910
2911  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2912
2913  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2914  return N;
2915}
2916
2917SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2918                                   MVT::ValueType VT, const SDOperand *Ops,
2919                                   unsigned NumOps) {
2920  // If an identical node already exists, use it.
2921  SDVTList VTs = getVTList(VT);
2922  FoldingSetNodeID ID;
2923  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2924  void *IP = 0;
2925  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2926    return ON;
2927
2928  RemoveNodeFromCSEMaps(N);
2929  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
2930
2931  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2932  return N;
2933}
2934
2935SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2936                                   MVT::ValueType VT1, MVT::ValueType VT2,
2937                                   SDOperand Op1, SDOperand Op2) {
2938  SDVTList VTs = getVTList(VT1, VT2);
2939  FoldingSetNodeID ID;
2940  SDOperand Ops[] = { Op1, Op2 };
2941  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2942  void *IP = 0;
2943  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2944    return ON;
2945
2946  RemoveNodeFromCSEMaps(N);
2947  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2948  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2949  return N;
2950}
2951
2952SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2953                                   MVT::ValueType VT1, MVT::ValueType VT2,
2954                                   SDOperand Op1, SDOperand Op2,
2955                                   SDOperand Op3) {
2956  // If an identical node already exists, use it.
2957  SDVTList VTs = getVTList(VT1, VT2);
2958  SDOperand Ops[] = { Op1, Op2, Op3 };
2959  FoldingSetNodeID ID;
2960  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2961  void *IP = 0;
2962  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2963    return ON;
2964
2965  RemoveNodeFromCSEMaps(N);
2966
2967  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2968  CSEMap.InsertNode(N, IP);   // Memoize the new node.
2969  return N;
2970}
2971
2972
2973/// getTargetNode - These are used for target selectors to create a new node
2974/// with specified return type(s), target opcode, and operands.
2975///
2976/// Note that getTargetNode returns the resultant node.  If there is already a
2977/// node of the specified opcode and operands, it returns that node instead of
2978/// the current one.
2979SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
2980  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
2981}
2982SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2983                                    SDOperand Op1) {
2984  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
2985}
2986SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2987                                    SDOperand Op1, SDOperand Op2) {
2988  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
2989}
2990SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2991                                    SDOperand Op1, SDOperand Op2,
2992                                    SDOperand Op3) {
2993  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
2994}
2995SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
2996                                    const SDOperand *Ops, unsigned NumOps) {
2997  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
2998}
2999SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3000                                    MVT::ValueType VT2, SDOperand Op1) {
3001  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3002  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3003}
3004SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3005                                    MVT::ValueType VT2, SDOperand Op1,
3006                                    SDOperand Op2) {
3007  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3008  SDOperand Ops[] = { Op1, Op2 };
3009  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3010}
3011SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3012                                    MVT::ValueType VT2, SDOperand Op1,
3013                                    SDOperand Op2, SDOperand Op3) {
3014  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3015  SDOperand Ops[] = { Op1, Op2, Op3 };
3016  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3017}
3018SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3019                                    MVT::ValueType VT2,
3020                                    const SDOperand *Ops, unsigned NumOps) {
3021  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3022  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3023}
3024SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3025                                    MVT::ValueType VT2, MVT::ValueType VT3,
3026                                    SDOperand Op1, SDOperand Op2) {
3027  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3028  SDOperand Ops[] = { Op1, Op2 };
3029  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3030}
3031SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3032                                    MVT::ValueType VT2, MVT::ValueType VT3,
3033                                    SDOperand Op1, SDOperand Op2,
3034                                    SDOperand Op3) {
3035  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3036  SDOperand Ops[] = { Op1, Op2, Op3 };
3037  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3038}
3039SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3040                                    MVT::ValueType VT2, MVT::ValueType VT3,
3041                                    const SDOperand *Ops, unsigned NumOps) {
3042  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3043  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3044}
3045
3046/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3047/// This can cause recursive merging of nodes in the DAG.
3048///
3049/// This version assumes From/To have a single result value.
3050///
3051void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3052                                      std::vector<SDNode*> *Deleted) {
3053  SDNode *From = FromN.Val, *To = ToN.Val;
3054  assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3055         "Cannot replace with this method!");
3056  assert(From != To && "Cannot replace uses of with self");
3057
3058  while (!From->use_empty()) {
3059    // Process users until they are all gone.
3060    SDNode *U = *From->use_begin();
3061
3062    // This node is about to morph, remove its old self from the CSE maps.
3063    RemoveNodeFromCSEMaps(U);
3064
3065    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3066         I != E; ++I)
3067      if (I->Val == From) {
3068        From->removeUser(U);
3069        I->Val = To;
3070        To->addUser(U);
3071      }
3072
3073    // Now that we have modified U, add it back to the CSE maps.  If it already
3074    // exists there, recursively merge the results together.
3075    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3076      ReplaceAllUsesWith(U, Existing, Deleted);
3077      // U is now dead.
3078      if (Deleted) Deleted->push_back(U);
3079      DeleteNodeNotInCSEMaps(U);
3080    }
3081  }
3082}
3083
3084/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3085/// This can cause recursive merging of nodes in the DAG.
3086///
3087/// This version assumes From/To have matching types and numbers of result
3088/// values.
3089///
3090void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3091                                      std::vector<SDNode*> *Deleted) {
3092  assert(From != To && "Cannot replace uses of with self");
3093  assert(From->getNumValues() == To->getNumValues() &&
3094         "Cannot use this version of ReplaceAllUsesWith!");
3095  if (From->getNumValues() == 1) {  // If possible, use the faster version.
3096    ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3097    return;
3098  }
3099
3100  while (!From->use_empty()) {
3101    // Process users until they are all gone.
3102    SDNode *U = *From->use_begin();
3103
3104    // This node is about to morph, remove its old self from the CSE maps.
3105    RemoveNodeFromCSEMaps(U);
3106
3107    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3108         I != E; ++I)
3109      if (I->Val == From) {
3110        From->removeUser(U);
3111        I->Val = To;
3112        To->addUser(U);
3113      }
3114
3115    // Now that we have modified U, add it back to the CSE maps.  If it already
3116    // exists there, recursively merge the results together.
3117    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3118      ReplaceAllUsesWith(U, Existing, Deleted);
3119      // U is now dead.
3120      if (Deleted) Deleted->push_back(U);
3121      DeleteNodeNotInCSEMaps(U);
3122    }
3123  }
3124}
3125
3126/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3127/// This can cause recursive merging of nodes in the DAG.
3128///
3129/// This version can replace From with any result values.  To must match the
3130/// number and types of values returned by From.
3131void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3132                                      const SDOperand *To,
3133                                      std::vector<SDNode*> *Deleted) {
3134  if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3135    // Degenerate case handled above.
3136    ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3137    return;
3138  }
3139
3140  while (!From->use_empty()) {
3141    // Process users until they are all gone.
3142    SDNode *U = *From->use_begin();
3143
3144    // This node is about to morph, remove its old self from the CSE maps.
3145    RemoveNodeFromCSEMaps(U);
3146
3147    for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3148         I != E; ++I)
3149      if (I->Val == From) {
3150        const SDOperand &ToOp = To[I->ResNo];
3151        From->removeUser(U);
3152        *I = ToOp;
3153        ToOp.Val->addUser(U);
3154      }
3155
3156    // Now that we have modified U, add it back to the CSE maps.  If it already
3157    // exists there, recursively merge the results together.
3158    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3159      ReplaceAllUsesWith(U, Existing, Deleted);
3160      // U is now dead.
3161      if (Deleted) Deleted->push_back(U);
3162      DeleteNodeNotInCSEMaps(U);
3163    }
3164  }
3165}
3166
3167/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3168/// uses of other values produced by From.Val alone.  The Deleted vector is
3169/// handled the same was as for ReplaceAllUsesWith.
3170void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
3171                                             std::vector<SDNode*> &Deleted) {
3172  assert(From != To && "Cannot replace a value with itself");
3173  // Handle the simple, trivial, case efficiently.
3174  if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
3175    ReplaceAllUsesWith(From, To, &Deleted);
3176    return;
3177  }
3178
3179  // Get all of the users of From.Val.  We want these in a nice,
3180  // deterministically ordered and uniqued set, so we use a SmallSetVector.
3181  SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3182
3183  while (!Users.empty()) {
3184    // We know that this user uses some value of From.  If it is the right
3185    // value, update it.
3186    SDNode *User = Users.back();
3187    Users.pop_back();
3188
3189    for (SDOperand *Op = User->OperandList,
3190         *E = User->OperandList+User->NumOperands; Op != E; ++Op) {
3191      if (*Op == From) {
3192        // Okay, we know this user needs to be updated.  Remove its old self
3193        // from the CSE maps.
3194        RemoveNodeFromCSEMaps(User);
3195
3196        // Update all operands that match "From".
3197        for (; Op != E; ++Op) {
3198          if (*Op == From) {
3199            From.Val->removeUser(User);
3200            *Op = To;
3201            To.Val->addUser(User);
3202          }
3203        }
3204
3205        // Now that we have modified User, add it back to the CSE maps.  If it
3206        // already exists there, recursively merge the results together.
3207        if (SDNode *Existing = AddNonLeafNodeToCSEMaps(User)) {
3208          unsigned NumDeleted = Deleted.size();
3209          ReplaceAllUsesWith(User, Existing, &Deleted);
3210
3211          // User is now dead.
3212          Deleted.push_back(User);
3213          DeleteNodeNotInCSEMaps(User);
3214
3215          // We have to be careful here, because ReplaceAllUsesWith could have
3216          // deleted a user of From, which means there may be dangling pointers
3217          // in the "Users" setvector.  Scan over the deleted node pointers and
3218          // remove them from the setvector.
3219          for (unsigned i = NumDeleted, e = Deleted.size(); i != e; ++i)
3220            Users.remove(Deleted[i]);
3221        }
3222        break;   // Exit the operand scanning loop.
3223      }
3224    }
3225  }
3226}
3227
3228
3229/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3230/// their allnodes order. It returns the maximum id.
3231unsigned SelectionDAG::AssignNodeIds() {
3232  unsigned Id = 0;
3233  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3234    SDNode *N = I;
3235    N->setNodeId(Id++);
3236  }
3237  return Id;
3238}
3239
3240/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3241/// based on their topological order. It returns the maximum id and a vector
3242/// of the SDNodes* in assigned order by reference.
3243unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3244  unsigned DAGSize = AllNodes.size();
3245  std::vector<unsigned> InDegree(DAGSize);
3246  std::vector<SDNode*> Sources;
3247
3248  // Use a two pass approach to avoid using a std::map which is slow.
3249  unsigned Id = 0;
3250  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3251    SDNode *N = I;
3252    N->setNodeId(Id++);
3253    unsigned Degree = N->use_size();
3254    InDegree[N->getNodeId()] = Degree;
3255    if (Degree == 0)
3256      Sources.push_back(N);
3257  }
3258
3259  TopOrder.clear();
3260  while (!Sources.empty()) {
3261    SDNode *N = Sources.back();
3262    Sources.pop_back();
3263    TopOrder.push_back(N);
3264    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3265      SDNode *P = I->Val;
3266      unsigned Degree = --InDegree[P->getNodeId()];
3267      if (Degree == 0)
3268        Sources.push_back(P);
3269    }
3270  }
3271
3272  // Second pass, assign the actual topological order as node ids.
3273  Id = 0;
3274  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3275       TI != TE; ++TI)
3276    (*TI)->setNodeId(Id++);
3277
3278  return Id;
3279}
3280
3281
3282
3283//===----------------------------------------------------------------------===//
3284//                              SDNode Class
3285//===----------------------------------------------------------------------===//
3286
3287// Out-of-line virtual method to give class a home.
3288void SDNode::ANCHOR() {}
3289void UnarySDNode::ANCHOR() {}
3290void BinarySDNode::ANCHOR() {}
3291void TernarySDNode::ANCHOR() {}
3292void HandleSDNode::ANCHOR() {}
3293void StringSDNode::ANCHOR() {}
3294void ConstantSDNode::ANCHOR() {}
3295void ConstantFPSDNode::ANCHOR() {}
3296void GlobalAddressSDNode::ANCHOR() {}
3297void FrameIndexSDNode::ANCHOR() {}
3298void JumpTableSDNode::ANCHOR() {}
3299void ConstantPoolSDNode::ANCHOR() {}
3300void BasicBlockSDNode::ANCHOR() {}
3301void SrcValueSDNode::ANCHOR() {}
3302void RegisterSDNode::ANCHOR() {}
3303void ExternalSymbolSDNode::ANCHOR() {}
3304void CondCodeSDNode::ANCHOR() {}
3305void VTSDNode::ANCHOR() {}
3306void LoadSDNode::ANCHOR() {}
3307void StoreSDNode::ANCHOR() {}
3308
3309HandleSDNode::~HandleSDNode() {
3310  SDVTList VTs = { 0, 0 };
3311  MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses.
3312}
3313
3314GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3315                                         MVT::ValueType VT, int o)
3316  : SDNode(isa<GlobalVariable>(GA) &&
3317           cast<GlobalVariable>(GA)->isThreadLocal() ?
3318           // Thread Local
3319           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3320           // Non Thread Local
3321           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3322           getSDVTList(VT)), Offset(o) {
3323  TheGlobal = const_cast<GlobalValue*>(GA);
3324}
3325
3326/// Profile - Gather unique data for the node.
3327///
3328void SDNode::Profile(FoldingSetNodeID &ID) {
3329  AddNodeIDNode(ID, this);
3330}
3331
3332/// getValueTypeList - Return a pointer to the specified value type.
3333///
3334MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
3335  static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3336  VTs[VT] = VT;
3337  return &VTs[VT];
3338}
3339
3340/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3341/// indicated value.  This method ignores uses of other values defined by this
3342/// operation.
3343bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3344  assert(Value < getNumValues() && "Bad value!");
3345
3346  // If there is only one value, this is easy.
3347  if (getNumValues() == 1)
3348    return use_size() == NUses;
3349  if (use_size() < NUses) return false;
3350
3351  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3352
3353  SmallPtrSet<SDNode*, 32> UsersHandled;
3354
3355  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3356    SDNode *User = *UI;
3357    if (User->getNumOperands() == 1 ||
3358        UsersHandled.insert(User))     // First time we've seen this?
3359      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3360        if (User->getOperand(i) == TheValue) {
3361          if (NUses == 0)
3362            return false;   // too many uses
3363          --NUses;
3364        }
3365  }
3366
3367  // Found exactly the right number of uses?
3368  return NUses == 0;
3369}
3370
3371
3372/// hasAnyUseOfValue - Return true if there are any use of the indicated
3373/// value. This method ignores uses of other values defined by this operation.
3374bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3375  assert(Value < getNumValues() && "Bad value!");
3376
3377  if (use_size() == 0) return false;
3378
3379  SDOperand TheValue(const_cast<SDNode *>(this), Value);
3380
3381  SmallPtrSet<SDNode*, 32> UsersHandled;
3382
3383  for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3384    SDNode *User = *UI;
3385    if (User->getNumOperands() == 1 ||
3386        UsersHandled.insert(User))     // First time we've seen this?
3387      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3388        if (User->getOperand(i) == TheValue) {
3389          return true;
3390        }
3391  }
3392
3393  return false;
3394}
3395
3396
3397/// isOnlyUse - Return true if this node is the only use of N.
3398///
3399bool SDNode::isOnlyUse(SDNode *N) const {
3400  bool Seen = false;
3401  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3402    SDNode *User = *I;
3403    if (User == this)
3404      Seen = true;
3405    else
3406      return false;
3407  }
3408
3409  return Seen;
3410}
3411
3412/// isOperand - Return true if this node is an operand of N.
3413///
3414bool SDOperand::isOperand(SDNode *N) const {
3415  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3416    if (*this == N->getOperand(i))
3417      return true;
3418  return false;
3419}
3420
3421bool SDNode::isOperand(SDNode *N) const {
3422  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3423    if (this == N->OperandList[i].Val)
3424      return true;
3425  return false;
3426}
3427
3428static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3429                            SmallPtrSet<SDNode *, 32> &Visited) {
3430  if (found || !Visited.insert(N))
3431    return;
3432
3433  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3434    SDNode *Op = N->getOperand(i).Val;
3435    if (Op == P) {
3436      found = true;
3437      return;
3438    }
3439    findPredecessor(Op, P, found, Visited);
3440  }
3441}
3442
3443/// isPredecessor - Return true if this node is a predecessor of N. This node
3444/// is either an operand of N or it can be reached by recursively traversing
3445/// up the operands.
3446/// NOTE: this is an expensive method. Use it carefully.
3447bool SDNode::isPredecessor(SDNode *N) const {
3448  SmallPtrSet<SDNode *, 32> Visited;
3449  bool found = false;
3450  findPredecessor(N, this, found, Visited);
3451  return found;
3452}
3453
3454uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3455  assert(Num < NumOperands && "Invalid child # of SDNode!");
3456  return cast<ConstantSDNode>(OperandList[Num])->getValue();
3457}
3458
3459std::string SDNode::getOperationName(const SelectionDAG *G) const {
3460  switch (getOpcode()) {
3461  default:
3462    if (getOpcode() < ISD::BUILTIN_OP_END)
3463      return "<<Unknown DAG Node>>";
3464    else {
3465      if (G) {
3466        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3467          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3468            return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3469
3470        TargetLowering &TLI = G->getTargetLoweringInfo();
3471        const char *Name =
3472          TLI.getTargetNodeName(getOpcode());
3473        if (Name) return Name;
3474      }
3475
3476      return "<<Unknown Target Node>>";
3477    }
3478
3479  case ISD::PCMARKER:      return "PCMarker";
3480  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3481  case ISD::SRCVALUE:      return "SrcValue";
3482  case ISD::EntryToken:    return "EntryToken";
3483  case ISD::TokenFactor:   return "TokenFactor";
3484  case ISD::AssertSext:    return "AssertSext";
3485  case ISD::AssertZext:    return "AssertZext";
3486
3487  case ISD::STRING:        return "String";
3488  case ISD::BasicBlock:    return "BasicBlock";
3489  case ISD::VALUETYPE:     return "ValueType";
3490  case ISD::Register:      return "Register";
3491
3492  case ISD::Constant:      return "Constant";
3493  case ISD::ConstantFP:    return "ConstantFP";
3494  case ISD::GlobalAddress: return "GlobalAddress";
3495  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3496  case ISD::FrameIndex:    return "FrameIndex";
3497  case ISD::JumpTable:     return "JumpTable";
3498  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3499  case ISD::RETURNADDR: return "RETURNADDR";
3500  case ISD::FRAMEADDR: return "FRAMEADDR";
3501  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3502  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3503  case ISD::EHSELECTION: return "EHSELECTION";
3504  case ISD::EH_RETURN: return "EH_RETURN";
3505  case ISD::ConstantPool:  return "ConstantPool";
3506  case ISD::ExternalSymbol: return "ExternalSymbol";
3507  case ISD::INTRINSIC_WO_CHAIN: {
3508    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3509    return Intrinsic::getName((Intrinsic::ID)IID);
3510  }
3511  case ISD::INTRINSIC_VOID:
3512  case ISD::INTRINSIC_W_CHAIN: {
3513    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3514    return Intrinsic::getName((Intrinsic::ID)IID);
3515  }
3516
3517  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
3518  case ISD::TargetConstant: return "TargetConstant";
3519  case ISD::TargetConstantFP:return "TargetConstantFP";
3520  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3521  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3522  case ISD::TargetFrameIndex: return "TargetFrameIndex";
3523  case ISD::TargetJumpTable:  return "TargetJumpTable";
3524  case ISD::TargetConstantPool:  return "TargetConstantPool";
3525  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3526
3527  case ISD::CopyToReg:     return "CopyToReg";
3528  case ISD::CopyFromReg:   return "CopyFromReg";
3529  case ISD::UNDEF:         return "undef";
3530  case ISD::MERGE_VALUES:  return "merge_values";
3531  case ISD::INLINEASM:     return "inlineasm";
3532  case ISD::LABEL:         return "label";
3533  case ISD::HANDLENODE:    return "handlenode";
3534  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3535  case ISD::CALL:          return "call";
3536
3537  // Unary operators
3538  case ISD::FABS:   return "fabs";
3539  case ISD::FNEG:   return "fneg";
3540  case ISD::FSQRT:  return "fsqrt";
3541  case ISD::FSIN:   return "fsin";
3542  case ISD::FCOS:   return "fcos";
3543  case ISD::FPOWI:  return "fpowi";
3544
3545  // Binary operators
3546  case ISD::ADD:    return "add";
3547  case ISD::SUB:    return "sub";
3548  case ISD::MUL:    return "mul";
3549  case ISD::MULHU:  return "mulhu";
3550  case ISD::MULHS:  return "mulhs";
3551  case ISD::SDIV:   return "sdiv";
3552  case ISD::UDIV:   return "udiv";
3553  case ISD::SREM:   return "srem";
3554  case ISD::UREM:   return "urem";
3555  case ISD::AND:    return "and";
3556  case ISD::OR:     return "or";
3557  case ISD::XOR:    return "xor";
3558  case ISD::SHL:    return "shl";
3559  case ISD::SRA:    return "sra";
3560  case ISD::SRL:    return "srl";
3561  case ISD::ROTL:   return "rotl";
3562  case ISD::ROTR:   return "rotr";
3563  case ISD::FADD:   return "fadd";
3564  case ISD::FSUB:   return "fsub";
3565  case ISD::FMUL:   return "fmul";
3566  case ISD::FDIV:   return "fdiv";
3567  case ISD::FREM:   return "frem";
3568  case ISD::FCOPYSIGN: return "fcopysign";
3569
3570  case ISD::SETCC:       return "setcc";
3571  case ISD::SELECT:      return "select";
3572  case ISD::SELECT_CC:   return "select_cc";
3573  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
3574  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
3575  case ISD::CONCAT_VECTORS:      return "concat_vectors";
3576  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
3577  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
3578  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
3579  case ISD::CARRY_FALSE:         return "carry_false";
3580  case ISD::ADDC:        return "addc";
3581  case ISD::ADDE:        return "adde";
3582  case ISD::SUBC:        return "subc";
3583  case ISD::SUBE:        return "sube";
3584  case ISD::SHL_PARTS:   return "shl_parts";
3585  case ISD::SRA_PARTS:   return "sra_parts";
3586  case ISD::SRL_PARTS:   return "srl_parts";
3587
3588  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
3589  case ISD::INSERT_SUBREG:      return "insert_subreg";
3590
3591  // Conversion operators.
3592  case ISD::SIGN_EXTEND: return "sign_extend";
3593  case ISD::ZERO_EXTEND: return "zero_extend";
3594  case ISD::ANY_EXTEND:  return "any_extend";
3595  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3596  case ISD::TRUNCATE:    return "truncate";
3597  case ISD::FP_ROUND:    return "fp_round";
3598  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3599  case ISD::FP_EXTEND:   return "fp_extend";
3600
3601  case ISD::SINT_TO_FP:  return "sint_to_fp";
3602  case ISD::UINT_TO_FP:  return "uint_to_fp";
3603  case ISD::FP_TO_SINT:  return "fp_to_sint";
3604  case ISD::FP_TO_UINT:  return "fp_to_uint";
3605  case ISD::BIT_CONVERT: return "bit_convert";
3606
3607    // Control flow instructions
3608  case ISD::BR:      return "br";
3609  case ISD::BRIND:   return "brind";
3610  case ISD::BR_JT:   return "br_jt";
3611  case ISD::BRCOND:  return "brcond";
3612  case ISD::BR_CC:   return "br_cc";
3613  case ISD::RET:     return "ret";
3614  case ISD::CALLSEQ_START:  return "callseq_start";
3615  case ISD::CALLSEQ_END:    return "callseq_end";
3616
3617    // Other operators
3618  case ISD::LOAD:               return "load";
3619  case ISD::STORE:              return "store";
3620  case ISD::VAARG:              return "vaarg";
3621  case ISD::VACOPY:             return "vacopy";
3622  case ISD::VAEND:              return "vaend";
3623  case ISD::VASTART:            return "vastart";
3624  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3625  case ISD::EXTRACT_ELEMENT:    return "extract_element";
3626  case ISD::BUILD_PAIR:         return "build_pair";
3627  case ISD::STACKSAVE:          return "stacksave";
3628  case ISD::STACKRESTORE:       return "stackrestore";
3629
3630  // Block memory operations.
3631  case ISD::MEMSET:  return "memset";
3632  case ISD::MEMCPY:  return "memcpy";
3633  case ISD::MEMMOVE: return "memmove";
3634
3635  // Bit manipulation
3636  case ISD::BSWAP:   return "bswap";
3637  case ISD::CTPOP:   return "ctpop";
3638  case ISD::CTTZ:    return "cttz";
3639  case ISD::CTLZ:    return "ctlz";
3640
3641  // Debug info
3642  case ISD::LOCATION: return "location";
3643  case ISD::DEBUG_LOC: return "debug_loc";
3644
3645  // Trampolines
3646  case ISD::TRAMPOLINE: return "trampoline";
3647
3648  case ISD::CONDCODE:
3649    switch (cast<CondCodeSDNode>(this)->get()) {
3650    default: assert(0 && "Unknown setcc condition!");
3651    case ISD::SETOEQ:  return "setoeq";
3652    case ISD::SETOGT:  return "setogt";
3653    case ISD::SETOGE:  return "setoge";
3654    case ISD::SETOLT:  return "setolt";
3655    case ISD::SETOLE:  return "setole";
3656    case ISD::SETONE:  return "setone";
3657
3658    case ISD::SETO:    return "seto";
3659    case ISD::SETUO:   return "setuo";
3660    case ISD::SETUEQ:  return "setue";
3661    case ISD::SETUGT:  return "setugt";
3662    case ISD::SETUGE:  return "setuge";
3663    case ISD::SETULT:  return "setult";
3664    case ISD::SETULE:  return "setule";
3665    case ISD::SETUNE:  return "setune";
3666
3667    case ISD::SETEQ:   return "seteq";
3668    case ISD::SETGT:   return "setgt";
3669    case ISD::SETGE:   return "setge";
3670    case ISD::SETLT:   return "setlt";
3671    case ISD::SETLE:   return "setle";
3672    case ISD::SETNE:   return "setne";
3673    }
3674  }
3675}
3676
3677const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3678  switch (AM) {
3679  default:
3680    return "";
3681  case ISD::PRE_INC:
3682    return "<pre-inc>";
3683  case ISD::PRE_DEC:
3684    return "<pre-dec>";
3685  case ISD::POST_INC:
3686    return "<post-inc>";
3687  case ISD::POST_DEC:
3688    return "<post-dec>";
3689  }
3690}
3691
3692void SDNode::dump() const { dump(0); }
3693void SDNode::dump(const SelectionDAG *G) const {
3694  cerr << (void*)this << ": ";
3695
3696  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3697    if (i) cerr << ",";
3698    if (getValueType(i) == MVT::Other)
3699      cerr << "ch";
3700    else
3701      cerr << MVT::getValueTypeString(getValueType(i));
3702  }
3703  cerr << " = " << getOperationName(G);
3704
3705  cerr << " ";
3706  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3707    if (i) cerr << ", ";
3708    cerr << (void*)getOperand(i).Val;
3709    if (unsigned RN = getOperand(i).ResNo)
3710      cerr << ":" << RN;
3711  }
3712
3713  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3714    cerr << "<" << CSDN->getValue() << ">";
3715  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
3716    cerr << "<" << (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle ?
3717                    CSDN->getValueAPF().convertToFloat() :
3718                    CSDN->getValueAPF().convertToDouble()) << ">";
3719  } else if (const GlobalAddressSDNode *GADN =
3720             dyn_cast<GlobalAddressSDNode>(this)) {
3721    int offset = GADN->getOffset();
3722    cerr << "<";
3723    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3724    if (offset > 0)
3725      cerr << " + " << offset;
3726    else
3727      cerr << " " << offset;
3728  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3729    cerr << "<" << FIDN->getIndex() << ">";
3730  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3731    cerr << "<" << JTDN->getIndex() << ">";
3732  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3733    int offset = CP->getOffset();
3734    if (CP->isMachineConstantPoolEntry())
3735      cerr << "<" << *CP->getMachineCPVal() << ">";
3736    else
3737      cerr << "<" << *CP->getConstVal() << ">";
3738    if (offset > 0)
3739      cerr << " + " << offset;
3740    else
3741      cerr << " " << offset;
3742  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3743    cerr << "<";
3744    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3745    if (LBB)
3746      cerr << LBB->getName() << " ";
3747    cerr << (const void*)BBDN->getBasicBlock() << ">";
3748  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3749    if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3750      cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3751    } else {
3752      cerr << " #" << R->getReg();
3753    }
3754  } else if (const ExternalSymbolSDNode *ES =
3755             dyn_cast<ExternalSymbolSDNode>(this)) {
3756    cerr << "'" << ES->getSymbol() << "'";
3757  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3758    if (M->getValue())
3759      cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3760    else
3761      cerr << "<null:" << M->getOffset() << ">";
3762  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3763    cerr << ":" << MVT::getValueTypeString(N->getVT());
3764  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
3765    bool doExt = true;
3766    switch (LD->getExtensionType()) {
3767    default: doExt = false; break;
3768    case ISD::EXTLOAD:
3769      cerr << " <anyext ";
3770      break;
3771    case ISD::SEXTLOAD:
3772      cerr << " <sext ";
3773      break;
3774    case ISD::ZEXTLOAD:
3775      cerr << " <zext ";
3776      break;
3777    }
3778    if (doExt)
3779      cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3780
3781    const char *AM = getIndexedModeName(LD->getAddressingMode());
3782    if (*AM)
3783      cerr << " " << AM;
3784  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
3785    if (ST->isTruncatingStore())
3786      cerr << " <trunc "
3787           << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3788
3789    const char *AM = getIndexedModeName(ST->getAddressingMode());
3790    if (*AM)
3791      cerr << " " << AM;
3792  }
3793}
3794
3795static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3796  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3797    if (N->getOperand(i).Val->hasOneUse())
3798      DumpNodes(N->getOperand(i).Val, indent+2, G);
3799    else
3800      cerr << "\n" << std::string(indent+2, ' ')
3801           << (void*)N->getOperand(i).Val << ": <multiple use>";
3802
3803
3804  cerr << "\n" << std::string(indent, ' ');
3805  N->dump(G);
3806}
3807
3808void SelectionDAG::dump() const {
3809  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3810  std::vector<const SDNode*> Nodes;
3811  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3812       I != E; ++I)
3813    Nodes.push_back(I);
3814
3815  std::sort(Nodes.begin(), Nodes.end());
3816
3817  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3818    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
3819      DumpNodes(Nodes[i], 2, this);
3820  }
3821
3822  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
3823
3824  cerr << "\n\n";
3825}
3826
3827const Type *ConstantPoolSDNode::getType() const {
3828  if (isMachineConstantPoolEntry())
3829    return Val.MachineCPVal->getType();
3830  return Val.ConstVal->getType();
3831}
3832