SelectionDAG.cpp revision f76de0011ff062d8fd6ba81382a7c7c36c9151c2
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "llvm/Constants.h"
17#include "llvm/Analysis/ValueTracking.h"
18#include "llvm/Function.h"
19#include "llvm/GlobalAlias.h"
20#include "llvm/GlobalVariable.h"
21#include "llvm/Intrinsics.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/Assembly/Writer.h"
24#include "llvm/CallingConv.h"
25#include "llvm/CodeGen/MachineBasicBlock.h"
26#include "llvm/CodeGen/MachineConstantPool.h"
27#include "llvm/CodeGen/MachineFrameInfo.h"
28#include "llvm/CodeGen/MachineModuleInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Target/TargetFrameInfo.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetOptions.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetIntrinsicInfo.h"
37#include "llvm/Target/TargetMachine.h"
38#include "llvm/Support/CommandLine.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/ManagedStatic.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/Support/raw_ostream.h"
44#include "llvm/System/Mutex.h"
45#include "llvm/ADT/SetVector.h"
46#include "llvm/ADT/SmallPtrSet.h"
47#include "llvm/ADT/SmallSet.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/StringExtras.h"
50#include <algorithm>
51#include <cmath>
52using namespace llvm;
53
54/// makeVTList - Return an instance of the SDVTList struct initialized with the
55/// specified members.
56static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
57  SDVTList Res = {VTs, NumVTs};
58  return Res;
59}
60
61static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
62  switch (VT.getSimpleVT().SimpleTy) {
63  default: llvm_unreachable("Unknown FP format");
64  case MVT::f32:     return &APFloat::IEEEsingle;
65  case MVT::f64:     return &APFloat::IEEEdouble;
66  case MVT::f80:     return &APFloat::x87DoubleExtended;
67  case MVT::f128:    return &APFloat::IEEEquad;
68  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
69  }
70}
71
72SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
73
74//===----------------------------------------------------------------------===//
75//                              ConstantFPSDNode Class
76//===----------------------------------------------------------------------===//
77
78/// isExactlyValue - We don't rely on operator== working on double values, as
79/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
80/// As such, this method can be used to do an exact bit-for-bit comparison of
81/// two floating point values.
82bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
83  return getValueAPF().bitwiseIsEqual(V);
84}
85
86bool ConstantFPSDNode::isValueValidForType(EVT VT,
87                                           const APFloat& Val) {
88  assert(VT.isFloatingPoint() && "Can only convert between FP types");
89
90  // PPC long double cannot be converted to any other type.
91  if (VT == MVT::ppcf128 ||
92      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
93    return false;
94
95  // convert modifies in place, so make a copy.
96  APFloat Val2 = APFloat(Val);
97  bool losesInfo;
98  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
99                      &losesInfo);
100  return !losesInfo;
101}
102
103//===----------------------------------------------------------------------===//
104//                              ISD Namespace
105//===----------------------------------------------------------------------===//
106
107/// isBuildVectorAllOnes - Return true if the specified node is a
108/// BUILD_VECTOR where all of the elements are ~0 or undef.
109bool ISD::isBuildVectorAllOnes(const SDNode *N) {
110  // Look through a bit convert.
111  if (N->getOpcode() == ISD::BIT_CONVERT)
112    N = N->getOperand(0).getNode();
113
114  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
115
116  unsigned i = 0, e = N->getNumOperands();
117
118  // Skip over all of the undef values.
119  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
120    ++i;
121
122  // Do not accept an all-undef vector.
123  if (i == e) return false;
124
125  // Do not accept build_vectors that aren't all constants or which have non-~0
126  // elements.
127  SDValue NotZero = N->getOperand(i);
128  if (isa<ConstantSDNode>(NotZero)) {
129    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
130      return false;
131  } else if (isa<ConstantFPSDNode>(NotZero)) {
132    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
133                bitcastToAPInt().isAllOnesValue())
134      return false;
135  } else
136    return false;
137
138  // Okay, we have at least one ~0 value, check to see if the rest match or are
139  // undefs.
140  for (++i; i != e; ++i)
141    if (N->getOperand(i) != NotZero &&
142        N->getOperand(i).getOpcode() != ISD::UNDEF)
143      return false;
144  return true;
145}
146
147
148/// isBuildVectorAllZeros - Return true if the specified node is a
149/// BUILD_VECTOR where all of the elements are 0 or undef.
150bool ISD::isBuildVectorAllZeros(const SDNode *N) {
151  // Look through a bit convert.
152  if (N->getOpcode() == ISD::BIT_CONVERT)
153    N = N->getOperand(0).getNode();
154
155  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
156
157  unsigned i = 0, e = N->getNumOperands();
158
159  // Skip over all of the undef values.
160  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
161    ++i;
162
163  // Do not accept an all-undef vector.
164  if (i == e) return false;
165
166  // Do not accept build_vectors that aren't all constants or which have non-0
167  // elements.
168  SDValue Zero = N->getOperand(i);
169  if (isa<ConstantSDNode>(Zero)) {
170    if (!cast<ConstantSDNode>(Zero)->isNullValue())
171      return false;
172  } else if (isa<ConstantFPSDNode>(Zero)) {
173    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
174      return false;
175  } else
176    return false;
177
178  // Okay, we have at least one 0 value, check to see if the rest match or are
179  // undefs.
180  for (++i; i != e; ++i)
181    if (N->getOperand(i) != Zero &&
182        N->getOperand(i).getOpcode() != ISD::UNDEF)
183      return false;
184  return true;
185}
186
187/// isScalarToVector - Return true if the specified node is a
188/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
189/// element is not an undef.
190bool ISD::isScalarToVector(const SDNode *N) {
191  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
192    return true;
193
194  if (N->getOpcode() != ISD::BUILD_VECTOR)
195    return false;
196  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
197    return false;
198  unsigned NumElems = N->getNumOperands();
199  for (unsigned i = 1; i < NumElems; ++i) {
200    SDValue V = N->getOperand(i);
201    if (V.getOpcode() != ISD::UNDEF)
202      return false;
203  }
204  return true;
205}
206
207/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
208/// when given the operation for (X op Y).
209ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
210  // To perform this operation, we just need to swap the L and G bits of the
211  // operation.
212  unsigned OldL = (Operation >> 2) & 1;
213  unsigned OldG = (Operation >> 1) & 1;
214  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
215                       (OldL << 1) |       // New G bit
216                       (OldG << 2));       // New L bit.
217}
218
219/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
220/// 'op' is a valid SetCC operation.
221ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
222  unsigned Operation = Op;
223  if (isInteger)
224    Operation ^= 7;   // Flip L, G, E bits, but not U.
225  else
226    Operation ^= 15;  // Flip all of the condition bits.
227
228  if (Operation > ISD::SETTRUE2)
229    Operation &= ~8;  // Don't let N and U bits get set.
230
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: llvm_unreachable("Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
297    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
298    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
299    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
300    }
301  }
302
303  return Result;
304}
305
306const TargetMachine &SelectionDAG::getTarget() const {
307  return MF->getTarget();
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              const SDValue *Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->getNode());
332    ID.AddInteger(Ops->getResNo());
333  }
334}
335
336/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
337///
338static void AddNodeIDOperands(FoldingSetNodeID &ID,
339                              const SDUse *Ops, unsigned NumOps) {
340  for (; NumOps; --NumOps, ++Ops) {
341    ID.AddPointer(Ops->getNode());
342    ID.AddInteger(Ops->getResNo());
343  }
344}
345
346static void AddNodeIDNode(FoldingSetNodeID &ID,
347                          unsigned short OpC, SDVTList VTList,
348                          const SDValue *OpList, unsigned N) {
349  AddNodeIDOpcode(ID, OpC);
350  AddNodeIDValueTypes(ID, VTList);
351  AddNodeIDOperands(ID, OpList, N);
352}
353
354/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
355/// the NodeID data.
356static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
357  switch (N->getOpcode()) {
358  case ISD::TargetExternalSymbol:
359  case ISD::ExternalSymbol:
360    llvm_unreachable("Should only be used on nodes with operands");
361  default: break;  // Normal nodes don't need extra info.
362  case ISD::TargetConstant:
363  case ISD::Constant:
364    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
365    break;
366  case ISD::TargetConstantFP:
367  case ISD::ConstantFP: {
368    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
369    break;
370  }
371  case ISD::TargetGlobalAddress:
372  case ISD::GlobalAddress:
373  case ISD::TargetGlobalTLSAddress:
374  case ISD::GlobalTLSAddress: {
375    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
376    ID.AddPointer(GA->getGlobal());
377    ID.AddInteger(GA->getOffset());
378    ID.AddInteger(GA->getTargetFlags());
379    break;
380  }
381  case ISD::BasicBlock:
382    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
383    break;
384  case ISD::Register:
385    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
386    break;
387
388  case ISD::SRCVALUE:
389    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
390    break;
391  case ISD::FrameIndex:
392  case ISD::TargetFrameIndex:
393    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
394    break;
395  case ISD::JumpTable:
396  case ISD::TargetJumpTable:
397    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
398    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
399    break;
400  case ISD::ConstantPool:
401  case ISD::TargetConstantPool: {
402    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
403    ID.AddInteger(CP->getAlignment());
404    ID.AddInteger(CP->getOffset());
405    if (CP->isMachineConstantPoolEntry())
406      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
407    else
408      ID.AddPointer(CP->getConstVal());
409    ID.AddInteger(CP->getTargetFlags());
410    break;
411  }
412  case ISD::LOAD: {
413    const LoadSDNode *LD = cast<LoadSDNode>(N);
414    ID.AddInteger(LD->getMemoryVT().getRawBits());
415    ID.AddInteger(LD->getRawSubclassData());
416    break;
417  }
418  case ISD::STORE: {
419    const StoreSDNode *ST = cast<StoreSDNode>(N);
420    ID.AddInteger(ST->getMemoryVT().getRawBits());
421    ID.AddInteger(ST->getRawSubclassData());
422    break;
423  }
424  case ISD::ATOMIC_CMP_SWAP:
425  case ISD::ATOMIC_SWAP:
426  case ISD::ATOMIC_LOAD_ADD:
427  case ISD::ATOMIC_LOAD_SUB:
428  case ISD::ATOMIC_LOAD_AND:
429  case ISD::ATOMIC_LOAD_OR:
430  case ISD::ATOMIC_LOAD_XOR:
431  case ISD::ATOMIC_LOAD_NAND:
432  case ISD::ATOMIC_LOAD_MIN:
433  case ISD::ATOMIC_LOAD_MAX:
434  case ISD::ATOMIC_LOAD_UMIN:
435  case ISD::ATOMIC_LOAD_UMAX: {
436    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
437    ID.AddInteger(AT->getMemoryVT().getRawBits());
438    ID.AddInteger(AT->getRawSubclassData());
439    break;
440  }
441  case ISD::VECTOR_SHUFFLE: {
442    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
443    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
444         i != e; ++i)
445      ID.AddInteger(SVN->getMaskElt(i));
446    break;
447  }
448  case ISD::TargetBlockAddress:
449  case ISD::BlockAddress: {
450    ID.AddPointer(cast<BlockAddressSDNode>(N)->getBlockAddress());
451    ID.AddInteger(cast<BlockAddressSDNode>(N)->getTargetFlags());
452    break;
453  }
454  } // end switch (N->getOpcode())
455}
456
457/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
458/// data.
459static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
460  AddNodeIDOpcode(ID, N->getOpcode());
461  // Add the return value info.
462  AddNodeIDValueTypes(ID, N->getVTList());
463  // Add the operand info.
464  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
465
466  // Handle SDNode leafs with special info.
467  AddNodeIDCustom(ID, N);
468}
469
470/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
471/// the CSE map that carries volatility, indexing mode, and
472/// extension/truncation information.
473///
474static inline unsigned
475encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile) {
476  assert((ConvType & 3) == ConvType &&
477         "ConvType may not require more than 2 bits!");
478  assert((AM & 7) == AM &&
479         "AM may not require more than 3 bits!");
480  return ConvType |
481         (AM << 2) |
482         (isVolatile << 5);
483}
484
485//===----------------------------------------------------------------------===//
486//                              SelectionDAG Class
487//===----------------------------------------------------------------------===//
488
489/// doNotCSE - Return true if CSE should not be performed for this node.
490static bool doNotCSE(SDNode *N) {
491  if (N->getValueType(0) == MVT::Flag)
492    return true; // Never CSE anything that produces a flag.
493
494  switch (N->getOpcode()) {
495  default: break;
496  case ISD::HANDLENODE:
497  case ISD::EH_LABEL:
498    return true;   // Never CSE these nodes.
499  }
500
501  // Check that remaining values produced are not flags.
502  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
503    if (N->getValueType(i) == MVT::Flag)
504      return true; // Never CSE anything that produces a flag.
505
506  return false;
507}
508
509/// RemoveDeadNodes - This method deletes all unreachable nodes in the
510/// SelectionDAG.
511void SelectionDAG::RemoveDeadNodes() {
512  // Create a dummy node (which is not added to allnodes), that adds a reference
513  // to the root node, preventing it from being deleted.
514  HandleSDNode Dummy(getRoot());
515
516  SmallVector<SDNode*, 128> DeadNodes;
517
518  // Add all obviously-dead nodes to the DeadNodes worklist.
519  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
520    if (I->use_empty())
521      DeadNodes.push_back(I);
522
523  RemoveDeadNodes(DeadNodes);
524
525  // If the root changed (e.g. it was a dead load, update the root).
526  setRoot(Dummy.getValue());
527}
528
529/// RemoveDeadNodes - This method deletes the unreachable nodes in the
530/// given list, and any nodes that become unreachable as a result.
531void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes,
532                                   DAGUpdateListener *UpdateListener) {
533
534  // Process the worklist, deleting the nodes and adding their uses to the
535  // worklist.
536  while (!DeadNodes.empty()) {
537    SDNode *N = DeadNodes.pop_back_val();
538
539    if (UpdateListener)
540      UpdateListener->NodeDeleted(N, 0);
541
542    // Take the node out of the appropriate CSE map.
543    RemoveNodeFromCSEMaps(N);
544
545    // Next, brutally remove the operand list.  This is safe to do, as there are
546    // no cycles in the graph.
547    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
548      SDUse &Use = *I++;
549      SDNode *Operand = Use.getNode();
550      Use.set(SDValue());
551
552      // Now that we removed this operand, see if there are no uses of it left.
553      if (Operand->use_empty())
554        DeadNodes.push_back(Operand);
555    }
556
557    DeallocateNode(N);
558  }
559}
560
561void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
562  SmallVector<SDNode*, 16> DeadNodes(1, N);
563  RemoveDeadNodes(DeadNodes, UpdateListener);
564}
565
566void SelectionDAG::DeleteNode(SDNode *N) {
567  // First take this out of the appropriate CSE map.
568  RemoveNodeFromCSEMaps(N);
569
570  // Finally, remove uses due to operands of this node, remove from the
571  // AllNodes list, and delete the node.
572  DeleteNodeNotInCSEMaps(N);
573}
574
575void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
576  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
577  assert(N->use_empty() && "Cannot delete a node that is not dead!");
578
579  // Drop all of the operands and decrement used node's use counts.
580  N->DropOperands();
581
582  DeallocateNode(N);
583}
584
585void SelectionDAG::DeallocateNode(SDNode *N) {
586  if (N->OperandsNeedDelete)
587    delete[] N->OperandList;
588
589  // Set the opcode to DELETED_NODE to help catch bugs when node
590  // memory is reallocated.
591  N->NodeType = ISD::DELETED_NODE;
592
593  NodeAllocator.Deallocate(AllNodes.remove(N));
594
595  // Remove the ordering of this node.
596  Ordering->remove(N);
597}
598
599/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
600/// correspond to it.  This is useful when we're about to delete or repurpose
601/// the node.  We don't want future request for structurally identical nodes
602/// to return N anymore.
603bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
604  bool Erased = false;
605  switch (N->getOpcode()) {
606  case ISD::EntryToken:
607    llvm_unreachable("EntryToken should not be in CSEMaps!");
608    return false;
609  case ISD::HANDLENODE: return false;  // noop.
610  case ISD::CONDCODE:
611    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
612           "Cond code doesn't exist!");
613    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
614    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
615    break;
616  case ISD::ExternalSymbol:
617    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
618    break;
619  case ISD::TargetExternalSymbol: {
620    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
621    Erased = TargetExternalSymbols.erase(
622               std::pair<std::string,unsigned char>(ESN->getSymbol(),
623                                                    ESN->getTargetFlags()));
624    break;
625  }
626  case ISD::VALUETYPE: {
627    EVT VT = cast<VTSDNode>(N)->getVT();
628    if (VT.isExtended()) {
629      Erased = ExtendedValueTypeNodes.erase(VT);
630    } else {
631      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
632      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
633    }
634    break;
635  }
636  default:
637    // Remove it from the CSE Map.
638    Erased = CSEMap.RemoveNode(N);
639    break;
640  }
641#ifndef NDEBUG
642  // Verify that the node was actually in one of the CSE maps, unless it has a
643  // flag result (which cannot be CSE'd) or is one of the special cases that are
644  // not subject to CSE.
645  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
646      !N->isMachineOpcode() && !doNotCSE(N)) {
647    N->dump(this);
648    dbgs() << "\n";
649    llvm_unreachable("Node is not in map!");
650  }
651#endif
652  return Erased;
653}
654
655/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
656/// maps and modified in place. Add it back to the CSE maps, unless an identical
657/// node already exists, in which case transfer all its users to the existing
658/// node. This transfer can potentially trigger recursive merging.
659///
660void
661SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N,
662                                       DAGUpdateListener *UpdateListener) {
663  // For node types that aren't CSE'd, just act as if no identical node
664  // already exists.
665  if (!doNotCSE(N)) {
666    SDNode *Existing = CSEMap.GetOrInsertNode(N);
667    if (Existing != N) {
668      // If there was already an existing matching node, use ReplaceAllUsesWith
669      // to replace the dead one with the existing one.  This can cause
670      // recursive merging of other unrelated nodes down the line.
671      ReplaceAllUsesWith(N, Existing, UpdateListener);
672
673      // N is now dead.  Inform the listener if it exists and delete it.
674      if (UpdateListener)
675        UpdateListener->NodeDeleted(N, Existing);
676      DeleteNodeNotInCSEMaps(N);
677      return;
678    }
679  }
680
681  // If the node doesn't already exist, we updated it.  Inform a listener if
682  // it exists.
683  if (UpdateListener)
684    UpdateListener->NodeUpdated(N);
685}
686
687/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
688/// were replaced with those specified.  If this node is never memoized,
689/// return null, otherwise return a pointer to the slot it would take.  If a
690/// node already exists with these operands, the slot will be non-null.
691SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
692                                           void *&InsertPos) {
693  if (doNotCSE(N))
694    return 0;
695
696  SDValue Ops[] = { Op };
697  FoldingSetNodeID ID;
698  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
699  AddNodeIDCustom(ID, N);
700  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
701  return Node;
702}
703
704/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
705/// were replaced with those specified.  If this node is never memoized,
706/// return null, otherwise return a pointer to the slot it would take.  If a
707/// node already exists with these operands, the slot will be non-null.
708SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
709                                           SDValue Op1, SDValue Op2,
710                                           void *&InsertPos) {
711  if (doNotCSE(N))
712    return 0;
713
714  SDValue Ops[] = { Op1, Op2 };
715  FoldingSetNodeID ID;
716  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
717  AddNodeIDCustom(ID, N);
718  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
719  return Node;
720}
721
722
723/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
724/// were replaced with those specified.  If this node is never memoized,
725/// return null, otherwise return a pointer to the slot it would take.  If a
726/// node already exists with these operands, the slot will be non-null.
727SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
728                                           const SDValue *Ops,unsigned NumOps,
729                                           void *&InsertPos) {
730  if (doNotCSE(N))
731    return 0;
732
733  FoldingSetNodeID ID;
734  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
735  AddNodeIDCustom(ID, N);
736  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
737  return Node;
738}
739
740/// VerifyNode - Sanity check the given node.  Aborts if it is invalid.
741void SelectionDAG::VerifyNode(SDNode *N) {
742  switch (N->getOpcode()) {
743  default:
744    break;
745  case ISD::BUILD_PAIR: {
746    EVT VT = N->getValueType(0);
747    assert(N->getNumValues() == 1 && "Too many results!");
748    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
749           "Wrong return type!");
750    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
751    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
752           "Mismatched operand types!");
753    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
754           "Wrong operand type!");
755    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
756           "Wrong return type size");
757    break;
758  }
759  case ISD::BUILD_VECTOR: {
760    assert(N->getNumValues() == 1 && "Too many results!");
761    assert(N->getValueType(0).isVector() && "Wrong return type!");
762    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
763           "Wrong number of operands!");
764    EVT EltVT = N->getValueType(0).getVectorElementType();
765    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
766      assert((I->getValueType() == EltVT ||
767             (EltVT.isInteger() && I->getValueType().isInteger() &&
768              EltVT.bitsLE(I->getValueType()))) &&
769            "Wrong operand type!");
770    break;
771  }
772  }
773}
774
775/// getEVTAlignment - Compute the default alignment value for the
776/// given type.
777///
778unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
779  const Type *Ty = VT == MVT::iPTR ?
780                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
781                   VT.getTypeForEVT(*getContext());
782
783  return TLI.getTargetData()->getABITypeAlignment(Ty);
784}
785
786// EntryNode could meaningfully have debug info if we can find it...
787SelectionDAG::SelectionDAG(TargetLowering &tli, FunctionLoweringInfo &fli)
788  : TLI(tli), FLI(fli), DW(0),
789    EntryNode(ISD::EntryToken, DebugLoc::getUnknownLoc(),
790              getVTList(MVT::Other)),
791    Root(getEntryNode()), Ordering(0) {
792  AllNodes.push_back(&EntryNode);
793  Ordering = new SDNodeOrdering();
794}
795
796void SelectionDAG::init(MachineFunction &mf, MachineModuleInfo *mmi,
797                        DwarfWriter *dw) {
798  MF = &mf;
799  MMI = mmi;
800  DW = dw;
801  Context = &mf.getFunction()->getContext();
802}
803
804SelectionDAG::~SelectionDAG() {
805  allnodes_clear();
806  delete Ordering;
807}
808
809void SelectionDAG::allnodes_clear() {
810  assert(&*AllNodes.begin() == &EntryNode);
811  AllNodes.remove(AllNodes.begin());
812  while (!AllNodes.empty())
813    DeallocateNode(AllNodes.begin());
814}
815
816void SelectionDAG::clear() {
817  allnodes_clear();
818  OperandAllocator.Reset();
819  CSEMap.clear();
820
821  ExtendedValueTypeNodes.clear();
822  ExternalSymbols.clear();
823  TargetExternalSymbols.clear();
824  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
825            static_cast<CondCodeSDNode*>(0));
826  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
827            static_cast<SDNode*>(0));
828
829  EntryNode.UseList = 0;
830  AllNodes.push_back(&EntryNode);
831  Root = getEntryNode();
832  delete Ordering;
833  Ordering = new SDNodeOrdering();
834}
835
836SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
837  return VT.bitsGT(Op.getValueType()) ?
838    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
839    getNode(ISD::TRUNCATE, DL, VT, Op);
840}
841
842SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
843  return VT.bitsGT(Op.getValueType()) ?
844    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
845    getNode(ISD::TRUNCATE, DL, VT, Op);
846}
847
848SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
849  assert(!VT.isVector() &&
850         "getZeroExtendInReg should use the vector element type instead of "
851         "the vector type!");
852  if (Op.getValueType() == VT) return Op;
853  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
854  APInt Imm = APInt::getLowBitsSet(BitWidth,
855                                   VT.getSizeInBits());
856  return getNode(ISD::AND, DL, Op.getValueType(), Op,
857                 getConstant(Imm, Op.getValueType()));
858}
859
860/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
861///
862SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
863  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
864  SDValue NegOne =
865    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
866  return getNode(ISD::XOR, DL, VT, Val, NegOne);
867}
868
869SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
870  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
871  assert((EltVT.getSizeInBits() >= 64 ||
872         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
873         "getConstant with a uint64_t value that doesn't fit in the type!");
874  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
875}
876
877SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
878  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
879}
880
881SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
882  assert(VT.isInteger() && "Cannot create FP integer constant!");
883
884  EVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
885  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
886         "APInt size does not match type size!");
887
888  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
889  FoldingSetNodeID ID;
890  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
891  ID.AddPointer(&Val);
892  void *IP = 0;
893  SDNode *N = NULL;
894  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
895    if (!VT.isVector())
896      return SDValue(N, 0);
897
898  if (!N) {
899    N = NodeAllocator.Allocate<ConstantSDNode>();
900    new (N) ConstantSDNode(isT, &Val, EltVT);
901    CSEMap.InsertNode(N, IP);
902    AllNodes.push_back(N);
903  }
904
905  SDValue Result(N, 0);
906  if (VT.isVector()) {
907    SmallVector<SDValue, 8> Ops;
908    Ops.assign(VT.getVectorNumElements(), Result);
909    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
910                     VT, &Ops[0], Ops.size());
911  }
912  return Result;
913}
914
915SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
916  return getConstant(Val, TLI.getPointerTy(), isTarget);
917}
918
919
920SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
921  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
922}
923
924SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
925  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
926
927  EVT EltVT =
928    VT.isVector() ? VT.getVectorElementType() : VT;
929
930  // Do the map lookup using the actual bit pattern for the floating point
931  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
932  // we don't have issues with SNANs.
933  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
934  FoldingSetNodeID ID;
935  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
936  ID.AddPointer(&V);
937  void *IP = 0;
938  SDNode *N = NULL;
939  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
940    if (!VT.isVector())
941      return SDValue(N, 0);
942
943  if (!N) {
944    N = NodeAllocator.Allocate<ConstantFPSDNode>();
945    new (N) ConstantFPSDNode(isTarget, &V, EltVT);
946    CSEMap.InsertNode(N, IP);
947    AllNodes.push_back(N);
948  }
949
950  SDValue Result(N, 0);
951  if (VT.isVector()) {
952    SmallVector<SDValue, 8> Ops;
953    Ops.assign(VT.getVectorNumElements(), Result);
954    // FIXME DebugLoc info might be appropriate here
955    Result = getNode(ISD::BUILD_VECTOR, DebugLoc::getUnknownLoc(),
956                     VT, &Ops[0], Ops.size());
957  }
958  return Result;
959}
960
961SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
962  EVT EltVT =
963    VT.isVector() ? VT.getVectorElementType() : VT;
964  if (EltVT==MVT::f32)
965    return getConstantFP(APFloat((float)Val), VT, isTarget);
966  else
967    return getConstantFP(APFloat(Val), VT, isTarget);
968}
969
970SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV,
971                                       EVT VT, int64_t Offset,
972                                       bool isTargetGA,
973                                       unsigned char TargetFlags) {
974  assert((TargetFlags == 0 || isTargetGA) &&
975         "Cannot set target flags on target-independent globals");
976
977  // Truncate (with sign-extension) the offset value to the pointer size.
978  EVT PTy = TLI.getPointerTy();
979  unsigned BitWidth = PTy.getSizeInBits();
980  if (BitWidth < 64)
981    Offset = (Offset << (64 - BitWidth) >> (64 - BitWidth));
982
983  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
984  if (!GVar) {
985    // If GV is an alias then use the aliasee for determining thread-localness.
986    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
987      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
988  }
989
990  unsigned Opc;
991  if (GVar && GVar->isThreadLocal())
992    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
993  else
994    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
995
996  FoldingSetNodeID ID;
997  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
998  ID.AddPointer(GV);
999  ID.AddInteger(Offset);
1000  ID.AddInteger(TargetFlags);
1001  void *IP = 0;
1002  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1003    return SDValue(E, 0);
1004
1005  SDNode *N = NodeAllocator.Allocate<GlobalAddressSDNode>();
1006  new (N) GlobalAddressSDNode(Opc, GV, VT, Offset, TargetFlags);
1007  CSEMap.InsertNode(N, IP);
1008  AllNodes.push_back(N);
1009  return SDValue(N, 0);
1010}
1011
1012SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1013  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1014  FoldingSetNodeID ID;
1015  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1016  ID.AddInteger(FI);
1017  void *IP = 0;
1018  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1019    return SDValue(E, 0);
1020
1021  SDNode *N = NodeAllocator.Allocate<FrameIndexSDNode>();
1022  new (N) FrameIndexSDNode(FI, VT, isTarget);
1023  CSEMap.InsertNode(N, IP);
1024  AllNodes.push_back(N);
1025  return SDValue(N, 0);
1026}
1027
1028SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1029                                   unsigned char TargetFlags) {
1030  assert((TargetFlags == 0 || isTarget) &&
1031         "Cannot set target flags on target-independent jump tables");
1032  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1033  FoldingSetNodeID ID;
1034  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1035  ID.AddInteger(JTI);
1036  ID.AddInteger(TargetFlags);
1037  void *IP = 0;
1038  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1039    return SDValue(E, 0);
1040
1041  SDNode *N = NodeAllocator.Allocate<JumpTableSDNode>();
1042  new (N) JumpTableSDNode(JTI, VT, isTarget, TargetFlags);
1043  CSEMap.InsertNode(N, IP);
1044  AllNodes.push_back(N);
1045  return SDValue(N, 0);
1046}
1047
1048SDValue SelectionDAG::getConstantPool(Constant *C, EVT VT,
1049                                      unsigned Alignment, int Offset,
1050                                      bool isTarget,
1051                                      unsigned char TargetFlags) {
1052  assert((TargetFlags == 0 || isTarget) &&
1053         "Cannot set target flags on target-independent globals");
1054  if (Alignment == 0)
1055    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1056  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1057  FoldingSetNodeID ID;
1058  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1059  ID.AddInteger(Alignment);
1060  ID.AddInteger(Offset);
1061  ID.AddPointer(C);
1062  ID.AddInteger(TargetFlags);
1063  void *IP = 0;
1064  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1065    return SDValue(E, 0);
1066
1067  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1068  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1069  CSEMap.InsertNode(N, IP);
1070  AllNodes.push_back(N);
1071  return SDValue(N, 0);
1072}
1073
1074
1075SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1076                                      unsigned Alignment, int Offset,
1077                                      bool isTarget,
1078                                      unsigned char TargetFlags) {
1079  assert((TargetFlags == 0 || isTarget) &&
1080         "Cannot set target flags on target-independent globals");
1081  if (Alignment == 0)
1082    Alignment = TLI.getTargetData()->getPrefTypeAlignment(C->getType());
1083  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1084  FoldingSetNodeID ID;
1085  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1086  ID.AddInteger(Alignment);
1087  ID.AddInteger(Offset);
1088  C->AddSelectionDAGCSEId(ID);
1089  ID.AddInteger(TargetFlags);
1090  void *IP = 0;
1091  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1092    return SDValue(E, 0);
1093
1094  SDNode *N = NodeAllocator.Allocate<ConstantPoolSDNode>();
1095  new (N) ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment, TargetFlags);
1096  CSEMap.InsertNode(N, IP);
1097  AllNodes.push_back(N);
1098  return SDValue(N, 0);
1099}
1100
1101SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1102  FoldingSetNodeID ID;
1103  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1104  ID.AddPointer(MBB);
1105  void *IP = 0;
1106  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1107    return SDValue(E, 0);
1108
1109  SDNode *N = NodeAllocator.Allocate<BasicBlockSDNode>();
1110  new (N) BasicBlockSDNode(MBB);
1111  CSEMap.InsertNode(N, IP);
1112  AllNodes.push_back(N);
1113  return SDValue(N, 0);
1114}
1115
1116SDValue SelectionDAG::getValueType(EVT VT) {
1117  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1118      ValueTypeNodes.size())
1119    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1120
1121  SDNode *&N = VT.isExtended() ?
1122    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1123
1124  if (N) return SDValue(N, 0);
1125  N = NodeAllocator.Allocate<VTSDNode>();
1126  new (N) VTSDNode(VT);
1127  AllNodes.push_back(N);
1128  return SDValue(N, 0);
1129}
1130
1131SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1132  SDNode *&N = ExternalSymbols[Sym];
1133  if (N) return SDValue(N, 0);
1134  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1135  new (N) ExternalSymbolSDNode(false, Sym, 0, VT);
1136  AllNodes.push_back(N);
1137  return SDValue(N, 0);
1138}
1139
1140SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1141                                              unsigned char TargetFlags) {
1142  SDNode *&N =
1143    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1144                                                               TargetFlags)];
1145  if (N) return SDValue(N, 0);
1146  N = NodeAllocator.Allocate<ExternalSymbolSDNode>();
1147  new (N) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1148  AllNodes.push_back(N);
1149  return SDValue(N, 0);
1150}
1151
1152SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1153  if ((unsigned)Cond >= CondCodeNodes.size())
1154    CondCodeNodes.resize(Cond+1);
1155
1156  if (CondCodeNodes[Cond] == 0) {
1157    CondCodeSDNode *N = NodeAllocator.Allocate<CondCodeSDNode>();
1158    new (N) CondCodeSDNode(Cond);
1159    CondCodeNodes[Cond] = N;
1160    AllNodes.push_back(N);
1161  }
1162
1163  return SDValue(CondCodeNodes[Cond], 0);
1164}
1165
1166// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1167// the shuffle mask M that point at N1 to point at N2, and indices that point
1168// N2 to point at N1.
1169static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1170  std::swap(N1, N2);
1171  int NElts = M.size();
1172  for (int i = 0; i != NElts; ++i) {
1173    if (M[i] >= NElts)
1174      M[i] -= NElts;
1175    else if (M[i] >= 0)
1176      M[i] += NElts;
1177  }
1178}
1179
1180SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1181                                       SDValue N2, const int *Mask) {
1182  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1183  assert(VT.isVector() && N1.getValueType().isVector() &&
1184         "Vector Shuffle VTs must be a vectors");
1185  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1186         && "Vector Shuffle VTs must have same element type");
1187
1188  // Canonicalize shuffle undef, undef -> undef
1189  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1190    return getUNDEF(VT);
1191
1192  // Validate that all indices in Mask are within the range of the elements
1193  // input to the shuffle.
1194  unsigned NElts = VT.getVectorNumElements();
1195  SmallVector<int, 8> MaskVec;
1196  for (unsigned i = 0; i != NElts; ++i) {
1197    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1198    MaskVec.push_back(Mask[i]);
1199  }
1200
1201  // Canonicalize shuffle v, v -> v, undef
1202  if (N1 == N2) {
1203    N2 = getUNDEF(VT);
1204    for (unsigned i = 0; i != NElts; ++i)
1205      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1206  }
1207
1208  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1209  if (N1.getOpcode() == ISD::UNDEF)
1210    commuteShuffle(N1, N2, MaskVec);
1211
1212  // Canonicalize all index into lhs, -> shuffle lhs, undef
1213  // Canonicalize all index into rhs, -> shuffle rhs, undef
1214  bool AllLHS = true, AllRHS = true;
1215  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1216  for (unsigned i = 0; i != NElts; ++i) {
1217    if (MaskVec[i] >= (int)NElts) {
1218      if (N2Undef)
1219        MaskVec[i] = -1;
1220      else
1221        AllLHS = false;
1222    } else if (MaskVec[i] >= 0) {
1223      AllRHS = false;
1224    }
1225  }
1226  if (AllLHS && AllRHS)
1227    return getUNDEF(VT);
1228  if (AllLHS && !N2Undef)
1229    N2 = getUNDEF(VT);
1230  if (AllRHS) {
1231    N1 = getUNDEF(VT);
1232    commuteShuffle(N1, N2, MaskVec);
1233  }
1234
1235  // If Identity shuffle, or all shuffle in to undef, return that node.
1236  bool AllUndef = true;
1237  bool Identity = true;
1238  for (unsigned i = 0; i != NElts; ++i) {
1239    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1240    if (MaskVec[i] >= 0) AllUndef = false;
1241  }
1242  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1243    return N1;
1244  if (AllUndef)
1245    return getUNDEF(VT);
1246
1247  FoldingSetNodeID ID;
1248  SDValue Ops[2] = { N1, N2 };
1249  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1250  for (unsigned i = 0; i != NElts; ++i)
1251    ID.AddInteger(MaskVec[i]);
1252
1253  void* IP = 0;
1254  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1255    return SDValue(E, 0);
1256
1257  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1258  // SDNode doesn't have access to it.  This memory will be "leaked" when
1259  // the node is deallocated, but recovered when the NodeAllocator is released.
1260  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1261  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1262
1263  ShuffleVectorSDNode *N = NodeAllocator.Allocate<ShuffleVectorSDNode>();
1264  new (N) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1265  CSEMap.InsertNode(N, IP);
1266  AllNodes.push_back(N);
1267  return SDValue(N, 0);
1268}
1269
1270SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1271                                       SDValue Val, SDValue DTy,
1272                                       SDValue STy, SDValue Rnd, SDValue Sat,
1273                                       ISD::CvtCode Code) {
1274  // If the src and dest types are the same and the conversion is between
1275  // integer types of the same sign or two floats, no conversion is necessary.
1276  if (DTy == STy &&
1277      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1278    return Val;
1279
1280  FoldingSetNodeID ID;
1281  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1282  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1283  void* IP = 0;
1284  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1285    return SDValue(E, 0);
1286
1287  CvtRndSatSDNode *N = NodeAllocator.Allocate<CvtRndSatSDNode>();
1288  new (N) CvtRndSatSDNode(VT, dl, Ops, 5, Code);
1289  CSEMap.InsertNode(N, IP);
1290  AllNodes.push_back(N);
1291  return SDValue(N, 0);
1292}
1293
1294SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1295  FoldingSetNodeID ID;
1296  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1297  ID.AddInteger(RegNo);
1298  void *IP = 0;
1299  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1300    return SDValue(E, 0);
1301
1302  SDNode *N = NodeAllocator.Allocate<RegisterSDNode>();
1303  new (N) RegisterSDNode(RegNo, VT);
1304  CSEMap.InsertNode(N, IP);
1305  AllNodes.push_back(N);
1306  return SDValue(N, 0);
1307}
1308
1309SDValue SelectionDAG::getLabel(unsigned Opcode, DebugLoc dl,
1310                               SDValue Root,
1311                               unsigned LabelID) {
1312  FoldingSetNodeID ID;
1313  SDValue Ops[] = { Root };
1314  AddNodeIDNode(ID, Opcode, getVTList(MVT::Other), &Ops[0], 1);
1315  ID.AddInteger(LabelID);
1316  void *IP = 0;
1317  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1318    return SDValue(E, 0);
1319
1320  SDNode *N = NodeAllocator.Allocate<LabelSDNode>();
1321  new (N) LabelSDNode(Opcode, dl, Root, LabelID);
1322  CSEMap.InsertNode(N, IP);
1323  AllNodes.push_back(N);
1324  return SDValue(N, 0);
1325}
1326
1327SDValue SelectionDAG::getBlockAddress(BlockAddress *BA, EVT VT,
1328                                      bool isTarget,
1329                                      unsigned char TargetFlags) {
1330  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1331
1332  FoldingSetNodeID ID;
1333  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1334  ID.AddPointer(BA);
1335  ID.AddInteger(TargetFlags);
1336  void *IP = 0;
1337  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1338    return SDValue(E, 0);
1339
1340  SDNode *N = NodeAllocator.Allocate<BlockAddressSDNode>();
1341  new (N) BlockAddressSDNode(Opc, VT, BA, TargetFlags);
1342  CSEMap.InsertNode(N, IP);
1343  AllNodes.push_back(N);
1344  return SDValue(N, 0);
1345}
1346
1347SDValue SelectionDAG::getSrcValue(const Value *V) {
1348  assert((!V || isa<PointerType>(V->getType())) &&
1349         "SrcValue is not a pointer?");
1350
1351  FoldingSetNodeID ID;
1352  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1353  ID.AddPointer(V);
1354
1355  void *IP = 0;
1356  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1357    return SDValue(E, 0);
1358
1359  SDNode *N = NodeAllocator.Allocate<SrcValueSDNode>();
1360  new (N) SrcValueSDNode(V);
1361  CSEMap.InsertNode(N, IP);
1362  AllNodes.push_back(N);
1363  return SDValue(N, 0);
1364}
1365
1366/// getShiftAmountOperand - Return the specified value casted to
1367/// the target's desired shift amount type.
1368SDValue SelectionDAG::getShiftAmountOperand(SDValue Op) {
1369  EVT OpTy = Op.getValueType();
1370  MVT ShTy = TLI.getShiftAmountTy();
1371  if (OpTy == ShTy || OpTy.isVector()) return Op;
1372
1373  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1374  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1375}
1376
1377/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1378/// specified value type.
1379SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1380  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1381  unsigned ByteSize = VT.getStoreSize();
1382  const Type *Ty = VT.getTypeForEVT(*getContext());
1383  unsigned StackAlign =
1384  std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), minAlign);
1385
1386  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1387  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1388}
1389
1390/// CreateStackTemporary - Create a stack temporary suitable for holding
1391/// either of the specified value types.
1392SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1393  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1394                            VT2.getStoreSizeInBits())/8;
1395  const Type *Ty1 = VT1.getTypeForEVT(*getContext());
1396  const Type *Ty2 = VT2.getTypeForEVT(*getContext());
1397  const TargetData *TD = TLI.getTargetData();
1398  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1399                            TD->getPrefTypeAlignment(Ty2));
1400
1401  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1402  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1403  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1404}
1405
1406SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1407                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1408  // These setcc operations always fold.
1409  switch (Cond) {
1410  default: break;
1411  case ISD::SETFALSE:
1412  case ISD::SETFALSE2: return getConstant(0, VT);
1413  case ISD::SETTRUE:
1414  case ISD::SETTRUE2:  return getConstant(1, VT);
1415
1416  case ISD::SETOEQ:
1417  case ISD::SETOGT:
1418  case ISD::SETOGE:
1419  case ISD::SETOLT:
1420  case ISD::SETOLE:
1421  case ISD::SETONE:
1422  case ISD::SETO:
1423  case ISD::SETUO:
1424  case ISD::SETUEQ:
1425  case ISD::SETUNE:
1426    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1427    break;
1428  }
1429
1430  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1431    const APInt &C2 = N2C->getAPIntValue();
1432    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1433      const APInt &C1 = N1C->getAPIntValue();
1434
1435      switch (Cond) {
1436      default: llvm_unreachable("Unknown integer setcc!");
1437      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1438      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1439      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1440      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1441      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1442      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1443      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1444      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1445      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1446      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1447      }
1448    }
1449  }
1450  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1451    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1452      // No compile time operations on this type yet.
1453      if (N1C->getValueType(0) == MVT::ppcf128)
1454        return SDValue();
1455
1456      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1457      switch (Cond) {
1458      default: break;
1459      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1460                          return getUNDEF(VT);
1461                        // fall through
1462      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1463      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1464                          return getUNDEF(VT);
1465                        // fall through
1466      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1467                                           R==APFloat::cmpLessThan, VT);
1468      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1469                          return getUNDEF(VT);
1470                        // fall through
1471      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1472      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1473                          return getUNDEF(VT);
1474                        // fall through
1475      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1476      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1477                          return getUNDEF(VT);
1478                        // fall through
1479      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1480                                           R==APFloat::cmpEqual, VT);
1481      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1482                          return getUNDEF(VT);
1483                        // fall through
1484      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1485                                           R==APFloat::cmpEqual, VT);
1486      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1487      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1488      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1489                                           R==APFloat::cmpEqual, VT);
1490      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1491      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1492                                           R==APFloat::cmpLessThan, VT);
1493      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1494                                           R==APFloat::cmpUnordered, VT);
1495      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1496      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1497      }
1498    } else {
1499      // Ensure that the constant occurs on the RHS.
1500      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1501    }
1502  }
1503
1504  // Could not fold it.
1505  return SDValue();
1506}
1507
1508/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1509/// use this predicate to simplify operations downstream.
1510bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1511  // This predicate is not safe for vector operations.
1512  if (Op.getValueType().isVector())
1513    return false;
1514
1515  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1516  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1517}
1518
1519/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1520/// this predicate to simplify operations downstream.  Mask is known to be zero
1521/// for bits that V cannot have.
1522bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1523                                     unsigned Depth) const {
1524  APInt KnownZero, KnownOne;
1525  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1526  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1527  return (KnownZero & Mask) == Mask;
1528}
1529
1530/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1531/// known to be either zero or one and return them in the KnownZero/KnownOne
1532/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1533/// processing.
1534void SelectionDAG::ComputeMaskedBits(SDValue Op, const APInt &Mask,
1535                                     APInt &KnownZero, APInt &KnownOne,
1536                                     unsigned Depth) const {
1537  unsigned BitWidth = Mask.getBitWidth();
1538  assert(BitWidth == Op.getValueType().getScalarType().getSizeInBits() &&
1539         "Mask size mismatches value type size!");
1540
1541  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1542  if (Depth == 6 || Mask == 0)
1543    return;  // Limit search depth.
1544
1545  APInt KnownZero2, KnownOne2;
1546
1547  switch (Op.getOpcode()) {
1548  case ISD::Constant:
1549    // We know all of the bits for a constant!
1550    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1551    KnownZero = ~KnownOne & Mask;
1552    return;
1553  case ISD::AND:
1554    // If either the LHS or the RHS are Zero, the result is zero.
1555    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1556    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1557                      KnownZero2, KnownOne2, Depth+1);
1558    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1559    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1560
1561    // Output known-1 bits are only known if set in both the LHS & RHS.
1562    KnownOne &= KnownOne2;
1563    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1564    KnownZero |= KnownZero2;
1565    return;
1566  case ISD::OR:
1567    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1568    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1569                      KnownZero2, KnownOne2, Depth+1);
1570    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1571    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1572
1573    // Output known-0 bits are only known if clear in both the LHS & RHS.
1574    KnownZero &= KnownZero2;
1575    // Output known-1 are known to be set if set in either the LHS | RHS.
1576    KnownOne |= KnownOne2;
1577    return;
1578  case ISD::XOR: {
1579    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1580    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1581    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1582    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1583
1584    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1585    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1586    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1587    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1588    KnownZero = KnownZeroOut;
1589    return;
1590  }
1591  case ISD::MUL: {
1592    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1593    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1594    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1595    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1596    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1597
1598    // If low bits are zero in either operand, output low known-0 bits.
1599    // Also compute a conserative estimate for high known-0 bits.
1600    // More trickiness is possible, but this is sufficient for the
1601    // interesting case of alignment computation.
1602    KnownOne.clear();
1603    unsigned TrailZ = KnownZero.countTrailingOnes() +
1604                      KnownZero2.countTrailingOnes();
1605    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1606                               KnownZero2.countLeadingOnes(),
1607                               BitWidth) - BitWidth;
1608
1609    TrailZ = std::min(TrailZ, BitWidth);
1610    LeadZ = std::min(LeadZ, BitWidth);
1611    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1612                APInt::getHighBitsSet(BitWidth, LeadZ);
1613    KnownZero &= Mask;
1614    return;
1615  }
1616  case ISD::UDIV: {
1617    // For the purposes of computing leading zeros we can conservatively
1618    // treat a udiv as a logical right shift by the power of 2 known to
1619    // be less than the denominator.
1620    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1621    ComputeMaskedBits(Op.getOperand(0),
1622                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1623    unsigned LeadZ = KnownZero2.countLeadingOnes();
1624
1625    KnownOne2.clear();
1626    KnownZero2.clear();
1627    ComputeMaskedBits(Op.getOperand(1),
1628                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1629    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1630    if (RHSUnknownLeadingOnes != BitWidth)
1631      LeadZ = std::min(BitWidth,
1632                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1633
1634    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1635    return;
1636  }
1637  case ISD::SELECT:
1638    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1639    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1640    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1641    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1642
1643    // Only known if known in both the LHS and RHS.
1644    KnownOne &= KnownOne2;
1645    KnownZero &= KnownZero2;
1646    return;
1647  case ISD::SELECT_CC:
1648    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1649    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1650    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1651    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1652
1653    // Only known if known in both the LHS and RHS.
1654    KnownOne &= KnownOne2;
1655    KnownZero &= KnownZero2;
1656    return;
1657  case ISD::SADDO:
1658  case ISD::UADDO:
1659  case ISD::SSUBO:
1660  case ISD::USUBO:
1661  case ISD::SMULO:
1662  case ISD::UMULO:
1663    if (Op.getResNo() != 1)
1664      return;
1665    // The boolean result conforms to getBooleanContents.  Fall through.
1666  case ISD::SETCC:
1667    // If we know the result of a setcc has the top bits zero, use this info.
1668    if (TLI.getBooleanContents() == TargetLowering::ZeroOrOneBooleanContent &&
1669        BitWidth > 1)
1670      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1671    return;
1672  case ISD::SHL:
1673    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1674    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1675      unsigned ShAmt = SA->getZExtValue();
1676
1677      // If the shift count is an invalid immediate, don't do anything.
1678      if (ShAmt >= BitWidth)
1679        return;
1680
1681      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1682                        KnownZero, KnownOne, Depth+1);
1683      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1684      KnownZero <<= ShAmt;
1685      KnownOne  <<= ShAmt;
1686      // low bits known zero.
1687      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1688    }
1689    return;
1690  case ISD::SRL:
1691    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1692    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1693      unsigned ShAmt = SA->getZExtValue();
1694
1695      // If the shift count is an invalid immediate, don't do anything.
1696      if (ShAmt >= BitWidth)
1697        return;
1698
1699      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1700                        KnownZero, KnownOne, Depth+1);
1701      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1702      KnownZero = KnownZero.lshr(ShAmt);
1703      KnownOne  = KnownOne.lshr(ShAmt);
1704
1705      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1706      KnownZero |= HighBits;  // High bits known zero.
1707    }
1708    return;
1709  case ISD::SRA:
1710    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1711      unsigned ShAmt = SA->getZExtValue();
1712
1713      // If the shift count is an invalid immediate, don't do anything.
1714      if (ShAmt >= BitWidth)
1715        return;
1716
1717      APInt InDemandedMask = (Mask << ShAmt);
1718      // If any of the demanded bits are produced by the sign extension, we also
1719      // demand the input sign bit.
1720      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1721      if (HighBits.getBoolValue())
1722        InDemandedMask |= APInt::getSignBit(BitWidth);
1723
1724      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1725                        Depth+1);
1726      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1727      KnownZero = KnownZero.lshr(ShAmt);
1728      KnownOne  = KnownOne.lshr(ShAmt);
1729
1730      // Handle the sign bits.
1731      APInt SignBit = APInt::getSignBit(BitWidth);
1732      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1733
1734      if (KnownZero.intersects(SignBit)) {
1735        KnownZero |= HighBits;  // New bits are known zero.
1736      } else if (KnownOne.intersects(SignBit)) {
1737        KnownOne  |= HighBits;  // New bits are known one.
1738      }
1739    }
1740    return;
1741  case ISD::SIGN_EXTEND_INREG: {
1742    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1743    unsigned EBits = EVT.getScalarType().getSizeInBits();
1744
1745    // Sign extension.  Compute the demanded bits in the result that are not
1746    // present in the input.
1747    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1748
1749    APInt InSignBit = APInt::getSignBit(EBits);
1750    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1751
1752    // If the sign extended bits are demanded, we know that the sign
1753    // bit is demanded.
1754    InSignBit.zext(BitWidth);
1755    if (NewBits.getBoolValue())
1756      InputDemandedBits |= InSignBit;
1757
1758    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1759                      KnownZero, KnownOne, Depth+1);
1760    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1761
1762    // If the sign bit of the input is known set or clear, then we know the
1763    // top bits of the result.
1764    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1765      KnownZero |= NewBits;
1766      KnownOne  &= ~NewBits;
1767    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1768      KnownOne  |= NewBits;
1769      KnownZero &= ~NewBits;
1770    } else {                              // Input sign bit unknown
1771      KnownZero &= ~NewBits;
1772      KnownOne  &= ~NewBits;
1773    }
1774    return;
1775  }
1776  case ISD::CTTZ:
1777  case ISD::CTLZ:
1778  case ISD::CTPOP: {
1779    unsigned LowBits = Log2_32(BitWidth)+1;
1780    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1781    KnownOne.clear();
1782    return;
1783  }
1784  case ISD::LOAD: {
1785    if (ISD::isZEXTLoad(Op.getNode())) {
1786      LoadSDNode *LD = cast<LoadSDNode>(Op);
1787      EVT VT = LD->getMemoryVT();
1788      unsigned MemBits = VT.getScalarType().getSizeInBits();
1789      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1790    }
1791    return;
1792  }
1793  case ISD::ZERO_EXTEND: {
1794    EVT InVT = Op.getOperand(0).getValueType();
1795    unsigned InBits = InVT.getScalarType().getSizeInBits();
1796    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1797    APInt InMask    = Mask;
1798    InMask.trunc(InBits);
1799    KnownZero.trunc(InBits);
1800    KnownOne.trunc(InBits);
1801    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1802    KnownZero.zext(BitWidth);
1803    KnownOne.zext(BitWidth);
1804    KnownZero |= NewBits;
1805    return;
1806  }
1807  case ISD::SIGN_EXTEND: {
1808    EVT InVT = Op.getOperand(0).getValueType();
1809    unsigned InBits = InVT.getScalarType().getSizeInBits();
1810    APInt InSignBit = APInt::getSignBit(InBits);
1811    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1812    APInt InMask = Mask;
1813    InMask.trunc(InBits);
1814
1815    // If any of the sign extended bits are demanded, we know that the sign
1816    // bit is demanded. Temporarily set this bit in the mask for our callee.
1817    if (NewBits.getBoolValue())
1818      InMask |= InSignBit;
1819
1820    KnownZero.trunc(InBits);
1821    KnownOne.trunc(InBits);
1822    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1823
1824    // Note if the sign bit is known to be zero or one.
1825    bool SignBitKnownZero = KnownZero.isNegative();
1826    bool SignBitKnownOne  = KnownOne.isNegative();
1827    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1828           "Sign bit can't be known to be both zero and one!");
1829
1830    // If the sign bit wasn't actually demanded by our caller, we don't
1831    // want it set in the KnownZero and KnownOne result values. Reset the
1832    // mask and reapply it to the result values.
1833    InMask = Mask;
1834    InMask.trunc(InBits);
1835    KnownZero &= InMask;
1836    KnownOne  &= InMask;
1837
1838    KnownZero.zext(BitWidth);
1839    KnownOne.zext(BitWidth);
1840
1841    // If the sign bit is known zero or one, the top bits match.
1842    if (SignBitKnownZero)
1843      KnownZero |= NewBits;
1844    else if (SignBitKnownOne)
1845      KnownOne  |= NewBits;
1846    return;
1847  }
1848  case ISD::ANY_EXTEND: {
1849    EVT InVT = Op.getOperand(0).getValueType();
1850    unsigned InBits = InVT.getScalarType().getSizeInBits();
1851    APInt InMask = Mask;
1852    InMask.trunc(InBits);
1853    KnownZero.trunc(InBits);
1854    KnownOne.trunc(InBits);
1855    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1856    KnownZero.zext(BitWidth);
1857    KnownOne.zext(BitWidth);
1858    return;
1859  }
1860  case ISD::TRUNCATE: {
1861    EVT InVT = Op.getOperand(0).getValueType();
1862    unsigned InBits = InVT.getScalarType().getSizeInBits();
1863    APInt InMask = Mask;
1864    InMask.zext(InBits);
1865    KnownZero.zext(InBits);
1866    KnownOne.zext(InBits);
1867    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1868    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1869    KnownZero.trunc(BitWidth);
1870    KnownOne.trunc(BitWidth);
1871    break;
1872  }
1873  case ISD::AssertZext: {
1874    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1875    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1876    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1877                      KnownOne, Depth+1);
1878    KnownZero |= (~InMask) & Mask;
1879    return;
1880  }
1881  case ISD::FGETSIGN:
1882    // All bits are zero except the low bit.
1883    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1884    return;
1885
1886  case ISD::SUB: {
1887    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1888      // We know that the top bits of C-X are clear if X contains less bits
1889      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1890      // positive if we can prove that X is >= 0 and < 16.
1891      if (CLHS->getAPIntValue().isNonNegative()) {
1892        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1893        // NLZ can't be BitWidth with no sign bit
1894        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1895        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1896                          Depth+1);
1897
1898        // If all of the MaskV bits are known to be zero, then we know the
1899        // output top bits are zero, because we now know that the output is
1900        // from [0-C].
1901        if ((KnownZero2 & MaskV) == MaskV) {
1902          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1903          // Top bits known zero.
1904          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1905        }
1906      }
1907    }
1908  }
1909  // fall through
1910  case ISD::ADD: {
1911    // Output known-0 bits are known if clear or set in both the low clear bits
1912    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1913    // low 3 bits clear.
1914    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1915    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1916    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1917    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1918
1919    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1920    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1921    KnownZeroOut = std::min(KnownZeroOut,
1922                            KnownZero2.countTrailingOnes());
1923
1924    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1925    return;
1926  }
1927  case ISD::SREM:
1928    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1929      const APInt &RA = Rem->getAPIntValue().abs();
1930      if (RA.isPowerOf2()) {
1931        APInt LowBits = RA - 1;
1932        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1933        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1934
1935        // The low bits of the first operand are unchanged by the srem.
1936        KnownZero = KnownZero2 & LowBits;
1937        KnownOne = KnownOne2 & LowBits;
1938
1939        // If the first operand is non-negative or has all low bits zero, then
1940        // the upper bits are all zero.
1941        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1942          KnownZero |= ~LowBits;
1943
1944        // If the first operand is negative and not all low bits are zero, then
1945        // the upper bits are all one.
1946        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1947          KnownOne |= ~LowBits;
1948
1949        KnownZero &= Mask;
1950        KnownOne &= Mask;
1951
1952        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1953      }
1954    }
1955    return;
1956  case ISD::UREM: {
1957    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1958      const APInt &RA = Rem->getAPIntValue();
1959      if (RA.isPowerOf2()) {
1960        APInt LowBits = (RA - 1);
1961        APInt Mask2 = LowBits & Mask;
1962        KnownZero |= ~LowBits & Mask;
1963        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1964        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1965        break;
1966      }
1967    }
1968
1969    // Since the result is less than or equal to either operand, any leading
1970    // zero bits in either operand must also exist in the result.
1971    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1972    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1973                      Depth+1);
1974    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1975                      Depth+1);
1976
1977    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1978                                KnownZero2.countLeadingOnes());
1979    KnownOne.clear();
1980    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1981    return;
1982  }
1983  default:
1984    // Allow the target to implement this method for its nodes.
1985    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1986  case ISD::INTRINSIC_WO_CHAIN:
1987  case ISD::INTRINSIC_W_CHAIN:
1988  case ISD::INTRINSIC_VOID:
1989      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this,
1990                                         Depth);
1991    }
1992    return;
1993  }
1994}
1995
1996/// ComputeNumSignBits - Return the number of times the sign bit of the
1997/// register is replicated into the other bits.  We know that at least 1 bit
1998/// is always equal to the sign bit (itself), but other cases can give us
1999/// information.  For example, immediately after an "SRA X, 2", we know that
2000/// the top 3 bits are all equal to each other, so we return 3.
2001unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2002  EVT VT = Op.getValueType();
2003  assert(VT.isInteger() && "Invalid VT!");
2004  unsigned VTBits = VT.getScalarType().getSizeInBits();
2005  unsigned Tmp, Tmp2;
2006  unsigned FirstAnswer = 1;
2007
2008  if (Depth == 6)
2009    return 1;  // Limit search depth.
2010
2011  switch (Op.getOpcode()) {
2012  default: break;
2013  case ISD::AssertSext:
2014    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2015    return VTBits-Tmp+1;
2016  case ISD::AssertZext:
2017    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2018    return VTBits-Tmp;
2019
2020  case ISD::Constant: {
2021    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2022    // If negative, return # leading ones.
2023    if (Val.isNegative())
2024      return Val.countLeadingOnes();
2025
2026    // Return # leading zeros.
2027    return Val.countLeadingZeros();
2028  }
2029
2030  case ISD::SIGN_EXTEND:
2031    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2032    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2033
2034  case ISD::SIGN_EXTEND_INREG:
2035    // Max of the input and what this extends.
2036    Tmp =
2037      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2038    Tmp = VTBits-Tmp+1;
2039
2040    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2041    return std::max(Tmp, Tmp2);
2042
2043  case ISD::SRA:
2044    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2045    // SRA X, C   -> adds C sign bits.
2046    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2047      Tmp += C->getZExtValue();
2048      if (Tmp > VTBits) Tmp = VTBits;
2049    }
2050    return Tmp;
2051  case ISD::SHL:
2052    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2053      // shl destroys sign bits.
2054      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2055      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2056          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2057      return Tmp - C->getZExtValue();
2058    }
2059    break;
2060  case ISD::AND:
2061  case ISD::OR:
2062  case ISD::XOR:    // NOT is handled here.
2063    // Logical binary ops preserve the number of sign bits at the worst.
2064    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2065    if (Tmp != 1) {
2066      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2067      FirstAnswer = std::min(Tmp, Tmp2);
2068      // We computed what we know about the sign bits as our first
2069      // answer. Now proceed to the generic code that uses
2070      // ComputeMaskedBits, and pick whichever answer is better.
2071    }
2072    break;
2073
2074  case ISD::SELECT:
2075    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2076    if (Tmp == 1) return 1;  // Early out.
2077    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2078    return std::min(Tmp, Tmp2);
2079
2080  case ISD::SADDO:
2081  case ISD::UADDO:
2082  case ISD::SSUBO:
2083  case ISD::USUBO:
2084  case ISD::SMULO:
2085  case ISD::UMULO:
2086    if (Op.getResNo() != 1)
2087      break;
2088    // The boolean result conforms to getBooleanContents.  Fall through.
2089  case ISD::SETCC:
2090    // If setcc returns 0/-1, all bits are sign bits.
2091    if (TLI.getBooleanContents() ==
2092        TargetLowering::ZeroOrNegativeOneBooleanContent)
2093      return VTBits;
2094    break;
2095  case ISD::ROTL:
2096  case ISD::ROTR:
2097    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2098      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2099
2100      // Handle rotate right by N like a rotate left by 32-N.
2101      if (Op.getOpcode() == ISD::ROTR)
2102        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2103
2104      // If we aren't rotating out all of the known-in sign bits, return the
2105      // number that are left.  This handles rotl(sext(x), 1) for example.
2106      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2107      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2108    }
2109    break;
2110  case ISD::ADD:
2111    // Add can have at most one carry bit.  Thus we know that the output
2112    // is, at worst, one more bit than the inputs.
2113    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2114    if (Tmp == 1) return 1;  // Early out.
2115
2116    // Special case decrementing a value (ADD X, -1):
2117    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2118      if (CRHS->isAllOnesValue()) {
2119        APInt KnownZero, KnownOne;
2120        APInt Mask = APInt::getAllOnesValue(VTBits);
2121        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
2122
2123        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2124        // sign bits set.
2125        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2126          return VTBits;
2127
2128        // If we are subtracting one from a positive number, there is no carry
2129        // out of the result.
2130        if (KnownZero.isNegative())
2131          return Tmp;
2132      }
2133
2134    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2135    if (Tmp2 == 1) return 1;
2136      return std::min(Tmp, Tmp2)-1;
2137    break;
2138
2139  case ISD::SUB:
2140    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2141    if (Tmp2 == 1) return 1;
2142
2143    // Handle NEG.
2144    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2145      if (CLHS->isNullValue()) {
2146        APInt KnownZero, KnownOne;
2147        APInt Mask = APInt::getAllOnesValue(VTBits);
2148        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
2149        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2150        // sign bits set.
2151        if ((KnownZero | APInt(VTBits, 1)) == Mask)
2152          return VTBits;
2153
2154        // If the input is known to be positive (the sign bit is known clear),
2155        // the output of the NEG has the same number of sign bits as the input.
2156        if (KnownZero.isNegative())
2157          return Tmp2;
2158
2159        // Otherwise, we treat this like a SUB.
2160      }
2161
2162    // Sub can have at most one carry bit.  Thus we know that the output
2163    // is, at worst, one more bit than the inputs.
2164    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2165    if (Tmp == 1) return 1;  // Early out.
2166      return std::min(Tmp, Tmp2)-1;
2167    break;
2168  case ISD::TRUNCATE:
2169    // FIXME: it's tricky to do anything useful for this, but it is an important
2170    // case for targets like X86.
2171    break;
2172  }
2173
2174  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2175  if (Op.getOpcode() == ISD::LOAD) {
2176    LoadSDNode *LD = cast<LoadSDNode>(Op);
2177    unsigned ExtType = LD->getExtensionType();
2178    switch (ExtType) {
2179    default: break;
2180    case ISD::SEXTLOAD:    // '17' bits known
2181      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2182      return VTBits-Tmp+1;
2183    case ISD::ZEXTLOAD:    // '16' bits known
2184      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2185      return VTBits-Tmp;
2186    }
2187  }
2188
2189  // Allow the target to implement this method for its nodes.
2190  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2191      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2192      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2193      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2194    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2195    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2196  }
2197
2198  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2199  // use this information.
2200  APInt KnownZero, KnownOne;
2201  APInt Mask = APInt::getAllOnesValue(VTBits);
2202  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
2203
2204  if (KnownZero.isNegative()) {        // sign bit is 0
2205    Mask = KnownZero;
2206  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2207    Mask = KnownOne;
2208  } else {
2209    // Nothing known.
2210    return FirstAnswer;
2211  }
2212
2213  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2214  // the number of identical bits in the top of the input value.
2215  Mask = ~Mask;
2216  Mask <<= Mask.getBitWidth()-VTBits;
2217  // Return # leading zeros.  We use 'min' here in case Val was zero before
2218  // shifting.  We don't want to return '64' as for an i32 "0".
2219  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2220}
2221
2222bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2223  // If we're told that NaNs won't happen, assume they won't.
2224  if (FiniteOnlyFPMath())
2225    return true;
2226
2227  // If the value is a constant, we can obviously see if it is a NaN or not.
2228  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2229    return !C->getValueAPF().isNaN();
2230
2231  // TODO: Recognize more cases here.
2232
2233  return false;
2234}
2235
2236bool SelectionDAG::isVerifiedDebugInfoDesc(SDValue Op) const {
2237  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2238  if (!GA) return false;
2239  if (GA->getOffset() != 0) return false;
2240  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
2241  if (!GV) return false;
2242  MachineModuleInfo *MMI = getMachineModuleInfo();
2243  return MMI && MMI->hasDebugInfo();
2244}
2245
2246
2247/// getShuffleScalarElt - Returns the scalar element that will make up the ith
2248/// element of the result of the vector shuffle.
2249SDValue SelectionDAG::getShuffleScalarElt(const ShuffleVectorSDNode *N,
2250                                          unsigned i) {
2251  EVT VT = N->getValueType(0);
2252  DebugLoc dl = N->getDebugLoc();
2253  if (N->getMaskElt(i) < 0)
2254    return getUNDEF(VT.getVectorElementType());
2255  unsigned Index = N->getMaskElt(i);
2256  unsigned NumElems = VT.getVectorNumElements();
2257  SDValue V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
2258  Index %= NumElems;
2259
2260  if (V.getOpcode() == ISD::BIT_CONVERT) {
2261    V = V.getOperand(0);
2262    EVT VVT = V.getValueType();
2263    if (!VVT.isVector() || VVT.getVectorNumElements() != (unsigned)NumElems)
2264      return SDValue();
2265  }
2266  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
2267    return (Index == 0) ? V.getOperand(0)
2268                      : getUNDEF(VT.getVectorElementType());
2269  if (V.getOpcode() == ISD::BUILD_VECTOR)
2270    return V.getOperand(Index);
2271  if (const ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(V))
2272    return getShuffleScalarElt(SVN, Index);
2273  return SDValue();
2274}
2275
2276
2277/// getNode - Gets or creates the specified node.
2278///
2279SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2280  FoldingSetNodeID ID;
2281  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2282  void *IP = 0;
2283  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2284    return SDValue(E, 0);
2285
2286  SDNode *N = NodeAllocator.Allocate<SDNode>();
2287  new (N) SDNode(Opcode, DL, getVTList(VT));
2288  CSEMap.InsertNode(N, IP);
2289
2290  AllNodes.push_back(N);
2291#ifndef NDEBUG
2292  VerifyNode(N);
2293#endif
2294  return SDValue(N, 0);
2295}
2296
2297SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2298                              EVT VT, SDValue Operand) {
2299  // Constant fold unary operations with an integer constant operand.
2300  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2301    const APInt &Val = C->getAPIntValue();
2302    unsigned BitWidth = VT.getSizeInBits();
2303    switch (Opcode) {
2304    default: break;
2305    case ISD::SIGN_EXTEND:
2306      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
2307    case ISD::ANY_EXTEND:
2308    case ISD::ZERO_EXTEND:
2309    case ISD::TRUNCATE:
2310      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
2311    case ISD::UINT_TO_FP:
2312    case ISD::SINT_TO_FP: {
2313      const uint64_t zero[] = {0, 0};
2314      // No compile time operations on this type.
2315      if (VT==MVT::ppcf128)
2316        break;
2317      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
2318      (void)apf.convertFromAPInt(Val,
2319                                 Opcode==ISD::SINT_TO_FP,
2320                                 APFloat::rmNearestTiesToEven);
2321      return getConstantFP(apf, VT);
2322    }
2323    case ISD::BIT_CONVERT:
2324      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2325        return getConstantFP(Val.bitsToFloat(), VT);
2326      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2327        return getConstantFP(Val.bitsToDouble(), VT);
2328      break;
2329    case ISD::BSWAP:
2330      return getConstant(Val.byteSwap(), VT);
2331    case ISD::CTPOP:
2332      return getConstant(Val.countPopulation(), VT);
2333    case ISD::CTLZ:
2334      return getConstant(Val.countLeadingZeros(), VT);
2335    case ISD::CTTZ:
2336      return getConstant(Val.countTrailingZeros(), VT);
2337    }
2338  }
2339
2340  // Constant fold unary operations with a floating point constant operand.
2341  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2342    APFloat V = C->getValueAPF();    // make copy
2343    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2344      switch (Opcode) {
2345      case ISD::FNEG:
2346        V.changeSign();
2347        return getConstantFP(V, VT);
2348      case ISD::FABS:
2349        V.clearSign();
2350        return getConstantFP(V, VT);
2351      case ISD::FP_ROUND:
2352      case ISD::FP_EXTEND: {
2353        bool ignored;
2354        // This can return overflow, underflow, or inexact; we don't care.
2355        // FIXME need to be more flexible about rounding mode.
2356        (void)V.convert(*EVTToAPFloatSemantics(VT),
2357                        APFloat::rmNearestTiesToEven, &ignored);
2358        return getConstantFP(V, VT);
2359      }
2360      case ISD::FP_TO_SINT:
2361      case ISD::FP_TO_UINT: {
2362        integerPart x[2];
2363        bool ignored;
2364        assert(integerPartWidth >= 64);
2365        // FIXME need to be more flexible about rounding mode.
2366        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2367                              Opcode==ISD::FP_TO_SINT,
2368                              APFloat::rmTowardZero, &ignored);
2369        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2370          break;
2371        APInt api(VT.getSizeInBits(), 2, x);
2372        return getConstant(api, VT);
2373      }
2374      case ISD::BIT_CONVERT:
2375        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2376          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2377        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2378          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2379        break;
2380      }
2381    }
2382  }
2383
2384  unsigned OpOpcode = Operand.getNode()->getOpcode();
2385  switch (Opcode) {
2386  case ISD::TokenFactor:
2387  case ISD::MERGE_VALUES:
2388  case ISD::CONCAT_VECTORS:
2389    return Operand;         // Factor, merge or concat of one node?  No need.
2390  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2391  case ISD::FP_EXTEND:
2392    assert(VT.isFloatingPoint() &&
2393           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2394    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2395    assert((!VT.isVector() ||
2396            VT.getVectorNumElements() ==
2397            Operand.getValueType().getVectorNumElements()) &&
2398           "Vector element count mismatch!");
2399    if (Operand.getOpcode() == ISD::UNDEF)
2400      return getUNDEF(VT);
2401    break;
2402  case ISD::SIGN_EXTEND:
2403    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2404           "Invalid SIGN_EXTEND!");
2405    if (Operand.getValueType() == VT) return Operand;   // noop extension
2406    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2407           "Invalid sext node, dst < src!");
2408    assert((!VT.isVector() ||
2409            VT.getVectorNumElements() ==
2410            Operand.getValueType().getVectorNumElements()) &&
2411           "Vector element count mismatch!");
2412    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2413      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2414    break;
2415  case ISD::ZERO_EXTEND:
2416    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2417           "Invalid ZERO_EXTEND!");
2418    if (Operand.getValueType() == VT) return Operand;   // noop extension
2419    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2420           "Invalid zext node, dst < src!");
2421    assert((!VT.isVector() ||
2422            VT.getVectorNumElements() ==
2423            Operand.getValueType().getVectorNumElements()) &&
2424           "Vector element count mismatch!");
2425    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2426      return getNode(ISD::ZERO_EXTEND, DL, VT,
2427                     Operand.getNode()->getOperand(0));
2428    break;
2429  case ISD::ANY_EXTEND:
2430    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2431           "Invalid ANY_EXTEND!");
2432    if (Operand.getValueType() == VT) return Operand;   // noop extension
2433    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2434           "Invalid anyext node, dst < src!");
2435    assert((!VT.isVector() ||
2436            VT.getVectorNumElements() ==
2437            Operand.getValueType().getVectorNumElements()) &&
2438           "Vector element count mismatch!");
2439    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2440      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2441      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2442    break;
2443  case ISD::TRUNCATE:
2444    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2445           "Invalid TRUNCATE!");
2446    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2447    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2448           "Invalid truncate node, src < dst!");
2449    assert((!VT.isVector() ||
2450            VT.getVectorNumElements() ==
2451            Operand.getValueType().getVectorNumElements()) &&
2452           "Vector element count mismatch!");
2453    if (OpOpcode == ISD::TRUNCATE)
2454      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2455    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2456             OpOpcode == ISD::ANY_EXTEND) {
2457      // If the source is smaller than the dest, we still need an extend.
2458      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2459            .bitsLT(VT.getScalarType()))
2460        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2461      else if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2462        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2463      else
2464        return Operand.getNode()->getOperand(0);
2465    }
2466    break;
2467  case ISD::BIT_CONVERT:
2468    // Basic sanity checking.
2469    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2470           && "Cannot BIT_CONVERT between types of different sizes!");
2471    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2472    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2473      return getNode(ISD::BIT_CONVERT, DL, VT, Operand.getOperand(0));
2474    if (OpOpcode == ISD::UNDEF)
2475      return getUNDEF(VT);
2476    break;
2477  case ISD::SCALAR_TO_VECTOR:
2478    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2479           (VT.getVectorElementType() == Operand.getValueType() ||
2480            (VT.getVectorElementType().isInteger() &&
2481             Operand.getValueType().isInteger() &&
2482             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2483           "Illegal SCALAR_TO_VECTOR node!");
2484    if (OpOpcode == ISD::UNDEF)
2485      return getUNDEF(VT);
2486    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2487    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2488        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2489        Operand.getConstantOperandVal(1) == 0 &&
2490        Operand.getOperand(0).getValueType() == VT)
2491      return Operand.getOperand(0);
2492    break;
2493  case ISD::FNEG:
2494    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2495    if (UnsafeFPMath && OpOpcode == ISD::FSUB)
2496      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2497                     Operand.getNode()->getOperand(0));
2498    if (OpOpcode == ISD::FNEG)  // --X -> X
2499      return Operand.getNode()->getOperand(0);
2500    break;
2501  case ISD::FABS:
2502    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2503      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2504    break;
2505  }
2506
2507  SDNode *N;
2508  SDVTList VTs = getVTList(VT);
2509  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2510    FoldingSetNodeID ID;
2511    SDValue Ops[1] = { Operand };
2512    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2513    void *IP = 0;
2514    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2515      return SDValue(E, 0);
2516
2517    N = NodeAllocator.Allocate<UnarySDNode>();
2518    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2519    CSEMap.InsertNode(N, IP);
2520  } else {
2521    N = NodeAllocator.Allocate<UnarySDNode>();
2522    new (N) UnarySDNode(Opcode, DL, VTs, Operand);
2523  }
2524
2525  AllNodes.push_back(N);
2526#ifndef NDEBUG
2527  VerifyNode(N);
2528#endif
2529  return SDValue(N, 0);
2530}
2531
2532SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2533                                             EVT VT,
2534                                             ConstantSDNode *Cst1,
2535                                             ConstantSDNode *Cst2) {
2536  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2537
2538  switch (Opcode) {
2539  case ISD::ADD:  return getConstant(C1 + C2, VT);
2540  case ISD::SUB:  return getConstant(C1 - C2, VT);
2541  case ISD::MUL:  return getConstant(C1 * C2, VT);
2542  case ISD::UDIV:
2543    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2544    break;
2545  case ISD::UREM:
2546    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2547    break;
2548  case ISD::SDIV:
2549    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2550    break;
2551  case ISD::SREM:
2552    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2553    break;
2554  case ISD::AND:  return getConstant(C1 & C2, VT);
2555  case ISD::OR:   return getConstant(C1 | C2, VT);
2556  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2557  case ISD::SHL:  return getConstant(C1 << C2, VT);
2558  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2559  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2560  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2561  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2562  default: break;
2563  }
2564
2565  return SDValue();
2566}
2567
2568SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2569                              SDValue N1, SDValue N2) {
2570  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2571  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2572  switch (Opcode) {
2573  default: break;
2574  case ISD::TokenFactor:
2575    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2576           N2.getValueType() == MVT::Other && "Invalid token factor!");
2577    // Fold trivial token factors.
2578    if (N1.getOpcode() == ISD::EntryToken) return N2;
2579    if (N2.getOpcode() == ISD::EntryToken) return N1;
2580    if (N1 == N2) return N1;
2581    break;
2582  case ISD::CONCAT_VECTORS:
2583    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2584    // one big BUILD_VECTOR.
2585    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2586        N2.getOpcode() == ISD::BUILD_VECTOR) {
2587      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2588      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2589      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2590    }
2591    break;
2592  case ISD::AND:
2593    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2594           N1.getValueType() == VT && "Binary operator types must match!");
2595    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2596    // worth handling here.
2597    if (N2C && N2C->isNullValue())
2598      return N2;
2599    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2600      return N1;
2601    break;
2602  case ISD::OR:
2603  case ISD::XOR:
2604  case ISD::ADD:
2605  case ISD::SUB:
2606    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2607           N1.getValueType() == VT && "Binary operator types must match!");
2608    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2609    // it's worth handling here.
2610    if (N2C && N2C->isNullValue())
2611      return N1;
2612    break;
2613  case ISD::UDIV:
2614  case ISD::UREM:
2615  case ISD::MULHU:
2616  case ISD::MULHS:
2617  case ISD::MUL:
2618  case ISD::SDIV:
2619  case ISD::SREM:
2620    assert(VT.isInteger() && "This operator does not apply to FP types!");
2621    // fall through
2622  case ISD::FADD:
2623  case ISD::FSUB:
2624  case ISD::FMUL:
2625  case ISD::FDIV:
2626  case ISD::FREM:
2627    if (UnsafeFPMath) {
2628      if (Opcode == ISD::FADD) {
2629        // 0+x --> x
2630        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2631          if (CFP->getValueAPF().isZero())
2632            return N2;
2633        // x+0 --> x
2634        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2635          if (CFP->getValueAPF().isZero())
2636            return N1;
2637      } else if (Opcode == ISD::FSUB) {
2638        // x-0 --> x
2639        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2640          if (CFP->getValueAPF().isZero())
2641            return N1;
2642      }
2643    }
2644    assert(N1.getValueType() == N2.getValueType() &&
2645           N1.getValueType() == VT && "Binary operator types must match!");
2646    break;
2647  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2648    assert(N1.getValueType() == VT &&
2649           N1.getValueType().isFloatingPoint() &&
2650           N2.getValueType().isFloatingPoint() &&
2651           "Invalid FCOPYSIGN!");
2652    break;
2653  case ISD::SHL:
2654  case ISD::SRA:
2655  case ISD::SRL:
2656  case ISD::ROTL:
2657  case ISD::ROTR:
2658    assert(VT == N1.getValueType() &&
2659           "Shift operators return type must be the same as their first arg");
2660    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2661           "Shifts only work on integers");
2662
2663    // Always fold shifts of i1 values so the code generator doesn't need to
2664    // handle them.  Since we know the size of the shift has to be less than the
2665    // size of the value, the shift/rotate count is guaranteed to be zero.
2666    if (VT == MVT::i1)
2667      return N1;
2668    if (N2C && N2C->isNullValue())
2669      return N1;
2670    break;
2671  case ISD::FP_ROUND_INREG: {
2672    EVT EVT = cast<VTSDNode>(N2)->getVT();
2673    assert(VT == N1.getValueType() && "Not an inreg round!");
2674    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2675           "Cannot FP_ROUND_INREG integer types");
2676    assert(EVT.isVector() == VT.isVector() &&
2677           "FP_ROUND_INREG type should be vector iff the operand "
2678           "type is vector!");
2679    assert((!EVT.isVector() ||
2680            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2681           "Vector element counts must match in FP_ROUND_INREG");
2682    assert(EVT.bitsLE(VT) && "Not rounding down!");
2683    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2684    break;
2685  }
2686  case ISD::FP_ROUND:
2687    assert(VT.isFloatingPoint() &&
2688           N1.getValueType().isFloatingPoint() &&
2689           VT.bitsLE(N1.getValueType()) &&
2690           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2691    if (N1.getValueType() == VT) return N1;  // noop conversion.
2692    break;
2693  case ISD::AssertSext:
2694  case ISD::AssertZext: {
2695    EVT EVT = cast<VTSDNode>(N2)->getVT();
2696    assert(VT == N1.getValueType() && "Not an inreg extend!");
2697    assert(VT.isInteger() && EVT.isInteger() &&
2698           "Cannot *_EXTEND_INREG FP types");
2699    assert(!EVT.isVector() &&
2700           "AssertSExt/AssertZExt type should be the vector element type "
2701           "rather than the vector type!");
2702    assert(EVT.bitsLE(VT) && "Not extending!");
2703    if (VT == EVT) return N1; // noop assertion.
2704    break;
2705  }
2706  case ISD::SIGN_EXTEND_INREG: {
2707    EVT EVT = cast<VTSDNode>(N2)->getVT();
2708    assert(VT == N1.getValueType() && "Not an inreg extend!");
2709    assert(VT.isInteger() && EVT.isInteger() &&
2710           "Cannot *_EXTEND_INREG FP types");
2711    assert(EVT.isVector() == VT.isVector() &&
2712           "SIGN_EXTEND_INREG type should be vector iff the operand "
2713           "type is vector!");
2714    assert((!EVT.isVector() ||
2715            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2716           "Vector element counts must match in SIGN_EXTEND_INREG");
2717    assert(EVT.bitsLE(VT) && "Not extending!");
2718    if (EVT == VT) return N1;  // Not actually extending
2719
2720    if (N1C) {
2721      APInt Val = N1C->getAPIntValue();
2722      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2723      Val <<= Val.getBitWidth()-FromBits;
2724      Val = Val.ashr(Val.getBitWidth()-FromBits);
2725      return getConstant(Val, VT);
2726    }
2727    break;
2728  }
2729  case ISD::EXTRACT_VECTOR_ELT:
2730    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2731    if (N1.getOpcode() == ISD::UNDEF)
2732      return getUNDEF(VT);
2733
2734    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2735    // expanding copies of large vectors from registers.
2736    if (N2C &&
2737        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2738        N1.getNumOperands() > 0) {
2739      unsigned Factor =
2740        N1.getOperand(0).getValueType().getVectorNumElements();
2741      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2742                     N1.getOperand(N2C->getZExtValue() / Factor),
2743                     getConstant(N2C->getZExtValue() % Factor,
2744                                 N2.getValueType()));
2745    }
2746
2747    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2748    // expanding large vector constants.
2749    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2750      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2751      EVT VEltTy = N1.getValueType().getVectorElementType();
2752      if (Elt.getValueType() != VEltTy) {
2753        // If the vector element type is not legal, the BUILD_VECTOR operands
2754        // are promoted and implicitly truncated.  Make that explicit here.
2755        Elt = getNode(ISD::TRUNCATE, DL, VEltTy, Elt);
2756      }
2757      if (VT != VEltTy) {
2758        // If the vector element type is not legal, the EXTRACT_VECTOR_ELT
2759        // result is implicitly extended.
2760        Elt = getNode(ISD::ANY_EXTEND, DL, VT, Elt);
2761      }
2762      return Elt;
2763    }
2764
2765    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2766    // operations are lowered to scalars.
2767    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2768      // If the indices are the same, return the inserted element else
2769      // if the indices are known different, extract the element from
2770      // the original vector.
2771      if (N1.getOperand(2) == N2) {
2772        if (VT == N1.getOperand(1).getValueType())
2773          return N1.getOperand(1);
2774        else
2775          return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2776      } else if (isa<ConstantSDNode>(N1.getOperand(2)) &&
2777                 isa<ConstantSDNode>(N2))
2778        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2779    }
2780    break;
2781  case ISD::EXTRACT_ELEMENT:
2782    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2783    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2784           (N1.getValueType().isInteger() == VT.isInteger()) &&
2785           "Wrong types for EXTRACT_ELEMENT!");
2786
2787    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2788    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2789    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2790    if (N1.getOpcode() == ISD::BUILD_PAIR)
2791      return N1.getOperand(N2C->getZExtValue());
2792
2793    // EXTRACT_ELEMENT of a constant int is also very common.
2794    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2795      unsigned ElementSize = VT.getSizeInBits();
2796      unsigned Shift = ElementSize * N2C->getZExtValue();
2797      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2798      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2799    }
2800    break;
2801  case ISD::EXTRACT_SUBVECTOR:
2802    if (N1.getValueType() == VT) // Trivial extraction.
2803      return N1;
2804    break;
2805  }
2806
2807  if (N1C) {
2808    if (N2C) {
2809      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
2810      if (SV.getNode()) return SV;
2811    } else {      // Cannonicalize constant to RHS if commutative
2812      if (isCommutativeBinOp(Opcode)) {
2813        std::swap(N1C, N2C);
2814        std::swap(N1, N2);
2815      }
2816    }
2817  }
2818
2819  // Constant fold FP operations.
2820  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
2821  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
2822  if (N1CFP) {
2823    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2824      // Cannonicalize constant to RHS if commutative
2825      std::swap(N1CFP, N2CFP);
2826      std::swap(N1, N2);
2827    } else if (N2CFP && VT != MVT::ppcf128) {
2828      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2829      APFloat::opStatus s;
2830      switch (Opcode) {
2831      case ISD::FADD:
2832        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2833        if (s != APFloat::opInvalidOp)
2834          return getConstantFP(V1, VT);
2835        break;
2836      case ISD::FSUB:
2837        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2838        if (s!=APFloat::opInvalidOp)
2839          return getConstantFP(V1, VT);
2840        break;
2841      case ISD::FMUL:
2842        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2843        if (s!=APFloat::opInvalidOp)
2844          return getConstantFP(V1, VT);
2845        break;
2846      case ISD::FDIV:
2847        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2848        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2849          return getConstantFP(V1, VT);
2850        break;
2851      case ISD::FREM :
2852        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2853        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2854          return getConstantFP(V1, VT);
2855        break;
2856      case ISD::FCOPYSIGN:
2857        V1.copySign(V2);
2858        return getConstantFP(V1, VT);
2859      default: break;
2860      }
2861    }
2862  }
2863
2864  // Canonicalize an UNDEF to the RHS, even over a constant.
2865  if (N1.getOpcode() == ISD::UNDEF) {
2866    if (isCommutativeBinOp(Opcode)) {
2867      std::swap(N1, N2);
2868    } else {
2869      switch (Opcode) {
2870      case ISD::FP_ROUND_INREG:
2871      case ISD::SIGN_EXTEND_INREG:
2872      case ISD::SUB:
2873      case ISD::FSUB:
2874      case ISD::FDIV:
2875      case ISD::FREM:
2876      case ISD::SRA:
2877        return N1;     // fold op(undef, arg2) -> undef
2878      case ISD::UDIV:
2879      case ISD::SDIV:
2880      case ISD::UREM:
2881      case ISD::SREM:
2882      case ISD::SRL:
2883      case ISD::SHL:
2884        if (!VT.isVector())
2885          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2886        // For vectors, we can't easily build an all zero vector, just return
2887        // the LHS.
2888        return N2;
2889      }
2890    }
2891  }
2892
2893  // Fold a bunch of operators when the RHS is undef.
2894  if (N2.getOpcode() == ISD::UNDEF) {
2895    switch (Opcode) {
2896    case ISD::XOR:
2897      if (N1.getOpcode() == ISD::UNDEF)
2898        // Handle undef ^ undef -> 0 special case. This is a common
2899        // idiom (misuse).
2900        return getConstant(0, VT);
2901      // fallthrough
2902    case ISD::ADD:
2903    case ISD::ADDC:
2904    case ISD::ADDE:
2905    case ISD::SUB:
2906    case ISD::UDIV:
2907    case ISD::SDIV:
2908    case ISD::UREM:
2909    case ISD::SREM:
2910      return N2;       // fold op(arg1, undef) -> undef
2911    case ISD::FADD:
2912    case ISD::FSUB:
2913    case ISD::FMUL:
2914    case ISD::FDIV:
2915    case ISD::FREM:
2916      if (UnsafeFPMath)
2917        return N2;
2918      break;
2919    case ISD::MUL:
2920    case ISD::AND:
2921    case ISD::SRL:
2922    case ISD::SHL:
2923      if (!VT.isVector())
2924        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2925      // For vectors, we can't easily build an all zero vector, just return
2926      // the LHS.
2927      return N1;
2928    case ISD::OR:
2929      if (!VT.isVector())
2930        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
2931      // For vectors, we can't easily build an all one vector, just return
2932      // the LHS.
2933      return N1;
2934    case ISD::SRA:
2935      return N1;
2936    }
2937  }
2938
2939  // Memoize this node if possible.
2940  SDNode *N;
2941  SDVTList VTs = getVTList(VT);
2942  if (VT != MVT::Flag) {
2943    SDValue Ops[] = { N1, N2 };
2944    FoldingSetNodeID ID;
2945    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2946    void *IP = 0;
2947    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2948      return SDValue(E, 0);
2949
2950    N = NodeAllocator.Allocate<BinarySDNode>();
2951    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2952    CSEMap.InsertNode(N, IP);
2953  } else {
2954    N = NodeAllocator.Allocate<BinarySDNode>();
2955    new (N) BinarySDNode(Opcode, DL, VTs, N1, N2);
2956  }
2957
2958  AllNodes.push_back(N);
2959#ifndef NDEBUG
2960  VerifyNode(N);
2961#endif
2962  return SDValue(N, 0);
2963}
2964
2965SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2966                              SDValue N1, SDValue N2, SDValue N3) {
2967  // Perform various simplifications.
2968  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2969  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2970  switch (Opcode) {
2971  case ISD::CONCAT_VECTORS:
2972    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2973    // one big BUILD_VECTOR.
2974    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2975        N2.getOpcode() == ISD::BUILD_VECTOR &&
2976        N3.getOpcode() == ISD::BUILD_VECTOR) {
2977      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(), N1.getNode()->op_end());
2978      Elts.insert(Elts.end(), N2.getNode()->op_begin(), N2.getNode()->op_end());
2979      Elts.insert(Elts.end(), N3.getNode()->op_begin(), N3.getNode()->op_end());
2980      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2981    }
2982    break;
2983  case ISD::SETCC: {
2984    // Use FoldSetCC to simplify SETCC's.
2985    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
2986    if (Simp.getNode()) return Simp;
2987    break;
2988  }
2989  case ISD::SELECT:
2990    if (N1C) {
2991     if (N1C->getZExtValue())
2992        return N2;             // select true, X, Y -> X
2993      else
2994        return N3;             // select false, X, Y -> Y
2995    }
2996
2997    if (N2 == N3) return N2;   // select C, X, X -> X
2998    break;
2999  case ISD::BRCOND:
3000    if (N2C) {
3001      if (N2C->getZExtValue()) // Unconditional branch
3002        return getNode(ISD::BR, DL, MVT::Other, N1, N3);
3003      else
3004        return N1;         // Never-taken branch
3005    }
3006    break;
3007  case ISD::VECTOR_SHUFFLE:
3008    llvm_unreachable("should use getVectorShuffle constructor!");
3009    break;
3010  case ISD::BIT_CONVERT:
3011    // Fold bit_convert nodes from a type to themselves.
3012    if (N1.getValueType() == VT)
3013      return N1;
3014    break;
3015  }
3016
3017  // Memoize node if it doesn't produce a flag.
3018  SDNode *N;
3019  SDVTList VTs = getVTList(VT);
3020  if (VT != MVT::Flag) {
3021    SDValue Ops[] = { N1, N2, N3 };
3022    FoldingSetNodeID ID;
3023    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3024    void *IP = 0;
3025    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3026      return SDValue(E, 0);
3027
3028    N = NodeAllocator.Allocate<TernarySDNode>();
3029    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3030    CSEMap.InsertNode(N, IP);
3031  } else {
3032    N = NodeAllocator.Allocate<TernarySDNode>();
3033    new (N) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3034  }
3035
3036  AllNodes.push_back(N);
3037#ifndef NDEBUG
3038  VerifyNode(N);
3039#endif
3040  return SDValue(N, 0);
3041}
3042
3043SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3044                              SDValue N1, SDValue N2, SDValue N3,
3045                              SDValue N4) {
3046  SDValue Ops[] = { N1, N2, N3, N4 };
3047  return getNode(Opcode, DL, VT, Ops, 4);
3048}
3049
3050SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3051                              SDValue N1, SDValue N2, SDValue N3,
3052                              SDValue N4, SDValue N5) {
3053  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3054  return getNode(Opcode, DL, VT, Ops, 5);
3055}
3056
3057/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3058/// the incoming stack arguments to be loaded from the stack.
3059SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3060  SmallVector<SDValue, 8> ArgChains;
3061
3062  // Include the original chain at the beginning of the list. When this is
3063  // used by target LowerCall hooks, this helps legalize find the
3064  // CALLSEQ_BEGIN node.
3065  ArgChains.push_back(Chain);
3066
3067  // Add a chain value for each stack argument.
3068  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3069       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3070    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3071      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3072        if (FI->getIndex() < 0)
3073          ArgChains.push_back(SDValue(L, 1));
3074
3075  // Build a tokenfactor for all the chains.
3076  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3077                 &ArgChains[0], ArgChains.size());
3078}
3079
3080/// getMemsetValue - Vectorized representation of the memset value
3081/// operand.
3082static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3083                              DebugLoc dl) {
3084  unsigned NumBits = VT.isVector() ?
3085    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
3086  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3087    APInt Val = APInt(NumBits, C->getZExtValue() & 255);
3088    unsigned Shift = 8;
3089    for (unsigned i = NumBits; i > 8; i >>= 1) {
3090      Val = (Val << Shift) | Val;
3091      Shift <<= 1;
3092    }
3093    if (VT.isInteger())
3094      return DAG.getConstant(Val, VT);
3095    return DAG.getConstantFP(APFloat(Val), VT);
3096  }
3097
3098  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3099  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3100  unsigned Shift = 8;
3101  for (unsigned i = NumBits; i > 8; i >>= 1) {
3102    Value = DAG.getNode(ISD::OR, dl, VT,
3103                        DAG.getNode(ISD::SHL, dl, VT, Value,
3104                                    DAG.getConstant(Shift,
3105                                                    TLI.getShiftAmountTy())),
3106                        Value);
3107    Shift <<= 1;
3108  }
3109
3110  return Value;
3111}
3112
3113/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3114/// used when a memcpy is turned into a memset when the source is a constant
3115/// string ptr.
3116static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3117                                  const TargetLowering &TLI,
3118                                  std::string &Str, unsigned Offset) {
3119  // Handle vector with all elements zero.
3120  if (Str.empty()) {
3121    if (VT.isInteger())
3122      return DAG.getConstant(0, VT);
3123    unsigned NumElts = VT.getVectorNumElements();
3124    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3125    return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
3126                       DAG.getConstant(0,
3127                       EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts)));
3128  }
3129
3130  assert(!VT.isVector() && "Can't handle vector type here!");
3131  unsigned NumBits = VT.getSizeInBits();
3132  unsigned MSB = NumBits / 8;
3133  uint64_t Val = 0;
3134  if (TLI.isLittleEndian())
3135    Offset = Offset + MSB - 1;
3136  for (unsigned i = 0; i != MSB; ++i) {
3137    Val = (Val << 8) | (unsigned char)Str[Offset];
3138    Offset += TLI.isLittleEndian() ? -1 : 1;
3139  }
3140  return DAG.getConstant(Val, VT);
3141}
3142
3143/// getMemBasePlusOffset - Returns base and offset node for the
3144///
3145static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3146                                      SelectionDAG &DAG) {
3147  EVT VT = Base.getValueType();
3148  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3149                     VT, Base, DAG.getConstant(Offset, VT));
3150}
3151
3152/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3153///
3154static bool isMemSrcFromString(SDValue Src, std::string &Str) {
3155  unsigned SrcDelta = 0;
3156  GlobalAddressSDNode *G = NULL;
3157  if (Src.getOpcode() == ISD::GlobalAddress)
3158    G = cast<GlobalAddressSDNode>(Src);
3159  else if (Src.getOpcode() == ISD::ADD &&
3160           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3161           Src.getOperand(1).getOpcode() == ISD::Constant) {
3162    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3163    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3164  }
3165  if (!G)
3166    return false;
3167
3168  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3169  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
3170    return true;
3171
3172  return false;
3173}
3174
3175/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3176/// to replace the memset / memcpy is below the threshold. It also returns the
3177/// types of the sequence of memory ops to perform memset / memcpy.
3178static
3179bool MeetsMaxMemopRequirement(std::vector<EVT> &MemOps,
3180                              SDValue Dst, SDValue Src,
3181                              unsigned Limit, uint64_t Size, unsigned &Align,
3182                              std::string &Str, bool &isSrcStr,
3183                              SelectionDAG &DAG,
3184                              const TargetLowering &TLI) {
3185  isSrcStr = isMemSrcFromString(Src, Str);
3186  bool isSrcConst = isa<ConstantSDNode>(Src);
3187  EVT VT = TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr, DAG);
3188  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses(VT);
3189  if (VT != MVT::iAny) {
3190    const Type *Ty = VT.getTypeForEVT(*DAG.getContext());
3191    unsigned NewAlign = (unsigned) TLI.getTargetData()->getABITypeAlignment(Ty);
3192    // If source is a string constant, this will require an unaligned load.
3193    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
3194      if (Dst.getOpcode() != ISD::FrameIndex) {
3195        // Can't change destination alignment. It requires a unaligned store.
3196        if (AllowUnalign)
3197          VT = MVT::iAny;
3198      } else {
3199        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
3200        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3201        if (MFI->isFixedObjectIndex(FI)) {
3202          // Can't change destination alignment. It requires a unaligned store.
3203          if (AllowUnalign)
3204            VT = MVT::iAny;
3205        } else {
3206          // Give the stack frame object a larger alignment if needed.
3207          if (MFI->getObjectAlignment(FI) < NewAlign)
3208            MFI->setObjectAlignment(FI, NewAlign);
3209          Align = NewAlign;
3210        }
3211      }
3212    }
3213  }
3214
3215  if (VT == MVT::iAny) {
3216    if (TLI.allowsUnalignedMemoryAccesses(MVT::i64)) {
3217      VT = MVT::i64;
3218    } else {
3219      switch (Align & 7) {
3220      case 0:  VT = MVT::i64; break;
3221      case 4:  VT = MVT::i32; break;
3222      case 2:  VT = MVT::i16; break;
3223      default: VT = MVT::i8;  break;
3224      }
3225    }
3226
3227    MVT LVT = MVT::i64;
3228    while (!TLI.isTypeLegal(LVT))
3229      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3230    assert(LVT.isInteger());
3231
3232    if (VT.bitsGT(LVT))
3233      VT = LVT;
3234  }
3235
3236  unsigned NumMemOps = 0;
3237  while (Size != 0) {
3238    unsigned VTSize = VT.getSizeInBits() / 8;
3239    while (VTSize > Size) {
3240      // For now, only use non-vector load / store's for the left-over pieces.
3241      if (VT.isVector()) {
3242        VT = MVT::i64;
3243        while (!TLI.isTypeLegal(VT))
3244          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3245        VTSize = VT.getSizeInBits() / 8;
3246      } else {
3247        // This can result in a type that is not legal on the target, e.g.
3248        // 1 or 2 bytes on PPC.
3249        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3250        VTSize >>= 1;
3251      }
3252    }
3253
3254    if (++NumMemOps > Limit)
3255      return false;
3256    MemOps.push_back(VT);
3257    Size -= VTSize;
3258  }
3259
3260  return true;
3261}
3262
3263static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3264                                         SDValue Chain, SDValue Dst,
3265                                         SDValue Src, uint64_t Size,
3266                                         unsigned Align, bool AlwaysInline,
3267                                         const Value *DstSV, uint64_t DstSVOff,
3268                                         const Value *SrcSV, uint64_t SrcSVOff){
3269  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3270
3271  // Expand memcpy to a series of load and store ops if the size operand falls
3272  // below a certain threshold.
3273  std::vector<EVT> MemOps;
3274  uint64_t Limit = -1ULL;
3275  if (!AlwaysInline)
3276    Limit = TLI.getMaxStoresPerMemcpy();
3277  unsigned DstAlign = Align;  // Destination alignment can change.
3278  std::string Str;
3279  bool CopyFromStr;
3280  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3281                                Str, CopyFromStr, DAG, TLI))
3282    return SDValue();
3283
3284
3285  bool isZeroStr = CopyFromStr && Str.empty();
3286  SmallVector<SDValue, 8> OutChains;
3287  unsigned NumMemOps = MemOps.size();
3288  uint64_t SrcOff = 0, DstOff = 0;
3289  for (unsigned i = 0; i != NumMemOps; ++i) {
3290    EVT VT = MemOps[i];
3291    unsigned VTSize = VT.getSizeInBits() / 8;
3292    SDValue Value, Store;
3293
3294    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
3295      // It's unlikely a store of a vector immediate can be done in a single
3296      // instruction. It would require a load from a constantpool first.
3297      // We also handle store a vector with all zero's.
3298      // FIXME: Handle other cases where store of vector immediate is done in
3299      // a single instruction.
3300      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str, SrcOff);
3301      Store = DAG.getStore(Chain, dl, Value,
3302                           getMemBasePlusOffset(Dst, DstOff, DAG),
3303                           DstSV, DstSVOff + DstOff, false, false, DstAlign);
3304    } else {
3305      // The type might not be legal for the target.  This should only happen
3306      // if the type is smaller than a legal type, as on PPC, so the right
3307      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3308      // to Load/Store if NVT==VT.
3309      // FIXME does the case above also need this?
3310      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3311      assert(NVT.bitsGE(VT));
3312      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3313                             getMemBasePlusOffset(Src, SrcOff, DAG),
3314                             SrcSV, SrcSVOff + SrcOff, VT, false, false, Align);
3315      Store = DAG.getTruncStore(Chain, dl, Value,
3316                                getMemBasePlusOffset(Dst, DstOff, DAG),
3317                                DstSV, DstSVOff + DstOff, VT, false, false,
3318                                DstAlign);
3319    }
3320    OutChains.push_back(Store);
3321    SrcOff += VTSize;
3322    DstOff += VTSize;
3323  }
3324
3325  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3326                     &OutChains[0], OutChains.size());
3327}
3328
3329static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3330                                          SDValue Chain, SDValue Dst,
3331                                          SDValue Src, uint64_t Size,
3332                                          unsigned Align, bool AlwaysInline,
3333                                          const Value *DstSV, uint64_t DstSVOff,
3334                                          const Value *SrcSV, uint64_t SrcSVOff){
3335  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3336
3337  // Expand memmove to a series of load and store ops if the size operand falls
3338  // below a certain threshold.
3339  std::vector<EVT> MemOps;
3340  uint64_t Limit = -1ULL;
3341  if (!AlwaysInline)
3342    Limit = TLI.getMaxStoresPerMemmove();
3343  unsigned DstAlign = Align;  // Destination alignment can change.
3344  std::string Str;
3345  bool CopyFromStr;
3346  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
3347                                Str, CopyFromStr, DAG, TLI))
3348    return SDValue();
3349
3350  uint64_t SrcOff = 0, DstOff = 0;
3351
3352  SmallVector<SDValue, 8> LoadValues;
3353  SmallVector<SDValue, 8> LoadChains;
3354  SmallVector<SDValue, 8> OutChains;
3355  unsigned NumMemOps = MemOps.size();
3356  for (unsigned i = 0; i < NumMemOps; i++) {
3357    EVT VT = MemOps[i];
3358    unsigned VTSize = VT.getSizeInBits() / 8;
3359    SDValue Value, Store;
3360
3361    Value = DAG.getLoad(VT, dl, Chain,
3362                        getMemBasePlusOffset(Src, SrcOff, DAG),
3363                        SrcSV, SrcSVOff + SrcOff, false, false, Align);
3364    LoadValues.push_back(Value);
3365    LoadChains.push_back(Value.getValue(1));
3366    SrcOff += VTSize;
3367  }
3368  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3369                      &LoadChains[0], LoadChains.size());
3370  OutChains.clear();
3371  for (unsigned i = 0; i < NumMemOps; i++) {
3372    EVT VT = MemOps[i];
3373    unsigned VTSize = VT.getSizeInBits() / 8;
3374    SDValue Value, Store;
3375
3376    Store = DAG.getStore(Chain, dl, LoadValues[i],
3377                         getMemBasePlusOffset(Dst, DstOff, DAG),
3378                         DstSV, DstSVOff + DstOff, false, false, DstAlign);
3379    OutChains.push_back(Store);
3380    DstOff += VTSize;
3381  }
3382
3383  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3384                     &OutChains[0], OutChains.size());
3385}
3386
3387static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3388                                 SDValue Chain, SDValue Dst,
3389                                 SDValue Src, uint64_t Size,
3390                                 unsigned Align,
3391                                 const Value *DstSV, uint64_t DstSVOff) {
3392  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3393
3394  // Expand memset to a series of load/store ops if the size operand
3395  // falls below a certain threshold.
3396  std::vector<EVT> MemOps;
3397  std::string Str;
3398  bool CopyFromStr;
3399  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
3400                                Size, Align, Str, CopyFromStr, DAG, TLI))
3401    return SDValue();
3402
3403  SmallVector<SDValue, 8> OutChains;
3404  uint64_t DstOff = 0;
3405
3406  unsigned NumMemOps = MemOps.size();
3407  for (unsigned i = 0; i < NumMemOps; i++) {
3408    EVT VT = MemOps[i];
3409    unsigned VTSize = VT.getSizeInBits() / 8;
3410    SDValue Value = getMemsetValue(Src, VT, DAG, dl);
3411    SDValue Store = DAG.getStore(Chain, dl, Value,
3412                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3413                                 DstSV, DstSVOff + DstOff, false, false, 0);
3414    OutChains.push_back(Store);
3415    DstOff += VTSize;
3416  }
3417
3418  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3419                     &OutChains[0], OutChains.size());
3420}
3421
3422SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3423                                SDValue Src, SDValue Size,
3424                                unsigned Align, bool AlwaysInline,
3425                                const Value *DstSV, uint64_t DstSVOff,
3426                                const Value *SrcSV, uint64_t SrcSVOff) {
3427
3428  // Check to see if we should lower the memcpy to loads and stores first.
3429  // For cases within the target-specified limits, this is the best choice.
3430  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3431  if (ConstantSize) {
3432    // Memcpy with size zero? Just return the original chain.
3433    if (ConstantSize->isNullValue())
3434      return Chain;
3435
3436    SDValue Result =
3437      getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3438                              ConstantSize->getZExtValue(),
3439                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3440    if (Result.getNode())
3441      return Result;
3442  }
3443
3444  // Then check to see if we should lower the memcpy with target-specific
3445  // code. If the target chooses to do this, this is the next best.
3446  SDValue Result =
3447    TLI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3448                                AlwaysInline,
3449                                DstSV, DstSVOff, SrcSV, SrcSVOff);
3450  if (Result.getNode())
3451    return Result;
3452
3453  // If we really need inline code and the target declined to provide it,
3454  // use a (potentially long) sequence of loads and stores.
3455  if (AlwaysInline) {
3456    assert(ConstantSize && "AlwaysInline requires a constant size!");
3457    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3458                                   ConstantSize->getZExtValue(), Align, true,
3459                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
3460  }
3461
3462  // Emit a library call.
3463  TargetLowering::ArgListTy Args;
3464  TargetLowering::ArgListEntry Entry;
3465  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3466  Entry.Node = Dst; Args.push_back(Entry);
3467  Entry.Node = Src; Args.push_back(Entry);
3468  Entry.Node = Size; Args.push_back(Entry);
3469  // FIXME: pass in DebugLoc
3470  std::pair<SDValue,SDValue> CallResult =
3471    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3472                    false, false, false, false, 0,
3473                    TLI.getLibcallCallingConv(RTLIB::MEMCPY), false,
3474                    /*isReturnValueUsed=*/false,
3475                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3476                                      TLI.getPointerTy()),
3477                    Args, *this, dl, GetOrdering(Chain.getNode()));
3478  return CallResult.second;
3479}
3480
3481SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3482                                 SDValue Src, SDValue Size,
3483                                 unsigned Align,
3484                                 const Value *DstSV, uint64_t DstSVOff,
3485                                 const Value *SrcSV, uint64_t SrcSVOff) {
3486
3487  // Check to see if we should lower the memmove to loads and stores first.
3488  // For cases within the target-specified limits, this is the best choice.
3489  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3490  if (ConstantSize) {
3491    // Memmove with size zero? Just return the original chain.
3492    if (ConstantSize->isNullValue())
3493      return Chain;
3494
3495    SDValue Result =
3496      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3497                               ConstantSize->getZExtValue(),
3498                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
3499    if (Result.getNode())
3500      return Result;
3501  }
3502
3503  // Then check to see if we should lower the memmove with target-specific
3504  // code. If the target chooses to do this, this is the next best.
3505  SDValue Result =
3506    TLI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align,
3507                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
3508  if (Result.getNode())
3509    return Result;
3510
3511  // Emit a library call.
3512  TargetLowering::ArgListTy Args;
3513  TargetLowering::ArgListEntry Entry;
3514  Entry.Ty = TLI.getTargetData()->getIntPtrType(*getContext());
3515  Entry.Node = Dst; Args.push_back(Entry);
3516  Entry.Node = Src; Args.push_back(Entry);
3517  Entry.Node = Size; Args.push_back(Entry);
3518  // FIXME:  pass in DebugLoc
3519  std::pair<SDValue,SDValue> CallResult =
3520    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3521                    false, false, false, false, 0,
3522                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE), false,
3523                    /*isReturnValueUsed=*/false,
3524                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3525                                      TLI.getPointerTy()),
3526                    Args, *this, dl, GetOrdering(Chain.getNode()));
3527  return CallResult.second;
3528}
3529
3530SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3531                                SDValue Src, SDValue Size,
3532                                unsigned Align,
3533                                const Value *DstSV, uint64_t DstSVOff) {
3534
3535  // Check to see if we should lower the memset to stores first.
3536  // For cases within the target-specified limits, this is the best choice.
3537  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3538  if (ConstantSize) {
3539    // Memset with size zero? Just return the original chain.
3540    if (ConstantSize->isNullValue())
3541      return Chain;
3542
3543    SDValue Result =
3544      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3545                      Align, DstSV, DstSVOff);
3546    if (Result.getNode())
3547      return Result;
3548  }
3549
3550  // Then check to see if we should lower the memset with target-specific
3551  // code. If the target chooses to do this, this is the next best.
3552  SDValue Result =
3553    TLI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align,
3554                                DstSV, DstSVOff);
3555  if (Result.getNode())
3556    return Result;
3557
3558  // Emit a library call.
3559  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType(*getContext());
3560  TargetLowering::ArgListTy Args;
3561  TargetLowering::ArgListEntry Entry;
3562  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3563  Args.push_back(Entry);
3564  // Extend or truncate the argument to be an i32 value for the call.
3565  if (Src.getValueType().bitsGT(MVT::i32))
3566    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3567  else
3568    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3569  Entry.Node = Src;
3570  Entry.Ty = Type::getInt32Ty(*getContext());
3571  Entry.isSExt = true;
3572  Args.push_back(Entry);
3573  Entry.Node = Size;
3574  Entry.Ty = IntPtrTy;
3575  Entry.isSExt = false;
3576  Args.push_back(Entry);
3577  // FIXME: pass in DebugLoc
3578  std::pair<SDValue,SDValue> CallResult =
3579    TLI.LowerCallTo(Chain, Type::getVoidTy(*getContext()),
3580                    false, false, false, false, 0,
3581                    TLI.getLibcallCallingConv(RTLIB::MEMSET), false,
3582                    /*isReturnValueUsed=*/false,
3583                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3584                                      TLI.getPointerTy()),
3585                    Args, *this, dl, GetOrdering(Chain.getNode()));
3586  return CallResult.second;
3587}
3588
3589SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3590                                SDValue Chain,
3591                                SDValue Ptr, SDValue Cmp,
3592                                SDValue Swp, const Value* PtrVal,
3593                                unsigned Alignment) {
3594  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3595    Alignment = getEVTAlignment(MemVT);
3596
3597  // Check if the memory reference references a frame index
3598  if (!PtrVal)
3599    if (const FrameIndexSDNode *FI =
3600          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3601      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3602
3603  MachineFunction &MF = getMachineFunction();
3604  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3605
3606  // For now, atomics are considered to be volatile always.
3607  Flags |= MachineMemOperand::MOVolatile;
3608
3609  MachineMemOperand *MMO =
3610    MF.getMachineMemOperand(PtrVal, Flags, 0,
3611                            MemVT.getStoreSize(), Alignment);
3612
3613  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3614}
3615
3616SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3617                                SDValue Chain,
3618                                SDValue Ptr, SDValue Cmp,
3619                                SDValue Swp, MachineMemOperand *MMO) {
3620  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3621  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3622
3623  EVT VT = Cmp.getValueType();
3624
3625  SDVTList VTs = getVTList(VT, MVT::Other);
3626  FoldingSetNodeID ID;
3627  ID.AddInteger(MemVT.getRawBits());
3628  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3629  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3630  void* IP = 0;
3631  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3632    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3633    return SDValue(E, 0);
3634  }
3635  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3636  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Cmp, Swp, MMO);
3637  CSEMap.InsertNode(N, IP);
3638  AllNodes.push_back(N);
3639  return SDValue(N, 0);
3640}
3641
3642SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3643                                SDValue Chain,
3644                                SDValue Ptr, SDValue Val,
3645                                const Value* PtrVal,
3646                                unsigned Alignment) {
3647  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3648    Alignment = getEVTAlignment(MemVT);
3649
3650  // Check if the memory reference references a frame index
3651  if (!PtrVal)
3652    if (const FrameIndexSDNode *FI =
3653          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3654      PtrVal = PseudoSourceValue::getFixedStack(FI->getIndex());
3655
3656  MachineFunction &MF = getMachineFunction();
3657  unsigned Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
3658
3659  // For now, atomics are considered to be volatile always.
3660  Flags |= MachineMemOperand::MOVolatile;
3661
3662  MachineMemOperand *MMO =
3663    MF.getMachineMemOperand(PtrVal, Flags, 0,
3664                            MemVT.getStoreSize(), Alignment);
3665
3666  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO);
3667}
3668
3669SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3670                                SDValue Chain,
3671                                SDValue Ptr, SDValue Val,
3672                                MachineMemOperand *MMO) {
3673  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
3674          Opcode == ISD::ATOMIC_LOAD_SUB ||
3675          Opcode == ISD::ATOMIC_LOAD_AND ||
3676          Opcode == ISD::ATOMIC_LOAD_OR ||
3677          Opcode == ISD::ATOMIC_LOAD_XOR ||
3678          Opcode == ISD::ATOMIC_LOAD_NAND ||
3679          Opcode == ISD::ATOMIC_LOAD_MIN ||
3680          Opcode == ISD::ATOMIC_LOAD_MAX ||
3681          Opcode == ISD::ATOMIC_LOAD_UMIN ||
3682          Opcode == ISD::ATOMIC_LOAD_UMAX ||
3683          Opcode == ISD::ATOMIC_SWAP) &&
3684         "Invalid Atomic Op");
3685
3686  EVT VT = Val.getValueType();
3687
3688  SDVTList VTs = getVTList(VT, MVT::Other);
3689  FoldingSetNodeID ID;
3690  ID.AddInteger(MemVT.getRawBits());
3691  SDValue Ops[] = {Chain, Ptr, Val};
3692  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3693  void* IP = 0;
3694  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3695    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3696    return SDValue(E, 0);
3697  }
3698  SDNode* N = NodeAllocator.Allocate<AtomicSDNode>();
3699  new (N) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain, Ptr, Val, MMO);
3700  CSEMap.InsertNode(N, IP);
3701  AllNodes.push_back(N);
3702  return SDValue(N, 0);
3703}
3704
3705/// getMergeValues - Create a MERGE_VALUES node from the given operands.
3706/// Allowed to return something different (and simpler) if Simplify is true.
3707SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
3708                                     DebugLoc dl) {
3709  if (NumOps == 1)
3710    return Ops[0];
3711
3712  SmallVector<EVT, 4> VTs;
3713  VTs.reserve(NumOps);
3714  for (unsigned i = 0; i < NumOps; ++i)
3715    VTs.push_back(Ops[i].getValueType());
3716  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
3717                 Ops, NumOps);
3718}
3719
3720SDValue
3721SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
3722                                  const EVT *VTs, unsigned NumVTs,
3723                                  const SDValue *Ops, unsigned NumOps,
3724                                  EVT MemVT, const Value *srcValue, int SVOff,
3725                                  unsigned Align, bool Vol,
3726                                  bool ReadMem, bool WriteMem) {
3727  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
3728                             MemVT, srcValue, SVOff, Align, Vol,
3729                             ReadMem, WriteMem);
3730}
3731
3732SDValue
3733SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3734                                  const SDValue *Ops, unsigned NumOps,
3735                                  EVT MemVT, const Value *srcValue, int SVOff,
3736                                  unsigned Align, bool Vol,
3737                                  bool ReadMem, bool WriteMem) {
3738  if (Align == 0)  // Ensure that codegen never sees alignment 0
3739    Align = getEVTAlignment(MemVT);
3740
3741  MachineFunction &MF = getMachineFunction();
3742  unsigned Flags = 0;
3743  if (WriteMem)
3744    Flags |= MachineMemOperand::MOStore;
3745  if (ReadMem)
3746    Flags |= MachineMemOperand::MOLoad;
3747  if (Vol)
3748    Flags |= MachineMemOperand::MOVolatile;
3749  MachineMemOperand *MMO =
3750    MF.getMachineMemOperand(srcValue, Flags, SVOff,
3751                            MemVT.getStoreSize(), Align);
3752
3753  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3754}
3755
3756SDValue
3757SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
3758                                  const SDValue *Ops, unsigned NumOps,
3759                                  EVT MemVT, MachineMemOperand *MMO) {
3760  assert((Opcode == ISD::INTRINSIC_VOID ||
3761          Opcode == ISD::INTRINSIC_W_CHAIN ||
3762          (Opcode <= INT_MAX &&
3763           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
3764         "Opcode is not a memory-accessing opcode!");
3765
3766  // Memoize the node unless it returns a flag.
3767  MemIntrinsicSDNode *N;
3768  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3769    FoldingSetNodeID ID;
3770    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3771    void *IP = 0;
3772    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3773      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
3774      return SDValue(E, 0);
3775    }
3776
3777    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3778    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3779    CSEMap.InsertNode(N, IP);
3780  } else {
3781    N = NodeAllocator.Allocate<MemIntrinsicSDNode>();
3782    new (N) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
3783  }
3784  AllNodes.push_back(N);
3785  return SDValue(N, 0);
3786}
3787
3788SDValue
3789SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3790                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3791                      SDValue Ptr, SDValue Offset,
3792                      const Value *SV, int SVOffset, EVT MemVT,
3793                      bool isVolatile, bool isNonTemporal,
3794                      unsigned Alignment) {
3795  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3796    Alignment = getEVTAlignment(VT);
3797
3798  // Check if the memory reference references a frame index
3799  if (!SV)
3800    if (const FrameIndexSDNode *FI =
3801          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3802      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3803
3804  MachineFunction &MF = getMachineFunction();
3805  unsigned Flags = MachineMemOperand::MOLoad;
3806  if (isVolatile)
3807    Flags |= MachineMemOperand::MOVolatile;
3808  if (isNonTemporal)
3809    Flags |= MachineMemOperand::MONonTemporal;
3810  MachineMemOperand *MMO =
3811    MF.getMachineMemOperand(SV, Flags, SVOffset,
3812                            MemVT.getStoreSize(), Alignment);
3813  return getLoad(AM, dl, ExtType, VT, Chain, Ptr, Offset, MemVT, MMO);
3814}
3815
3816SDValue
3817SelectionDAG::getLoad(ISD::MemIndexedMode AM, DebugLoc dl,
3818                      ISD::LoadExtType ExtType, EVT VT, SDValue Chain,
3819                      SDValue Ptr, SDValue Offset, EVT MemVT,
3820                      MachineMemOperand *MMO) {
3821  if (VT == MemVT) {
3822    ExtType = ISD::NON_EXTLOAD;
3823  } else if (ExtType == ISD::NON_EXTLOAD) {
3824    assert(VT == MemVT && "Non-extending load from different memory type!");
3825  } else {
3826    // Extending load.
3827    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
3828           "Should only be an extending load, not truncating!");
3829    assert(VT.isInteger() == MemVT.isInteger() &&
3830           "Cannot convert from FP to Int or Int -> FP!");
3831    assert(VT.isVector() == MemVT.isVector() &&
3832           "Cannot use trunc store to convert to or from a vector!");
3833    assert((!VT.isVector() ||
3834            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
3835           "Cannot use trunc store to change the number of vector elements!");
3836  }
3837
3838  bool Indexed = AM != ISD::UNINDEXED;
3839  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3840         "Unindexed load with an offset!");
3841
3842  SDVTList VTs = Indexed ?
3843    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3844  SDValue Ops[] = { Chain, Ptr, Offset };
3845  FoldingSetNodeID ID;
3846  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3847  ID.AddInteger(MemVT.getRawBits());
3848  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile()));
3849  void *IP = 0;
3850  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3851    cast<LoadSDNode>(E)->refineAlignment(MMO);
3852    return SDValue(E, 0);
3853  }
3854  SDNode *N = NodeAllocator.Allocate<LoadSDNode>();
3855  new (N) LoadSDNode(Ops, dl, VTs, AM, ExtType, MemVT, MMO);
3856  CSEMap.InsertNode(N, IP);
3857  AllNodes.push_back(N);
3858  return SDValue(N, 0);
3859}
3860
3861SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
3862                              SDValue Chain, SDValue Ptr,
3863                              const Value *SV, int SVOffset,
3864                              bool isVolatile, bool isNonTemporal,
3865                              unsigned Alignment) {
3866  SDValue Undef = getUNDEF(Ptr.getValueType());
3867  return getLoad(ISD::UNINDEXED, dl, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3868                 SV, SVOffset, VT, isVolatile, isNonTemporal, Alignment);
3869}
3870
3871SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
3872                                 SDValue Chain, SDValue Ptr,
3873                                 const Value *SV,
3874                                 int SVOffset, EVT MemVT,
3875                                 bool isVolatile, bool isNonTemporal,
3876                                 unsigned Alignment) {
3877  SDValue Undef = getUNDEF(Ptr.getValueType());
3878  return getLoad(ISD::UNINDEXED, dl, ExtType, VT, Chain, Ptr, Undef,
3879                 SV, SVOffset, MemVT, isVolatile, isNonTemporal, Alignment);
3880}
3881
3882SDValue
3883SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
3884                             SDValue Offset, ISD::MemIndexedMode AM) {
3885  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3886  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3887         "Load is already a indexed load!");
3888  return getLoad(AM, dl, LD->getExtensionType(), OrigLoad.getValueType(),
3889                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3890                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3891                 LD->isVolatile(), LD->isNonTemporal(), LD->getAlignment());
3892}
3893
3894SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3895                               SDValue Ptr, const Value *SV, int SVOffset,
3896                               bool isVolatile, bool isNonTemporal,
3897                               unsigned Alignment) {
3898  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3899    Alignment = getEVTAlignment(Val.getValueType());
3900
3901  // Check if the memory reference references a frame index
3902  if (!SV)
3903    if (const FrameIndexSDNode *FI =
3904          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3905      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3906
3907  MachineFunction &MF = getMachineFunction();
3908  unsigned Flags = MachineMemOperand::MOStore;
3909  if (isVolatile)
3910    Flags |= MachineMemOperand::MOVolatile;
3911  if (isNonTemporal)
3912    Flags |= MachineMemOperand::MONonTemporal;
3913  MachineMemOperand *MMO =
3914    MF.getMachineMemOperand(SV, Flags, SVOffset,
3915                            Val.getValueType().getStoreSize(), Alignment);
3916
3917  return getStore(Chain, dl, Val, Ptr, MMO);
3918}
3919
3920SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
3921                               SDValue Ptr, MachineMemOperand *MMO) {
3922  EVT VT = Val.getValueType();
3923  SDVTList VTs = getVTList(MVT::Other);
3924  SDValue Undef = getUNDEF(Ptr.getValueType());
3925  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3926  FoldingSetNodeID ID;
3927  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3928  ID.AddInteger(VT.getRawBits());
3929  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile()));
3930  void *IP = 0;
3931  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3932    cast<StoreSDNode>(E)->refineAlignment(MMO);
3933    return SDValue(E, 0);
3934  }
3935  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3936  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, false, VT, MMO);
3937  CSEMap.InsertNode(N, IP);
3938  AllNodes.push_back(N);
3939  return SDValue(N, 0);
3940}
3941
3942SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3943                                    SDValue Ptr, const Value *SV,
3944                                    int SVOffset, EVT SVT,
3945                                    bool isVolatile, bool isNonTemporal,
3946                                    unsigned Alignment) {
3947  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3948    Alignment = getEVTAlignment(SVT);
3949
3950  // Check if the memory reference references a frame index
3951  if (!SV)
3952    if (const FrameIndexSDNode *FI =
3953          dyn_cast<const FrameIndexSDNode>(Ptr.getNode()))
3954      SV = PseudoSourceValue::getFixedStack(FI->getIndex());
3955
3956  MachineFunction &MF = getMachineFunction();
3957  unsigned Flags = MachineMemOperand::MOStore;
3958  if (isVolatile)
3959    Flags |= MachineMemOperand::MOVolatile;
3960  if (isNonTemporal)
3961    Flags |= MachineMemOperand::MONonTemporal;
3962  MachineMemOperand *MMO =
3963    MF.getMachineMemOperand(SV, Flags, SVOffset, SVT.getStoreSize(), Alignment);
3964
3965  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
3966}
3967
3968SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
3969                                    SDValue Ptr, EVT SVT,
3970                                    MachineMemOperand *MMO) {
3971  EVT VT = Val.getValueType();
3972
3973  if (VT == SVT)
3974    return getStore(Chain, dl, Val, Ptr, MMO);
3975
3976  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
3977         "Should only be a truncating store, not extending!");
3978  assert(VT.isInteger() == SVT.isInteger() &&
3979         "Can't do FP-INT conversion!");
3980  assert(VT.isVector() == SVT.isVector() &&
3981         "Cannot use trunc store to convert to or from a vector!");
3982  assert((!VT.isVector() ||
3983          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
3984         "Cannot use trunc store to change the number of vector elements!");
3985
3986  SDVTList VTs = getVTList(MVT::Other);
3987  SDValue Undef = getUNDEF(Ptr.getValueType());
3988  SDValue Ops[] = { Chain, Val, Ptr, Undef };
3989  FoldingSetNodeID ID;
3990  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3991  ID.AddInteger(SVT.getRawBits());
3992  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile()));
3993  void *IP = 0;
3994  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3995    cast<StoreSDNode>(E)->refineAlignment(MMO);
3996    return SDValue(E, 0);
3997  }
3998  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
3999  new (N) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED, true, SVT, MMO);
4000  CSEMap.InsertNode(N, IP);
4001  AllNodes.push_back(N);
4002  return SDValue(N, 0);
4003}
4004
4005SDValue
4006SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4007                              SDValue Offset, ISD::MemIndexedMode AM) {
4008  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4009  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4010         "Store is already a indexed store!");
4011  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4012  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4013  FoldingSetNodeID ID;
4014  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4015  ID.AddInteger(ST->getMemoryVT().getRawBits());
4016  ID.AddInteger(ST->getRawSubclassData());
4017  void *IP = 0;
4018  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4019    return SDValue(E, 0);
4020
4021  SDNode *N = NodeAllocator.Allocate<StoreSDNode>();
4022  new (N) StoreSDNode(Ops, dl, VTs, AM,
4023                      ST->isTruncatingStore(), ST->getMemoryVT(),
4024                      ST->getMemOperand());
4025  CSEMap.InsertNode(N, IP);
4026  AllNodes.push_back(N);
4027  return SDValue(N, 0);
4028}
4029
4030SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4031                               SDValue Chain, SDValue Ptr,
4032                               SDValue SV) {
4033  SDValue Ops[] = { Chain, Ptr, SV };
4034  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 3);
4035}
4036
4037SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4038                              const SDUse *Ops, unsigned NumOps) {
4039  switch (NumOps) {
4040  case 0: return getNode(Opcode, DL, VT);
4041  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4042  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4043  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4044  default: break;
4045  }
4046
4047  // Copy from an SDUse array into an SDValue array for use with
4048  // the regular getNode logic.
4049  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4050  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4051}
4052
4053SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4054                              const SDValue *Ops, unsigned NumOps) {
4055  switch (NumOps) {
4056  case 0: return getNode(Opcode, DL, VT);
4057  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4058  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4059  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4060  default: break;
4061  }
4062
4063  switch (Opcode) {
4064  default: break;
4065  case ISD::SELECT_CC: {
4066    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4067    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4068           "LHS and RHS of condition must have same type!");
4069    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4070           "True and False arms of SelectCC must have same type!");
4071    assert(Ops[2].getValueType() == VT &&
4072           "select_cc node must be of same type as true and false value!");
4073    break;
4074  }
4075  case ISD::BR_CC: {
4076    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4077    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4078           "LHS/RHS of comparison should match types!");
4079    break;
4080  }
4081  }
4082
4083  // Memoize nodes.
4084  SDNode *N;
4085  SDVTList VTs = getVTList(VT);
4086
4087  if (VT != MVT::Flag) {
4088    FoldingSetNodeID ID;
4089    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4090    void *IP = 0;
4091
4092    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4093      return SDValue(E, 0);
4094
4095    N = NodeAllocator.Allocate<SDNode>();
4096    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4097    CSEMap.InsertNode(N, IP);
4098  } else {
4099    N = NodeAllocator.Allocate<SDNode>();
4100    new (N) SDNode(Opcode, DL, VTs, Ops, NumOps);
4101  }
4102
4103  AllNodes.push_back(N);
4104#ifndef NDEBUG
4105  VerifyNode(N);
4106#endif
4107  return SDValue(N, 0);
4108}
4109
4110SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4111                              const std::vector<EVT> &ResultTys,
4112                              const SDValue *Ops, unsigned NumOps) {
4113  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4114                 Ops, NumOps);
4115}
4116
4117SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4118                              const EVT *VTs, unsigned NumVTs,
4119                              const SDValue *Ops, unsigned NumOps) {
4120  if (NumVTs == 1)
4121    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4122  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4123}
4124
4125SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4126                              const SDValue *Ops, unsigned NumOps) {
4127  if (VTList.NumVTs == 1)
4128    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4129
4130#if 0
4131  switch (Opcode) {
4132  // FIXME: figure out how to safely handle things like
4133  // int foo(int x) { return 1 << (x & 255); }
4134  // int bar() { return foo(256); }
4135  case ISD::SRA_PARTS:
4136  case ISD::SRL_PARTS:
4137  case ISD::SHL_PARTS:
4138    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4139        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4140      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4141    else if (N3.getOpcode() == ISD::AND)
4142      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4143        // If the and is only masking out bits that cannot effect the shift,
4144        // eliminate the and.
4145        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4146        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4147          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4148      }
4149    break;
4150  }
4151#endif
4152
4153  // Memoize the node unless it returns a flag.
4154  SDNode *N;
4155  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4156    FoldingSetNodeID ID;
4157    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4158    void *IP = 0;
4159    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4160      return SDValue(E, 0);
4161
4162    if (NumOps == 1) {
4163      N = NodeAllocator.Allocate<UnarySDNode>();
4164      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4165    } else if (NumOps == 2) {
4166      N = NodeAllocator.Allocate<BinarySDNode>();
4167      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4168    } else if (NumOps == 3) {
4169      N = NodeAllocator.Allocate<TernarySDNode>();
4170      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4171    } else {
4172      N = NodeAllocator.Allocate<SDNode>();
4173      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4174    }
4175    CSEMap.InsertNode(N, IP);
4176  } else {
4177    if (NumOps == 1) {
4178      N = NodeAllocator.Allocate<UnarySDNode>();
4179      new (N) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4180    } else if (NumOps == 2) {
4181      N = NodeAllocator.Allocate<BinarySDNode>();
4182      new (N) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4183    } else if (NumOps == 3) {
4184      N = NodeAllocator.Allocate<TernarySDNode>();
4185      new (N) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1], Ops[2]);
4186    } else {
4187      N = NodeAllocator.Allocate<SDNode>();
4188      new (N) SDNode(Opcode, DL, VTList, Ops, NumOps);
4189    }
4190  }
4191  AllNodes.push_back(N);
4192#ifndef NDEBUG
4193  VerifyNode(N);
4194#endif
4195  return SDValue(N, 0);
4196}
4197
4198SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4199  return getNode(Opcode, DL, VTList, 0, 0);
4200}
4201
4202SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4203                              SDValue N1) {
4204  SDValue Ops[] = { N1 };
4205  return getNode(Opcode, DL, VTList, Ops, 1);
4206}
4207
4208SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4209                              SDValue N1, SDValue N2) {
4210  SDValue Ops[] = { N1, N2 };
4211  return getNode(Opcode, DL, VTList, Ops, 2);
4212}
4213
4214SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4215                              SDValue N1, SDValue N2, SDValue N3) {
4216  SDValue Ops[] = { N1, N2, N3 };
4217  return getNode(Opcode, DL, VTList, Ops, 3);
4218}
4219
4220SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4221                              SDValue N1, SDValue N2, SDValue N3,
4222                              SDValue N4) {
4223  SDValue Ops[] = { N1, N2, N3, N4 };
4224  return getNode(Opcode, DL, VTList, Ops, 4);
4225}
4226
4227SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4228                              SDValue N1, SDValue N2, SDValue N3,
4229                              SDValue N4, SDValue N5) {
4230  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4231  return getNode(Opcode, DL, VTList, Ops, 5);
4232}
4233
4234SDVTList SelectionDAG::getVTList(EVT VT) {
4235  return makeVTList(SDNode::getValueTypeList(VT), 1);
4236}
4237
4238SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4239  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4240       E = VTList.rend(); I != E; ++I)
4241    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4242      return *I;
4243
4244  EVT *Array = Allocator.Allocate<EVT>(2);
4245  Array[0] = VT1;
4246  Array[1] = VT2;
4247  SDVTList Result = makeVTList(Array, 2);
4248  VTList.push_back(Result);
4249  return Result;
4250}
4251
4252SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4253  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4254       E = VTList.rend(); I != E; ++I)
4255    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4256                          I->VTs[2] == VT3)
4257      return *I;
4258
4259  EVT *Array = Allocator.Allocate<EVT>(3);
4260  Array[0] = VT1;
4261  Array[1] = VT2;
4262  Array[2] = VT3;
4263  SDVTList Result = makeVTList(Array, 3);
4264  VTList.push_back(Result);
4265  return Result;
4266}
4267
4268SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4269  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4270       E = VTList.rend(); I != E; ++I)
4271    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4272                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4273      return *I;
4274
4275  EVT *Array = Allocator.Allocate<EVT>(4);
4276  Array[0] = VT1;
4277  Array[1] = VT2;
4278  Array[2] = VT3;
4279  Array[3] = VT4;
4280  SDVTList Result = makeVTList(Array, 4);
4281  VTList.push_back(Result);
4282  return Result;
4283}
4284
4285SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4286  switch (NumVTs) {
4287    case 0: llvm_unreachable("Cannot have nodes without results!");
4288    case 1: return getVTList(VTs[0]);
4289    case 2: return getVTList(VTs[0], VTs[1]);
4290    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4291    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4292    default: break;
4293  }
4294
4295  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4296       E = VTList.rend(); I != E; ++I) {
4297    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4298      continue;
4299
4300    bool NoMatch = false;
4301    for (unsigned i = 2; i != NumVTs; ++i)
4302      if (VTs[i] != I->VTs[i]) {
4303        NoMatch = true;
4304        break;
4305      }
4306    if (!NoMatch)
4307      return *I;
4308  }
4309
4310  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4311  std::copy(VTs, VTs+NumVTs, Array);
4312  SDVTList Result = makeVTList(Array, NumVTs);
4313  VTList.push_back(Result);
4314  return Result;
4315}
4316
4317
4318/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4319/// specified operands.  If the resultant node already exists in the DAG,
4320/// this does not modify the specified node, instead it returns the node that
4321/// already exists.  If the resultant node does not exist in the DAG, the
4322/// input node is returned.  As a degenerate case, if you specify the same
4323/// input operands as the node already has, the input node is returned.
4324SDValue SelectionDAG::UpdateNodeOperands(SDValue InN, SDValue Op) {
4325  SDNode *N = InN.getNode();
4326  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4327
4328  // Check to see if there is no change.
4329  if (Op == N->getOperand(0)) return InN;
4330
4331  // See if the modified node already exists.
4332  void *InsertPos = 0;
4333  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4334    return SDValue(Existing, InN.getResNo());
4335
4336  // Nope it doesn't.  Remove the node from its current place in the maps.
4337  if (InsertPos)
4338    if (!RemoveNodeFromCSEMaps(N))
4339      InsertPos = 0;
4340
4341  // Now we update the operands.
4342  N->OperandList[0].set(Op);
4343
4344  // If this gets put into a CSE map, add it.
4345  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4346  return InN;
4347}
4348
4349SDValue SelectionDAG::
4350UpdateNodeOperands(SDValue InN, SDValue Op1, SDValue Op2) {
4351  SDNode *N = InN.getNode();
4352  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4353
4354  // Check to see if there is no change.
4355  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4356    return InN;   // No operands changed, just return the input node.
4357
4358  // See if the modified node already exists.
4359  void *InsertPos = 0;
4360  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4361    return SDValue(Existing, InN.getResNo());
4362
4363  // Nope it doesn't.  Remove the node from its current place in the maps.
4364  if (InsertPos)
4365    if (!RemoveNodeFromCSEMaps(N))
4366      InsertPos = 0;
4367
4368  // Now we update the operands.
4369  if (N->OperandList[0] != Op1)
4370    N->OperandList[0].set(Op1);
4371  if (N->OperandList[1] != Op2)
4372    N->OperandList[1].set(Op2);
4373
4374  // If this gets put into a CSE map, add it.
4375  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4376  return InN;
4377}
4378
4379SDValue SelectionDAG::
4380UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2, SDValue Op3) {
4381  SDValue Ops[] = { Op1, Op2, Op3 };
4382  return UpdateNodeOperands(N, Ops, 3);
4383}
4384
4385SDValue SelectionDAG::
4386UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4387                   SDValue Op3, SDValue Op4) {
4388  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4389  return UpdateNodeOperands(N, Ops, 4);
4390}
4391
4392SDValue SelectionDAG::
4393UpdateNodeOperands(SDValue N, SDValue Op1, SDValue Op2,
4394                   SDValue Op3, SDValue Op4, SDValue Op5) {
4395  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4396  return UpdateNodeOperands(N, Ops, 5);
4397}
4398
4399SDValue SelectionDAG::
4400UpdateNodeOperands(SDValue InN, const SDValue *Ops, unsigned NumOps) {
4401  SDNode *N = InN.getNode();
4402  assert(N->getNumOperands() == NumOps &&
4403         "Update with wrong number of operands");
4404
4405  // Check to see if there is no change.
4406  bool AnyChange = false;
4407  for (unsigned i = 0; i != NumOps; ++i) {
4408    if (Ops[i] != N->getOperand(i)) {
4409      AnyChange = true;
4410      break;
4411    }
4412  }
4413
4414  // No operands changed, just return the input node.
4415  if (!AnyChange) return InN;
4416
4417  // See if the modified node already exists.
4418  void *InsertPos = 0;
4419  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4420    return SDValue(Existing, InN.getResNo());
4421
4422  // Nope it doesn't.  Remove the node from its current place in the maps.
4423  if (InsertPos)
4424    if (!RemoveNodeFromCSEMaps(N))
4425      InsertPos = 0;
4426
4427  // Now we update the operands.
4428  for (unsigned i = 0; i != NumOps; ++i)
4429    if (N->OperandList[i] != Ops[i])
4430      N->OperandList[i].set(Ops[i]);
4431
4432  // If this gets put into a CSE map, add it.
4433  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4434  return InN;
4435}
4436
4437/// DropOperands - Release the operands and set this node to have
4438/// zero operands.
4439void SDNode::DropOperands() {
4440  // Unlike the code in MorphNodeTo that does this, we don't need to
4441  // watch for dead nodes here.
4442  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4443    SDUse &Use = *I++;
4444    Use.set(SDValue());
4445  }
4446}
4447
4448/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4449/// machine opcode.
4450///
4451SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4452                                   EVT VT) {
4453  SDVTList VTs = getVTList(VT);
4454  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4455}
4456
4457SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4458                                   EVT VT, SDValue Op1) {
4459  SDVTList VTs = getVTList(VT);
4460  SDValue Ops[] = { Op1 };
4461  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4462}
4463
4464SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4465                                   EVT VT, SDValue Op1,
4466                                   SDValue Op2) {
4467  SDVTList VTs = getVTList(VT);
4468  SDValue Ops[] = { Op1, Op2 };
4469  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4470}
4471
4472SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4473                                   EVT VT, SDValue Op1,
4474                                   SDValue Op2, SDValue Op3) {
4475  SDVTList VTs = getVTList(VT);
4476  SDValue Ops[] = { Op1, Op2, Op3 };
4477  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4478}
4479
4480SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4481                                   EVT VT, const SDValue *Ops,
4482                                   unsigned NumOps) {
4483  SDVTList VTs = getVTList(VT);
4484  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4485}
4486
4487SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4488                                   EVT VT1, EVT VT2, const SDValue *Ops,
4489                                   unsigned NumOps) {
4490  SDVTList VTs = getVTList(VT1, VT2);
4491  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4492}
4493
4494SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4495                                   EVT VT1, EVT VT2) {
4496  SDVTList VTs = getVTList(VT1, VT2);
4497  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4498}
4499
4500SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4501                                   EVT VT1, EVT VT2, EVT VT3,
4502                                   const SDValue *Ops, unsigned NumOps) {
4503  SDVTList VTs = getVTList(VT1, VT2, VT3);
4504  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4505}
4506
4507SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4508                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4509                                   const SDValue *Ops, unsigned NumOps) {
4510  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4511  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4512}
4513
4514SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4515                                   EVT VT1, EVT VT2,
4516                                   SDValue Op1) {
4517  SDVTList VTs = getVTList(VT1, VT2);
4518  SDValue Ops[] = { Op1 };
4519  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4520}
4521
4522SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4523                                   EVT VT1, EVT VT2,
4524                                   SDValue Op1, SDValue Op2) {
4525  SDVTList VTs = getVTList(VT1, VT2);
4526  SDValue Ops[] = { Op1, Op2 };
4527  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4528}
4529
4530SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4531                                   EVT VT1, EVT VT2,
4532                                   SDValue Op1, SDValue Op2,
4533                                   SDValue Op3) {
4534  SDVTList VTs = getVTList(VT1, VT2);
4535  SDValue Ops[] = { Op1, Op2, Op3 };
4536  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4537}
4538
4539SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4540                                   EVT VT1, EVT VT2, EVT VT3,
4541                                   SDValue Op1, SDValue Op2,
4542                                   SDValue Op3) {
4543  SDVTList VTs = getVTList(VT1, VT2, VT3);
4544  SDValue Ops[] = { Op1, Op2, Op3 };
4545  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4546}
4547
4548SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4549                                   SDVTList VTs, const SDValue *Ops,
4550                                   unsigned NumOps) {
4551  return MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
4552}
4553
4554SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4555                                  EVT VT) {
4556  SDVTList VTs = getVTList(VT);
4557  return MorphNodeTo(N, Opc, VTs, 0, 0);
4558}
4559
4560SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4561                                  EVT VT, SDValue Op1) {
4562  SDVTList VTs = getVTList(VT);
4563  SDValue Ops[] = { Op1 };
4564  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4565}
4566
4567SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4568                                  EVT VT, SDValue Op1,
4569                                  SDValue Op2) {
4570  SDVTList VTs = getVTList(VT);
4571  SDValue Ops[] = { Op1, Op2 };
4572  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4573}
4574
4575SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4576                                  EVT VT, SDValue Op1,
4577                                  SDValue Op2, SDValue Op3) {
4578  SDVTList VTs = getVTList(VT);
4579  SDValue Ops[] = { Op1, Op2, Op3 };
4580  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4581}
4582
4583SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4584                                  EVT VT, const SDValue *Ops,
4585                                  unsigned NumOps) {
4586  SDVTList VTs = getVTList(VT);
4587  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4588}
4589
4590SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4591                                  EVT VT1, EVT VT2, const SDValue *Ops,
4592                                  unsigned NumOps) {
4593  SDVTList VTs = getVTList(VT1, VT2);
4594  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4595}
4596
4597SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4598                                  EVT VT1, EVT VT2) {
4599  SDVTList VTs = getVTList(VT1, VT2);
4600  return MorphNodeTo(N, Opc, VTs, (SDValue *)0, 0);
4601}
4602
4603SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4604                                  EVT VT1, EVT VT2, EVT VT3,
4605                                  const SDValue *Ops, unsigned NumOps) {
4606  SDVTList VTs = getVTList(VT1, VT2, VT3);
4607  return MorphNodeTo(N, Opc, VTs, Ops, NumOps);
4608}
4609
4610SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4611                                  EVT VT1, EVT VT2,
4612                                  SDValue Op1) {
4613  SDVTList VTs = getVTList(VT1, VT2);
4614  SDValue Ops[] = { Op1 };
4615  return MorphNodeTo(N, Opc, VTs, Ops, 1);
4616}
4617
4618SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4619                                  EVT VT1, EVT VT2,
4620                                  SDValue Op1, SDValue Op2) {
4621  SDVTList VTs = getVTList(VT1, VT2);
4622  SDValue Ops[] = { Op1, Op2 };
4623  return MorphNodeTo(N, Opc, VTs, Ops, 2);
4624}
4625
4626SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4627                                  EVT VT1, EVT VT2,
4628                                  SDValue Op1, SDValue Op2,
4629                                  SDValue Op3) {
4630  SDVTList VTs = getVTList(VT1, VT2);
4631  SDValue Ops[] = { Op1, Op2, Op3 };
4632  return MorphNodeTo(N, Opc, VTs, Ops, 3);
4633}
4634
4635/// MorphNodeTo - These *mutate* the specified node to have the specified
4636/// return type, opcode, and operands.
4637///
4638/// Note that MorphNodeTo returns the resultant node.  If there is already a
4639/// node of the specified opcode and operands, it returns that node instead of
4640/// the current one.  Note that the DebugLoc need not be the same.
4641///
4642/// Using MorphNodeTo is faster than creating a new node and swapping it in
4643/// with ReplaceAllUsesWith both because it often avoids allocating a new
4644/// node, and because it doesn't require CSE recalculation for any of
4645/// the node's users.
4646///
4647SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
4648                                  SDVTList VTs, const SDValue *Ops,
4649                                  unsigned NumOps) {
4650  // If an identical node already exists, use it.
4651  void *IP = 0;
4652  if (VTs.VTs[VTs.NumVTs-1] != MVT::Flag) {
4653    FoldingSetNodeID ID;
4654    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
4655    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
4656      return ON;
4657  }
4658
4659  if (!RemoveNodeFromCSEMaps(N))
4660    IP = 0;
4661
4662  // Start the morphing.
4663  N->NodeType = Opc;
4664  N->ValueList = VTs.VTs;
4665  N->NumValues = VTs.NumVTs;
4666
4667  // Clear the operands list, updating used nodes to remove this from their
4668  // use list.  Keep track of any operands that become dead as a result.
4669  SmallPtrSet<SDNode*, 16> DeadNodeSet;
4670  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
4671    SDUse &Use = *I++;
4672    SDNode *Used = Use.getNode();
4673    Use.set(SDValue());
4674    if (Used->use_empty())
4675      DeadNodeSet.insert(Used);
4676  }
4677
4678  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
4679    // Initialize the memory references information.
4680    MN->setMemRefs(0, 0);
4681    // If NumOps is larger than the # of operands we can have in a
4682    // MachineSDNode, reallocate the operand list.
4683    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
4684      if (MN->OperandsNeedDelete)
4685        delete[] MN->OperandList;
4686      if (NumOps > array_lengthof(MN->LocalOperands))
4687        // We're creating a final node that will live unmorphed for the
4688        // remainder of the current SelectionDAG iteration, so we can allocate
4689        // the operands directly out of a pool with no recycling metadata.
4690        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4691                        Ops, NumOps);
4692      else
4693        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
4694      MN->OperandsNeedDelete = false;
4695    } else
4696      MN->InitOperands(MN->OperandList, Ops, NumOps);
4697  } else {
4698    // If NumOps is larger than the # of operands we currently have, reallocate
4699    // the operand list.
4700    if (NumOps > N->NumOperands) {
4701      if (N->OperandsNeedDelete)
4702        delete[] N->OperandList;
4703      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
4704      N->OperandsNeedDelete = true;
4705    } else
4706      N->InitOperands(N->OperandList, Ops, NumOps);
4707  }
4708
4709  // Delete any nodes that are still dead after adding the uses for the
4710  // new operands.
4711  SmallVector<SDNode *, 16> DeadNodes;
4712  for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
4713       E = DeadNodeSet.end(); I != E; ++I)
4714    if ((*I)->use_empty())
4715      DeadNodes.push_back(*I);
4716  RemoveDeadNodes(DeadNodes);
4717
4718  if (IP)
4719    CSEMap.InsertNode(N, IP);   // Memoize the new node.
4720  return N;
4721}
4722
4723
4724/// getMachineNode - These are used for target selectors to create a new node
4725/// with specified return type(s), MachineInstr opcode, and operands.
4726///
4727/// Note that getMachineNode returns the resultant node.  If there is already a
4728/// node of the specified opcode and operands, it returns that node instead of
4729/// the current one.
4730MachineSDNode *
4731SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
4732  SDVTList VTs = getVTList(VT);
4733  return getMachineNode(Opcode, dl, VTs, 0, 0);
4734}
4735
4736MachineSDNode *
4737SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
4738  SDVTList VTs = getVTList(VT);
4739  SDValue Ops[] = { Op1 };
4740  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4741}
4742
4743MachineSDNode *
4744SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4745                             SDValue Op1, SDValue Op2) {
4746  SDVTList VTs = getVTList(VT);
4747  SDValue Ops[] = { Op1, Op2 };
4748  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4749}
4750
4751MachineSDNode *
4752SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4753                             SDValue Op1, SDValue Op2, SDValue Op3) {
4754  SDVTList VTs = getVTList(VT);
4755  SDValue Ops[] = { Op1, Op2, Op3 };
4756  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4757}
4758
4759MachineSDNode *
4760SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
4761                             const SDValue *Ops, unsigned NumOps) {
4762  SDVTList VTs = getVTList(VT);
4763  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4764}
4765
4766MachineSDNode *
4767SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
4768  SDVTList VTs = getVTList(VT1, VT2);
4769  return getMachineNode(Opcode, dl, VTs, 0, 0);
4770}
4771
4772MachineSDNode *
4773SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4774                             EVT VT1, EVT VT2, SDValue Op1) {
4775  SDVTList VTs = getVTList(VT1, VT2);
4776  SDValue Ops[] = { Op1 };
4777  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4778}
4779
4780MachineSDNode *
4781SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4782                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
4783  SDVTList VTs = getVTList(VT1, VT2);
4784  SDValue Ops[] = { Op1, Op2 };
4785  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4786}
4787
4788MachineSDNode *
4789SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4790                             EVT VT1, EVT VT2, SDValue Op1,
4791                             SDValue Op2, SDValue Op3) {
4792  SDVTList VTs = getVTList(VT1, VT2);
4793  SDValue Ops[] = { Op1, Op2, Op3 };
4794  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4795}
4796
4797MachineSDNode *
4798SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4799                             EVT VT1, EVT VT2,
4800                             const SDValue *Ops, unsigned NumOps) {
4801  SDVTList VTs = getVTList(VT1, VT2);
4802  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4803}
4804
4805MachineSDNode *
4806SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4807                             EVT VT1, EVT VT2, EVT VT3,
4808                             SDValue Op1, SDValue Op2) {
4809  SDVTList VTs = getVTList(VT1, VT2, VT3);
4810  SDValue Ops[] = { Op1, Op2 };
4811  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4812}
4813
4814MachineSDNode *
4815SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4816                             EVT VT1, EVT VT2, EVT VT3,
4817                             SDValue Op1, SDValue Op2, SDValue Op3) {
4818  SDVTList VTs = getVTList(VT1, VT2, VT3);
4819  SDValue Ops[] = { Op1, Op2, Op3 };
4820  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
4821}
4822
4823MachineSDNode *
4824SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4825                             EVT VT1, EVT VT2, EVT VT3,
4826                             const SDValue *Ops, unsigned NumOps) {
4827  SDVTList VTs = getVTList(VT1, VT2, VT3);
4828  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4829}
4830
4831MachineSDNode *
4832SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
4833                             EVT VT2, EVT VT3, EVT VT4,
4834                             const SDValue *Ops, unsigned NumOps) {
4835  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4836  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4837}
4838
4839MachineSDNode *
4840SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
4841                             const std::vector<EVT> &ResultTys,
4842                             const SDValue *Ops, unsigned NumOps) {
4843  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
4844  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
4845}
4846
4847MachineSDNode *
4848SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
4849                             const SDValue *Ops, unsigned NumOps) {
4850  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Flag;
4851  MachineSDNode *N;
4852  void *IP;
4853
4854  if (DoCSE) {
4855    FoldingSetNodeID ID;
4856    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
4857    IP = 0;
4858    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4859      return cast<MachineSDNode>(E);
4860  }
4861
4862  // Allocate a new MachineSDNode.
4863  N = NodeAllocator.Allocate<MachineSDNode>();
4864  new (N) MachineSDNode(~Opcode, DL, VTs);
4865
4866  // Initialize the operands list.
4867  if (NumOps > array_lengthof(N->LocalOperands))
4868    // We're creating a final node that will live unmorphed for the
4869    // remainder of the current SelectionDAG iteration, so we can allocate
4870    // the operands directly out of a pool with no recycling metadata.
4871    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
4872                    Ops, NumOps);
4873  else
4874    N->InitOperands(N->LocalOperands, Ops, NumOps);
4875  N->OperandsNeedDelete = false;
4876
4877  if (DoCSE)
4878    CSEMap.InsertNode(N, IP);
4879
4880  AllNodes.push_back(N);
4881#ifndef NDEBUG
4882  VerifyNode(N);
4883#endif
4884  return N;
4885}
4886
4887/// getTargetExtractSubreg - A convenience function for creating
4888/// TargetOpcode::EXTRACT_SUBREG nodes.
4889SDValue
4890SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
4891                                     SDValue Operand) {
4892  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4893  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
4894                                  VT, Operand, SRIdxVal);
4895  return SDValue(Subreg, 0);
4896}
4897
4898/// getTargetInsertSubreg - A convenience function for creating
4899/// TargetOpcode::INSERT_SUBREG nodes.
4900SDValue
4901SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
4902                                    SDValue Operand, SDValue Subreg) {
4903  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
4904  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
4905                                  VT, Operand, Subreg, SRIdxVal);
4906  return SDValue(Result, 0);
4907}
4908
4909/// getNodeIfExists - Get the specified node if it's already available, or
4910/// else return NULL.
4911SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
4912                                      const SDValue *Ops, unsigned NumOps) {
4913  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
4914    FoldingSetNodeID ID;
4915    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4916    void *IP = 0;
4917    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4918      return E;
4919  }
4920  return NULL;
4921}
4922
4923/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4924/// This can cause recursive merging of nodes in the DAG.
4925///
4926/// This version assumes From has a single result value.
4927///
4928void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To,
4929                                      DAGUpdateListener *UpdateListener) {
4930  SDNode *From = FromN.getNode();
4931  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
4932         "Cannot replace with this method!");
4933  assert(From != To.getNode() && "Cannot replace uses of with self");
4934
4935  // Iterate over all the existing uses of From. New uses will be added
4936  // to the beginning of the use list, which we avoid visiting.
4937  // This specifically avoids visiting uses of From that arise while the
4938  // replacement is happening, because any such uses would be the result
4939  // of CSE: If an existing node looks like From after one of its operands
4940  // is replaced by To, we don't want to replace of all its users with To
4941  // too. See PR3018 for more info.
4942  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4943  while (UI != UE) {
4944    SDNode *User = *UI;
4945
4946    // This node is about to morph, remove its old self from the CSE maps.
4947    RemoveNodeFromCSEMaps(User);
4948
4949    // A user can appear in a use list multiple times, and when this
4950    // happens the uses are usually next to each other in the list.
4951    // To help reduce the number of CSE recomputations, process all
4952    // the uses of this user that we can find this way.
4953    do {
4954      SDUse &Use = UI.getUse();
4955      ++UI;
4956      Use.set(To);
4957    } while (UI != UE && *UI == User);
4958
4959    // Now that we have modified User, add it back to the CSE maps.  If it
4960    // already exists there, recursively merge the results together.
4961    AddModifiedNodeToCSEMaps(User, UpdateListener);
4962  }
4963}
4964
4965/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
4966/// This can cause recursive merging of nodes in the DAG.
4967///
4968/// This version assumes that for each value of From, there is a
4969/// corresponding value in To in the same position with the same type.
4970///
4971void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
4972                                      DAGUpdateListener *UpdateListener) {
4973#ifndef NDEBUG
4974  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
4975    assert((!From->hasAnyUseOfValue(i) ||
4976            From->getValueType(i) == To->getValueType(i)) &&
4977           "Cannot use this version of ReplaceAllUsesWith!");
4978#endif
4979
4980  // Handle the trivial case.
4981  if (From == To)
4982    return;
4983
4984  // Iterate over just the existing users of From. See the comments in
4985  // the ReplaceAllUsesWith above.
4986  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
4987  while (UI != UE) {
4988    SDNode *User = *UI;
4989
4990    // This node is about to morph, remove its old self from the CSE maps.
4991    RemoveNodeFromCSEMaps(User);
4992
4993    // A user can appear in a use list multiple times, and when this
4994    // happens the uses are usually next to each other in the list.
4995    // To help reduce the number of CSE recomputations, process all
4996    // the uses of this user that we can find this way.
4997    do {
4998      SDUse &Use = UI.getUse();
4999      ++UI;
5000      Use.setNode(To);
5001    } while (UI != UE && *UI == User);
5002
5003    // Now that we have modified User, add it back to the CSE maps.  If it
5004    // already exists there, recursively merge the results together.
5005    AddModifiedNodeToCSEMaps(User, UpdateListener);
5006  }
5007}
5008
5009/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5010/// This can cause recursive merging of nodes in the DAG.
5011///
5012/// This version can replace From with any result values.  To must match the
5013/// number and types of values returned by From.
5014void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
5015                                      const SDValue *To,
5016                                      DAGUpdateListener *UpdateListener) {
5017  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5018    return ReplaceAllUsesWith(SDValue(From, 0), To[0], UpdateListener);
5019
5020  // Iterate over just the existing users of From. See the comments in
5021  // the ReplaceAllUsesWith above.
5022  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5023  while (UI != UE) {
5024    SDNode *User = *UI;
5025
5026    // This node is about to morph, remove its old self from the CSE maps.
5027    RemoveNodeFromCSEMaps(User);
5028
5029    // A user can appear in a use list multiple times, and when this
5030    // happens the uses are usually next to each other in the list.
5031    // To help reduce the number of CSE recomputations, process all
5032    // the uses of this user that we can find this way.
5033    do {
5034      SDUse &Use = UI.getUse();
5035      const SDValue &ToOp = To[Use.getResNo()];
5036      ++UI;
5037      Use.set(ToOp);
5038    } while (UI != UE && *UI == User);
5039
5040    // Now that we have modified User, add it back to the CSE maps.  If it
5041    // already exists there, recursively merge the results together.
5042    AddModifiedNodeToCSEMaps(User, UpdateListener);
5043  }
5044}
5045
5046/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5047/// uses of other values produced by From.getNode() alone.  The Deleted
5048/// vector is handled the same way as for ReplaceAllUsesWith.
5049void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To,
5050                                             DAGUpdateListener *UpdateListener){
5051  // Handle the really simple, really trivial case efficiently.
5052  if (From == To) return;
5053
5054  // Handle the simple, trivial, case efficiently.
5055  if (From.getNode()->getNumValues() == 1) {
5056    ReplaceAllUsesWith(From, To, UpdateListener);
5057    return;
5058  }
5059
5060  // Iterate over just the existing users of From. See the comments in
5061  // the ReplaceAllUsesWith above.
5062  SDNode::use_iterator UI = From.getNode()->use_begin(),
5063                       UE = From.getNode()->use_end();
5064  while (UI != UE) {
5065    SDNode *User = *UI;
5066    bool UserRemovedFromCSEMaps = false;
5067
5068    // A user can appear in a use list multiple times, and when this
5069    // happens the uses are usually next to each other in the list.
5070    // To help reduce the number of CSE recomputations, process all
5071    // the uses of this user that we can find this way.
5072    do {
5073      SDUse &Use = UI.getUse();
5074
5075      // Skip uses of different values from the same node.
5076      if (Use.getResNo() != From.getResNo()) {
5077        ++UI;
5078        continue;
5079      }
5080
5081      // If this node hasn't been modified yet, it's still in the CSE maps,
5082      // so remove its old self from the CSE maps.
5083      if (!UserRemovedFromCSEMaps) {
5084        RemoveNodeFromCSEMaps(User);
5085        UserRemovedFromCSEMaps = true;
5086      }
5087
5088      ++UI;
5089      Use.set(To);
5090    } while (UI != UE && *UI == User);
5091
5092    // We are iterating over all uses of the From node, so if a use
5093    // doesn't use the specific value, no changes are made.
5094    if (!UserRemovedFromCSEMaps)
5095      continue;
5096
5097    // Now that we have modified User, add it back to the CSE maps.  If it
5098    // already exists there, recursively merge the results together.
5099    AddModifiedNodeToCSEMaps(User, UpdateListener);
5100  }
5101}
5102
5103namespace {
5104  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5105  /// to record information about a use.
5106  struct UseMemo {
5107    SDNode *User;
5108    unsigned Index;
5109    SDUse *Use;
5110  };
5111
5112  /// operator< - Sort Memos by User.
5113  bool operator<(const UseMemo &L, const UseMemo &R) {
5114    return (intptr_t)L.User < (intptr_t)R.User;
5115  }
5116}
5117
5118/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5119/// uses of other values produced by From.getNode() alone.  The same value
5120/// may appear in both the From and To list.  The Deleted vector is
5121/// handled the same way as for ReplaceAllUsesWith.
5122void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5123                                              const SDValue *To,
5124                                              unsigned Num,
5125                                              DAGUpdateListener *UpdateListener){
5126  // Handle the simple, trivial case efficiently.
5127  if (Num == 1)
5128    return ReplaceAllUsesOfValueWith(*From, *To, UpdateListener);
5129
5130  // Read up all the uses and make records of them. This helps
5131  // processing new uses that are introduced during the
5132  // replacement process.
5133  SmallVector<UseMemo, 4> Uses;
5134  for (unsigned i = 0; i != Num; ++i) {
5135    unsigned FromResNo = From[i].getResNo();
5136    SDNode *FromNode = From[i].getNode();
5137    for (SDNode::use_iterator UI = FromNode->use_begin(),
5138         E = FromNode->use_end(); UI != E; ++UI) {
5139      SDUse &Use = UI.getUse();
5140      if (Use.getResNo() == FromResNo) {
5141        UseMemo Memo = { *UI, i, &Use };
5142        Uses.push_back(Memo);
5143      }
5144    }
5145  }
5146
5147  // Sort the uses, so that all the uses from a given User are together.
5148  std::sort(Uses.begin(), Uses.end());
5149
5150  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5151       UseIndex != UseIndexEnd; ) {
5152    // We know that this user uses some value of From.  If it is the right
5153    // value, update it.
5154    SDNode *User = Uses[UseIndex].User;
5155
5156    // This node is about to morph, remove its old self from the CSE maps.
5157    RemoveNodeFromCSEMaps(User);
5158
5159    // The Uses array is sorted, so all the uses for a given User
5160    // are next to each other in the list.
5161    // To help reduce the number of CSE recomputations, process all
5162    // the uses of this user that we can find this way.
5163    do {
5164      unsigned i = Uses[UseIndex].Index;
5165      SDUse &Use = *Uses[UseIndex].Use;
5166      ++UseIndex;
5167
5168      Use.set(To[i]);
5169    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5170
5171    // Now that we have modified User, add it back to the CSE maps.  If it
5172    // already exists there, recursively merge the results together.
5173    AddModifiedNodeToCSEMaps(User, UpdateListener);
5174  }
5175}
5176
5177/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5178/// based on their topological order. It returns the maximum id and a vector
5179/// of the SDNodes* in assigned order by reference.
5180unsigned SelectionDAG::AssignTopologicalOrder() {
5181
5182  unsigned DAGSize = 0;
5183
5184  // SortedPos tracks the progress of the algorithm. Nodes before it are
5185  // sorted, nodes after it are unsorted. When the algorithm completes
5186  // it is at the end of the list.
5187  allnodes_iterator SortedPos = allnodes_begin();
5188
5189  // Visit all the nodes. Move nodes with no operands to the front of
5190  // the list immediately. Annotate nodes that do have operands with their
5191  // operand count. Before we do this, the Node Id fields of the nodes
5192  // may contain arbitrary values. After, the Node Id fields for nodes
5193  // before SortedPos will contain the topological sort index, and the
5194  // Node Id fields for nodes At SortedPos and after will contain the
5195  // count of outstanding operands.
5196  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5197    SDNode *N = I++;
5198    checkForCycles(N);
5199    unsigned Degree = N->getNumOperands();
5200    if (Degree == 0) {
5201      // A node with no uses, add it to the result array immediately.
5202      N->setNodeId(DAGSize++);
5203      allnodes_iterator Q = N;
5204      if (Q != SortedPos)
5205        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5206      assert(SortedPos != AllNodes.end() && "Overran node list");
5207      ++SortedPos;
5208    } else {
5209      // Temporarily use the Node Id as scratch space for the degree count.
5210      N->setNodeId(Degree);
5211    }
5212  }
5213
5214  // Visit all the nodes. As we iterate, moves nodes into sorted order,
5215  // such that by the time the end is reached all nodes will be sorted.
5216  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5217    SDNode *N = I;
5218    checkForCycles(N);
5219    // N is in sorted position, so all its uses have one less operand
5220    // that needs to be sorted.
5221    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5222         UI != UE; ++UI) {
5223      SDNode *P = *UI;
5224      unsigned Degree = P->getNodeId();
5225      assert(Degree != 0 && "Invalid node degree");
5226      --Degree;
5227      if (Degree == 0) {
5228        // All of P's operands are sorted, so P may sorted now.
5229        P->setNodeId(DAGSize++);
5230        if (P != SortedPos)
5231          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5232        assert(SortedPos != AllNodes.end() && "Overran node list");
5233        ++SortedPos;
5234      } else {
5235        // Update P's outstanding operand count.
5236        P->setNodeId(Degree);
5237      }
5238    }
5239    if (I == SortedPos) {
5240#ifndef NDEBUG
5241      SDNode *S = ++I;
5242      dbgs() << "Overran sorted position:\n";
5243      S->dumprFull();
5244#endif
5245      llvm_unreachable(0);
5246    }
5247  }
5248
5249  assert(SortedPos == AllNodes.end() &&
5250         "Topological sort incomplete!");
5251  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5252         "First node in topological sort is not the entry token!");
5253  assert(AllNodes.front().getNodeId() == 0 &&
5254         "First node in topological sort has non-zero id!");
5255  assert(AllNodes.front().getNumOperands() == 0 &&
5256         "First node in topological sort has operands!");
5257  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5258         "Last node in topologic sort has unexpected id!");
5259  assert(AllNodes.back().use_empty() &&
5260         "Last node in topologic sort has users!");
5261  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5262  return DAGSize;
5263}
5264
5265/// AssignOrdering - Assign an order to the SDNode.
5266void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5267  assert(SD && "Trying to assign an order to a null node!");
5268  Ordering->add(SD, Order);
5269}
5270
5271/// GetOrdering - Get the order for the SDNode.
5272unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5273  assert(SD && "Trying to get the order of a null node!");
5274  return Ordering->getOrder(SD);
5275}
5276
5277
5278//===----------------------------------------------------------------------===//
5279//                              SDNode Class
5280//===----------------------------------------------------------------------===//
5281
5282HandleSDNode::~HandleSDNode() {
5283  DropOperands();
5284}
5285
5286GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA,
5287                                         EVT VT, int64_t o, unsigned char TF)
5288  : SDNode(Opc, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
5289    Offset(o), TargetFlags(TF) {
5290  TheGlobal = const_cast<GlobalValue*>(GA);
5291}
5292
5293MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5294                     MachineMemOperand *mmo)
5295 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5296  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5297  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5298  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5299}
5300
5301MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5302                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5303                     MachineMemOperand *mmo)
5304   : SDNode(Opc, dl, VTs, Ops, NumOps),
5305     MemoryVT(memvt), MMO(mmo) {
5306  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile());
5307  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5308  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5309}
5310
5311/// Profile - Gather unique data for the node.
5312///
5313void SDNode::Profile(FoldingSetNodeID &ID) const {
5314  AddNodeIDNode(ID, this);
5315}
5316
5317namespace {
5318  struct EVTArray {
5319    std::vector<EVT> VTs;
5320
5321    EVTArray() {
5322      VTs.reserve(MVT::LAST_VALUETYPE);
5323      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5324        VTs.push_back(MVT((MVT::SimpleValueType)i));
5325    }
5326  };
5327}
5328
5329static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5330static ManagedStatic<EVTArray> SimpleVTArray;
5331static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5332
5333/// getValueTypeList - Return a pointer to the specified value type.
5334///
5335const EVT *SDNode::getValueTypeList(EVT VT) {
5336  if (VT.isExtended()) {
5337    sys::SmartScopedLock<true> Lock(*VTMutex);
5338    return &(*EVTs->insert(VT).first);
5339  } else {
5340    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5341  }
5342}
5343
5344/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5345/// indicated value.  This method ignores uses of other values defined by this
5346/// operation.
5347bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5348  assert(Value < getNumValues() && "Bad value!");
5349
5350  // TODO: Only iterate over uses of a given value of the node
5351  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5352    if (UI.getUse().getResNo() == Value) {
5353      if (NUses == 0)
5354        return false;
5355      --NUses;
5356    }
5357  }
5358
5359  // Found exactly the right number of uses?
5360  return NUses == 0;
5361}
5362
5363
5364/// hasAnyUseOfValue - Return true if there are any use of the indicated
5365/// value. This method ignores uses of other values defined by this operation.
5366bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5367  assert(Value < getNumValues() && "Bad value!");
5368
5369  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5370    if (UI.getUse().getResNo() == Value)
5371      return true;
5372
5373  return false;
5374}
5375
5376
5377/// isOnlyUserOf - Return true if this node is the only use of N.
5378///
5379bool SDNode::isOnlyUserOf(SDNode *N) const {
5380  bool Seen = false;
5381  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5382    SDNode *User = *I;
5383    if (User == this)
5384      Seen = true;
5385    else
5386      return false;
5387  }
5388
5389  return Seen;
5390}
5391
5392/// isOperand - Return true if this node is an operand of N.
5393///
5394bool SDValue::isOperandOf(SDNode *N) const {
5395  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5396    if (*this == N->getOperand(i))
5397      return true;
5398  return false;
5399}
5400
5401bool SDNode::isOperandOf(SDNode *N) const {
5402  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5403    if (this == N->OperandList[i].getNode())
5404      return true;
5405  return false;
5406}
5407
5408/// reachesChainWithoutSideEffects - Return true if this operand (which must
5409/// be a chain) reaches the specified operand without crossing any
5410/// side-effecting instructions.  In practice, this looks through token
5411/// factors and non-volatile loads.  In order to remain efficient, this only
5412/// looks a couple of nodes in, it does not do an exhaustive search.
5413bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5414                                               unsigned Depth) const {
5415  if (*this == Dest) return true;
5416
5417  // Don't search too deeply, we just want to be able to see through
5418  // TokenFactor's etc.
5419  if (Depth == 0) return false;
5420
5421  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5422  // of the operands of the TF reach dest, then we can do the xform.
5423  if (getOpcode() == ISD::TokenFactor) {
5424    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5425      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5426        return true;
5427    return false;
5428  }
5429
5430  // Loads don't have side effects, look through them.
5431  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5432    if (!Ld->isVolatile())
5433      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5434  }
5435  return false;
5436}
5437
5438/// isPredecessorOf - Return true if this node is a predecessor of N. This node
5439/// is either an operand of N or it can be reached by traversing up the operands.
5440/// NOTE: this is an expensive method. Use it carefully.
5441bool SDNode::isPredecessorOf(SDNode *N) const {
5442  SmallPtrSet<SDNode *, 32> Visited;
5443  SmallVector<SDNode *, 16> Worklist;
5444  Worklist.push_back(N);
5445
5446  do {
5447    N = Worklist.pop_back_val();
5448    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5449      SDNode *Op = N->getOperand(i).getNode();
5450      if (Op == this)
5451        return true;
5452      if (Visited.insert(Op))
5453        Worklist.push_back(Op);
5454    }
5455  } while (!Worklist.empty());
5456
5457  return false;
5458}
5459
5460uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5461  assert(Num < NumOperands && "Invalid child # of SDNode!");
5462  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5463}
5464
5465std::string SDNode::getOperationName(const SelectionDAG *G) const {
5466  switch (getOpcode()) {
5467  default:
5468    if (getOpcode() < ISD::BUILTIN_OP_END)
5469      return "<<Unknown DAG Node>>";
5470    if (isMachineOpcode()) {
5471      if (G)
5472        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
5473          if (getMachineOpcode() < TII->getNumOpcodes())
5474            return TII->get(getMachineOpcode()).getName();
5475      return "<<Unknown Machine Node>>";
5476    }
5477    if (G) {
5478      const TargetLowering &TLI = G->getTargetLoweringInfo();
5479      const char *Name = TLI.getTargetNodeName(getOpcode());
5480      if (Name) return Name;
5481      return "<<Unknown Target Node>>";
5482    }
5483    return "<<Unknown Node>>";
5484
5485#ifndef NDEBUG
5486  case ISD::DELETED_NODE:
5487    return "<<Deleted Node!>>";
5488#endif
5489  case ISD::PREFETCH:      return "Prefetch";
5490  case ISD::MEMBARRIER:    return "MemBarrier";
5491  case ISD::ATOMIC_CMP_SWAP:    return "AtomicCmpSwap";
5492  case ISD::ATOMIC_SWAP:        return "AtomicSwap";
5493  case ISD::ATOMIC_LOAD_ADD:    return "AtomicLoadAdd";
5494  case ISD::ATOMIC_LOAD_SUB:    return "AtomicLoadSub";
5495  case ISD::ATOMIC_LOAD_AND:    return "AtomicLoadAnd";
5496  case ISD::ATOMIC_LOAD_OR:     return "AtomicLoadOr";
5497  case ISD::ATOMIC_LOAD_XOR:    return "AtomicLoadXor";
5498  case ISD::ATOMIC_LOAD_NAND:   return "AtomicLoadNand";
5499  case ISD::ATOMIC_LOAD_MIN:    return "AtomicLoadMin";
5500  case ISD::ATOMIC_LOAD_MAX:    return "AtomicLoadMax";
5501  case ISD::ATOMIC_LOAD_UMIN:   return "AtomicLoadUMin";
5502  case ISD::ATOMIC_LOAD_UMAX:   return "AtomicLoadUMax";
5503  case ISD::PCMARKER:      return "PCMarker";
5504  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
5505  case ISD::SRCVALUE:      return "SrcValue";
5506  case ISD::EntryToken:    return "EntryToken";
5507  case ISD::TokenFactor:   return "TokenFactor";
5508  case ISD::AssertSext:    return "AssertSext";
5509  case ISD::AssertZext:    return "AssertZext";
5510
5511  case ISD::BasicBlock:    return "BasicBlock";
5512  case ISD::VALUETYPE:     return "ValueType";
5513  case ISD::Register:      return "Register";
5514
5515  case ISD::Constant:      return "Constant";
5516  case ISD::ConstantFP:    return "ConstantFP";
5517  case ISD::GlobalAddress: return "GlobalAddress";
5518  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
5519  case ISD::FrameIndex:    return "FrameIndex";
5520  case ISD::JumpTable:     return "JumpTable";
5521  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
5522  case ISD::RETURNADDR: return "RETURNADDR";
5523  case ISD::FRAMEADDR: return "FRAMEADDR";
5524  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
5525  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
5526  case ISD::LSDAADDR: return "LSDAADDR";
5527  case ISD::EHSELECTION: return "EHSELECTION";
5528  case ISD::EH_RETURN: return "EH_RETURN";
5529  case ISD::ConstantPool:  return "ConstantPool";
5530  case ISD::ExternalSymbol: return "ExternalSymbol";
5531  case ISD::BlockAddress:  return "BlockAddress";
5532  case ISD::INTRINSIC_WO_CHAIN:
5533  case ISD::INTRINSIC_VOID:
5534  case ISD::INTRINSIC_W_CHAIN: {
5535    unsigned OpNo = getOpcode() == ISD::INTRINSIC_WO_CHAIN ? 0 : 1;
5536    unsigned IID = cast<ConstantSDNode>(getOperand(OpNo))->getZExtValue();
5537    if (IID < Intrinsic::num_intrinsics)
5538      return Intrinsic::getName((Intrinsic::ID)IID);
5539    else if (const TargetIntrinsicInfo *TII = G->getTarget().getIntrinsicInfo())
5540      return TII->getName(IID);
5541    llvm_unreachable("Invalid intrinsic ID");
5542  }
5543
5544  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
5545  case ISD::TargetConstant: return "TargetConstant";
5546  case ISD::TargetConstantFP:return "TargetConstantFP";
5547  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
5548  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
5549  case ISD::TargetFrameIndex: return "TargetFrameIndex";
5550  case ISD::TargetJumpTable:  return "TargetJumpTable";
5551  case ISD::TargetConstantPool:  return "TargetConstantPool";
5552  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
5553  case ISD::TargetBlockAddress: return "TargetBlockAddress";
5554
5555  case ISD::CopyToReg:     return "CopyToReg";
5556  case ISD::CopyFromReg:   return "CopyFromReg";
5557  case ISD::UNDEF:         return "undef";
5558  case ISD::MERGE_VALUES:  return "merge_values";
5559  case ISD::INLINEASM:     return "inlineasm";
5560  case ISD::EH_LABEL:      return "eh_label";
5561  case ISD::HANDLENODE:    return "handlenode";
5562
5563  // Unary operators
5564  case ISD::FABS:   return "fabs";
5565  case ISD::FNEG:   return "fneg";
5566  case ISD::FSQRT:  return "fsqrt";
5567  case ISD::FSIN:   return "fsin";
5568  case ISD::FCOS:   return "fcos";
5569  case ISD::FPOWI:  return "fpowi";
5570  case ISD::FPOW:   return "fpow";
5571  case ISD::FTRUNC: return "ftrunc";
5572  case ISD::FFLOOR: return "ffloor";
5573  case ISD::FCEIL:  return "fceil";
5574  case ISD::FRINT:  return "frint";
5575  case ISD::FNEARBYINT: return "fnearbyint";
5576
5577  // Binary operators
5578  case ISD::ADD:    return "add";
5579  case ISD::SUB:    return "sub";
5580  case ISD::MUL:    return "mul";
5581  case ISD::MULHU:  return "mulhu";
5582  case ISD::MULHS:  return "mulhs";
5583  case ISD::SDIV:   return "sdiv";
5584  case ISD::UDIV:   return "udiv";
5585  case ISD::SREM:   return "srem";
5586  case ISD::UREM:   return "urem";
5587  case ISD::SMUL_LOHI:  return "smul_lohi";
5588  case ISD::UMUL_LOHI:  return "umul_lohi";
5589  case ISD::SDIVREM:    return "sdivrem";
5590  case ISD::UDIVREM:    return "udivrem";
5591  case ISD::AND:    return "and";
5592  case ISD::OR:     return "or";
5593  case ISD::XOR:    return "xor";
5594  case ISD::SHL:    return "shl";
5595  case ISD::SRA:    return "sra";
5596  case ISD::SRL:    return "srl";
5597  case ISD::ROTL:   return "rotl";
5598  case ISD::ROTR:   return "rotr";
5599  case ISD::FADD:   return "fadd";
5600  case ISD::FSUB:   return "fsub";
5601  case ISD::FMUL:   return "fmul";
5602  case ISD::FDIV:   return "fdiv";
5603  case ISD::FREM:   return "frem";
5604  case ISD::FCOPYSIGN: return "fcopysign";
5605  case ISD::FGETSIGN:  return "fgetsign";
5606
5607  case ISD::SETCC:       return "setcc";
5608  case ISD::VSETCC:      return "vsetcc";
5609  case ISD::SELECT:      return "select";
5610  case ISD::SELECT_CC:   return "select_cc";
5611  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
5612  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
5613  case ISD::CONCAT_VECTORS:      return "concat_vectors";
5614  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
5615  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
5616  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
5617  case ISD::CARRY_FALSE:         return "carry_false";
5618  case ISD::ADDC:        return "addc";
5619  case ISD::ADDE:        return "adde";
5620  case ISD::SADDO:       return "saddo";
5621  case ISD::UADDO:       return "uaddo";
5622  case ISD::SSUBO:       return "ssubo";
5623  case ISD::USUBO:       return "usubo";
5624  case ISD::SMULO:       return "smulo";
5625  case ISD::UMULO:       return "umulo";
5626  case ISD::SUBC:        return "subc";
5627  case ISD::SUBE:        return "sube";
5628  case ISD::SHL_PARTS:   return "shl_parts";
5629  case ISD::SRA_PARTS:   return "sra_parts";
5630  case ISD::SRL_PARTS:   return "srl_parts";
5631
5632  // Conversion operators.
5633  case ISD::SIGN_EXTEND: return "sign_extend";
5634  case ISD::ZERO_EXTEND: return "zero_extend";
5635  case ISD::ANY_EXTEND:  return "any_extend";
5636  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
5637  case ISD::TRUNCATE:    return "truncate";
5638  case ISD::FP_ROUND:    return "fp_round";
5639  case ISD::FLT_ROUNDS_: return "flt_rounds";
5640  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
5641  case ISD::FP_EXTEND:   return "fp_extend";
5642
5643  case ISD::SINT_TO_FP:  return "sint_to_fp";
5644  case ISD::UINT_TO_FP:  return "uint_to_fp";
5645  case ISD::FP_TO_SINT:  return "fp_to_sint";
5646  case ISD::FP_TO_UINT:  return "fp_to_uint";
5647  case ISD::BIT_CONVERT: return "bit_convert";
5648
5649  case ISD::CONVERT_RNDSAT: {
5650    switch (cast<CvtRndSatSDNode>(this)->getCvtCode()) {
5651    default: llvm_unreachable("Unknown cvt code!");
5652    case ISD::CVT_FF:  return "cvt_ff";
5653    case ISD::CVT_FS:  return "cvt_fs";
5654    case ISD::CVT_FU:  return "cvt_fu";
5655    case ISD::CVT_SF:  return "cvt_sf";
5656    case ISD::CVT_UF:  return "cvt_uf";
5657    case ISD::CVT_SS:  return "cvt_ss";
5658    case ISD::CVT_SU:  return "cvt_su";
5659    case ISD::CVT_US:  return "cvt_us";
5660    case ISD::CVT_UU:  return "cvt_uu";
5661    }
5662  }
5663
5664    // Control flow instructions
5665  case ISD::BR:      return "br";
5666  case ISD::BRIND:   return "brind";
5667  case ISD::BR_JT:   return "br_jt";
5668  case ISD::BRCOND:  return "brcond";
5669  case ISD::BR_CC:   return "br_cc";
5670  case ISD::CALLSEQ_START:  return "callseq_start";
5671  case ISD::CALLSEQ_END:    return "callseq_end";
5672
5673    // Other operators
5674  case ISD::LOAD:               return "load";
5675  case ISD::STORE:              return "store";
5676  case ISD::VAARG:              return "vaarg";
5677  case ISD::VACOPY:             return "vacopy";
5678  case ISD::VAEND:              return "vaend";
5679  case ISD::VASTART:            return "vastart";
5680  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
5681  case ISD::EXTRACT_ELEMENT:    return "extract_element";
5682  case ISD::BUILD_PAIR:         return "build_pair";
5683  case ISD::STACKSAVE:          return "stacksave";
5684  case ISD::STACKRESTORE:       return "stackrestore";
5685  case ISD::TRAP:               return "trap";
5686
5687  // Bit manipulation
5688  case ISD::BSWAP:   return "bswap";
5689  case ISD::CTPOP:   return "ctpop";
5690  case ISD::CTTZ:    return "cttz";
5691  case ISD::CTLZ:    return "ctlz";
5692
5693  // Trampolines
5694  case ISD::TRAMPOLINE: return "trampoline";
5695
5696  case ISD::CONDCODE:
5697    switch (cast<CondCodeSDNode>(this)->get()) {
5698    default: llvm_unreachable("Unknown setcc condition!");
5699    case ISD::SETOEQ:  return "setoeq";
5700    case ISD::SETOGT:  return "setogt";
5701    case ISD::SETOGE:  return "setoge";
5702    case ISD::SETOLT:  return "setolt";
5703    case ISD::SETOLE:  return "setole";
5704    case ISD::SETONE:  return "setone";
5705
5706    case ISD::SETO:    return "seto";
5707    case ISD::SETUO:   return "setuo";
5708    case ISD::SETUEQ:  return "setue";
5709    case ISD::SETUGT:  return "setugt";
5710    case ISD::SETUGE:  return "setuge";
5711    case ISD::SETULT:  return "setult";
5712    case ISD::SETULE:  return "setule";
5713    case ISD::SETUNE:  return "setune";
5714
5715    case ISD::SETEQ:   return "seteq";
5716    case ISD::SETGT:   return "setgt";
5717    case ISD::SETGE:   return "setge";
5718    case ISD::SETLT:   return "setlt";
5719    case ISD::SETLE:   return "setle";
5720    case ISD::SETNE:   return "setne";
5721    }
5722  }
5723}
5724
5725const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
5726  switch (AM) {
5727  default:
5728    return "";
5729  case ISD::PRE_INC:
5730    return "<pre-inc>";
5731  case ISD::PRE_DEC:
5732    return "<pre-dec>";
5733  case ISD::POST_INC:
5734    return "<post-inc>";
5735  case ISD::POST_DEC:
5736    return "<post-dec>";
5737  }
5738}
5739
5740std::string ISD::ArgFlagsTy::getArgFlagsString() {
5741  std::string S = "< ";
5742
5743  if (isZExt())
5744    S += "zext ";
5745  if (isSExt())
5746    S += "sext ";
5747  if (isInReg())
5748    S += "inreg ";
5749  if (isSRet())
5750    S += "sret ";
5751  if (isByVal())
5752    S += "byval ";
5753  if (isNest())
5754    S += "nest ";
5755  if (getByValAlign())
5756    S += "byval-align:" + utostr(getByValAlign()) + " ";
5757  if (getOrigAlign())
5758    S += "orig-align:" + utostr(getOrigAlign()) + " ";
5759  if (getByValSize())
5760    S += "byval-size:" + utostr(getByValSize()) + " ";
5761  return S + ">";
5762}
5763
5764void SDNode::dump() const { dump(0); }
5765void SDNode::dump(const SelectionDAG *G) const {
5766  print(dbgs(), G);
5767}
5768
5769void SDNode::print_types(raw_ostream &OS, const SelectionDAG *G) const {
5770  OS << (void*)this << ": ";
5771
5772  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
5773    if (i) OS << ",";
5774    if (getValueType(i) == MVT::Other)
5775      OS << "ch";
5776    else
5777      OS << getValueType(i).getEVTString();
5778  }
5779  OS << " = " << getOperationName(G);
5780}
5781
5782void SDNode::print_details(raw_ostream &OS, const SelectionDAG *G) const {
5783  if (const MachineSDNode *MN = dyn_cast<MachineSDNode>(this)) {
5784    if (!MN->memoperands_empty()) {
5785      OS << "<";
5786      OS << "Mem:";
5787      for (MachineSDNode::mmo_iterator i = MN->memoperands_begin(),
5788           e = MN->memoperands_end(); i != e; ++i) {
5789        OS << **i;
5790        if (next(i) != e)
5791          OS << " ";
5792      }
5793      OS << ">";
5794    }
5795  } else if (const ShuffleVectorSDNode *SVN =
5796               dyn_cast<ShuffleVectorSDNode>(this)) {
5797    OS << "<";
5798    for (unsigned i = 0, e = ValueList[0].getVectorNumElements(); i != e; ++i) {
5799      int Idx = SVN->getMaskElt(i);
5800      if (i) OS << ",";
5801      if (Idx < 0)
5802        OS << "u";
5803      else
5804        OS << Idx;
5805    }
5806    OS << ">";
5807  } else if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
5808    OS << '<' << CSDN->getAPIntValue() << '>';
5809  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
5810    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
5811      OS << '<' << CSDN->getValueAPF().convertToFloat() << '>';
5812    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
5813      OS << '<' << CSDN->getValueAPF().convertToDouble() << '>';
5814    else {
5815      OS << "<APFloat(";
5816      CSDN->getValueAPF().bitcastToAPInt().dump();
5817      OS << ")>";
5818    }
5819  } else if (const GlobalAddressSDNode *GADN =
5820             dyn_cast<GlobalAddressSDNode>(this)) {
5821    int64_t offset = GADN->getOffset();
5822    OS << '<';
5823    WriteAsOperand(OS, GADN->getGlobal());
5824    OS << '>';
5825    if (offset > 0)
5826      OS << " + " << offset;
5827    else
5828      OS << " " << offset;
5829    if (unsigned int TF = GADN->getTargetFlags())
5830      OS << " [TF=" << TF << ']';
5831  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
5832    OS << "<" << FIDN->getIndex() << ">";
5833  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
5834    OS << "<" << JTDN->getIndex() << ">";
5835    if (unsigned int TF = JTDN->getTargetFlags())
5836      OS << " [TF=" << TF << ']';
5837  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
5838    int offset = CP->getOffset();
5839    if (CP->isMachineConstantPoolEntry())
5840      OS << "<" << *CP->getMachineCPVal() << ">";
5841    else
5842      OS << "<" << *CP->getConstVal() << ">";
5843    if (offset > 0)
5844      OS << " + " << offset;
5845    else
5846      OS << " " << offset;
5847    if (unsigned int TF = CP->getTargetFlags())
5848      OS << " [TF=" << TF << ']';
5849  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
5850    OS << "<";
5851    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
5852    if (LBB)
5853      OS << LBB->getName() << " ";
5854    OS << (const void*)BBDN->getBasicBlock() << ">";
5855  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
5856    if (G && R->getReg() &&
5857        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
5858      OS << " %" << G->getTarget().getRegisterInfo()->getName(R->getReg());
5859    } else {
5860      OS << " %reg" << R->getReg();
5861    }
5862  } else if (const ExternalSymbolSDNode *ES =
5863             dyn_cast<ExternalSymbolSDNode>(this)) {
5864    OS << "'" << ES->getSymbol() << "'";
5865    if (unsigned int TF = ES->getTargetFlags())
5866      OS << " [TF=" << TF << ']';
5867  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
5868    if (M->getValue())
5869      OS << "<" << M->getValue() << ">";
5870    else
5871      OS << "<null>";
5872  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
5873    OS << ":" << N->getVT().getEVTString();
5874  }
5875  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
5876    OS << "<" << *LD->getMemOperand();
5877
5878    bool doExt = true;
5879    switch (LD->getExtensionType()) {
5880    default: doExt = false; break;
5881    case ISD::EXTLOAD: OS << ", anyext"; break;
5882    case ISD::SEXTLOAD: OS << ", sext"; break;
5883    case ISD::ZEXTLOAD: OS << ", zext"; break;
5884    }
5885    if (doExt)
5886      OS << " from " << LD->getMemoryVT().getEVTString();
5887
5888    const char *AM = getIndexedModeName(LD->getAddressingMode());
5889    if (*AM)
5890      OS << ", " << AM;
5891
5892    OS << ">";
5893  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
5894    OS << "<" << *ST->getMemOperand();
5895
5896    if (ST->isTruncatingStore())
5897      OS << ", trunc to " << ST->getMemoryVT().getEVTString();
5898
5899    const char *AM = getIndexedModeName(ST->getAddressingMode());
5900    if (*AM)
5901      OS << ", " << AM;
5902
5903    OS << ">";
5904  } else if (const MemSDNode* M = dyn_cast<MemSDNode>(this)) {
5905    OS << "<" << *M->getMemOperand() << ">";
5906  } else if (const BlockAddressSDNode *BA =
5907               dyn_cast<BlockAddressSDNode>(this)) {
5908    OS << "<";
5909    WriteAsOperand(OS, BA->getBlockAddress()->getFunction(), false);
5910    OS << ", ";
5911    WriteAsOperand(OS, BA->getBlockAddress()->getBasicBlock(), false);
5912    OS << ">";
5913    if (unsigned int TF = BA->getTargetFlags())
5914      OS << " [TF=" << TF << ']';
5915  }
5916
5917  if (G)
5918    if (unsigned Order = G->GetOrdering(this))
5919      OS << " [ORD=" << Order << ']';
5920}
5921
5922void SDNode::print(raw_ostream &OS, const SelectionDAG *G) const {
5923  print_types(OS, G);
5924  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
5925    if (i) OS << ", "; else OS << " ";
5926    OS << (void*)getOperand(i).getNode();
5927    if (unsigned RN = getOperand(i).getResNo())
5928      OS << ":" << RN;
5929  }
5930  print_details(OS, G);
5931}
5932
5933static void printrWithDepthHelper(raw_ostream &OS, const SDNode *N,
5934                                  const SelectionDAG *G, unsigned depth,
5935                                  unsigned indent)
5936{
5937  if (depth == 0)
5938    return;
5939
5940  OS.indent(indent);
5941
5942  N->print(OS, G);
5943
5944  if (depth < 1)
5945    return;
5946
5947  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
5948    OS << '\n';
5949    printrWithDepthHelper(OS, N->getOperand(i).getNode(), G, depth-1, indent+2);
5950  }
5951}
5952
5953void SDNode::printrWithDepth(raw_ostream &OS, const SelectionDAG *G,
5954                            unsigned depth) const {
5955  printrWithDepthHelper(OS, this, G, depth, 0);
5956}
5957
5958void SDNode::printrFull(raw_ostream &OS, const SelectionDAG *G) const {
5959  // Don't print impossibly deep things.
5960  printrWithDepth(OS, G, 100);
5961}
5962
5963void SDNode::dumprWithDepth(const SelectionDAG *G, unsigned depth) const {
5964  printrWithDepth(dbgs(), G, depth);
5965}
5966
5967void SDNode::dumprFull(const SelectionDAG *G) const {
5968  // Don't print impossibly deep things.
5969  dumprWithDepth(G, 100);
5970}
5971
5972static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
5973  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5974    if (N->getOperand(i).getNode()->hasOneUse())
5975      DumpNodes(N->getOperand(i).getNode(), indent+2, G);
5976    else
5977      dbgs() << "\n" << std::string(indent+2, ' ')
5978           << (void*)N->getOperand(i).getNode() << ": <multiple use>";
5979
5980
5981  dbgs() << "\n";
5982  dbgs().indent(indent);
5983  N->dump(G);
5984}
5985
5986SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5987  assert(N->getNumValues() == 1 &&
5988         "Can't unroll a vector with multiple results!");
5989
5990  EVT VT = N->getValueType(0);
5991  unsigned NE = VT.getVectorNumElements();
5992  EVT EltVT = VT.getVectorElementType();
5993  DebugLoc dl = N->getDebugLoc();
5994
5995  SmallVector<SDValue, 8> Scalars;
5996  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5997
5998  // If ResNE is 0, fully unroll the vector op.
5999  if (ResNE == 0)
6000    ResNE = NE;
6001  else if (NE > ResNE)
6002    NE = ResNE;
6003
6004  unsigned i;
6005  for (i= 0; i != NE; ++i) {
6006    for (unsigned j = 0; j != N->getNumOperands(); ++j) {
6007      SDValue Operand = N->getOperand(j);
6008      EVT OperandVT = Operand.getValueType();
6009      if (OperandVT.isVector()) {
6010        // A vector operand; extract a single element.
6011        EVT OperandEltVT = OperandVT.getVectorElementType();
6012        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6013                              OperandEltVT,
6014                              Operand,
6015                              getConstant(i, MVT::i32));
6016      } else {
6017        // A scalar operand; just use it as is.
6018        Operands[j] = Operand;
6019      }
6020    }
6021
6022    switch (N->getOpcode()) {
6023    default:
6024      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6025                                &Operands[0], Operands.size()));
6026      break;
6027    case ISD::SHL:
6028    case ISD::SRA:
6029    case ISD::SRL:
6030    case ISD::ROTL:
6031    case ISD::ROTR:
6032      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6033                                getShiftAmountOperand(Operands[1])));
6034      break;
6035    case ISD::SIGN_EXTEND_INREG:
6036    case ISD::FP_ROUND_INREG: {
6037      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6038      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6039                                Operands[0],
6040                                getValueType(ExtVT)));
6041    }
6042    }
6043  }
6044
6045  for (; i < ResNE; ++i)
6046    Scalars.push_back(getUNDEF(EltVT));
6047
6048  return getNode(ISD::BUILD_VECTOR, dl,
6049                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6050                 &Scalars[0], Scalars.size());
6051}
6052
6053
6054/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6055/// location that is 'Dist' units away from the location that the 'Base' load
6056/// is loading from.
6057bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6058                                     unsigned Bytes, int Dist) const {
6059  if (LD->getChain() != Base->getChain())
6060    return false;
6061  EVT VT = LD->getValueType(0);
6062  if (VT.getSizeInBits() / 8 != Bytes)
6063    return false;
6064
6065  SDValue Loc = LD->getOperand(1);
6066  SDValue BaseLoc = Base->getOperand(1);
6067  if (Loc.getOpcode() == ISD::FrameIndex) {
6068    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6069      return false;
6070    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6071    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6072    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6073    int FS  = MFI->getObjectSize(FI);
6074    int BFS = MFI->getObjectSize(BFI);
6075    if (FS != BFS || FS != (int)Bytes) return false;
6076    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6077  }
6078  if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
6079    ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
6080    if (V && (V->getSExtValue() == Dist*Bytes))
6081      return true;
6082  }
6083
6084  GlobalValue *GV1 = NULL;
6085  GlobalValue *GV2 = NULL;
6086  int64_t Offset1 = 0;
6087  int64_t Offset2 = 0;
6088  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6089  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6090  if (isGA1 && isGA2 && GV1 == GV2)
6091    return Offset1 == (Offset2 + Dist*Bytes);
6092  return false;
6093}
6094
6095
6096/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6097/// it cannot be inferred.
6098unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6099  // If this is a GlobalAddress + cst, return the alignment.
6100  GlobalValue *GV;
6101  int64_t GVOffset = 0;
6102  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset))
6103    return MinAlign(GV->getAlignment(), GVOffset);
6104
6105  // If this is a direct reference to a stack slot, use information about the
6106  // stack slot's alignment.
6107  int FrameIdx = 1 << 31;
6108  int64_t FrameOffset = 0;
6109  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6110    FrameIdx = FI->getIndex();
6111  } else if (Ptr.getOpcode() == ISD::ADD &&
6112             isa<ConstantSDNode>(Ptr.getOperand(1)) &&
6113             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6114    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6115    FrameOffset = Ptr.getConstantOperandVal(1);
6116  }
6117
6118  if (FrameIdx != (1 << 31)) {
6119    // FIXME: Handle FI+CST.
6120    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6121    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6122                                    FrameOffset);
6123    if (MFI.isFixedObjectIndex(FrameIdx)) {
6124      int64_t ObjectOffset = MFI.getObjectOffset(FrameIdx) + FrameOffset;
6125
6126      // The alignment of the frame index can be determined from its offset from
6127      // the incoming frame position.  If the frame object is at offset 32 and
6128      // the stack is guaranteed to be 16-byte aligned, then we know that the
6129      // object is 16-byte aligned.
6130      unsigned StackAlign = getTarget().getFrameInfo()->getStackAlignment();
6131      unsigned Align = MinAlign(ObjectOffset, StackAlign);
6132
6133      // Finally, the frame object itself may have a known alignment.  Factor
6134      // the alignment + offset into a new alignment.  For example, if we know
6135      // the FI is 8 byte aligned, but the pointer is 4 off, we really have a
6136      // 4-byte alignment of the resultant pointer.  Likewise align 4 + 4-byte
6137      // offset = 4-byte alignment, align 4 + 1-byte offset = align 1, etc.
6138      return std::max(Align, FIInfoAlign);
6139    }
6140    return FIInfoAlign;
6141  }
6142
6143  return 0;
6144}
6145
6146void SelectionDAG::dump() const {
6147  dbgs() << "SelectionDAG has " << AllNodes.size() << " nodes:";
6148
6149  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
6150       I != E; ++I) {
6151    const SDNode *N = I;
6152    if (!N->hasOneUse() && N != getRoot().getNode())
6153      DumpNodes(N, 2, this);
6154  }
6155
6156  if (getRoot().getNode()) DumpNodes(getRoot().getNode(), 2, this);
6157
6158  dbgs() << "\n\n";
6159}
6160
6161void SDNode::printr(raw_ostream &OS, const SelectionDAG *G) const {
6162  print_types(OS, G);
6163  print_details(OS, G);
6164}
6165
6166typedef SmallPtrSet<const SDNode *, 128> VisitedSDNodeSet;
6167static void DumpNodesr(raw_ostream &OS, const SDNode *N, unsigned indent,
6168                       const SelectionDAG *G, VisitedSDNodeSet &once) {
6169  if (!once.insert(N))          // If we've been here before, return now.
6170    return;
6171
6172  // Dump the current SDNode, but don't end the line yet.
6173  OS << std::string(indent, ' ');
6174  N->printr(OS, G);
6175
6176  // Having printed this SDNode, walk the children:
6177  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6178    const SDNode *child = N->getOperand(i).getNode();
6179
6180    if (i) OS << ",";
6181    OS << " ";
6182
6183    if (child->getNumOperands() == 0) {
6184      // This child has no grandchildren; print it inline right here.
6185      child->printr(OS, G);
6186      once.insert(child);
6187    } else {         // Just the address. FIXME: also print the child's opcode.
6188      OS << (void*)child;
6189      if (unsigned RN = N->getOperand(i).getResNo())
6190        OS << ":" << RN;
6191    }
6192  }
6193
6194  OS << "\n";
6195
6196  // Dump children that have grandchildren on their own line(s).
6197  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6198    const SDNode *child = N->getOperand(i).getNode();
6199    DumpNodesr(OS, child, indent+2, G, once);
6200  }
6201}
6202
6203void SDNode::dumpr() const {
6204  VisitedSDNodeSet once;
6205  DumpNodesr(dbgs(), this, 0, 0, once);
6206}
6207
6208void SDNode::dumpr(const SelectionDAG *G) const {
6209  VisitedSDNodeSet once;
6210  DumpNodesr(dbgs(), this, 0, G, once);
6211}
6212
6213
6214// getAddressSpace - Return the address space this GlobalAddress belongs to.
6215unsigned GlobalAddressSDNode::getAddressSpace() const {
6216  return getGlobal()->getType()->getAddressSpace();
6217}
6218
6219
6220const Type *ConstantPoolSDNode::getType() const {
6221  if (isMachineConstantPoolEntry())
6222    return Val.MachineCPVal->getType();
6223  return Val.ConstVal->getType();
6224}
6225
6226bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6227                                        APInt &SplatUndef,
6228                                        unsigned &SplatBitSize,
6229                                        bool &HasAnyUndefs,
6230                                        unsigned MinSplatBits,
6231                                        bool isBigEndian) {
6232  EVT VT = getValueType(0);
6233  assert(VT.isVector() && "Expected a vector type");
6234  unsigned sz = VT.getSizeInBits();
6235  if (MinSplatBits > sz)
6236    return false;
6237
6238  SplatValue = APInt(sz, 0);
6239  SplatUndef = APInt(sz, 0);
6240
6241  // Get the bits.  Bits with undefined values (when the corresponding element
6242  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6243  // in SplatValue.  If any of the values are not constant, give up and return
6244  // false.
6245  unsigned int nOps = getNumOperands();
6246  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6247  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6248
6249  for (unsigned j = 0; j < nOps; ++j) {
6250    unsigned i = isBigEndian ? nOps-1-j : j;
6251    SDValue OpVal = getOperand(i);
6252    unsigned BitPos = j * EltBitSize;
6253
6254    if (OpVal.getOpcode() == ISD::UNDEF)
6255      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6256    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6257      SplatValue |= (APInt(CN->getAPIntValue()).zextOrTrunc(EltBitSize).
6258                     zextOrTrunc(sz) << BitPos);
6259    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6260      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6261     else
6262      return false;
6263  }
6264
6265  // The build_vector is all constants or undefs.  Find the smallest element
6266  // size that splats the vector.
6267
6268  HasAnyUndefs = (SplatUndef != 0);
6269  while (sz > 8) {
6270
6271    unsigned HalfSize = sz / 2;
6272    APInt HighValue = APInt(SplatValue).lshr(HalfSize).trunc(HalfSize);
6273    APInt LowValue = APInt(SplatValue).trunc(HalfSize);
6274    APInt HighUndef = APInt(SplatUndef).lshr(HalfSize).trunc(HalfSize);
6275    APInt LowUndef = APInt(SplatUndef).trunc(HalfSize);
6276
6277    // If the two halves do not match (ignoring undef bits), stop here.
6278    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6279        MinSplatBits > HalfSize)
6280      break;
6281
6282    SplatValue = HighValue | LowValue;
6283    SplatUndef = HighUndef & LowUndef;
6284
6285    sz = HalfSize;
6286  }
6287
6288  SplatBitSize = sz;
6289  return true;
6290}
6291
6292bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6293  // Find the first non-undef value in the shuffle mask.
6294  unsigned i, e;
6295  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6296    /* search */;
6297
6298  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6299
6300  // Make sure all remaining elements are either undef or the same as the first
6301  // non-undef value.
6302  for (int Idx = Mask[i]; i != e; ++i)
6303    if (Mask[i] >= 0 && Mask[i] != Idx)
6304      return false;
6305  return true;
6306}
6307
6308static void checkForCyclesHelper(const SDNode *N,
6309                                 std::set<const SDNode *> &visited) {
6310  if (visited.find(N) != visited.end()) {
6311    dbgs() << "Offending node:\n";
6312    N->dumprFull();
6313    assert(0 && "Detected cycle in SelectionDAG");
6314  }
6315
6316  std::set<const SDNode*>::iterator i;
6317  bool inserted;
6318
6319  tie(i, inserted) = visited.insert(N);
6320  assert(inserted && "Missed cycle");
6321
6322  for(unsigned i = 0; i < N->getNumOperands(); ++i) {
6323    checkForCyclesHelper(N->getOperand(i).getNode(), visited);
6324  }
6325  visited.erase(i);
6326}
6327
6328void llvm::checkForCycles(const llvm::SDNode *N) {
6329#ifdef XDEBUG
6330  assert(N && "Checking nonexistant SDNode");
6331  std::set<const SDNode *> visited;
6332  checkForCyclesHelper(N, visited);
6333#endif
6334}
6335
6336void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6337  checkForCycles(DAG->getRoot().getNode());
6338}
6339