SelectionDAG.cpp revision f9516208e57364ab1e7d8748af1f59a2ea5fb572
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/Analysis/ValueTracking.h"
16#include "llvm/GlobalAlias.h"
17#include "llvm/GlobalVariable.h"
18#include "llvm/Intrinsics.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Assembly/Writer.h"
21#include "llvm/CallingConv.h"
22#include "llvm/CodeGen/MachineBasicBlock.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineModuleInfo.h"
26#include "llvm/CodeGen/PseudoSourceValue.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Target/TargetRegisterInfo.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Target/TargetLowering.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/ADT/SetVector.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallSet.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/StringExtras.h"
38#include <algorithm>
39#include <cmath>
40using namespace llvm;
41
42/// makeVTList - Return an instance of the SDVTList struct initialized with the
43/// specified members.
44static SDVTList makeVTList(const MVT *VTs, unsigned NumVTs) {
45  SDVTList Res = {VTs, NumVTs};
46  return Res;
47}
48
49static const fltSemantics *MVTToAPFloatSemantics(MVT VT) {
50  switch (VT.getSimpleVT()) {
51  default: assert(0 && "Unknown FP format");
52  case MVT::f32:     return &APFloat::IEEEsingle;
53  case MVT::f64:     return &APFloat::IEEEdouble;
54  case MVT::f80:     return &APFloat::x87DoubleExtended;
55  case MVT::f128:    return &APFloat::IEEEquad;
56  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
57  }
58}
59
60SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
61
62//===----------------------------------------------------------------------===//
63//                              ConstantFPSDNode Class
64//===----------------------------------------------------------------------===//
65
66/// isExactlyValue - We don't rely on operator== working on double values, as
67/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
68/// As such, this method can be used to do an exact bit-for-bit comparison of
69/// two floating point values.
70bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
71  return Value.bitwiseIsEqual(V);
72}
73
74bool ConstantFPSDNode::isValueValidForType(MVT VT,
75                                           const APFloat& Val) {
76  assert(VT.isFloatingPoint() && "Can only convert between FP types");
77
78  // PPC long double cannot be converted to any other type.
79  if (VT == MVT::ppcf128 ||
80      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
81    return false;
82
83  // convert modifies in place, so make a copy.
84  APFloat Val2 = APFloat(Val);
85  return Val2.convert(*MVTToAPFloatSemantics(VT),
86                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
87}
88
89//===----------------------------------------------------------------------===//
90//                              ISD Namespace
91//===----------------------------------------------------------------------===//
92
93/// isBuildVectorAllOnes - Return true if the specified node is a
94/// BUILD_VECTOR where all of the elements are ~0 or undef.
95bool ISD::isBuildVectorAllOnes(const SDNode *N) {
96  // Look through a bit convert.
97  if (N->getOpcode() == ISD::BIT_CONVERT)
98    N = N->getOperand(0).Val;
99
100  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
101
102  unsigned i = 0, e = N->getNumOperands();
103
104  // Skip over all of the undef values.
105  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
106    ++i;
107
108  // Do not accept an all-undef vector.
109  if (i == e) return false;
110
111  // Do not accept build_vectors that aren't all constants or which have non-~0
112  // elements.
113  SDOperand NotZero = N->getOperand(i);
114  if (isa<ConstantSDNode>(NotZero)) {
115    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
116      return false;
117  } else if (isa<ConstantFPSDNode>(NotZero)) {
118    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
119                convertToAPInt().isAllOnesValue())
120      return false;
121  } else
122    return false;
123
124  // Okay, we have at least one ~0 value, check to see if the rest match or are
125  // undefs.
126  for (++i; i != e; ++i)
127    if (N->getOperand(i) != NotZero &&
128        N->getOperand(i).getOpcode() != ISD::UNDEF)
129      return false;
130  return true;
131}
132
133
134/// isBuildVectorAllZeros - Return true if the specified node is a
135/// BUILD_VECTOR where all of the elements are 0 or undef.
136bool ISD::isBuildVectorAllZeros(const SDNode *N) {
137  // Look through a bit convert.
138  if (N->getOpcode() == ISD::BIT_CONVERT)
139    N = N->getOperand(0).Val;
140
141  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
142
143  unsigned i = 0, e = N->getNumOperands();
144
145  // Skip over all of the undef values.
146  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
147    ++i;
148
149  // Do not accept an all-undef vector.
150  if (i == e) return false;
151
152  // Do not accept build_vectors that aren't all constants or which have non-~0
153  // elements.
154  SDOperand Zero = N->getOperand(i);
155  if (isa<ConstantSDNode>(Zero)) {
156    if (!cast<ConstantSDNode>(Zero)->isNullValue())
157      return false;
158  } else if (isa<ConstantFPSDNode>(Zero)) {
159    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
160      return false;
161  } else
162    return false;
163
164  // Okay, we have at least one ~0 value, check to see if the rest match or are
165  // undefs.
166  for (++i; i != e; ++i)
167    if (N->getOperand(i) != Zero &&
168        N->getOperand(i).getOpcode() != ISD::UNDEF)
169      return false;
170  return true;
171}
172
173/// isScalarToVector - Return true if the specified node is a
174/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
175/// element is not an undef.
176bool ISD::isScalarToVector(const SDNode *N) {
177  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
178    return true;
179
180  if (N->getOpcode() != ISD::BUILD_VECTOR)
181    return false;
182  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
183    return false;
184  unsigned NumElems = N->getNumOperands();
185  for (unsigned i = 1; i < NumElems; ++i) {
186    SDOperand V = N->getOperand(i);
187    if (V.getOpcode() != ISD::UNDEF)
188      return false;
189  }
190  return true;
191}
192
193
194/// isDebugLabel - Return true if the specified node represents a debug
195/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
196/// is 0).
197bool ISD::isDebugLabel(const SDNode *N) {
198  SDOperand Zero;
199  if (N->getOpcode() == ISD::LABEL)
200    Zero = N->getOperand(2);
201  else if (N->isTargetOpcode() &&
202           N->getTargetOpcode() == TargetInstrInfo::LABEL)
203    // Chain moved to last operand.
204    Zero = N->getOperand(1);
205  else
206    return false;
207  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
208}
209
210/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
211/// when given the operation for (X op Y).
212ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
213  // To perform this operation, we just need to swap the L and G bits of the
214  // operation.
215  unsigned OldL = (Operation >> 2) & 1;
216  unsigned OldG = (Operation >> 1) & 1;
217  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
218                       (OldL << 1) |       // New G bit
219                       (OldG << 2));        // New L bit.
220}
221
222/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
223/// 'op' is a valid SetCC operation.
224ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
225  unsigned Operation = Op;
226  if (isInteger)
227    Operation ^= 7;   // Flip L, G, E bits, but not U.
228  else
229    Operation ^= 15;  // Flip all of the condition bits.
230  if (Operation > ISD::SETTRUE2)
231    Operation &= ~8;     // Don't let N and U bits get set.
232  return ISD::CondCode(Operation);
233}
234
235
236/// isSignedOp - For an integer comparison, return 1 if the comparison is a
237/// signed operation and 2 if the result is an unsigned comparison.  Return zero
238/// if the operation does not depend on the sign of the input (setne and seteq).
239static int isSignedOp(ISD::CondCode Opcode) {
240  switch (Opcode) {
241  default: assert(0 && "Illegal integer setcc operation!");
242  case ISD::SETEQ:
243  case ISD::SETNE: return 0;
244  case ISD::SETLT:
245  case ISD::SETLE:
246  case ISD::SETGT:
247  case ISD::SETGE: return 1;
248  case ISD::SETULT:
249  case ISD::SETULE:
250  case ISD::SETUGT:
251  case ISD::SETUGE: return 2;
252  }
253}
254
255/// getSetCCOrOperation - Return the result of a logical OR between different
256/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
257/// returns SETCC_INVALID if it is not possible to represent the resultant
258/// comparison.
259ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
260                                       bool isInteger) {
261  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
262    // Cannot fold a signed integer setcc with an unsigned integer setcc.
263    return ISD::SETCC_INVALID;
264
265  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
266
267  // If the N and U bits get set then the resultant comparison DOES suddenly
268  // care about orderedness, and is true when ordered.
269  if (Op > ISD::SETTRUE2)
270    Op &= ~16;     // Clear the U bit if the N bit is set.
271
272  // Canonicalize illegal integer setcc's.
273  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
274    Op = ISD::SETNE;
275
276  return ISD::CondCode(Op);
277}
278
279/// getSetCCAndOperation - Return the result of a logical AND between different
280/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
281/// function returns zero if it is not possible to represent the resultant
282/// comparison.
283ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
284                                        bool isInteger) {
285  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
286    // Cannot fold a signed setcc with an unsigned setcc.
287    return ISD::SETCC_INVALID;
288
289  // Combine all of the condition bits.
290  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
291
292  // Canonicalize illegal integer setcc's.
293  if (isInteger) {
294    switch (Result) {
295    default: break;
296    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
297    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
298    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
299    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
300    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
301    }
302  }
303
304  return Result;
305}
306
307const TargetMachine &SelectionDAG::getTarget() const {
308  return TLI.getTargetMachine();
309}
310
311//===----------------------------------------------------------------------===//
312//                           SDNode Profile Support
313//===----------------------------------------------------------------------===//
314
315/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
316///
317static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
318  ID.AddInteger(OpC);
319}
320
321/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
322/// solely with their pointer.
323static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
324  ID.AddPointer(VTList.VTs);
325}
326
327/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
328///
329static void AddNodeIDOperands(FoldingSetNodeID &ID,
330                              SDOperandPtr Ops, unsigned NumOps) {
331  for (; NumOps; --NumOps, ++Ops) {
332    ID.AddPointer(Ops->Val);
333    ID.AddInteger(Ops->ResNo);
334  }
335}
336
337static void AddNodeIDNode(FoldingSetNodeID &ID,
338                          unsigned short OpC, SDVTList VTList,
339                          SDOperandPtr OpList, unsigned N) {
340  AddNodeIDOpcode(ID, OpC);
341  AddNodeIDValueTypes(ID, VTList);
342  AddNodeIDOperands(ID, OpList, N);
343}
344
345
346/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
347/// data.
348static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
349  AddNodeIDOpcode(ID, N->getOpcode());
350  // Add the return value info.
351  AddNodeIDValueTypes(ID, N->getVTList());
352  // Add the operand info.
353  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
354
355  // Handle SDNode leafs with special info.
356  switch (N->getOpcode()) {
357  default: break;  // Normal nodes don't need extra info.
358  case ISD::ARG_FLAGS:
359    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
360    break;
361  case ISD::TargetConstant:
362  case ISD::Constant:
363    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
364    break;
365  case ISD::TargetConstantFP:
366  case ISD::ConstantFP: {
367    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
368    break;
369  }
370  case ISD::TargetGlobalAddress:
371  case ISD::GlobalAddress:
372  case ISD::TargetGlobalTLSAddress:
373  case ISD::GlobalTLSAddress: {
374    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
375    ID.AddPointer(GA->getGlobal());
376    ID.AddInteger(GA->getOffset());
377    break;
378  }
379  case ISD::BasicBlock:
380    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
381    break;
382  case ISD::Register:
383    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
384    break;
385  case ISD::SRCVALUE:
386    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
387    break;
388  case ISD::MEMOPERAND: {
389    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
390    ID.AddPointer(MO.getValue());
391    ID.AddInteger(MO.getFlags());
392    ID.AddInteger(MO.getOffset());
393    ID.AddInteger(MO.getSize());
394    ID.AddInteger(MO.getAlignment());
395    break;
396  }
397  case ISD::FrameIndex:
398  case ISD::TargetFrameIndex:
399    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
400    break;
401  case ISD::JumpTable:
402  case ISD::TargetJumpTable:
403    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
404    break;
405  case ISD::ConstantPool:
406  case ISD::TargetConstantPool: {
407    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
408    ID.AddInteger(CP->getAlignment());
409    ID.AddInteger(CP->getOffset());
410    if (CP->isMachineConstantPoolEntry())
411      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
412    else
413      ID.AddPointer(CP->getConstVal());
414    break;
415  }
416  case ISD::LOAD: {
417    LoadSDNode *LD = cast<LoadSDNode>(N);
418    ID.AddInteger(LD->getAddressingMode());
419    ID.AddInteger(LD->getExtensionType());
420    ID.AddInteger(LD->getMemoryVT().getRawBits());
421    ID.AddInteger(LD->getAlignment());
422    ID.AddInteger(LD->isVolatile());
423    break;
424  }
425  case ISD::STORE: {
426    StoreSDNode *ST = cast<StoreSDNode>(N);
427    ID.AddInteger(ST->getAddressingMode());
428    ID.AddInteger(ST->isTruncatingStore());
429    ID.AddInteger(ST->getMemoryVT().getRawBits());
430    ID.AddInteger(ST->getAlignment());
431    ID.AddInteger(ST->isVolatile());
432    break;
433  }
434  case ISD::ATOMIC_CMP_SWAP:
435  case ISD::ATOMIC_LOAD_ADD:
436  case ISD::ATOMIC_SWAP:
437  case ISD::ATOMIC_LOAD_SUB:
438  case ISD::ATOMIC_LOAD_AND:
439  case ISD::ATOMIC_LOAD_OR:
440  case ISD::ATOMIC_LOAD_XOR:
441  case ISD::ATOMIC_LOAD_NAND:
442  case ISD::ATOMIC_LOAD_MIN:
443  case ISD::ATOMIC_LOAD_MAX:
444  case ISD::ATOMIC_LOAD_UMIN:
445  case ISD::ATOMIC_LOAD_UMAX: {
446    AtomicSDNode *AT = cast<AtomicSDNode>(N);
447    ID.AddInteger(AT->getAlignment());
448    ID.AddInteger(AT->isVolatile());
449    break;
450  }
451  } // end switch (N->getOpcode())
452}
453
454//===----------------------------------------------------------------------===//
455//                              SelectionDAG Class
456//===----------------------------------------------------------------------===//
457
458/// RemoveDeadNodes - This method deletes all unreachable nodes in the
459/// SelectionDAG.
460void SelectionDAG::RemoveDeadNodes() {
461  // Create a dummy node (which is not added to allnodes), that adds a reference
462  // to the root node, preventing it from being deleted.
463  HandleSDNode Dummy(getRoot());
464
465  SmallVector<SDNode*, 128> DeadNodes;
466
467  // Add all obviously-dead nodes to the DeadNodes worklist.
468  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
469    if (I->use_empty())
470      DeadNodes.push_back(I);
471
472  // Process the worklist, deleting the nodes and adding their uses to the
473  // worklist.
474  while (!DeadNodes.empty()) {
475    SDNode *N = DeadNodes.back();
476    DeadNodes.pop_back();
477
478    // Take the node out of the appropriate CSE map.
479    RemoveNodeFromCSEMaps(N);
480
481    // Next, brutally remove the operand list.  This is safe to do, as there are
482    // no cycles in the graph.
483    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
484      SDNode *Operand = I->getVal();
485      Operand->removeUser(std::distance(N->op_begin(), I), N);
486
487      // Now that we removed this operand, see if there are no uses of it left.
488      if (Operand->use_empty())
489        DeadNodes.push_back(Operand);
490    }
491    if (N->OperandsNeedDelete) {
492      delete[] N->OperandList;
493    }
494    N->OperandList = 0;
495    N->NumOperands = 0;
496
497    // Finally, remove N itself.
498    AllNodes.erase(N);
499  }
500
501  // If the root changed (e.g. it was a dead load, update the root).
502  setRoot(Dummy.getValue());
503}
504
505void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
506  SmallVector<SDNode*, 16> DeadNodes;
507  DeadNodes.push_back(N);
508
509  // Process the worklist, deleting the nodes and adding their uses to the
510  // worklist.
511  while (!DeadNodes.empty()) {
512    SDNode *N = DeadNodes.back();
513    DeadNodes.pop_back();
514
515    if (UpdateListener)
516      UpdateListener->NodeDeleted(N, 0);
517
518    // Take the node out of the appropriate CSE map.
519    RemoveNodeFromCSEMaps(N);
520
521    // Next, brutally remove the operand list.  This is safe to do, as there are
522    // no cycles in the graph.
523    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
524      SDNode *Operand = I->getVal();
525      Operand->removeUser(std::distance(N->op_begin(), I), N);
526
527      // Now that we removed this operand, see if there are no uses of it left.
528      if (Operand->use_empty())
529        DeadNodes.push_back(Operand);
530    }
531    if (N->OperandsNeedDelete) {
532      delete[] N->OperandList;
533    }
534    N->OperandList = 0;
535    N->NumOperands = 0;
536
537    // Finally, remove N itself.
538    AllNodes.erase(N);
539  }
540}
541
542void SelectionDAG::DeleteNode(SDNode *N) {
543  assert(N->use_empty() && "Cannot delete a node that is not dead!");
544
545  // First take this out of the appropriate CSE map.
546  RemoveNodeFromCSEMaps(N);
547
548  // Finally, remove uses due to operands of this node, remove from the
549  // AllNodes list, and delete the node.
550  DeleteNodeNotInCSEMaps(N);
551}
552
553void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
554
555  // Remove it from the AllNodes list.
556  AllNodes.remove(N);
557
558  // Drop all of the operands and decrement used nodes use counts.
559  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
560    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
561  if (N->OperandsNeedDelete) {
562    delete[] N->OperandList;
563  }
564  N->OperandList = 0;
565  N->NumOperands = 0;
566
567  delete N;
568}
569
570/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
571/// correspond to it.  This is useful when we're about to delete or repurpose
572/// the node.  We don't want future request for structurally identical nodes
573/// to return N anymore.
574void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
575  bool Erased = false;
576  switch (N->getOpcode()) {
577  case ISD::HANDLENODE: return;  // noop.
578  case ISD::STRING:
579    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
580    break;
581  case ISD::CONDCODE:
582    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
583           "Cond code doesn't exist!");
584    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
585    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
586    break;
587  case ISD::ExternalSymbol:
588    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
589    break;
590  case ISD::TargetExternalSymbol:
591    Erased =
592      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
593    break;
594  case ISD::VALUETYPE: {
595    MVT VT = cast<VTSDNode>(N)->getVT();
596    if (VT.isExtended()) {
597      Erased = ExtendedValueTypeNodes.erase(VT);
598    } else {
599      Erased = ValueTypeNodes[VT.getSimpleVT()] != 0;
600      ValueTypeNodes[VT.getSimpleVT()] = 0;
601    }
602    break;
603  }
604  default:
605    // Remove it from the CSE Map.
606    Erased = CSEMap.RemoveNode(N);
607    break;
608  }
609#ifndef NDEBUG
610  // Verify that the node was actually in one of the CSE maps, unless it has a
611  // flag result (which cannot be CSE'd) or is one of the special cases that are
612  // not subject to CSE.
613  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
614      !N->isTargetOpcode()) {
615    N->dump(this);
616    cerr << "\n";
617    assert(0 && "Node is not in map!");
618  }
619#endif
620}
621
622/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
623/// has been taken out and modified in some way.  If the specified node already
624/// exists in the CSE maps, do not modify the maps, but return the existing node
625/// instead.  If it doesn't exist, add it and return null.
626///
627SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
628  assert(N->getNumOperands() && "This is a leaf node!");
629  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
630    return 0;    // Never add these nodes.
631
632  // Check that remaining values produced are not flags.
633  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
634    if (N->getValueType(i) == MVT::Flag)
635      return 0;   // Never CSE anything that produces a flag.
636
637  SDNode *New = CSEMap.GetOrInsertNode(N);
638  if (New != N) return New;  // Node already existed.
639  return 0;
640}
641
642/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
643/// were replaced with those specified.  If this node is never memoized,
644/// return null, otherwise return a pointer to the slot it would take.  If a
645/// node already exists with these operands, the slot will be non-null.
646SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
647                                           void *&InsertPos) {
648  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
649    return 0;    // Never add these nodes.
650
651  // Check that remaining values produced are not flags.
652  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
653    if (N->getValueType(i) == MVT::Flag)
654      return 0;   // Never CSE anything that produces a flag.
655
656  SDOperand Ops[] = { Op };
657  FoldingSetNodeID ID;
658  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
659  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
660}
661
662/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
663/// were replaced with those specified.  If this node is never memoized,
664/// return null, otherwise return a pointer to the slot it would take.  If a
665/// node already exists with these operands, the slot will be non-null.
666SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
667                                           SDOperand Op1, SDOperand Op2,
668                                           void *&InsertPos) {
669  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
670    return 0;    // Never add these nodes.
671
672  // Check that remaining values produced are not flags.
673  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
674    if (N->getValueType(i) == MVT::Flag)
675      return 0;   // Never CSE anything that produces a flag.
676
677  SDOperand Ops[] = { Op1, Op2 };
678  FoldingSetNodeID ID;
679  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
680  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
681}
682
683
684/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
685/// were replaced with those specified.  If this node is never memoized,
686/// return null, otherwise return a pointer to the slot it would take.  If a
687/// node already exists with these operands, the slot will be non-null.
688SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
689                                           SDOperandPtr Ops,unsigned NumOps,
690                                           void *&InsertPos) {
691  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
692    return 0;    // Never add these nodes.
693
694  // Check that remaining values produced are not flags.
695  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
696    if (N->getValueType(i) == MVT::Flag)
697      return 0;   // Never CSE anything that produces a flag.
698
699  FoldingSetNodeID ID;
700  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
701
702  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
703    ID.AddInteger(LD->getAddressingMode());
704    ID.AddInteger(LD->getExtensionType());
705    ID.AddInteger(LD->getMemoryVT().getRawBits());
706    ID.AddInteger(LD->getAlignment());
707    ID.AddInteger(LD->isVolatile());
708  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
709    ID.AddInteger(ST->getAddressingMode());
710    ID.AddInteger(ST->isTruncatingStore());
711    ID.AddInteger(ST->getMemoryVT().getRawBits());
712    ID.AddInteger(ST->getAlignment());
713    ID.AddInteger(ST->isVolatile());
714  }
715
716  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
717}
718
719
720SelectionDAG::~SelectionDAG() {
721  while (!AllNodes.empty()) {
722    SDNode *N = AllNodes.begin();
723    N->SetNextInBucket(0);
724    if (N->OperandsNeedDelete) {
725      delete [] N->OperandList;
726    }
727    N->OperandList = 0;
728    N->NumOperands = 0;
729    AllNodes.pop_front();
730  }
731}
732
733SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT VT) {
734  if (Op.getValueType() == VT) return Op;
735  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
736                                   VT.getSizeInBits());
737  return getNode(ISD::AND, Op.getValueType(), Op,
738                 getConstant(Imm, Op.getValueType()));
739}
740
741SDOperand SelectionDAG::getString(const std::string &Val) {
742  StringSDNode *&N = StringNodes[Val];
743  if (!N) {
744    N = new StringSDNode(Val);
745    AllNodes.push_back(N);
746  }
747  return SDOperand(N, 0);
748}
749
750SDOperand SelectionDAG::getConstant(uint64_t Val, MVT VT, bool isT) {
751  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
752  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
753}
754
755SDOperand SelectionDAG::getConstant(const APInt &Val, MVT VT, bool isT) {
756  assert(VT.isInteger() && "Cannot create FP integer constant!");
757
758  MVT EltVT = VT.isVector() ? VT.getVectorElementType() : VT;
759  assert(Val.getBitWidth() == EltVT.getSizeInBits() &&
760         "APInt size does not match type size!");
761
762  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
763  FoldingSetNodeID ID;
764  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
765  ID.Add(Val);
766  void *IP = 0;
767  SDNode *N = NULL;
768  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
769    if (!VT.isVector())
770      return SDOperand(N, 0);
771  if (!N) {
772    N = new ConstantSDNode(isT, Val, EltVT);
773    CSEMap.InsertNode(N, IP);
774    AllNodes.push_back(N);
775  }
776
777  SDOperand Result(N, 0);
778  if (VT.isVector()) {
779    SmallVector<SDOperand, 8> Ops;
780    Ops.assign(VT.getVectorNumElements(), Result);
781    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
782  }
783  return Result;
784}
785
786SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
787  return getConstant(Val, TLI.getPointerTy(), isTarget);
788}
789
790
791SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT VT, bool isTarget) {
792  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
793
794  MVT EltVT =
795    VT.isVector() ? VT.getVectorElementType() : VT;
796
797  // Do the map lookup using the actual bit pattern for the floating point
798  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
799  // we don't have issues with SNANs.
800  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
801  FoldingSetNodeID ID;
802  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
803  ID.Add(V);
804  void *IP = 0;
805  SDNode *N = NULL;
806  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
807    if (!VT.isVector())
808      return SDOperand(N, 0);
809  if (!N) {
810    N = new ConstantFPSDNode(isTarget, V, EltVT);
811    CSEMap.InsertNode(N, IP);
812    AllNodes.push_back(N);
813  }
814
815  SDOperand Result(N, 0);
816  if (VT.isVector()) {
817    SmallVector<SDOperand, 8> Ops;
818    Ops.assign(VT.getVectorNumElements(), Result);
819    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
820  }
821  return Result;
822}
823
824SDOperand SelectionDAG::getConstantFP(double Val, MVT VT, bool isTarget) {
825  MVT EltVT =
826    VT.isVector() ? VT.getVectorElementType() : VT;
827  if (EltVT==MVT::f32)
828    return getConstantFP(APFloat((float)Val), VT, isTarget);
829  else
830    return getConstantFP(APFloat(Val), VT, isTarget);
831}
832
833SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
834                                         MVT VT, int Offset,
835                                         bool isTargetGA) {
836  unsigned Opc;
837
838  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
839  if (!GVar) {
840    // If GV is an alias then use the aliasee for determining thread-localness.
841    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
842      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
843  }
844
845  if (GVar && GVar->isThreadLocal())
846    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
847  else
848    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
849
850  FoldingSetNodeID ID;
851  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
852  ID.AddPointer(GV);
853  ID.AddInteger(Offset);
854  void *IP = 0;
855  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
856   return SDOperand(E, 0);
857  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
858  CSEMap.InsertNode(N, IP);
859  AllNodes.push_back(N);
860  return SDOperand(N, 0);
861}
862
863SDOperand SelectionDAG::getFrameIndex(int FI, MVT VT, bool isTarget) {
864  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
865  FoldingSetNodeID ID;
866  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
867  ID.AddInteger(FI);
868  void *IP = 0;
869  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
870    return SDOperand(E, 0);
871  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
872  CSEMap.InsertNode(N, IP);
873  AllNodes.push_back(N);
874  return SDOperand(N, 0);
875}
876
877SDOperand SelectionDAG::getJumpTable(int JTI, MVT VT, bool isTarget){
878  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
879  FoldingSetNodeID ID;
880  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
881  ID.AddInteger(JTI);
882  void *IP = 0;
883  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
884    return SDOperand(E, 0);
885  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
886  CSEMap.InsertNode(N, IP);
887  AllNodes.push_back(N);
888  return SDOperand(N, 0);
889}
890
891SDOperand SelectionDAG::getConstantPool(Constant *C, MVT VT,
892                                        unsigned Alignment, int Offset,
893                                        bool isTarget) {
894  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
895  FoldingSetNodeID ID;
896  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
897  ID.AddInteger(Alignment);
898  ID.AddInteger(Offset);
899  ID.AddPointer(C);
900  void *IP = 0;
901  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
902    return SDOperand(E, 0);
903  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
904  CSEMap.InsertNode(N, IP);
905  AllNodes.push_back(N);
906  return SDOperand(N, 0);
907}
908
909
910SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C, MVT VT,
911                                        unsigned Alignment, int Offset,
912                                        bool isTarget) {
913  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
914  FoldingSetNodeID ID;
915  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
916  ID.AddInteger(Alignment);
917  ID.AddInteger(Offset);
918  C->AddSelectionDAGCSEId(ID);
919  void *IP = 0;
920  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
921    return SDOperand(E, 0);
922  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
923  CSEMap.InsertNode(N, IP);
924  AllNodes.push_back(N);
925  return SDOperand(N, 0);
926}
927
928
929SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
930  FoldingSetNodeID ID;
931  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
932  ID.AddPointer(MBB);
933  void *IP = 0;
934  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
935    return SDOperand(E, 0);
936  SDNode *N = new BasicBlockSDNode(MBB);
937  CSEMap.InsertNode(N, IP);
938  AllNodes.push_back(N);
939  return SDOperand(N, 0);
940}
941
942SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
943  FoldingSetNodeID ID;
944  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
945  ID.AddInteger(Flags.getRawBits());
946  void *IP = 0;
947  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
948    return SDOperand(E, 0);
949  SDNode *N = new ARG_FLAGSSDNode(Flags);
950  CSEMap.InsertNode(N, IP);
951  AllNodes.push_back(N);
952  return SDOperand(N, 0);
953}
954
955SDOperand SelectionDAG::getValueType(MVT VT) {
956  if (VT.isSimple() && (unsigned)VT.getSimpleVT() >= ValueTypeNodes.size())
957    ValueTypeNodes.resize(VT.getSimpleVT()+1);
958
959  SDNode *&N = VT.isExtended() ?
960    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT()];
961
962  if (N) return SDOperand(N, 0);
963  N = new VTSDNode(VT);
964  AllNodes.push_back(N);
965  return SDOperand(N, 0);
966}
967
968SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT VT) {
969  SDNode *&N = ExternalSymbols[Sym];
970  if (N) return SDOperand(N, 0);
971  N = new ExternalSymbolSDNode(false, Sym, VT);
972  AllNodes.push_back(N);
973  return SDOperand(N, 0);
974}
975
976SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, MVT VT) {
977  SDNode *&N = TargetExternalSymbols[Sym];
978  if (N) return SDOperand(N, 0);
979  N = new ExternalSymbolSDNode(true, Sym, VT);
980  AllNodes.push_back(N);
981  return SDOperand(N, 0);
982}
983
984SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
985  if ((unsigned)Cond >= CondCodeNodes.size())
986    CondCodeNodes.resize(Cond+1);
987
988  if (CondCodeNodes[Cond] == 0) {
989    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
990    AllNodes.push_back(CondCodeNodes[Cond]);
991  }
992  return SDOperand(CondCodeNodes[Cond], 0);
993}
994
995SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT VT) {
996  FoldingSetNodeID ID;
997  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
998  ID.AddInteger(RegNo);
999  void *IP = 0;
1000  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1001    return SDOperand(E, 0);
1002  SDNode *N = new RegisterSDNode(RegNo, VT);
1003  CSEMap.InsertNode(N, IP);
1004  AllNodes.push_back(N);
1005  return SDOperand(N, 0);
1006}
1007
1008SDOperand SelectionDAG::getSrcValue(const Value *V) {
1009  assert((!V || isa<PointerType>(V->getType())) &&
1010         "SrcValue is not a pointer?");
1011
1012  FoldingSetNodeID ID;
1013  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1014  ID.AddPointer(V);
1015
1016  void *IP = 0;
1017  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1018    return SDOperand(E, 0);
1019
1020  SDNode *N = new SrcValueSDNode(V);
1021  CSEMap.InsertNode(N, IP);
1022  AllNodes.push_back(N);
1023  return SDOperand(N, 0);
1024}
1025
1026SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1027  const Value *v = MO.getValue();
1028  assert((!v || isa<PointerType>(v->getType())) &&
1029         "SrcValue is not a pointer?");
1030
1031  FoldingSetNodeID ID;
1032  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1033  ID.AddPointer(v);
1034  ID.AddInteger(MO.getFlags());
1035  ID.AddInteger(MO.getOffset());
1036  ID.AddInteger(MO.getSize());
1037  ID.AddInteger(MO.getAlignment());
1038
1039  void *IP = 0;
1040  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1041    return SDOperand(E, 0);
1042
1043  SDNode *N = new MemOperandSDNode(MO);
1044  CSEMap.InsertNode(N, IP);
1045  AllNodes.push_back(N);
1046  return SDOperand(N, 0);
1047}
1048
1049/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1050/// specified value type.
1051SDOperand SelectionDAG::CreateStackTemporary(MVT VT) {
1052  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1053  unsigned ByteSize = VT.getSizeInBits()/8;
1054  const Type *Ty = VT.getTypeForMVT();
1055  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1056  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1057  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1058}
1059
1060
1061SDOperand SelectionDAG::FoldSetCC(MVT VT, SDOperand N1,
1062                                  SDOperand N2, ISD::CondCode Cond) {
1063  // These setcc operations always fold.
1064  switch (Cond) {
1065  default: break;
1066  case ISD::SETFALSE:
1067  case ISD::SETFALSE2: return getConstant(0, VT);
1068  case ISD::SETTRUE:
1069  case ISD::SETTRUE2:  return getConstant(1, VT);
1070
1071  case ISD::SETOEQ:
1072  case ISD::SETOGT:
1073  case ISD::SETOGE:
1074  case ISD::SETOLT:
1075  case ISD::SETOLE:
1076  case ISD::SETONE:
1077  case ISD::SETO:
1078  case ISD::SETUO:
1079  case ISD::SETUEQ:
1080  case ISD::SETUNE:
1081    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1082    break;
1083  }
1084
1085  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1086    const APInt &C2 = N2C->getAPIntValue();
1087    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1088      const APInt &C1 = N1C->getAPIntValue();
1089
1090      switch (Cond) {
1091      default: assert(0 && "Unknown integer setcc!");
1092      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1093      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1094      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1095      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1096      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1097      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1098      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1099      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1100      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1101      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1102      }
1103    }
1104  }
1105  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1106    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1107      // No compile time operations on this type yet.
1108      if (N1C->getValueType(0) == MVT::ppcf128)
1109        return SDOperand();
1110
1111      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1112      switch (Cond) {
1113      default: break;
1114      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1115                          return getNode(ISD::UNDEF, VT);
1116                        // fall through
1117      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1118      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1119                          return getNode(ISD::UNDEF, VT);
1120                        // fall through
1121      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1122                                           R==APFloat::cmpLessThan, VT);
1123      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1124                          return getNode(ISD::UNDEF, VT);
1125                        // fall through
1126      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1127      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1128                          return getNode(ISD::UNDEF, VT);
1129                        // fall through
1130      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1131      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1132                          return getNode(ISD::UNDEF, VT);
1133                        // fall through
1134      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1135                                           R==APFloat::cmpEqual, VT);
1136      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1137                          return getNode(ISD::UNDEF, VT);
1138                        // fall through
1139      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1140                                           R==APFloat::cmpEqual, VT);
1141      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1142      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1143      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1144                                           R==APFloat::cmpEqual, VT);
1145      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1146      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1147                                           R==APFloat::cmpLessThan, VT);
1148      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1149                                           R==APFloat::cmpUnordered, VT);
1150      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1151      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1152      }
1153    } else {
1154      // Ensure that the constant occurs on the RHS.
1155      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1156    }
1157  }
1158
1159  // Could not fold it.
1160  return SDOperand();
1161}
1162
1163/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1164/// use this predicate to simplify operations downstream.
1165bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1166  unsigned BitWidth = Op.getValueSizeInBits();
1167  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1168}
1169
1170/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1171/// this predicate to simplify operations downstream.  Mask is known to be zero
1172/// for bits that V cannot have.
1173bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1174                                     unsigned Depth) const {
1175  APInt KnownZero, KnownOne;
1176  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1177  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1178  return (KnownZero & Mask) == Mask;
1179}
1180
1181/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1182/// known to be either zero or one and return them in the KnownZero/KnownOne
1183/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1184/// processing.
1185void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1186                                     APInt &KnownZero, APInt &KnownOne,
1187                                     unsigned Depth) const {
1188  unsigned BitWidth = Mask.getBitWidth();
1189  assert(BitWidth == Op.getValueType().getSizeInBits() &&
1190         "Mask size mismatches value type size!");
1191
1192  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1193  if (Depth == 6 || Mask == 0)
1194    return;  // Limit search depth.
1195
1196  APInt KnownZero2, KnownOne2;
1197
1198  switch (Op.getOpcode()) {
1199  case ISD::Constant:
1200    // We know all of the bits for a constant!
1201    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1202    KnownZero = ~KnownOne & Mask;
1203    return;
1204  case ISD::AND:
1205    // If either the LHS or the RHS are Zero, the result is zero.
1206    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1207    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1208                      KnownZero2, KnownOne2, Depth+1);
1209    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1210    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1211
1212    // Output known-1 bits are only known if set in both the LHS & RHS.
1213    KnownOne &= KnownOne2;
1214    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1215    KnownZero |= KnownZero2;
1216    return;
1217  case ISD::OR:
1218    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1219    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1220                      KnownZero2, KnownOne2, Depth+1);
1221    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1222    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1223
1224    // Output known-0 bits are only known if clear in both the LHS & RHS.
1225    KnownZero &= KnownZero2;
1226    // Output known-1 are known to be set if set in either the LHS | RHS.
1227    KnownOne |= KnownOne2;
1228    return;
1229  case ISD::XOR: {
1230    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1231    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1232    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1233    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1234
1235    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1236    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1237    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1238    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1239    KnownZero = KnownZeroOut;
1240    return;
1241  }
1242  case ISD::MUL: {
1243    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1244    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1245    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1246    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1247    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1248
1249    // If low bits are zero in either operand, output low known-0 bits.
1250    // Also compute a conserative estimate for high known-0 bits.
1251    // More trickiness is possible, but this is sufficient for the
1252    // interesting case of alignment computation.
1253    KnownOne.clear();
1254    unsigned TrailZ = KnownZero.countTrailingOnes() +
1255                      KnownZero2.countTrailingOnes();
1256    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1257                               KnownZero2.countLeadingOnes(),
1258                               BitWidth) - BitWidth;
1259
1260    TrailZ = std::min(TrailZ, BitWidth);
1261    LeadZ = std::min(LeadZ, BitWidth);
1262    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1263                APInt::getHighBitsSet(BitWidth, LeadZ);
1264    KnownZero &= Mask;
1265    return;
1266  }
1267  case ISD::UDIV: {
1268    // For the purposes of computing leading zeros we can conservatively
1269    // treat a udiv as a logical right shift by the power of 2 known to
1270    // be less than the denominator.
1271    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1272    ComputeMaskedBits(Op.getOperand(0),
1273                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1274    unsigned LeadZ = KnownZero2.countLeadingOnes();
1275
1276    KnownOne2.clear();
1277    KnownZero2.clear();
1278    ComputeMaskedBits(Op.getOperand(1),
1279                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1280    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1281    if (RHSUnknownLeadingOnes != BitWidth)
1282      LeadZ = std::min(BitWidth,
1283                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1284
1285    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1286    return;
1287  }
1288  case ISD::SELECT:
1289    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1290    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1291    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1292    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1293
1294    // Only known if known in both the LHS and RHS.
1295    KnownOne &= KnownOne2;
1296    KnownZero &= KnownZero2;
1297    return;
1298  case ISD::SELECT_CC:
1299    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1300    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1301    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1302    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1303
1304    // Only known if known in both the LHS and RHS.
1305    KnownOne &= KnownOne2;
1306    KnownZero &= KnownZero2;
1307    return;
1308  case ISD::SETCC:
1309    // If we know the result of a setcc has the top bits zero, use this info.
1310    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1311        BitWidth > 1)
1312      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1313    return;
1314  case ISD::SHL:
1315    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1316    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1317      unsigned ShAmt = SA->getValue();
1318
1319      // If the shift count is an invalid immediate, don't do anything.
1320      if (ShAmt >= BitWidth)
1321        return;
1322
1323      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1324                        KnownZero, KnownOne, Depth+1);
1325      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1326      KnownZero <<= ShAmt;
1327      KnownOne  <<= ShAmt;
1328      // low bits known zero.
1329      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1330    }
1331    return;
1332  case ISD::SRL:
1333    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1334    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1335      unsigned ShAmt = SA->getValue();
1336
1337      // If the shift count is an invalid immediate, don't do anything.
1338      if (ShAmt >= BitWidth)
1339        return;
1340
1341      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1342                        KnownZero, KnownOne, Depth+1);
1343      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1344      KnownZero = KnownZero.lshr(ShAmt);
1345      KnownOne  = KnownOne.lshr(ShAmt);
1346
1347      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1348      KnownZero |= HighBits;  // High bits known zero.
1349    }
1350    return;
1351  case ISD::SRA:
1352    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1353      unsigned ShAmt = SA->getValue();
1354
1355      // If the shift count is an invalid immediate, don't do anything.
1356      if (ShAmt >= BitWidth)
1357        return;
1358
1359      APInt InDemandedMask = (Mask << ShAmt);
1360      // If any of the demanded bits are produced by the sign extension, we also
1361      // demand the input sign bit.
1362      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1363      if (HighBits.getBoolValue())
1364        InDemandedMask |= APInt::getSignBit(BitWidth);
1365
1366      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1367                        Depth+1);
1368      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1369      KnownZero = KnownZero.lshr(ShAmt);
1370      KnownOne  = KnownOne.lshr(ShAmt);
1371
1372      // Handle the sign bits.
1373      APInt SignBit = APInt::getSignBit(BitWidth);
1374      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1375
1376      if (KnownZero.intersects(SignBit)) {
1377        KnownZero |= HighBits;  // New bits are known zero.
1378      } else if (KnownOne.intersects(SignBit)) {
1379        KnownOne  |= HighBits;  // New bits are known one.
1380      }
1381    }
1382    return;
1383  case ISD::SIGN_EXTEND_INREG: {
1384    MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1385    unsigned EBits = EVT.getSizeInBits();
1386
1387    // Sign extension.  Compute the demanded bits in the result that are not
1388    // present in the input.
1389    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1390
1391    APInt InSignBit = APInt::getSignBit(EBits);
1392    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1393
1394    // If the sign extended bits are demanded, we know that the sign
1395    // bit is demanded.
1396    InSignBit.zext(BitWidth);
1397    if (NewBits.getBoolValue())
1398      InputDemandedBits |= InSignBit;
1399
1400    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1401                      KnownZero, KnownOne, Depth+1);
1402    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1403
1404    // If the sign bit of the input is known set or clear, then we know the
1405    // top bits of the result.
1406    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1407      KnownZero |= NewBits;
1408      KnownOne  &= ~NewBits;
1409    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1410      KnownOne  |= NewBits;
1411      KnownZero &= ~NewBits;
1412    } else {                              // Input sign bit unknown
1413      KnownZero &= ~NewBits;
1414      KnownOne  &= ~NewBits;
1415    }
1416    return;
1417  }
1418  case ISD::CTTZ:
1419  case ISD::CTLZ:
1420  case ISD::CTPOP: {
1421    unsigned LowBits = Log2_32(BitWidth)+1;
1422    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1423    KnownOne.clear();
1424    return;
1425  }
1426  case ISD::LOAD: {
1427    if (ISD::isZEXTLoad(Op.Val)) {
1428      LoadSDNode *LD = cast<LoadSDNode>(Op);
1429      MVT VT = LD->getMemoryVT();
1430      unsigned MemBits = VT.getSizeInBits();
1431      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1432    }
1433    return;
1434  }
1435  case ISD::ZERO_EXTEND: {
1436    MVT InVT = Op.getOperand(0).getValueType();
1437    unsigned InBits = InVT.getSizeInBits();
1438    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1439    APInt InMask    = Mask;
1440    InMask.trunc(InBits);
1441    KnownZero.trunc(InBits);
1442    KnownOne.trunc(InBits);
1443    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1444    KnownZero.zext(BitWidth);
1445    KnownOne.zext(BitWidth);
1446    KnownZero |= NewBits;
1447    return;
1448  }
1449  case ISD::SIGN_EXTEND: {
1450    MVT InVT = Op.getOperand(0).getValueType();
1451    unsigned InBits = InVT.getSizeInBits();
1452    APInt InSignBit = APInt::getSignBit(InBits);
1453    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1454    APInt InMask = Mask;
1455    InMask.trunc(InBits);
1456
1457    // If any of the sign extended bits are demanded, we know that the sign
1458    // bit is demanded. Temporarily set this bit in the mask for our callee.
1459    if (NewBits.getBoolValue())
1460      InMask |= InSignBit;
1461
1462    KnownZero.trunc(InBits);
1463    KnownOne.trunc(InBits);
1464    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1465
1466    // Note if the sign bit is known to be zero or one.
1467    bool SignBitKnownZero = KnownZero.isNegative();
1468    bool SignBitKnownOne  = KnownOne.isNegative();
1469    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1470           "Sign bit can't be known to be both zero and one!");
1471
1472    // If the sign bit wasn't actually demanded by our caller, we don't
1473    // want it set in the KnownZero and KnownOne result values. Reset the
1474    // mask and reapply it to the result values.
1475    InMask = Mask;
1476    InMask.trunc(InBits);
1477    KnownZero &= InMask;
1478    KnownOne  &= InMask;
1479
1480    KnownZero.zext(BitWidth);
1481    KnownOne.zext(BitWidth);
1482
1483    // If the sign bit is known zero or one, the top bits match.
1484    if (SignBitKnownZero)
1485      KnownZero |= NewBits;
1486    else if (SignBitKnownOne)
1487      KnownOne  |= NewBits;
1488    return;
1489  }
1490  case ISD::ANY_EXTEND: {
1491    MVT InVT = Op.getOperand(0).getValueType();
1492    unsigned InBits = InVT.getSizeInBits();
1493    APInt InMask = Mask;
1494    InMask.trunc(InBits);
1495    KnownZero.trunc(InBits);
1496    KnownOne.trunc(InBits);
1497    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1498    KnownZero.zext(BitWidth);
1499    KnownOne.zext(BitWidth);
1500    return;
1501  }
1502  case ISD::TRUNCATE: {
1503    MVT InVT = Op.getOperand(0).getValueType();
1504    unsigned InBits = InVT.getSizeInBits();
1505    APInt InMask = Mask;
1506    InMask.zext(InBits);
1507    KnownZero.zext(InBits);
1508    KnownOne.zext(InBits);
1509    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1510    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1511    KnownZero.trunc(BitWidth);
1512    KnownOne.trunc(BitWidth);
1513    break;
1514  }
1515  case ISD::AssertZext: {
1516    MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1517    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
1518    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1519                      KnownOne, Depth+1);
1520    KnownZero |= (~InMask) & Mask;
1521    return;
1522  }
1523  case ISD::FGETSIGN:
1524    // All bits are zero except the low bit.
1525    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1526    return;
1527
1528  case ISD::SUB: {
1529    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1530      // We know that the top bits of C-X are clear if X contains less bits
1531      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1532      // positive if we can prove that X is >= 0 and < 16.
1533      if (CLHS->getAPIntValue().isNonNegative()) {
1534        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1535        // NLZ can't be BitWidth with no sign bit
1536        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1537        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1538                          Depth+1);
1539
1540        // If all of the MaskV bits are known to be zero, then we know the
1541        // output top bits are zero, because we now know that the output is
1542        // from [0-C].
1543        if ((KnownZero2 & MaskV) == MaskV) {
1544          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1545          // Top bits known zero.
1546          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1547        }
1548      }
1549    }
1550  }
1551  // fall through
1552  case ISD::ADD: {
1553    // Output known-0 bits are known if clear or set in both the low clear bits
1554    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1555    // low 3 bits clear.
1556    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1557    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1558    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1559    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1560
1561    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1562    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1563    KnownZeroOut = std::min(KnownZeroOut,
1564                            KnownZero2.countTrailingOnes());
1565
1566    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1567    return;
1568  }
1569  case ISD::SREM:
1570    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1571      APInt RA = Rem->getAPIntValue();
1572      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1573        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1574        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1575        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1576
1577        // The sign of a remainder is equal to the sign of the first
1578        // operand (zero being positive).
1579        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1580          KnownZero2 |= ~LowBits;
1581        else if (KnownOne2[BitWidth-1])
1582          KnownOne2 |= ~LowBits;
1583
1584        KnownZero |= KnownZero2 & Mask;
1585        KnownOne |= KnownOne2 & Mask;
1586
1587        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1588      }
1589    }
1590    return;
1591  case ISD::UREM: {
1592    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1593      APInt RA = Rem->getAPIntValue();
1594      if (RA.isPowerOf2()) {
1595        APInt LowBits = (RA - 1);
1596        APInt Mask2 = LowBits & Mask;
1597        KnownZero |= ~LowBits & Mask;
1598        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1599        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1600        break;
1601      }
1602    }
1603
1604    // Since the result is less than or equal to either operand, any leading
1605    // zero bits in either operand must also exist in the result.
1606    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1607    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1608                      Depth+1);
1609    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1610                      Depth+1);
1611
1612    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1613                                KnownZero2.countLeadingOnes());
1614    KnownOne.clear();
1615    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1616    return;
1617  }
1618  default:
1619    // Allow the target to implement this method for its nodes.
1620    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1621  case ISD::INTRINSIC_WO_CHAIN:
1622  case ISD::INTRINSIC_W_CHAIN:
1623  case ISD::INTRINSIC_VOID:
1624      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1625    }
1626    return;
1627  }
1628}
1629
1630/// ComputeNumSignBits - Return the number of times the sign bit of the
1631/// register is replicated into the other bits.  We know that at least 1 bit
1632/// is always equal to the sign bit (itself), but other cases can give us
1633/// information.  For example, immediately after an "SRA X, 2", we know that
1634/// the top 3 bits are all equal to each other, so we return 3.
1635unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1636  MVT VT = Op.getValueType();
1637  assert(VT.isInteger() && "Invalid VT!");
1638  unsigned VTBits = VT.getSizeInBits();
1639  unsigned Tmp, Tmp2;
1640  unsigned FirstAnswer = 1;
1641
1642  if (Depth == 6)
1643    return 1;  // Limit search depth.
1644
1645  switch (Op.getOpcode()) {
1646  default: break;
1647  case ISD::AssertSext:
1648    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1649    return VTBits-Tmp+1;
1650  case ISD::AssertZext:
1651    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1652    return VTBits-Tmp;
1653
1654  case ISD::Constant: {
1655    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1656    // If negative, return # leading ones.
1657    if (Val.isNegative())
1658      return Val.countLeadingOnes();
1659
1660    // Return # leading zeros.
1661    return Val.countLeadingZeros();
1662  }
1663
1664  case ISD::SIGN_EXTEND:
1665    Tmp = VTBits-Op.getOperand(0).getValueType().getSizeInBits();
1666    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1667
1668  case ISD::SIGN_EXTEND_INREG:
1669    // Max of the input and what this extends.
1670    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
1671    Tmp = VTBits-Tmp+1;
1672
1673    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1674    return std::max(Tmp, Tmp2);
1675
1676  case ISD::SRA:
1677    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1678    // SRA X, C   -> adds C sign bits.
1679    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1680      Tmp += C->getValue();
1681      if (Tmp > VTBits) Tmp = VTBits;
1682    }
1683    return Tmp;
1684  case ISD::SHL:
1685    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1686      // shl destroys sign bits.
1687      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1688      if (C->getValue() >= VTBits ||      // Bad shift.
1689          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1690      return Tmp - C->getValue();
1691    }
1692    break;
1693  case ISD::AND:
1694  case ISD::OR:
1695  case ISD::XOR:    // NOT is handled here.
1696    // Logical binary ops preserve the number of sign bits at the worst.
1697    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1698    if (Tmp != 1) {
1699      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1700      FirstAnswer = std::min(Tmp, Tmp2);
1701      // We computed what we know about the sign bits as our first
1702      // answer. Now proceed to the generic code that uses
1703      // ComputeMaskedBits, and pick whichever answer is better.
1704    }
1705    break;
1706
1707  case ISD::SELECT:
1708    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1709    if (Tmp == 1) return 1;  // Early out.
1710    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1711    return std::min(Tmp, Tmp2);
1712
1713  case ISD::SETCC:
1714    // If setcc returns 0/-1, all bits are sign bits.
1715    if (TLI.getSetCCResultContents() ==
1716        TargetLowering::ZeroOrNegativeOneSetCCResult)
1717      return VTBits;
1718    break;
1719  case ISD::ROTL:
1720  case ISD::ROTR:
1721    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1722      unsigned RotAmt = C->getValue() & (VTBits-1);
1723
1724      // Handle rotate right by N like a rotate left by 32-N.
1725      if (Op.getOpcode() == ISD::ROTR)
1726        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1727
1728      // If we aren't rotating out all of the known-in sign bits, return the
1729      // number that are left.  This handles rotl(sext(x), 1) for example.
1730      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1731      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1732    }
1733    break;
1734  case ISD::ADD:
1735    // Add can have at most one carry bit.  Thus we know that the output
1736    // is, at worst, one more bit than the inputs.
1737    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1738    if (Tmp == 1) return 1;  // Early out.
1739
1740    // Special case decrementing a value (ADD X, -1):
1741    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1742      if (CRHS->isAllOnesValue()) {
1743        APInt KnownZero, KnownOne;
1744        APInt Mask = APInt::getAllOnesValue(VTBits);
1745        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1746
1747        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1748        // sign bits set.
1749        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1750          return VTBits;
1751
1752        // If we are subtracting one from a positive number, there is no carry
1753        // out of the result.
1754        if (KnownZero.isNegative())
1755          return Tmp;
1756      }
1757
1758    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1759    if (Tmp2 == 1) return 1;
1760      return std::min(Tmp, Tmp2)-1;
1761    break;
1762
1763  case ISD::SUB:
1764    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1765    if (Tmp2 == 1) return 1;
1766
1767    // Handle NEG.
1768    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1769      if (CLHS->isNullValue()) {
1770        APInt KnownZero, KnownOne;
1771        APInt Mask = APInt::getAllOnesValue(VTBits);
1772        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1773        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1774        // sign bits set.
1775        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1776          return VTBits;
1777
1778        // If the input is known to be positive (the sign bit is known clear),
1779        // the output of the NEG has the same number of sign bits as the input.
1780        if (KnownZero.isNegative())
1781          return Tmp2;
1782
1783        // Otherwise, we treat this like a SUB.
1784      }
1785
1786    // Sub can have at most one carry bit.  Thus we know that the output
1787    // is, at worst, one more bit than the inputs.
1788    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1789    if (Tmp == 1) return 1;  // Early out.
1790      return std::min(Tmp, Tmp2)-1;
1791    break;
1792  case ISD::TRUNCATE:
1793    // FIXME: it's tricky to do anything useful for this, but it is an important
1794    // case for targets like X86.
1795    break;
1796  }
1797
1798  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1799  if (Op.getOpcode() == ISD::LOAD) {
1800    LoadSDNode *LD = cast<LoadSDNode>(Op);
1801    unsigned ExtType = LD->getExtensionType();
1802    switch (ExtType) {
1803    default: break;
1804    case ISD::SEXTLOAD:    // '17' bits known
1805      Tmp = LD->getMemoryVT().getSizeInBits();
1806      return VTBits-Tmp+1;
1807    case ISD::ZEXTLOAD:    // '16' bits known
1808      Tmp = LD->getMemoryVT().getSizeInBits();
1809      return VTBits-Tmp;
1810    }
1811  }
1812
1813  // Allow the target to implement this method for its nodes.
1814  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1815      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1816      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1817      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1818    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1819    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1820  }
1821
1822  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1823  // use this information.
1824  APInt KnownZero, KnownOne;
1825  APInt Mask = APInt::getAllOnesValue(VTBits);
1826  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1827
1828  if (KnownZero.isNegative()) {        // sign bit is 0
1829    Mask = KnownZero;
1830  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1831    Mask = KnownOne;
1832  } else {
1833    // Nothing known.
1834    return FirstAnswer;
1835  }
1836
1837  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1838  // the number of identical bits in the top of the input value.
1839  Mask = ~Mask;
1840  Mask <<= Mask.getBitWidth()-VTBits;
1841  // Return # leading zeros.  We use 'min' here in case Val was zero before
1842  // shifting.  We don't want to return '64' as for an i32 "0".
1843  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1844}
1845
1846
1847bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1848  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1849  if (!GA) return false;
1850  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1851  if (!GV) return false;
1852  MachineModuleInfo *MMI = getMachineModuleInfo();
1853  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1854}
1855
1856
1857/// getShuffleScalarElt - Returns the scalar element that will make up the ith
1858/// element of the result of the vector shuffle.
1859SDOperand SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned i) {
1860  MVT VT = N->getValueType(0);
1861  SDOperand PermMask = N->getOperand(2);
1862  SDOperand Idx = PermMask.getOperand(i);
1863  if (Idx.getOpcode() == ISD::UNDEF)
1864    return getNode(ISD::UNDEF, VT.getVectorElementType());
1865  unsigned Index = cast<ConstantSDNode>(Idx)->getValue();
1866  unsigned NumElems = PermMask.getNumOperands();
1867  SDOperand V = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
1868  Index %= NumElems;
1869
1870  if (V.getOpcode() == ISD::BIT_CONVERT) {
1871    V = V.getOperand(0);
1872    if (V.getValueType().getVectorNumElements() != NumElems)
1873      return SDOperand();
1874  }
1875  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
1876    return (Index == 0) ? V.getOperand(0)
1877                      : getNode(ISD::UNDEF, VT.getVectorElementType());
1878  if (V.getOpcode() == ISD::BUILD_VECTOR)
1879    return V.getOperand(Index);
1880  if (V.getOpcode() == ISD::VECTOR_SHUFFLE)
1881    return getShuffleScalarElt(V.Val, Index);
1882  return SDOperand();
1883}
1884
1885
1886/// getNode - Gets or creates the specified node.
1887///
1888SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT) {
1889  FoldingSetNodeID ID;
1890  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1891  void *IP = 0;
1892  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1893    return SDOperand(E, 0);
1894  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1895  CSEMap.InsertNode(N, IP);
1896
1897  AllNodes.push_back(N);
1898  return SDOperand(N, 0);
1899}
1900
1901SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT, SDOperand Operand) {
1902  // Constant fold unary operations with an integer constant operand.
1903  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1904    const APInt &Val = C->getAPIntValue();
1905    unsigned BitWidth = VT.getSizeInBits();
1906    switch (Opcode) {
1907    default: break;
1908    case ISD::SIGN_EXTEND:
1909      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1910    case ISD::ANY_EXTEND:
1911    case ISD::ZERO_EXTEND:
1912    case ISD::TRUNCATE:
1913      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1914    case ISD::UINT_TO_FP:
1915    case ISD::SINT_TO_FP: {
1916      const uint64_t zero[] = {0, 0};
1917      // No compile time operations on this type.
1918      if (VT==MVT::ppcf128)
1919        break;
1920      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1921      (void)apf.convertFromAPInt(Val,
1922                                 Opcode==ISD::SINT_TO_FP,
1923                                 APFloat::rmNearestTiesToEven);
1924      return getConstantFP(apf, VT);
1925    }
1926    case ISD::BIT_CONVERT:
1927      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1928        return getConstantFP(Val.bitsToFloat(), VT);
1929      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1930        return getConstantFP(Val.bitsToDouble(), VT);
1931      break;
1932    case ISD::BSWAP:
1933      return getConstant(Val.byteSwap(), VT);
1934    case ISD::CTPOP:
1935      return getConstant(Val.countPopulation(), VT);
1936    case ISD::CTLZ:
1937      return getConstant(Val.countLeadingZeros(), VT);
1938    case ISD::CTTZ:
1939      return getConstant(Val.countTrailingZeros(), VT);
1940    }
1941  }
1942
1943  // Constant fold unary operations with a floating point constant operand.
1944  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1945    APFloat V = C->getValueAPF();    // make copy
1946    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1947      switch (Opcode) {
1948      case ISD::FNEG:
1949        V.changeSign();
1950        return getConstantFP(V, VT);
1951      case ISD::FABS:
1952        V.clearSign();
1953        return getConstantFP(V, VT);
1954      case ISD::FP_ROUND:
1955      case ISD::FP_EXTEND:
1956        // This can return overflow, underflow, or inexact; we don't care.
1957        // FIXME need to be more flexible about rounding mode.
1958        (void)V.convert(*MVTToAPFloatSemantics(VT),
1959                        APFloat::rmNearestTiesToEven);
1960        return getConstantFP(V, VT);
1961      case ISD::FP_TO_SINT:
1962      case ISD::FP_TO_UINT: {
1963        integerPart x;
1964        assert(integerPartWidth >= 64);
1965        // FIXME need to be more flexible about rounding mode.
1966        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1967                              Opcode==ISD::FP_TO_SINT,
1968                              APFloat::rmTowardZero);
1969        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1970          break;
1971        return getConstant(x, VT);
1972      }
1973      case ISD::BIT_CONVERT:
1974        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1975          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1976        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1977          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1978        break;
1979      }
1980    }
1981  }
1982
1983  unsigned OpOpcode = Operand.Val->getOpcode();
1984  switch (Opcode) {
1985  case ISD::TokenFactor:
1986    return Operand;         // Factor of one node?  No need.
1987  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1988  case ISD::FP_EXTEND:
1989    assert(VT.isFloatingPoint() &&
1990           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
1991    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1992    if (Operand.getOpcode() == ISD::UNDEF)
1993      return getNode(ISD::UNDEF, VT);
1994    break;
1995  case ISD::SIGN_EXTEND:
1996    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
1997           "Invalid SIGN_EXTEND!");
1998    if (Operand.getValueType() == VT) return Operand;   // noop extension
1999    assert(Operand.getValueType().bitsLT(VT)
2000           && "Invalid sext node, dst < src!");
2001    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2002      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2003    break;
2004  case ISD::ZERO_EXTEND:
2005    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2006           "Invalid ZERO_EXTEND!");
2007    if (Operand.getValueType() == VT) return Operand;   // noop extension
2008    assert(Operand.getValueType().bitsLT(VT)
2009           && "Invalid zext node, dst < src!");
2010    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2011      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
2012    break;
2013  case ISD::ANY_EXTEND:
2014    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2015           "Invalid ANY_EXTEND!");
2016    if (Operand.getValueType() == VT) return Operand;   // noop extension
2017    assert(Operand.getValueType().bitsLT(VT)
2018           && "Invalid anyext node, dst < src!");
2019    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2020      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2021      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2022    break;
2023  case ISD::TRUNCATE:
2024    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2025           "Invalid TRUNCATE!");
2026    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2027    assert(Operand.getValueType().bitsGT(VT)
2028           && "Invalid truncate node, src < dst!");
2029    if (OpOpcode == ISD::TRUNCATE)
2030      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2031    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2032             OpOpcode == ISD::ANY_EXTEND) {
2033      // If the source is smaller than the dest, we still need an extend.
2034      if (Operand.Val->getOperand(0).getValueType().bitsLT(VT))
2035        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2036      else if (Operand.Val->getOperand(0).getValueType().bitsGT(VT))
2037        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2038      else
2039        return Operand.Val->getOperand(0);
2040    }
2041    break;
2042  case ISD::BIT_CONVERT:
2043    // Basic sanity checking.
2044    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2045           && "Cannot BIT_CONVERT between types of different sizes!");
2046    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2047    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2048      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2049    if (OpOpcode == ISD::UNDEF)
2050      return getNode(ISD::UNDEF, VT);
2051    break;
2052  case ISD::SCALAR_TO_VECTOR:
2053    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2054           VT.getVectorElementType() == Operand.getValueType() &&
2055           "Illegal SCALAR_TO_VECTOR node!");
2056    if (OpOpcode == ISD::UNDEF)
2057      return getNode(ISD::UNDEF, VT);
2058    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2059    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2060        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2061        Operand.getConstantOperandVal(1) == 0 &&
2062        Operand.getOperand(0).getValueType() == VT)
2063      return Operand.getOperand(0);
2064    break;
2065  case ISD::FNEG:
2066    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2067      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2068                     Operand.Val->getOperand(0));
2069    if (OpOpcode == ISD::FNEG)  // --X -> X
2070      return Operand.Val->getOperand(0);
2071    break;
2072  case ISD::FABS:
2073    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2074      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2075    break;
2076  }
2077
2078  SDNode *N;
2079  SDVTList VTs = getVTList(VT);
2080  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2081    FoldingSetNodeID ID;
2082    SDOperand Ops[1] = { Operand };
2083    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2084    void *IP = 0;
2085    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2086      return SDOperand(E, 0);
2087    N = new UnarySDNode(Opcode, VTs, Operand);
2088    CSEMap.InsertNode(N, IP);
2089  } else {
2090    N = new UnarySDNode(Opcode, VTs, Operand);
2091  }
2092  AllNodes.push_back(N);
2093  return SDOperand(N, 0);
2094}
2095
2096
2097
2098SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2099                                SDOperand N1, SDOperand N2) {
2100  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2101  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2102  switch (Opcode) {
2103  default: break;
2104  case ISD::TokenFactor:
2105    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2106           N2.getValueType() == MVT::Other && "Invalid token factor!");
2107    // Fold trivial token factors.
2108    if (N1.getOpcode() == ISD::EntryToken) return N2;
2109    if (N2.getOpcode() == ISD::EntryToken) return N1;
2110    break;
2111  case ISD::AND:
2112    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2113           N1.getValueType() == VT && "Binary operator types must match!");
2114    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2115    // worth handling here.
2116    if (N2C && N2C->isNullValue())
2117      return N2;
2118    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2119      return N1;
2120    break;
2121  case ISD::OR:
2122  case ISD::XOR:
2123  case ISD::ADD:
2124  case ISD::SUB:
2125    assert(VT.isInteger() && N1.getValueType() == N2.getValueType() &&
2126           N1.getValueType() == VT && "Binary operator types must match!");
2127    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2128    // it's worth handling here.
2129    if (N2C && N2C->isNullValue())
2130      return N1;
2131    break;
2132  case ISD::UDIV:
2133  case ISD::UREM:
2134  case ISD::MULHU:
2135  case ISD::MULHS:
2136    assert(VT.isInteger() && "This operator does not apply to FP types!");
2137    // fall through
2138  case ISD::MUL:
2139  case ISD::SDIV:
2140  case ISD::SREM:
2141  case ISD::FADD:
2142  case ISD::FSUB:
2143  case ISD::FMUL:
2144  case ISD::FDIV:
2145  case ISD::FREM:
2146    assert(N1.getValueType() == N2.getValueType() &&
2147           N1.getValueType() == VT && "Binary operator types must match!");
2148    break;
2149  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2150    assert(N1.getValueType() == VT &&
2151           N1.getValueType().isFloatingPoint() &&
2152           N2.getValueType().isFloatingPoint() &&
2153           "Invalid FCOPYSIGN!");
2154    break;
2155  case ISD::SHL:
2156  case ISD::SRA:
2157  case ISD::SRL:
2158  case ISD::ROTL:
2159  case ISD::ROTR:
2160    assert(VT == N1.getValueType() &&
2161           "Shift operators return type must be the same as their first arg");
2162    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2163           VT != MVT::i1 && "Shifts only work on integers");
2164    break;
2165  case ISD::FP_ROUND_INREG: {
2166    MVT EVT = cast<VTSDNode>(N2)->getVT();
2167    assert(VT == N1.getValueType() && "Not an inreg round!");
2168    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2169           "Cannot FP_ROUND_INREG integer types");
2170    assert(EVT.bitsLE(VT) && "Not rounding down!");
2171    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2172    break;
2173  }
2174  case ISD::FP_ROUND:
2175    assert(VT.isFloatingPoint() &&
2176           N1.getValueType().isFloatingPoint() &&
2177           VT.bitsLE(N1.getValueType()) &&
2178           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2179    if (N1.getValueType() == VT) return N1;  // noop conversion.
2180    break;
2181  case ISD::AssertSext:
2182  case ISD::AssertZext: {
2183    MVT EVT = cast<VTSDNode>(N2)->getVT();
2184    assert(VT == N1.getValueType() && "Not an inreg extend!");
2185    assert(VT.isInteger() && EVT.isInteger() &&
2186           "Cannot *_EXTEND_INREG FP types");
2187    assert(EVT.bitsLE(VT) && "Not extending!");
2188    if (VT == EVT) return N1; // noop assertion.
2189    break;
2190  }
2191  case ISD::SIGN_EXTEND_INREG: {
2192    MVT EVT = cast<VTSDNode>(N2)->getVT();
2193    assert(VT == N1.getValueType() && "Not an inreg extend!");
2194    assert(VT.isInteger() && EVT.isInteger() &&
2195           "Cannot *_EXTEND_INREG FP types");
2196    assert(EVT.bitsLE(VT) && "Not extending!");
2197    if (EVT == VT) return N1;  // Not actually extending
2198
2199    if (N1C) {
2200      APInt Val = N1C->getAPIntValue();
2201      unsigned FromBits = cast<VTSDNode>(N2)->getVT().getSizeInBits();
2202      Val <<= Val.getBitWidth()-FromBits;
2203      Val = Val.ashr(Val.getBitWidth()-FromBits);
2204      return getConstant(Val, VT);
2205    }
2206    break;
2207  }
2208  case ISD::EXTRACT_VECTOR_ELT:
2209    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2210
2211    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2212    if (N1.getOpcode() == ISD::UNDEF)
2213      return getNode(ISD::UNDEF, VT);
2214
2215    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2216    // expanding copies of large vectors from registers.
2217    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2218        N1.getNumOperands() > 0) {
2219      unsigned Factor =
2220        N1.getOperand(0).getValueType().getVectorNumElements();
2221      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2222                     N1.getOperand(N2C->getValue() / Factor),
2223                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2224    }
2225
2226    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2227    // expanding large vector constants.
2228    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2229      return N1.getOperand(N2C->getValue());
2230
2231    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2232    // operations are lowered to scalars.
2233    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2234      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2235        if (IEC == N2C)
2236          return N1.getOperand(1);
2237        else
2238          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2239      }
2240    break;
2241  case ISD::EXTRACT_ELEMENT:
2242    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2243    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2244           (N1.getValueType().isInteger() == VT.isInteger()) &&
2245           "Wrong types for EXTRACT_ELEMENT!");
2246
2247    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2248    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2249    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2250    if (N1.getOpcode() == ISD::BUILD_PAIR)
2251      return N1.getOperand(N2C->getValue());
2252
2253    // EXTRACT_ELEMENT of a constant int is also very common.
2254    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2255      unsigned ElementSize = VT.getSizeInBits();
2256      unsigned Shift = ElementSize * N2C->getValue();
2257      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2258      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2259    }
2260    break;
2261  case ISD::EXTRACT_SUBVECTOR:
2262    if (N1.getValueType() == VT) // Trivial extraction.
2263      return N1;
2264    break;
2265  }
2266
2267  if (N1C) {
2268    if (N2C) {
2269      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2270      switch (Opcode) {
2271      case ISD::ADD: return getConstant(C1 + C2, VT);
2272      case ISD::SUB: return getConstant(C1 - C2, VT);
2273      case ISD::MUL: return getConstant(C1 * C2, VT);
2274      case ISD::UDIV:
2275        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2276        break;
2277      case ISD::UREM :
2278        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2279        break;
2280      case ISD::SDIV :
2281        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2282        break;
2283      case ISD::SREM :
2284        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2285        break;
2286      case ISD::AND  : return getConstant(C1 & C2, VT);
2287      case ISD::OR   : return getConstant(C1 | C2, VT);
2288      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2289      case ISD::SHL  : return getConstant(C1 << C2, VT);
2290      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2291      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2292      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2293      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2294      default: break;
2295      }
2296    } else {      // Cannonicalize constant to RHS if commutative
2297      if (isCommutativeBinOp(Opcode)) {
2298        std::swap(N1C, N2C);
2299        std::swap(N1, N2);
2300      }
2301    }
2302  }
2303
2304  // Constant fold FP operations.
2305  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2306  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2307  if (N1CFP) {
2308    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2309      // Cannonicalize constant to RHS if commutative
2310      std::swap(N1CFP, N2CFP);
2311      std::swap(N1, N2);
2312    } else if (N2CFP && VT != MVT::ppcf128) {
2313      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2314      APFloat::opStatus s;
2315      switch (Opcode) {
2316      case ISD::FADD:
2317        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2318        if (s != APFloat::opInvalidOp)
2319          return getConstantFP(V1, VT);
2320        break;
2321      case ISD::FSUB:
2322        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2323        if (s!=APFloat::opInvalidOp)
2324          return getConstantFP(V1, VT);
2325        break;
2326      case ISD::FMUL:
2327        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2328        if (s!=APFloat::opInvalidOp)
2329          return getConstantFP(V1, VT);
2330        break;
2331      case ISD::FDIV:
2332        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2333        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2334          return getConstantFP(V1, VT);
2335        break;
2336      case ISD::FREM :
2337        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2338        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2339          return getConstantFP(V1, VT);
2340        break;
2341      case ISD::FCOPYSIGN:
2342        V1.copySign(V2);
2343        return getConstantFP(V1, VT);
2344      default: break;
2345      }
2346    }
2347  }
2348
2349  // Canonicalize an UNDEF to the RHS, even over a constant.
2350  if (N1.getOpcode() == ISD::UNDEF) {
2351    if (isCommutativeBinOp(Opcode)) {
2352      std::swap(N1, N2);
2353    } else {
2354      switch (Opcode) {
2355      case ISD::FP_ROUND_INREG:
2356      case ISD::SIGN_EXTEND_INREG:
2357      case ISD::SUB:
2358      case ISD::FSUB:
2359      case ISD::FDIV:
2360      case ISD::FREM:
2361      case ISD::SRA:
2362        return N1;     // fold op(undef, arg2) -> undef
2363      case ISD::UDIV:
2364      case ISD::SDIV:
2365      case ISD::UREM:
2366      case ISD::SREM:
2367      case ISD::SRL:
2368      case ISD::SHL:
2369        if (!VT.isVector())
2370          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2371        // For vectors, we can't easily build an all zero vector, just return
2372        // the LHS.
2373        return N2;
2374      }
2375    }
2376  }
2377
2378  // Fold a bunch of operators when the RHS is undef.
2379  if (N2.getOpcode() == ISD::UNDEF) {
2380    switch (Opcode) {
2381    case ISD::XOR:
2382      if (N1.getOpcode() == ISD::UNDEF)
2383        // Handle undef ^ undef -> 0 special case. This is a common
2384        // idiom (misuse).
2385        return getConstant(0, VT);
2386      // fallthrough
2387    case ISD::ADD:
2388    case ISD::ADDC:
2389    case ISD::ADDE:
2390    case ISD::SUB:
2391    case ISD::FADD:
2392    case ISD::FSUB:
2393    case ISD::FMUL:
2394    case ISD::FDIV:
2395    case ISD::FREM:
2396    case ISD::UDIV:
2397    case ISD::SDIV:
2398    case ISD::UREM:
2399    case ISD::SREM:
2400      return N2;       // fold op(arg1, undef) -> undef
2401    case ISD::MUL:
2402    case ISD::AND:
2403    case ISD::SRL:
2404    case ISD::SHL:
2405      if (!VT.isVector())
2406        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2407      // For vectors, we can't easily build an all zero vector, just return
2408      // the LHS.
2409      return N1;
2410    case ISD::OR:
2411      if (!VT.isVector())
2412        return getConstant(VT.getIntegerVTBitMask(), VT);
2413      // For vectors, we can't easily build an all one vector, just return
2414      // the LHS.
2415      return N1;
2416    case ISD::SRA:
2417      return N1;
2418    }
2419  }
2420
2421  // Memoize this node if possible.
2422  SDNode *N;
2423  SDVTList VTs = getVTList(VT);
2424  if (VT != MVT::Flag) {
2425    SDOperand Ops[] = { N1, N2 };
2426    FoldingSetNodeID ID;
2427    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2428    void *IP = 0;
2429    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2430      return SDOperand(E, 0);
2431    N = new BinarySDNode(Opcode, VTs, N1, N2);
2432    CSEMap.InsertNode(N, IP);
2433  } else {
2434    N = new BinarySDNode(Opcode, VTs, N1, N2);
2435  }
2436
2437  AllNodes.push_back(N);
2438  return SDOperand(N, 0);
2439}
2440
2441SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2442                                SDOperand N1, SDOperand N2, SDOperand N3) {
2443  // Perform various simplifications.
2444  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2445  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2446  switch (Opcode) {
2447  case ISD::SETCC: {
2448    // Use FoldSetCC to simplify SETCC's.
2449    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2450    if (Simp.Val) return Simp;
2451    break;
2452  }
2453  case ISD::SELECT:
2454    if (N1C) {
2455     if (N1C->getValue())
2456        return N2;             // select true, X, Y -> X
2457      else
2458        return N3;             // select false, X, Y -> Y
2459    }
2460
2461    if (N2 == N3) return N2;   // select C, X, X -> X
2462    break;
2463  case ISD::BRCOND:
2464    if (N2C) {
2465      if (N2C->getValue()) // Unconditional branch
2466        return getNode(ISD::BR, MVT::Other, N1, N3);
2467      else
2468        return N1;         // Never-taken branch
2469    }
2470    break;
2471  case ISD::VECTOR_SHUFFLE:
2472    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2473           VT.isVector() && N3.getValueType().isVector() &&
2474           N3.getOpcode() == ISD::BUILD_VECTOR &&
2475           VT.getVectorNumElements() == N3.getNumOperands() &&
2476           "Illegal VECTOR_SHUFFLE node!");
2477    break;
2478  case ISD::BIT_CONVERT:
2479    // Fold bit_convert nodes from a type to themselves.
2480    if (N1.getValueType() == VT)
2481      return N1;
2482    break;
2483  }
2484
2485  // Memoize node if it doesn't produce a flag.
2486  SDNode *N;
2487  SDVTList VTs = getVTList(VT);
2488  if (VT != MVT::Flag) {
2489    SDOperand Ops[] = { N1, N2, N3 };
2490    FoldingSetNodeID ID;
2491    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2492    void *IP = 0;
2493    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2494      return SDOperand(E, 0);
2495    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2496    CSEMap.InsertNode(N, IP);
2497  } else {
2498    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2499  }
2500  AllNodes.push_back(N);
2501  return SDOperand(N, 0);
2502}
2503
2504SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2505                                SDOperand N1, SDOperand N2, SDOperand N3,
2506                                SDOperand N4) {
2507  SDOperand Ops[] = { N1, N2, N3, N4 };
2508  return getNode(Opcode, VT, Ops, 4);
2509}
2510
2511SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
2512                                SDOperand N1, SDOperand N2, SDOperand N3,
2513                                SDOperand N4, SDOperand N5) {
2514  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2515  return getNode(Opcode, VT, Ops, 5);
2516}
2517
2518/// getMemsetValue - Vectorized representation of the memset value
2519/// operand.
2520static SDOperand getMemsetValue(SDOperand Value, MVT VT, SelectionDAG &DAG) {
2521  unsigned NumBits = VT.isVector() ?
2522    VT.getVectorElementType().getSizeInBits() : VT.getSizeInBits();
2523  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2524    APInt Val = APInt(NumBits, C->getValue() & 255);
2525    unsigned Shift = 8;
2526    for (unsigned i = NumBits; i > 8; i >>= 1) {
2527      Val = (Val << Shift) | Val;
2528      Shift <<= 1;
2529    }
2530    if (VT.isInteger())
2531      return DAG.getConstant(Val, VT);
2532    return DAG.getConstantFP(APFloat(Val), VT);
2533  }
2534
2535  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2536  unsigned Shift = 8;
2537  for (unsigned i = NumBits; i > 8; i >>= 1) {
2538    Value = DAG.getNode(ISD::OR, VT,
2539                        DAG.getNode(ISD::SHL, VT, Value,
2540                                    DAG.getConstant(Shift, MVT::i8)), Value);
2541    Shift <<= 1;
2542  }
2543
2544  return Value;
2545}
2546
2547/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2548/// used when a memcpy is turned into a memset when the source is a constant
2549/// string ptr.
2550static SDOperand getMemsetStringVal(MVT VT, SelectionDAG &DAG,
2551                                    const TargetLowering &TLI,
2552                                    std::string &Str, unsigned Offset) {
2553  // Handle vector with all elements zero.
2554  if (Str.empty()) {
2555    if (VT.isInteger())
2556      return DAG.getConstant(0, VT);
2557    unsigned NumElts = VT.getVectorNumElements();
2558    MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
2559    return DAG.getNode(ISD::BIT_CONVERT, VT,
2560                       DAG.getConstant(0, MVT::getVectorVT(EltVT, NumElts)));
2561  }
2562
2563  assert(!VT.isVector() && "Can't handle vector type here!");
2564  unsigned NumBits = VT.getSizeInBits();
2565  unsigned MSB = NumBits / 8;
2566  uint64_t Val = 0;
2567  if (TLI.isLittleEndian())
2568    Offset = Offset + MSB - 1;
2569  for (unsigned i = 0; i != MSB; ++i) {
2570    Val = (Val << 8) | (unsigned char)Str[Offset];
2571    Offset += TLI.isLittleEndian() ? -1 : 1;
2572  }
2573  return DAG.getConstant(Val, VT);
2574}
2575
2576/// getMemBasePlusOffset - Returns base and offset node for the
2577///
2578static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2579                                      SelectionDAG &DAG) {
2580  MVT VT = Base.getValueType();
2581  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2582}
2583
2584/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2585///
2586static bool isMemSrcFromString(SDOperand Src, std::string &Str) {
2587  unsigned SrcDelta = 0;
2588  GlobalAddressSDNode *G = NULL;
2589  if (Src.getOpcode() == ISD::GlobalAddress)
2590    G = cast<GlobalAddressSDNode>(Src);
2591  else if (Src.getOpcode() == ISD::ADD &&
2592           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2593           Src.getOperand(1).getOpcode() == ISD::Constant) {
2594    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2595    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2596  }
2597  if (!G)
2598    return false;
2599
2600  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2601  if (GV && GetConstantStringInfo(GV, Str, SrcDelta, false))
2602    return true;
2603
2604  return false;
2605}
2606
2607/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2608/// to replace the memset / memcpy is below the threshold. It also returns the
2609/// types of the sequence of memory ops to perform memset / memcpy.
2610static
2611bool MeetsMaxMemopRequirement(std::vector<MVT> &MemOps,
2612                              SDOperand Dst, SDOperand Src,
2613                              unsigned Limit, uint64_t Size, unsigned &Align,
2614                              std::string &Str, bool &isSrcStr,
2615                              SelectionDAG &DAG,
2616                              const TargetLowering &TLI) {
2617  isSrcStr = isMemSrcFromString(Src, Str);
2618  bool isSrcConst = isa<ConstantSDNode>(Src);
2619  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2620  MVT VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2621  if (VT != MVT::iAny) {
2622    unsigned NewAlign = (unsigned)
2623      TLI.getTargetData()->getABITypeAlignment(VT.getTypeForMVT());
2624    // If source is a string constant, this will require an unaligned load.
2625    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2626      if (Dst.getOpcode() != ISD::FrameIndex) {
2627        // Can't change destination alignment. It requires a unaligned store.
2628        if (AllowUnalign)
2629          VT = MVT::iAny;
2630      } else {
2631        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2632        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2633        if (MFI->isFixedObjectIndex(FI)) {
2634          // Can't change destination alignment. It requires a unaligned store.
2635          if (AllowUnalign)
2636            VT = MVT::iAny;
2637        } else {
2638          // Give the stack frame object a larger alignment if needed.
2639          if (MFI->getObjectAlignment(FI) < NewAlign)
2640            MFI->setObjectAlignment(FI, NewAlign);
2641          Align = NewAlign;
2642        }
2643      }
2644    }
2645  }
2646
2647  if (VT == MVT::iAny) {
2648    if (AllowUnalign) {
2649      VT = MVT::i64;
2650    } else {
2651      switch (Align & 7) {
2652      case 0:  VT = MVT::i64; break;
2653      case 4:  VT = MVT::i32; break;
2654      case 2:  VT = MVT::i16; break;
2655      default: VT = MVT::i8;  break;
2656      }
2657    }
2658
2659    MVT LVT = MVT::i64;
2660    while (!TLI.isTypeLegal(LVT))
2661      LVT = (MVT::SimpleValueType)(LVT.getSimpleVT() - 1);
2662    assert(LVT.isInteger());
2663
2664    if (VT.bitsGT(LVT))
2665      VT = LVT;
2666  }
2667
2668  unsigned NumMemOps = 0;
2669  while (Size != 0) {
2670    unsigned VTSize = VT.getSizeInBits() / 8;
2671    while (VTSize > Size) {
2672      // For now, only use non-vector load / store's for the left-over pieces.
2673      if (VT.isVector()) {
2674        VT = MVT::i64;
2675        while (!TLI.isTypeLegal(VT))
2676          VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2677        VTSize = VT.getSizeInBits() / 8;
2678      } else {
2679        VT = (MVT::SimpleValueType)(VT.getSimpleVT() - 1);
2680        VTSize >>= 1;
2681      }
2682    }
2683
2684    if (++NumMemOps > Limit)
2685      return false;
2686    MemOps.push_back(VT);
2687    Size -= VTSize;
2688  }
2689
2690  return true;
2691}
2692
2693static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2694                                         SDOperand Chain, SDOperand Dst,
2695                                         SDOperand Src, uint64_t Size,
2696                                         unsigned Align, bool AlwaysInline,
2697                                         const Value *DstSV, uint64_t DstSVOff,
2698                                         const Value *SrcSV, uint64_t SrcSVOff){
2699  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2700
2701  // Expand memcpy to a series of load and store ops if the size operand falls
2702  // below a certain threshold.
2703  std::vector<MVT> MemOps;
2704  uint64_t Limit = -1;
2705  if (!AlwaysInline)
2706    Limit = TLI.getMaxStoresPerMemcpy();
2707  unsigned DstAlign = Align;  // Destination alignment can change.
2708  std::string Str;
2709  bool CopyFromStr;
2710  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2711                                Str, CopyFromStr, DAG, TLI))
2712    return SDOperand();
2713
2714
2715  bool isZeroStr = CopyFromStr && Str.empty();
2716  SmallVector<SDOperand, 8> OutChains;
2717  unsigned NumMemOps = MemOps.size();
2718  uint64_t SrcOff = 0, DstOff = 0;
2719  for (unsigned i = 0; i < NumMemOps; i++) {
2720    MVT VT = MemOps[i];
2721    unsigned VTSize = VT.getSizeInBits() / 8;
2722    SDOperand Value, Store;
2723
2724    if (CopyFromStr && (isZeroStr || !VT.isVector())) {
2725      // It's unlikely a store of a vector immediate can be done in a single
2726      // instruction. It would require a load from a constantpool first.
2727      // We also handle store a vector with all zero's.
2728      // FIXME: Handle other cases where store of vector immediate is done in
2729      // a single instruction.
2730      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2731      Store = DAG.getStore(Chain, Value,
2732                           getMemBasePlusOffset(Dst, DstOff, DAG),
2733                           DstSV, DstSVOff + DstOff);
2734    } else {
2735      Value = DAG.getLoad(VT, Chain,
2736                          getMemBasePlusOffset(Src, SrcOff, DAG),
2737                          SrcSV, SrcSVOff + SrcOff, false, Align);
2738      Store = DAG.getStore(Chain, Value,
2739                           getMemBasePlusOffset(Dst, DstOff, DAG),
2740                           DstSV, DstSVOff + DstOff, false, DstAlign);
2741    }
2742    OutChains.push_back(Store);
2743    SrcOff += VTSize;
2744    DstOff += VTSize;
2745  }
2746
2747  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2748                     &OutChains[0], OutChains.size());
2749}
2750
2751static SDOperand getMemmoveLoadsAndStores(SelectionDAG &DAG,
2752                                          SDOperand Chain, SDOperand Dst,
2753                                          SDOperand Src, uint64_t Size,
2754                                          unsigned Align, bool AlwaysInline,
2755                                          const Value *DstSV, uint64_t DstSVOff,
2756                                          const Value *SrcSV, uint64_t SrcSVOff){
2757  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2758
2759  // Expand memmove to a series of load and store ops if the size operand falls
2760  // below a certain threshold.
2761  std::vector<MVT> MemOps;
2762  uint64_t Limit = -1;
2763  if (!AlwaysInline)
2764    Limit = TLI.getMaxStoresPerMemmove();
2765  unsigned DstAlign = Align;  // Destination alignment can change.
2766  std::string Str;
2767  bool CopyFromStr;
2768  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2769                                Str, CopyFromStr, DAG, TLI))
2770    return SDOperand();
2771
2772  uint64_t SrcOff = 0, DstOff = 0;
2773
2774  SmallVector<SDOperand, 8> LoadValues;
2775  SmallVector<SDOperand, 8> LoadChains;
2776  SmallVector<SDOperand, 8> OutChains;
2777  unsigned NumMemOps = MemOps.size();
2778  for (unsigned i = 0; i < NumMemOps; i++) {
2779    MVT VT = MemOps[i];
2780    unsigned VTSize = VT.getSizeInBits() / 8;
2781    SDOperand Value, Store;
2782
2783    Value = DAG.getLoad(VT, Chain,
2784                        getMemBasePlusOffset(Src, SrcOff, DAG),
2785                        SrcSV, SrcSVOff + SrcOff, false, Align);
2786    LoadValues.push_back(Value);
2787    LoadChains.push_back(Value.getValue(1));
2788    SrcOff += VTSize;
2789  }
2790  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2791                      &LoadChains[0], LoadChains.size());
2792  OutChains.clear();
2793  for (unsigned i = 0; i < NumMemOps; i++) {
2794    MVT VT = MemOps[i];
2795    unsigned VTSize = VT.getSizeInBits() / 8;
2796    SDOperand Value, Store;
2797
2798    Store = DAG.getStore(Chain, LoadValues[i],
2799                         getMemBasePlusOffset(Dst, DstOff, DAG),
2800                         DstSV, DstSVOff + DstOff, false, DstAlign);
2801    OutChains.push_back(Store);
2802    DstOff += VTSize;
2803  }
2804
2805  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2806                     &OutChains[0], OutChains.size());
2807}
2808
2809static SDOperand getMemsetStores(SelectionDAG &DAG,
2810                                 SDOperand Chain, SDOperand Dst,
2811                                 SDOperand Src, uint64_t Size,
2812                                 unsigned Align,
2813                                 const Value *DstSV, uint64_t DstSVOff) {
2814  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2815
2816  // Expand memset to a series of load/store ops if the size operand
2817  // falls below a certain threshold.
2818  std::vector<MVT> MemOps;
2819  std::string Str;
2820  bool CopyFromStr;
2821  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
2822                                Size, Align, Str, CopyFromStr, DAG, TLI))
2823    return SDOperand();
2824
2825  SmallVector<SDOperand, 8> OutChains;
2826  uint64_t DstOff = 0;
2827
2828  unsigned NumMemOps = MemOps.size();
2829  for (unsigned i = 0; i < NumMemOps; i++) {
2830    MVT VT = MemOps[i];
2831    unsigned VTSize = VT.getSizeInBits() / 8;
2832    SDOperand Value = getMemsetValue(Src, VT, DAG);
2833    SDOperand Store = DAG.getStore(Chain, Value,
2834                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2835                                   DstSV, DstSVOff + DstOff);
2836    OutChains.push_back(Store);
2837    DstOff += VTSize;
2838  }
2839
2840  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2841                     &OutChains[0], OutChains.size());
2842}
2843
2844SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2845                                  SDOperand Src, SDOperand Size,
2846                                  unsigned Align, bool AlwaysInline,
2847                                  const Value *DstSV, uint64_t DstSVOff,
2848                                  const Value *SrcSV, uint64_t SrcSVOff) {
2849
2850  // Check to see if we should lower the memcpy to loads and stores first.
2851  // For cases within the target-specified limits, this is the best choice.
2852  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2853  if (ConstantSize) {
2854    // Memcpy with size zero? Just return the original chain.
2855    if (ConstantSize->isNullValue())
2856      return Chain;
2857
2858    SDOperand Result =
2859      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2860                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2861    if (Result.Val)
2862      return Result;
2863  }
2864
2865  // Then check to see if we should lower the memcpy with target-specific
2866  // code. If the target chooses to do this, this is the next best.
2867  SDOperand Result =
2868    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2869                                AlwaysInline,
2870                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2871  if (Result.Val)
2872    return Result;
2873
2874  // If we really need inline code and the target declined to provide it,
2875  // use a (potentially long) sequence of loads and stores.
2876  if (AlwaysInline) {
2877    assert(ConstantSize && "AlwaysInline requires a constant size!");
2878    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2879                                   ConstantSize->getValue(), Align, true,
2880                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
2881  }
2882
2883  // Emit a library call.
2884  TargetLowering::ArgListTy Args;
2885  TargetLowering::ArgListEntry Entry;
2886  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2887  Entry.Node = Dst; Args.push_back(Entry);
2888  Entry.Node = Src; Args.push_back(Entry);
2889  Entry.Node = Size; Args.push_back(Entry);
2890  std::pair<SDOperand,SDOperand> CallResult =
2891    TLI.LowerCallTo(Chain, Type::VoidTy,
2892                    false, false, false, CallingConv::C, false,
2893                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2894                    Args, *this);
2895  return CallResult.second;
2896}
2897
2898SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2899                                   SDOperand Src, SDOperand Size,
2900                                   unsigned Align,
2901                                   const Value *DstSV, uint64_t DstSVOff,
2902                                   const Value *SrcSV, uint64_t SrcSVOff) {
2903
2904  // Check to see if we should lower the memmove to loads and stores first.
2905  // For cases within the target-specified limits, this is the best choice.
2906  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2907  if (ConstantSize) {
2908    // Memmove with size zero? Just return the original chain.
2909    if (ConstantSize->isNullValue())
2910      return Chain;
2911
2912    SDOperand Result =
2913      getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2914                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2915    if (Result.Val)
2916      return Result;
2917  }
2918
2919  // Then check to see if we should lower the memmove with target-specific
2920  // code. If the target chooses to do this, this is the next best.
2921  SDOperand Result =
2922    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2923                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
2924  if (Result.Val)
2925    return Result;
2926
2927  // Emit a library call.
2928  TargetLowering::ArgListTy Args;
2929  TargetLowering::ArgListEntry Entry;
2930  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2931  Entry.Node = Dst; Args.push_back(Entry);
2932  Entry.Node = Src; Args.push_back(Entry);
2933  Entry.Node = Size; Args.push_back(Entry);
2934  std::pair<SDOperand,SDOperand> CallResult =
2935    TLI.LowerCallTo(Chain, Type::VoidTy,
2936                    false, false, false, CallingConv::C, false,
2937                    getExternalSymbol("memmove", TLI.getPointerTy()),
2938                    Args, *this);
2939  return CallResult.second;
2940}
2941
2942SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2943                                  SDOperand Src, SDOperand Size,
2944                                  unsigned Align,
2945                                  const Value *DstSV, uint64_t DstSVOff) {
2946
2947  // Check to see if we should lower the memset to stores first.
2948  // For cases within the target-specified limits, this is the best choice.
2949  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2950  if (ConstantSize) {
2951    // Memset with size zero? Just return the original chain.
2952    if (ConstantSize->isNullValue())
2953      return Chain;
2954
2955    SDOperand Result =
2956      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2957                      DstSV, DstSVOff);
2958    if (Result.Val)
2959      return Result;
2960  }
2961
2962  // Then check to see if we should lower the memset with target-specific
2963  // code. If the target chooses to do this, this is the next best.
2964  SDOperand Result =
2965    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2966                                DstSV, DstSVOff);
2967  if (Result.Val)
2968    return Result;
2969
2970  // Emit a library call.
2971  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2972  TargetLowering::ArgListTy Args;
2973  TargetLowering::ArgListEntry Entry;
2974  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2975  Args.push_back(Entry);
2976  // Extend or truncate the argument to be an i32 value for the call.
2977  if (Src.getValueType().bitsGT(MVT::i32))
2978    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2979  else
2980    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2981  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2982  Args.push_back(Entry);
2983  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2984  Args.push_back(Entry);
2985  std::pair<SDOperand,SDOperand> CallResult =
2986    TLI.LowerCallTo(Chain, Type::VoidTy,
2987                    false, false, false, CallingConv::C, false,
2988                    getExternalSymbol("memset", TLI.getPointerTy()),
2989                    Args, *this);
2990  return CallResult.second;
2991}
2992
2993SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2994                                  SDOperand Ptr, SDOperand Cmp,
2995                                  SDOperand Swp, const Value* PtrVal,
2996                                  unsigned Alignment) {
2997  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
2998  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2999  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
3000  FoldingSetNodeID ID;
3001  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
3002  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3003  void* IP = 0;
3004  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3005    return SDOperand(E, 0);
3006  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp,
3007                               PtrVal, Alignment);
3008  CSEMap.InsertNode(N, IP);
3009  AllNodes.push_back(N);
3010  return SDOperand(N, 0);
3011}
3012
3013SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3014                                  SDOperand Ptr, SDOperand Val,
3015                                  const Value* PtrVal,
3016                                  unsigned Alignment) {
3017  assert((   Opcode == ISD::ATOMIC_LOAD_ADD || Opcode == ISD::ATOMIC_LOAD_SUB
3018          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
3019          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
3020          || Opcode == ISD::ATOMIC_LOAD_NAND
3021          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
3022          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
3023         && "Invalid Atomic Op");
3024  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
3025  FoldingSetNodeID ID;
3026  SDOperand Ops[] = {Chain, Ptr, Val};
3027  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3028  void* IP = 0;
3029  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3030    return SDOperand(E, 0);
3031  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val,
3032                               PtrVal, Alignment);
3033  CSEMap.InsertNode(N, IP);
3034  AllNodes.push_back(N);
3035  return SDOperand(N, 0);
3036}
3037
3038SDOperand
3039SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3040                      MVT VT, SDOperand Chain,
3041                      SDOperand Ptr, SDOperand Offset,
3042                      const Value *SV, int SVOffset, MVT EVT,
3043                      bool isVolatile, unsigned Alignment) {
3044  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3045    const Type *Ty = 0;
3046    if (VT != MVT::iPTR) {
3047      Ty = VT.getTypeForMVT();
3048    } else if (SV) {
3049      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3050      assert(PT && "Value for load must be a pointer");
3051      Ty = PT->getElementType();
3052    }
3053    assert(Ty && "Could not get type information for load");
3054    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3055  }
3056
3057  if (VT == EVT) {
3058    ExtType = ISD::NON_EXTLOAD;
3059  } else if (ExtType == ISD::NON_EXTLOAD) {
3060    assert(VT == EVT && "Non-extending load from different memory type!");
3061  } else {
3062    // Extending load.
3063    if (VT.isVector())
3064      assert(EVT == VT.getVectorElementType() && "Invalid vector extload!");
3065    else
3066      assert(EVT.bitsLT(VT) &&
3067             "Should only be an extending load, not truncating!");
3068    assert((ExtType == ISD::EXTLOAD || VT.isInteger()) &&
3069           "Cannot sign/zero extend a FP/Vector load!");
3070    assert(VT.isInteger() == EVT.isInteger() &&
3071           "Cannot convert from FP to Int or Int -> FP!");
3072  }
3073
3074  bool Indexed = AM != ISD::UNINDEXED;
3075  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3076         "Unindexed load with an offset!");
3077
3078  SDVTList VTs = Indexed ?
3079    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3080  SDOperand Ops[] = { Chain, Ptr, Offset };
3081  FoldingSetNodeID ID;
3082  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3083  ID.AddInteger(AM);
3084  ID.AddInteger(ExtType);
3085  ID.AddInteger(EVT.getRawBits());
3086  ID.AddInteger(Alignment);
3087  ID.AddInteger(isVolatile);
3088  void *IP = 0;
3089  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3090    return SDOperand(E, 0);
3091  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3092                             Alignment, isVolatile);
3093  CSEMap.InsertNode(N, IP);
3094  AllNodes.push_back(N);
3095  return SDOperand(N, 0);
3096}
3097
3098SDOperand SelectionDAG::getLoad(MVT VT,
3099                                SDOperand Chain, SDOperand Ptr,
3100                                const Value *SV, int SVOffset,
3101                                bool isVolatile, unsigned Alignment) {
3102  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3103  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3104                 SV, SVOffset, VT, isVolatile, Alignment);
3105}
3106
3107SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT VT,
3108                                   SDOperand Chain, SDOperand Ptr,
3109                                   const Value *SV,
3110                                   int SVOffset, MVT EVT,
3111                                   bool isVolatile, unsigned Alignment) {
3112  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3113  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3114                 SV, SVOffset, EVT, isVolatile, Alignment);
3115}
3116
3117SDOperand
3118SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
3119                             SDOperand Offset, ISD::MemIndexedMode AM) {
3120  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3121  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3122         "Load is already a indexed load!");
3123  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3124                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3125                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3126                 LD->isVolatile(), LD->getAlignment());
3127}
3128
3129SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
3130                                 SDOperand Ptr, const Value *SV, int SVOffset,
3131                                 bool isVolatile, unsigned Alignment) {
3132  MVT VT = Val.getValueType();
3133
3134  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3135    const Type *Ty = 0;
3136    if (VT != MVT::iPTR) {
3137      Ty = VT.getTypeForMVT();
3138    } else if (SV) {
3139      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3140      assert(PT && "Value for store must be a pointer");
3141      Ty = PT->getElementType();
3142    }
3143    assert(Ty && "Could not get type information for store");
3144    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3145  }
3146  SDVTList VTs = getVTList(MVT::Other);
3147  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3148  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3149  FoldingSetNodeID ID;
3150  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3151  ID.AddInteger(ISD::UNINDEXED);
3152  ID.AddInteger(false);
3153  ID.AddInteger(VT.getRawBits());
3154  ID.AddInteger(Alignment);
3155  ID.AddInteger(isVolatile);
3156  void *IP = 0;
3157  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3158    return SDOperand(E, 0);
3159  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3160                              VT, SV, SVOffset, Alignment, isVolatile);
3161  CSEMap.InsertNode(N, IP);
3162  AllNodes.push_back(N);
3163  return SDOperand(N, 0);
3164}
3165
3166SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
3167                                      SDOperand Ptr, const Value *SV,
3168                                      int SVOffset, MVT SVT,
3169                                      bool isVolatile, unsigned Alignment) {
3170  MVT VT = Val.getValueType();
3171
3172  if (VT == SVT)
3173    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3174
3175  assert(VT.bitsGT(SVT) && "Not a truncation?");
3176  assert(VT.isInteger() == SVT.isInteger() &&
3177         "Can't do FP-INT conversion!");
3178
3179  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3180    const Type *Ty = 0;
3181    if (VT != MVT::iPTR) {
3182      Ty = VT.getTypeForMVT();
3183    } else if (SV) {
3184      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3185      assert(PT && "Value for store must be a pointer");
3186      Ty = PT->getElementType();
3187    }
3188    assert(Ty && "Could not get type information for store");
3189    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3190  }
3191  SDVTList VTs = getVTList(MVT::Other);
3192  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3193  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3194  FoldingSetNodeID ID;
3195  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3196  ID.AddInteger(ISD::UNINDEXED);
3197  ID.AddInteger(1);
3198  ID.AddInteger(SVT.getRawBits());
3199  ID.AddInteger(Alignment);
3200  ID.AddInteger(isVolatile);
3201  void *IP = 0;
3202  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3203    return SDOperand(E, 0);
3204  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3205                              SVT, SV, SVOffset, Alignment, isVolatile);
3206  CSEMap.InsertNode(N, IP);
3207  AllNodes.push_back(N);
3208  return SDOperand(N, 0);
3209}
3210
3211SDOperand
3212SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3213                              SDOperand Offset, ISD::MemIndexedMode AM) {
3214  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3215  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3216         "Store is already a indexed store!");
3217  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3218  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3219  FoldingSetNodeID ID;
3220  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3221  ID.AddInteger(AM);
3222  ID.AddInteger(ST->isTruncatingStore());
3223  ID.AddInteger(ST->getMemoryVT().getRawBits());
3224  ID.AddInteger(ST->getAlignment());
3225  ID.AddInteger(ST->isVolatile());
3226  void *IP = 0;
3227  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3228    return SDOperand(E, 0);
3229  SDNode *N = new StoreSDNode(Ops, VTs, AM,
3230                              ST->isTruncatingStore(), ST->getMemoryVT(),
3231                              ST->getSrcValue(), ST->getSrcValueOffset(),
3232                              ST->getAlignment(), ST->isVolatile());
3233  CSEMap.InsertNode(N, IP);
3234  AllNodes.push_back(N);
3235  return SDOperand(N, 0);
3236}
3237
3238SDOperand SelectionDAG::getVAArg(MVT VT,
3239                                 SDOperand Chain, SDOperand Ptr,
3240                                 SDOperand SV) {
3241  SDOperand Ops[] = { Chain, Ptr, SV };
3242  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3243}
3244
3245SDOperand SelectionDAG::getNode(unsigned Opcode, MVT VT,
3246                                SDOperandPtr Ops, unsigned NumOps) {
3247  switch (NumOps) {
3248  case 0: return getNode(Opcode, VT);
3249  case 1: return getNode(Opcode, VT, Ops[0]);
3250  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3251  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3252  default: break;
3253  }
3254
3255  switch (Opcode) {
3256  default: break;
3257  case ISD::SELECT_CC: {
3258    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3259    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3260           "LHS and RHS of condition must have same type!");
3261    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3262           "True and False arms of SelectCC must have same type!");
3263    assert(Ops[2].getValueType() == VT &&
3264           "select_cc node must be of same type as true and false value!");
3265    break;
3266  }
3267  case ISD::BR_CC: {
3268    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3269    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3270           "LHS/RHS of comparison should match types!");
3271    break;
3272  }
3273  }
3274
3275  // Memoize nodes.
3276  SDNode *N;
3277  SDVTList VTs = getVTList(VT);
3278  if (VT != MVT::Flag) {
3279    FoldingSetNodeID ID;
3280    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3281    void *IP = 0;
3282    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3283      return SDOperand(E, 0);
3284    N = new SDNode(Opcode, VTs, Ops, NumOps);
3285    CSEMap.InsertNode(N, IP);
3286  } else {
3287    N = new SDNode(Opcode, VTs, Ops, NumOps);
3288  }
3289  AllNodes.push_back(N);
3290  return SDOperand(N, 0);
3291}
3292
3293SDOperand SelectionDAG::getNode(unsigned Opcode,
3294                                std::vector<MVT> &ResultTys,
3295                                SDOperandPtr Ops, unsigned NumOps) {
3296  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3297                 Ops, NumOps);
3298}
3299
3300SDOperand SelectionDAG::getNode(unsigned Opcode,
3301                                const MVT *VTs, unsigned NumVTs,
3302                                SDOperandPtr Ops, unsigned NumOps) {
3303  if (NumVTs == 1)
3304    return getNode(Opcode, VTs[0], Ops, NumOps);
3305  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3306}
3307
3308SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3309                                SDOperandPtr Ops, unsigned NumOps) {
3310  if (VTList.NumVTs == 1)
3311    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3312
3313  switch (Opcode) {
3314  // FIXME: figure out how to safely handle things like
3315  // int foo(int x) { return 1 << (x & 255); }
3316  // int bar() { return foo(256); }
3317#if 0
3318  case ISD::SRA_PARTS:
3319  case ISD::SRL_PARTS:
3320  case ISD::SHL_PARTS:
3321    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3322        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3323      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3324    else if (N3.getOpcode() == ISD::AND)
3325      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3326        // If the and is only masking out bits that cannot effect the shift,
3327        // eliminate the and.
3328        unsigned NumBits = VT.getSizeInBits()*2;
3329        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3330          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3331      }
3332    break;
3333#endif
3334  }
3335
3336  // Memoize the node unless it returns a flag.
3337  SDNode *N;
3338  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3339    FoldingSetNodeID ID;
3340    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3341    void *IP = 0;
3342    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3343      return SDOperand(E, 0);
3344    if (NumOps == 1)
3345      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3346    else if (NumOps == 2)
3347      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3348    else if (NumOps == 3)
3349      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3350    else
3351      N = new SDNode(Opcode, VTList, Ops, NumOps);
3352    CSEMap.InsertNode(N, IP);
3353  } else {
3354    if (NumOps == 1)
3355      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3356    else if (NumOps == 2)
3357      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3358    else if (NumOps == 3)
3359      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3360    else
3361      N = new SDNode(Opcode, VTList, Ops, NumOps);
3362  }
3363  AllNodes.push_back(N);
3364  return SDOperand(N, 0);
3365}
3366
3367SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3368  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3369}
3370
3371SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3372                                SDOperand N1) {
3373  SDOperand Ops[] = { N1 };
3374  return getNode(Opcode, VTList, Ops, 1);
3375}
3376
3377SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3378                                SDOperand N1, SDOperand N2) {
3379  SDOperand Ops[] = { N1, N2 };
3380  return getNode(Opcode, VTList, Ops, 2);
3381}
3382
3383SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3384                                SDOperand N1, SDOperand N2, SDOperand N3) {
3385  SDOperand Ops[] = { N1, N2, N3 };
3386  return getNode(Opcode, VTList, Ops, 3);
3387}
3388
3389SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3390                                SDOperand N1, SDOperand N2, SDOperand N3,
3391                                SDOperand N4) {
3392  SDOperand Ops[] = { N1, N2, N3, N4 };
3393  return getNode(Opcode, VTList, Ops, 4);
3394}
3395
3396SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3397                                SDOperand N1, SDOperand N2, SDOperand N3,
3398                                SDOperand N4, SDOperand N5) {
3399  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3400  return getNode(Opcode, VTList, Ops, 5);
3401}
3402
3403SDVTList SelectionDAG::getVTList(MVT VT) {
3404  return makeVTList(SDNode::getValueTypeList(VT), 1);
3405}
3406
3407SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2) {
3408  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3409       E = VTList.end(); I != E; ++I) {
3410    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3411      return makeVTList(&(*I)[0], 2);
3412  }
3413  std::vector<MVT> V;
3414  V.push_back(VT1);
3415  V.push_back(VT2);
3416  VTList.push_front(V);
3417  return makeVTList(&(*VTList.begin())[0], 2);
3418}
3419SDVTList SelectionDAG::getVTList(MVT VT1, MVT VT2,
3420                                 MVT VT3) {
3421  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3422       E = VTList.end(); I != E; ++I) {
3423    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3424        (*I)[2] == VT3)
3425      return makeVTList(&(*I)[0], 3);
3426  }
3427  std::vector<MVT> V;
3428  V.push_back(VT1);
3429  V.push_back(VT2);
3430  V.push_back(VT3);
3431  VTList.push_front(V);
3432  return makeVTList(&(*VTList.begin())[0], 3);
3433}
3434
3435SDVTList SelectionDAG::getVTList(const MVT *VTs, unsigned NumVTs) {
3436  switch (NumVTs) {
3437    case 0: assert(0 && "Cannot have nodes without results!");
3438    case 1: return getVTList(VTs[0]);
3439    case 2: return getVTList(VTs[0], VTs[1]);
3440    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3441    default: break;
3442  }
3443
3444  for (std::list<std::vector<MVT> >::iterator I = VTList.begin(),
3445       E = VTList.end(); I != E; ++I) {
3446    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3447
3448    bool NoMatch = false;
3449    for (unsigned i = 2; i != NumVTs; ++i)
3450      if (VTs[i] != (*I)[i]) {
3451        NoMatch = true;
3452        break;
3453      }
3454    if (!NoMatch)
3455      return makeVTList(&*I->begin(), NumVTs);
3456  }
3457
3458  VTList.push_front(std::vector<MVT>(VTs, VTs+NumVTs));
3459  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3460}
3461
3462
3463/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3464/// specified operands.  If the resultant node already exists in the DAG,
3465/// this does not modify the specified node, instead it returns the node that
3466/// already exists.  If the resultant node does not exist in the DAG, the
3467/// input node is returned.  As a degenerate case, if you specify the same
3468/// input operands as the node already has, the input node is returned.
3469SDOperand SelectionDAG::
3470UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3471  SDNode *N = InN.Val;
3472  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3473
3474  // Check to see if there is no change.
3475  if (Op == N->getOperand(0)) return InN;
3476
3477  // See if the modified node already exists.
3478  void *InsertPos = 0;
3479  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3480    return SDOperand(Existing, InN.ResNo);
3481
3482  // Nope it doesn't.  Remove the node from it's current place in the maps.
3483  if (InsertPos)
3484    RemoveNodeFromCSEMaps(N);
3485
3486  // Now we update the operands.
3487  N->OperandList[0].getVal()->removeUser(0, N);
3488  N->OperandList[0] = Op;
3489  N->OperandList[0].setUser(N);
3490  Op.Val->addUser(0, N);
3491
3492  // If this gets put into a CSE map, add it.
3493  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3494  return InN;
3495}
3496
3497SDOperand SelectionDAG::
3498UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3499  SDNode *N = InN.Val;
3500  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3501
3502  // Check to see if there is no change.
3503  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3504    return InN;   // No operands changed, just return the input node.
3505
3506  // See if the modified node already exists.
3507  void *InsertPos = 0;
3508  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3509    return SDOperand(Existing, InN.ResNo);
3510
3511  // Nope it doesn't.  Remove the node from it's current place in the maps.
3512  if (InsertPos)
3513    RemoveNodeFromCSEMaps(N);
3514
3515  // Now we update the operands.
3516  if (N->OperandList[0] != Op1) {
3517    N->OperandList[0].getVal()->removeUser(0, N);
3518    N->OperandList[0] = Op1;
3519    N->OperandList[0].setUser(N);
3520    Op1.Val->addUser(0, N);
3521  }
3522  if (N->OperandList[1] != Op2) {
3523    N->OperandList[1].getVal()->removeUser(1, N);
3524    N->OperandList[1] = Op2;
3525    N->OperandList[1].setUser(N);
3526    Op2.Val->addUser(1, N);
3527  }
3528
3529  // If this gets put into a CSE map, add it.
3530  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3531  return InN;
3532}
3533
3534SDOperand SelectionDAG::
3535UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3536  SDOperand Ops[] = { Op1, Op2, Op3 };
3537  return UpdateNodeOperands(N, Ops, 3);
3538}
3539
3540SDOperand SelectionDAG::
3541UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3542                   SDOperand Op3, SDOperand Op4) {
3543  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3544  return UpdateNodeOperands(N, Ops, 4);
3545}
3546
3547SDOperand SelectionDAG::
3548UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3549                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3550  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3551  return UpdateNodeOperands(N, Ops, 5);
3552}
3553
3554SDOperand SelectionDAG::
3555UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3556  SDNode *N = InN.Val;
3557  assert(N->getNumOperands() == NumOps &&
3558         "Update with wrong number of operands");
3559
3560  // Check to see if there is no change.
3561  bool AnyChange = false;
3562  for (unsigned i = 0; i != NumOps; ++i) {
3563    if (Ops[i] != N->getOperand(i)) {
3564      AnyChange = true;
3565      break;
3566    }
3567  }
3568
3569  // No operands changed, just return the input node.
3570  if (!AnyChange) return InN;
3571
3572  // See if the modified node already exists.
3573  void *InsertPos = 0;
3574  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3575    return SDOperand(Existing, InN.ResNo);
3576
3577  // Nope it doesn't.  Remove the node from its current place in the maps.
3578  if (InsertPos)
3579    RemoveNodeFromCSEMaps(N);
3580
3581  // Now we update the operands.
3582  for (unsigned i = 0; i != NumOps; ++i) {
3583    if (N->OperandList[i] != Ops[i]) {
3584      N->OperandList[i].getVal()->removeUser(i, N);
3585      N->OperandList[i] = Ops[i];
3586      N->OperandList[i].setUser(N);
3587      Ops[i].Val->addUser(i, N);
3588    }
3589  }
3590
3591  // If this gets put into a CSE map, add it.
3592  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3593  return InN;
3594}
3595
3596/// MorphNodeTo - This frees the operands of the current node, resets the
3597/// opcode, types, and operands to the specified value.  This should only be
3598/// used by the SelectionDAG class.
3599void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3600                         SDOperandPtr Ops, unsigned NumOps) {
3601  NodeType = Opc;
3602  ValueList = L.VTs;
3603  NumValues = L.NumVTs;
3604
3605  // Clear the operands list, updating used nodes to remove this from their
3606  // use list.
3607  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3608    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3609
3610  // If NumOps is larger than the # of operands we currently have, reallocate
3611  // the operand list.
3612  if (NumOps > NumOperands) {
3613    if (OperandsNeedDelete) {
3614      delete [] OperandList;
3615    }
3616    OperandList = new SDUse[NumOps];
3617    OperandsNeedDelete = true;
3618  }
3619
3620  // Assign the new operands.
3621  NumOperands = NumOps;
3622
3623  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3624    OperandList[i] = Ops[i];
3625    OperandList[i].setUser(this);
3626    SDNode *N = OperandList[i].getVal();
3627    N->addUser(i, this);
3628    ++N->UsesSize;
3629  }
3630}
3631
3632/// SelectNodeTo - These are used for target selectors to *mutate* the
3633/// specified node to have the specified return type, Target opcode, and
3634/// operands.  Note that target opcodes are stored as
3635/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3636///
3637/// Note that SelectNodeTo returns the resultant node.  If there is already a
3638/// node of the specified opcode and operands, it returns that node instead of
3639/// the current one.
3640SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3641                                   MVT VT) {
3642  SDVTList VTs = getVTList(VT);
3643  FoldingSetNodeID ID;
3644  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
3645  void *IP = 0;
3646  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3647    return ON;
3648
3649  RemoveNodeFromCSEMaps(N);
3650
3651  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);
3652
3653  CSEMap.InsertNode(N, IP);
3654  return N;
3655}
3656
3657SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3658                                   MVT VT, SDOperand Op1) {
3659  // If an identical node already exists, use it.
3660  SDVTList VTs = getVTList(VT);
3661  SDOperand Ops[] = { Op1 };
3662
3663  FoldingSetNodeID ID;
3664  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3665  void *IP = 0;
3666  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3667    return ON;
3668
3669  RemoveNodeFromCSEMaps(N);
3670  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3671  CSEMap.InsertNode(N, IP);
3672  return N;
3673}
3674
3675SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3676                                   MVT VT, SDOperand Op1,
3677                                   SDOperand Op2) {
3678  // If an identical node already exists, use it.
3679  SDVTList VTs = getVTList(VT);
3680  SDOperand Ops[] = { Op1, Op2 };
3681
3682  FoldingSetNodeID ID;
3683  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3684  void *IP = 0;
3685  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3686    return ON;
3687
3688  RemoveNodeFromCSEMaps(N);
3689
3690  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3691
3692  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3693  return N;
3694}
3695
3696SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3697                                   MVT VT, SDOperand Op1,
3698                                   SDOperand Op2, SDOperand Op3) {
3699  // If an identical node already exists, use it.
3700  SDVTList VTs = getVTList(VT);
3701  SDOperand Ops[] = { Op1, Op2, Op3 };
3702  FoldingSetNodeID ID;
3703  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3704  void *IP = 0;
3705  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3706    return ON;
3707
3708  RemoveNodeFromCSEMaps(N);
3709
3710  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3711
3712  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3713  return N;
3714}
3715
3716SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3717                                   MVT VT, SDOperandPtr Ops,
3718                                   unsigned NumOps) {
3719  // If an identical node already exists, use it.
3720  SDVTList VTs = getVTList(VT);
3721  FoldingSetNodeID ID;
3722  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3723  void *IP = 0;
3724  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3725    return ON;
3726
3727  RemoveNodeFromCSEMaps(N);
3728  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3729
3730  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3731  return N;
3732}
3733
3734SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3735                                   MVT VT1, MVT VT2,
3736                                   SDOperand Op1, SDOperand Op2) {
3737  SDVTList VTs = getVTList(VT1, VT2);
3738  FoldingSetNodeID ID;
3739  SDOperand Ops[] = { Op1, Op2 };
3740  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3741  void *IP = 0;
3742  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3743    return ON;
3744
3745  RemoveNodeFromCSEMaps(N);
3746  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3747  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3748  return N;
3749}
3750
3751SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3752                                   MVT VT1, MVT VT2,
3753                                   SDOperand Op1, SDOperand Op2,
3754                                   SDOperand Op3) {
3755  // If an identical node already exists, use it.
3756  SDVTList VTs = getVTList(VT1, VT2);
3757  SDOperand Ops[] = { Op1, Op2, Op3 };
3758  FoldingSetNodeID ID;
3759  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3760  void *IP = 0;
3761  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3762    return ON;
3763
3764  RemoveNodeFromCSEMaps(N);
3765
3766  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3767  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3768  return N;
3769}
3770
3771
3772/// getTargetNode - These are used for target selectors to create a new node
3773/// with specified return type(s), target opcode, and operands.
3774///
3775/// Note that getTargetNode returns the resultant node.  If there is already a
3776/// node of the specified opcode and operands, it returns that node instead of
3777/// the current one.
3778SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT) {
3779  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3780}
3781SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT, SDOperand Op1) {
3782  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3783}
3784SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3785                                    SDOperand Op1, SDOperand Op2) {
3786  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3787}
3788SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3789                                    SDOperand Op1, SDOperand Op2,
3790                                    SDOperand Op3) {
3791  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3792}
3793SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT,
3794                                    SDOperandPtr Ops, unsigned NumOps) {
3795  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3796}
3797SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2) {
3798  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3799  SDOperand Op;
3800  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3801}
3802SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3803                                    MVT VT2, SDOperand Op1) {
3804  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3805  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3806}
3807SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3808                                    MVT VT2, SDOperand Op1,
3809                                    SDOperand Op2) {
3810  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3811  SDOperand Ops[] = { Op1, Op2 };
3812  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3813}
3814SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3815                                    MVT VT2, SDOperand Op1,
3816                                    SDOperand Op2, SDOperand Op3) {
3817  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3818  SDOperand Ops[] = { Op1, Op2, Op3 };
3819  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3820}
3821SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2,
3822                                    SDOperandPtr Ops, unsigned NumOps) {
3823  const MVT *VTs = getNodeValueTypes(VT1, VT2);
3824  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3825}
3826SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3827                                    SDOperand Op1, SDOperand Op2) {
3828  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3829  SDOperand Ops[] = { Op1, Op2 };
3830  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3831}
3832SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3833                                    SDOperand Op1, SDOperand Op2,
3834                                    SDOperand Op3) {
3835  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3836  SDOperand Ops[] = { Op1, Op2, Op3 };
3837  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3838}
3839SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1, MVT VT2, MVT VT3,
3840                                    SDOperandPtr Ops, unsigned NumOps) {
3841  const MVT *VTs = getNodeValueTypes(VT1, VT2, VT3);
3842  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3843}
3844SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT VT1,
3845                                    MVT VT2, MVT VT3, MVT VT4,
3846                                    SDOperandPtr Ops, unsigned NumOps) {
3847  std::vector<MVT> VTList;
3848  VTList.push_back(VT1);
3849  VTList.push_back(VT2);
3850  VTList.push_back(VT3);
3851  VTList.push_back(VT4);
3852  const MVT *VTs = getNodeValueTypes(VTList);
3853  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3854}
3855SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3856                                    std::vector<MVT> &ResultTys,
3857                                    SDOperandPtr Ops, unsigned NumOps) {
3858  const MVT *VTs = getNodeValueTypes(ResultTys);
3859  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3860                 Ops, NumOps).Val;
3861}
3862
3863/// getNodeIfExists - Get the specified node if it's already available, or
3864/// else return NULL.
3865SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3866                                      SDOperandPtr Ops, unsigned NumOps) {
3867  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3868    FoldingSetNodeID ID;
3869    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3870    void *IP = 0;
3871    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3872      return E;
3873  }
3874  return NULL;
3875}
3876
3877
3878/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3879/// This can cause recursive merging of nodes in the DAG.
3880///
3881/// This version assumes From has a single result value.
3882///
3883void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3884                                      DAGUpdateListener *UpdateListener) {
3885  SDNode *From = FromN.Val;
3886  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3887         "Cannot replace with this method!");
3888  assert(From != To.Val && "Cannot replace uses of with self");
3889
3890  while (!From->use_empty()) {
3891    SDNode::use_iterator UI = From->use_begin();
3892    SDNode *U = UI->getUser();
3893
3894    // This node is about to morph, remove its old self from the CSE maps.
3895    RemoveNodeFromCSEMaps(U);
3896    int operandNum = 0;
3897    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3898         I != E; ++I, ++operandNum)
3899      if (I->getVal() == From) {
3900        From->removeUser(operandNum, U);
3901        *I = To;
3902        I->setUser(U);
3903        To.Val->addUser(operandNum, U);
3904      }
3905
3906    // Now that we have modified U, add it back to the CSE maps.  If it already
3907    // exists there, recursively merge the results together.
3908    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3909      ReplaceAllUsesWith(U, Existing, UpdateListener);
3910      // U is now dead.  Inform the listener if it exists and delete it.
3911      if (UpdateListener)
3912        UpdateListener->NodeDeleted(U, Existing);
3913      DeleteNodeNotInCSEMaps(U);
3914    } else {
3915      // If the node doesn't already exist, we updated it.  Inform a listener if
3916      // it exists.
3917      if (UpdateListener)
3918        UpdateListener->NodeUpdated(U);
3919    }
3920  }
3921}
3922
3923/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3924/// This can cause recursive merging of nodes in the DAG.
3925///
3926/// This version assumes From/To have matching types and numbers of result
3927/// values.
3928///
3929void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3930                                      DAGUpdateListener *UpdateListener) {
3931  assert(From != To && "Cannot replace uses of with self");
3932  assert(From->getNumValues() == To->getNumValues() &&
3933         "Cannot use this version of ReplaceAllUsesWith!");
3934  if (From->getNumValues() == 1)   // If possible, use the faster version.
3935    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3936                              UpdateListener);
3937
3938  while (!From->use_empty()) {
3939    SDNode::use_iterator UI = From->use_begin();
3940    SDNode *U = UI->getUser();
3941
3942    // This node is about to morph, remove its old self from the CSE maps.
3943    RemoveNodeFromCSEMaps(U);
3944    int operandNum = 0;
3945    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3946         I != E; ++I, ++operandNum)
3947      if (I->getVal() == From) {
3948        From->removeUser(operandNum, U);
3949        I->getVal() = To;
3950        To->addUser(operandNum, U);
3951      }
3952
3953    // Now that we have modified U, add it back to the CSE maps.  If it already
3954    // exists there, recursively merge the results together.
3955    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3956      ReplaceAllUsesWith(U, Existing, UpdateListener);
3957      // U is now dead.  Inform the listener if it exists and delete it.
3958      if (UpdateListener)
3959        UpdateListener->NodeDeleted(U, Existing);
3960      DeleteNodeNotInCSEMaps(U);
3961    } else {
3962      // If the node doesn't already exist, we updated it.  Inform a listener if
3963      // it exists.
3964      if (UpdateListener)
3965        UpdateListener->NodeUpdated(U);
3966    }
3967  }
3968}
3969
3970/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3971/// This can cause recursive merging of nodes in the DAG.
3972///
3973/// This version can replace From with any result values.  To must match the
3974/// number and types of values returned by From.
3975void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3976                                      SDOperandPtr To,
3977                                      DAGUpdateListener *UpdateListener) {
3978  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3979    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3980
3981  while (!From->use_empty()) {
3982    SDNode::use_iterator UI = From->use_begin();
3983    SDNode *U = UI->getUser();
3984
3985    // This node is about to morph, remove its old self from the CSE maps.
3986    RemoveNodeFromCSEMaps(U);
3987    int operandNum = 0;
3988    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3989         I != E; ++I, ++operandNum)
3990      if (I->getVal() == From) {
3991        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
3992        From->removeUser(operandNum, U);
3993        *I = ToOp;
3994        I->setUser(U);
3995        ToOp.Val->addUser(operandNum, U);
3996      }
3997
3998    // Now that we have modified U, add it back to the CSE maps.  If it already
3999    // exists there, recursively merge the results together.
4000    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
4001      ReplaceAllUsesWith(U, Existing, UpdateListener);
4002      // U is now dead.  Inform the listener if it exists and delete it.
4003      if (UpdateListener)
4004        UpdateListener->NodeDeleted(U, Existing);
4005      DeleteNodeNotInCSEMaps(U);
4006    } else {
4007      // If the node doesn't already exist, we updated it.  Inform a listener if
4008      // it exists.
4009      if (UpdateListener)
4010        UpdateListener->NodeUpdated(U);
4011    }
4012  }
4013}
4014
4015namespace {
4016  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
4017  /// any deleted nodes from the set passed into its constructor and recursively
4018  /// notifies another update listener if specified.
4019  class ChainedSetUpdaterListener :
4020  public SelectionDAG::DAGUpdateListener {
4021    SmallSetVector<SDNode*, 16> &Set;
4022    SelectionDAG::DAGUpdateListener *Chain;
4023  public:
4024    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
4025                              SelectionDAG::DAGUpdateListener *chain)
4026      : Set(set), Chain(chain) {}
4027
4028    virtual void NodeDeleted(SDNode *N, SDNode *E) {
4029      Set.remove(N);
4030      if (Chain) Chain->NodeDeleted(N, E);
4031    }
4032    virtual void NodeUpdated(SDNode *N) {
4033      if (Chain) Chain->NodeUpdated(N);
4034    }
4035  };
4036}
4037
4038/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4039/// uses of other values produced by From.Val alone.  The Deleted vector is
4040/// handled the same way as for ReplaceAllUsesWith.
4041void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
4042                                             DAGUpdateListener *UpdateListener){
4043  assert(From != To && "Cannot replace a value with itself");
4044
4045  // Handle the simple, trivial, case efficiently.
4046  if (From.Val->getNumValues() == 1) {
4047    ReplaceAllUsesWith(From, To, UpdateListener);
4048    return;
4049  }
4050
4051  if (From.use_empty()) return;
4052
4053  // Get all of the users of From.Val.  We want these in a nice,
4054  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4055  SmallSetVector<SDNode*, 16> Users;
4056  for (SDNode::use_iterator UI = From.Val->use_begin(),
4057      E = From.Val->use_end(); UI != E; ++UI) {
4058    SDNode *User = UI->getUser();
4059    if (!Users.count(User))
4060      Users.insert(User);
4061  }
4062
4063  // When one of the recursive merges deletes nodes from the graph, we need to
4064  // make sure that UpdateListener is notified *and* that the node is removed
4065  // from Users if present.  CSUL does this.
4066  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
4067
4068  while (!Users.empty()) {
4069    // We know that this user uses some value of From.  If it is the right
4070    // value, update it.
4071    SDNode *User = Users.back();
4072    Users.pop_back();
4073
4074    // Scan for an operand that matches From.
4075    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4076    for (; Op != E; ++Op)
4077      if (*Op == From) break;
4078
4079    // If there are no matches, the user must use some other result of From.
4080    if (Op == E) continue;
4081
4082    // Okay, we know this user needs to be updated.  Remove its old self
4083    // from the CSE maps.
4084    RemoveNodeFromCSEMaps(User);
4085
4086    // Update all operands that match "From" in case there are multiple uses.
4087    for (; Op != E; ++Op) {
4088      if (*Op == From) {
4089        From.Val->removeUser(Op-User->op_begin(), User);
4090        *Op = To;
4091        Op->setUser(User);
4092        To.Val->addUser(Op-User->op_begin(), User);
4093      }
4094    }
4095
4096    // Now that we have modified User, add it back to the CSE maps.  If it
4097    // already exists there, recursively merge the results together.
4098    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4099    if (!Existing) {
4100      if (UpdateListener) UpdateListener->NodeUpdated(User);
4101      continue;  // Continue on to next user.
4102    }
4103
4104    // If there was already an existing matching node, use ReplaceAllUsesWith
4105    // to replace the dead one with the existing one.  This can cause
4106    // recursive merging of other unrelated nodes down the line.  The merging
4107    // can cause deletion of nodes that used the old value.  To handle this, we
4108    // use CSUL to remove them from the Users set.
4109    ReplaceAllUsesWith(User, Existing, &CSUL);
4110
4111    // User is now dead.  Notify a listener if present.
4112    if (UpdateListener) UpdateListener->NodeDeleted(User, Existing);
4113    DeleteNodeNotInCSEMaps(User);
4114  }
4115}
4116
4117/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
4118/// their allnodes order. It returns the maximum id.
4119unsigned SelectionDAG::AssignNodeIds() {
4120  unsigned Id = 0;
4121  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
4122    SDNode *N = I;
4123    N->setNodeId(Id++);
4124  }
4125  return Id;
4126}
4127
4128/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4129/// based on their topological order. It returns the maximum id and a vector
4130/// of the SDNodes* in assigned order by reference.
4131unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4132  unsigned DAGSize = AllNodes.size();
4133  std::vector<unsigned> InDegree(DAGSize);
4134  std::vector<SDNode*> Sources;
4135
4136  // Use a two pass approach to avoid using a std::map which is slow.
4137  unsigned Id = 0;
4138  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4139    SDNode *N = I;
4140    N->setNodeId(Id++);
4141    unsigned Degree = N->use_size();
4142    InDegree[N->getNodeId()] = Degree;
4143    if (Degree == 0)
4144      Sources.push_back(N);
4145  }
4146
4147  TopOrder.clear();
4148  while (!Sources.empty()) {
4149    SDNode *N = Sources.back();
4150    Sources.pop_back();
4151    TopOrder.push_back(N);
4152    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4153      SDNode *P = I->getVal();
4154      unsigned Degree = --InDegree[P->getNodeId()];
4155      if (Degree == 0)
4156        Sources.push_back(P);
4157    }
4158  }
4159
4160  // Second pass, assign the actual topological order as node ids.
4161  Id = 0;
4162  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4163       TI != TE; ++TI)
4164    (*TI)->setNodeId(Id++);
4165
4166  return Id;
4167}
4168
4169
4170
4171//===----------------------------------------------------------------------===//
4172//                              SDNode Class
4173//===----------------------------------------------------------------------===//
4174
4175// Out-of-line virtual method to give class a home.
4176void SDNode::ANCHOR() {}
4177void UnarySDNode::ANCHOR() {}
4178void BinarySDNode::ANCHOR() {}
4179void TernarySDNode::ANCHOR() {}
4180void HandleSDNode::ANCHOR() {}
4181void StringSDNode::ANCHOR() {}
4182void ConstantSDNode::ANCHOR() {}
4183void ConstantFPSDNode::ANCHOR() {}
4184void GlobalAddressSDNode::ANCHOR() {}
4185void FrameIndexSDNode::ANCHOR() {}
4186void JumpTableSDNode::ANCHOR() {}
4187void ConstantPoolSDNode::ANCHOR() {}
4188void BasicBlockSDNode::ANCHOR() {}
4189void SrcValueSDNode::ANCHOR() {}
4190void MemOperandSDNode::ANCHOR() {}
4191void RegisterSDNode::ANCHOR() {}
4192void ExternalSymbolSDNode::ANCHOR() {}
4193void CondCodeSDNode::ANCHOR() {}
4194void ARG_FLAGSSDNode::ANCHOR() {}
4195void VTSDNode::ANCHOR() {}
4196void MemSDNode::ANCHOR() {}
4197void LoadSDNode::ANCHOR() {}
4198void StoreSDNode::ANCHOR() {}
4199void AtomicSDNode::ANCHOR() {}
4200
4201HandleSDNode::~HandleSDNode() {
4202  SDVTList VTs = { 0, 0 };
4203  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
4204}
4205
4206GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4207                                         MVT VT, int o)
4208  : SDNode(isa<GlobalVariable>(GA) &&
4209           cast<GlobalVariable>(GA)->isThreadLocal() ?
4210           // Thread Local
4211           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4212           // Non Thread Local
4213           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4214           getSDVTList(VT)), Offset(o) {
4215  TheGlobal = const_cast<GlobalValue*>(GA);
4216}
4217
4218/// getMemOperand - Return a MachineMemOperand object describing the memory
4219/// reference performed by this atomic.
4220MachineMemOperand AtomicSDNode::getMemOperand() const {
4221  int Size = (getValueType(0).getSizeInBits() + 7) >> 3;
4222  int Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4223  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4224
4225  // Check if the atomic references a frame index
4226  const FrameIndexSDNode *FI =
4227  dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4228  if (!getSrcValue() && FI)
4229    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4230                             FI->getIndex(), Size, getAlignment());
4231  else
4232    return MachineMemOperand(getSrcValue(), Flags, getSrcValueOffset(),
4233                             Size, getAlignment());
4234}
4235
4236/// getMemOperand - Return a MachineMemOperand object describing the memory
4237/// reference performed by this load or store.
4238MachineMemOperand LSBaseSDNode::getMemOperand() const {
4239  int Size = (getMemoryVT().getSizeInBits() + 7) >> 3;
4240  int Flags =
4241    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4242                               MachineMemOperand::MOStore;
4243  if (isVolatile()) Flags |= MachineMemOperand::MOVolatile;
4244
4245  // Check if the load references a frame index, and does not have
4246  // an SV attached.
4247  const FrameIndexSDNode *FI =
4248    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4249  if (!getSrcValue() && FI)
4250    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4251                             FI->getIndex(), Size, getAlignment());
4252  else
4253    return MachineMemOperand(getSrcValue(), Flags,
4254                             getSrcValueOffset(), Size, getAlignment());
4255}
4256
4257/// Profile - Gather unique data for the node.
4258///
4259void SDNode::Profile(FoldingSetNodeID &ID) {
4260  AddNodeIDNode(ID, this);
4261}
4262
4263/// getValueTypeList - Return a pointer to the specified value type.
4264///
4265const MVT *SDNode::getValueTypeList(MVT VT) {
4266  if (VT.isExtended()) {
4267    static std::set<MVT, MVT::compareRawBits> EVTs;
4268    return &(*EVTs.insert(VT).first);
4269  } else {
4270    static MVT VTs[MVT::LAST_VALUETYPE];
4271    VTs[VT.getSimpleVT()] = VT;
4272    return &VTs[VT.getSimpleVT()];
4273  }
4274}
4275
4276/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4277/// indicated value.  This method ignores uses of other values defined by this
4278/// operation.
4279bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4280  assert(Value < getNumValues() && "Bad value!");
4281
4282  // If there is only one value, this is easy.
4283  if (getNumValues() == 1)
4284    return use_size() == NUses;
4285  if (use_size() < NUses) return false;
4286
4287  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4288
4289  SmallPtrSet<SDNode*, 32> UsersHandled;
4290
4291  // TODO: Only iterate over uses of a given value of the node
4292  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4293    if (*UI == TheValue) {
4294      if (NUses == 0)
4295        return false;
4296      --NUses;
4297    }
4298  }
4299
4300  // Found exactly the right number of uses?
4301  return NUses == 0;
4302}
4303
4304
4305/// hasAnyUseOfValue - Return true if there are any use of the indicated
4306/// value. This method ignores uses of other values defined by this operation.
4307bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4308  assert(Value < getNumValues() && "Bad value!");
4309
4310  if (use_empty()) return false;
4311
4312  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4313
4314  SmallPtrSet<SDNode*, 32> UsersHandled;
4315
4316  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4317    SDNode *User = UI->getUser();
4318    if (User->getNumOperands() == 1 ||
4319        UsersHandled.insert(User))     // First time we've seen this?
4320      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4321        if (User->getOperand(i) == TheValue) {
4322          return true;
4323        }
4324  }
4325
4326  return false;
4327}
4328
4329
4330/// isOnlyUseOf - Return true if this node is the only use of N.
4331///
4332bool SDNode::isOnlyUseOf(SDNode *N) const {
4333  bool Seen = false;
4334  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4335    SDNode *User = I->getUser();
4336    if (User == this)
4337      Seen = true;
4338    else
4339      return false;
4340  }
4341
4342  return Seen;
4343}
4344
4345/// isOperand - Return true if this node is an operand of N.
4346///
4347bool SDOperand::isOperandOf(SDNode *N) const {
4348  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4349    if (*this == N->getOperand(i))
4350      return true;
4351  return false;
4352}
4353
4354bool SDNode::isOperandOf(SDNode *N) const {
4355  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4356    if (this == N->OperandList[i].getVal())
4357      return true;
4358  return false;
4359}
4360
4361/// reachesChainWithoutSideEffects - Return true if this operand (which must
4362/// be a chain) reaches the specified operand without crossing any
4363/// side-effecting instructions.  In practice, this looks through token
4364/// factors and non-volatile loads.  In order to remain efficient, this only
4365/// looks a couple of nodes in, it does not do an exhaustive search.
4366bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4367                                               unsigned Depth) const {
4368  if (*this == Dest) return true;
4369
4370  // Don't search too deeply, we just want to be able to see through
4371  // TokenFactor's etc.
4372  if (Depth == 0) return false;
4373
4374  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4375  // of the operands of the TF reach dest, then we can do the xform.
4376  if (getOpcode() == ISD::TokenFactor) {
4377    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4378      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4379        return true;
4380    return false;
4381  }
4382
4383  // Loads don't have side effects, look through them.
4384  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4385    if (!Ld->isVolatile())
4386      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4387  }
4388  return false;
4389}
4390
4391
4392static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4393                            SmallPtrSet<SDNode *, 32> &Visited) {
4394  if (found || !Visited.insert(N))
4395    return;
4396
4397  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4398    SDNode *Op = N->getOperand(i).Val;
4399    if (Op == P) {
4400      found = true;
4401      return;
4402    }
4403    findPredecessor(Op, P, found, Visited);
4404  }
4405}
4406
4407/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4408/// is either an operand of N or it can be reached by recursively traversing
4409/// up the operands.
4410/// NOTE: this is an expensive method. Use it carefully.
4411bool SDNode::isPredecessorOf(SDNode *N) const {
4412  SmallPtrSet<SDNode *, 32> Visited;
4413  bool found = false;
4414  findPredecessor(N, this, found, Visited);
4415  return found;
4416}
4417
4418uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4419  assert(Num < NumOperands && "Invalid child # of SDNode!");
4420  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4421}
4422
4423std::string SDNode::getOperationName(const SelectionDAG *G) const {
4424  switch (getOpcode()) {
4425  default:
4426    if (getOpcode() < ISD::BUILTIN_OP_END)
4427      return "<<Unknown DAG Node>>";
4428    else {
4429      if (G) {
4430        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4431          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4432            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4433
4434        TargetLowering &TLI = G->getTargetLoweringInfo();
4435        const char *Name =
4436          TLI.getTargetNodeName(getOpcode());
4437        if (Name) return Name;
4438      }
4439
4440      return "<<Unknown Target Node>>";
4441    }
4442
4443  case ISD::PREFETCH:      return "Prefetch";
4444  case ISD::MEMBARRIER:    return "MemBarrier";
4445  case ISD::ATOMIC_CMP_SWAP:  return "AtomicCmpSwap";
4446  case ISD::ATOMIC_LOAD_ADD:  return "AtomicLoadAdd";
4447  case ISD::ATOMIC_LOAD_SUB:  return "AtomicLoadSub";
4448  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4449  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4450  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4451  case ISD::ATOMIC_LOAD_NAND: return "AtomicLoadNand";
4452  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4453  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4454  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4455  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4456  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4457  case ISD::PCMARKER:      return "PCMarker";
4458  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4459  case ISD::SRCVALUE:      return "SrcValue";
4460  case ISD::MEMOPERAND:    return "MemOperand";
4461  case ISD::EntryToken:    return "EntryToken";
4462  case ISD::TokenFactor:   return "TokenFactor";
4463  case ISD::AssertSext:    return "AssertSext";
4464  case ISD::AssertZext:    return "AssertZext";
4465
4466  case ISD::STRING:        return "String";
4467  case ISD::BasicBlock:    return "BasicBlock";
4468  case ISD::ARG_FLAGS:     return "ArgFlags";
4469  case ISD::VALUETYPE:     return "ValueType";
4470  case ISD::Register:      return "Register";
4471
4472  case ISD::Constant:      return "Constant";
4473  case ISD::ConstantFP:    return "ConstantFP";
4474  case ISD::GlobalAddress: return "GlobalAddress";
4475  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4476  case ISD::FrameIndex:    return "FrameIndex";
4477  case ISD::JumpTable:     return "JumpTable";
4478  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4479  case ISD::RETURNADDR: return "RETURNADDR";
4480  case ISD::FRAMEADDR: return "FRAMEADDR";
4481  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4482  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4483  case ISD::EHSELECTION: return "EHSELECTION";
4484  case ISD::EH_RETURN: return "EH_RETURN";
4485  case ISD::ConstantPool:  return "ConstantPool";
4486  case ISD::ExternalSymbol: return "ExternalSymbol";
4487  case ISD::INTRINSIC_WO_CHAIN: {
4488    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4489    return Intrinsic::getName((Intrinsic::ID)IID);
4490  }
4491  case ISD::INTRINSIC_VOID:
4492  case ISD::INTRINSIC_W_CHAIN: {
4493    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4494    return Intrinsic::getName((Intrinsic::ID)IID);
4495  }
4496
4497  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4498  case ISD::TargetConstant: return "TargetConstant";
4499  case ISD::TargetConstantFP:return "TargetConstantFP";
4500  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4501  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4502  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4503  case ISD::TargetJumpTable:  return "TargetJumpTable";
4504  case ISD::TargetConstantPool:  return "TargetConstantPool";
4505  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4506
4507  case ISD::CopyToReg:     return "CopyToReg";
4508  case ISD::CopyFromReg:   return "CopyFromReg";
4509  case ISD::UNDEF:         return "undef";
4510  case ISD::MERGE_VALUES:  return "merge_values";
4511  case ISD::INLINEASM:     return "inlineasm";
4512  case ISD::LABEL:         return "label";
4513  case ISD::DECLARE:       return "declare";
4514  case ISD::HANDLENODE:    return "handlenode";
4515  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4516  case ISD::CALL:          return "call";
4517
4518  // Unary operators
4519  case ISD::FABS:   return "fabs";
4520  case ISD::FNEG:   return "fneg";
4521  case ISD::FSQRT:  return "fsqrt";
4522  case ISD::FSIN:   return "fsin";
4523  case ISD::FCOS:   return "fcos";
4524  case ISD::FPOWI:  return "fpowi";
4525  case ISD::FPOW:   return "fpow";
4526
4527  // Binary operators
4528  case ISD::ADD:    return "add";
4529  case ISD::SUB:    return "sub";
4530  case ISD::MUL:    return "mul";
4531  case ISD::MULHU:  return "mulhu";
4532  case ISD::MULHS:  return "mulhs";
4533  case ISD::SDIV:   return "sdiv";
4534  case ISD::UDIV:   return "udiv";
4535  case ISD::SREM:   return "srem";
4536  case ISD::UREM:   return "urem";
4537  case ISD::SMUL_LOHI:  return "smul_lohi";
4538  case ISD::UMUL_LOHI:  return "umul_lohi";
4539  case ISD::SDIVREM:    return "sdivrem";
4540  case ISD::UDIVREM:    return "divrem";
4541  case ISD::AND:    return "and";
4542  case ISD::OR:     return "or";
4543  case ISD::XOR:    return "xor";
4544  case ISD::SHL:    return "shl";
4545  case ISD::SRA:    return "sra";
4546  case ISD::SRL:    return "srl";
4547  case ISD::ROTL:   return "rotl";
4548  case ISD::ROTR:   return "rotr";
4549  case ISD::FADD:   return "fadd";
4550  case ISD::FSUB:   return "fsub";
4551  case ISD::FMUL:   return "fmul";
4552  case ISD::FDIV:   return "fdiv";
4553  case ISD::FREM:   return "frem";
4554  case ISD::FCOPYSIGN: return "fcopysign";
4555  case ISD::FGETSIGN:  return "fgetsign";
4556
4557  case ISD::SETCC:       return "setcc";
4558  case ISD::VSETCC:      return "vsetcc";
4559  case ISD::SELECT:      return "select";
4560  case ISD::SELECT_CC:   return "select_cc";
4561  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4562  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4563  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4564  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4565  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4566  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4567  case ISD::CARRY_FALSE:         return "carry_false";
4568  case ISD::ADDC:        return "addc";
4569  case ISD::ADDE:        return "adde";
4570  case ISD::SUBC:        return "subc";
4571  case ISD::SUBE:        return "sube";
4572  case ISD::SHL_PARTS:   return "shl_parts";
4573  case ISD::SRA_PARTS:   return "sra_parts";
4574  case ISD::SRL_PARTS:   return "srl_parts";
4575
4576  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4577  case ISD::INSERT_SUBREG:      return "insert_subreg";
4578
4579  // Conversion operators.
4580  case ISD::SIGN_EXTEND: return "sign_extend";
4581  case ISD::ZERO_EXTEND: return "zero_extend";
4582  case ISD::ANY_EXTEND:  return "any_extend";
4583  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4584  case ISD::TRUNCATE:    return "truncate";
4585  case ISD::FP_ROUND:    return "fp_round";
4586  case ISD::FLT_ROUNDS_: return "flt_rounds";
4587  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4588  case ISD::FP_EXTEND:   return "fp_extend";
4589
4590  case ISD::SINT_TO_FP:  return "sint_to_fp";
4591  case ISD::UINT_TO_FP:  return "uint_to_fp";
4592  case ISD::FP_TO_SINT:  return "fp_to_sint";
4593  case ISD::FP_TO_UINT:  return "fp_to_uint";
4594  case ISD::BIT_CONVERT: return "bit_convert";
4595
4596    // Control flow instructions
4597  case ISD::BR:      return "br";
4598  case ISD::BRIND:   return "brind";
4599  case ISD::BR_JT:   return "br_jt";
4600  case ISD::BRCOND:  return "brcond";
4601  case ISD::BR_CC:   return "br_cc";
4602  case ISD::RET:     return "ret";
4603  case ISD::CALLSEQ_START:  return "callseq_start";
4604  case ISD::CALLSEQ_END:    return "callseq_end";
4605
4606    // Other operators
4607  case ISD::LOAD:               return "load";
4608  case ISD::STORE:              return "store";
4609  case ISD::VAARG:              return "vaarg";
4610  case ISD::VACOPY:             return "vacopy";
4611  case ISD::VAEND:              return "vaend";
4612  case ISD::VASTART:            return "vastart";
4613  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4614  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4615  case ISD::BUILD_PAIR:         return "build_pair";
4616  case ISD::STACKSAVE:          return "stacksave";
4617  case ISD::STACKRESTORE:       return "stackrestore";
4618  case ISD::TRAP:               return "trap";
4619
4620  // Bit manipulation
4621  case ISD::BSWAP:   return "bswap";
4622  case ISD::CTPOP:   return "ctpop";
4623  case ISD::CTTZ:    return "cttz";
4624  case ISD::CTLZ:    return "ctlz";
4625
4626  // Debug info
4627  case ISD::LOCATION: return "location";
4628  case ISD::DEBUG_LOC: return "debug_loc";
4629
4630  // Trampolines
4631  case ISD::TRAMPOLINE: return "trampoline";
4632
4633  case ISD::CONDCODE:
4634    switch (cast<CondCodeSDNode>(this)->get()) {
4635    default: assert(0 && "Unknown setcc condition!");
4636    case ISD::SETOEQ:  return "setoeq";
4637    case ISD::SETOGT:  return "setogt";
4638    case ISD::SETOGE:  return "setoge";
4639    case ISD::SETOLT:  return "setolt";
4640    case ISD::SETOLE:  return "setole";
4641    case ISD::SETONE:  return "setone";
4642
4643    case ISD::SETO:    return "seto";
4644    case ISD::SETUO:   return "setuo";
4645    case ISD::SETUEQ:  return "setue";
4646    case ISD::SETUGT:  return "setugt";
4647    case ISD::SETUGE:  return "setuge";
4648    case ISD::SETULT:  return "setult";
4649    case ISD::SETULE:  return "setule";
4650    case ISD::SETUNE:  return "setune";
4651
4652    case ISD::SETEQ:   return "seteq";
4653    case ISD::SETGT:   return "setgt";
4654    case ISD::SETGE:   return "setge";
4655    case ISD::SETLT:   return "setlt";
4656    case ISD::SETLE:   return "setle";
4657    case ISD::SETNE:   return "setne";
4658    }
4659  }
4660}
4661
4662const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4663  switch (AM) {
4664  default:
4665    return "";
4666  case ISD::PRE_INC:
4667    return "<pre-inc>";
4668  case ISD::PRE_DEC:
4669    return "<pre-dec>";
4670  case ISD::POST_INC:
4671    return "<post-inc>";
4672  case ISD::POST_DEC:
4673    return "<post-dec>";
4674  }
4675}
4676
4677std::string ISD::ArgFlagsTy::getArgFlagsString() {
4678  std::string S = "< ";
4679
4680  if (isZExt())
4681    S += "zext ";
4682  if (isSExt())
4683    S += "sext ";
4684  if (isInReg())
4685    S += "inreg ";
4686  if (isSRet())
4687    S += "sret ";
4688  if (isByVal())
4689    S += "byval ";
4690  if (isNest())
4691    S += "nest ";
4692  if (getByValAlign())
4693    S += "byval-align:" + utostr(getByValAlign()) + " ";
4694  if (getOrigAlign())
4695    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4696  if (getByValSize())
4697    S += "byval-size:" + utostr(getByValSize()) + " ";
4698  return S + ">";
4699}
4700
4701void SDNode::dump() const { dump(0); }
4702void SDNode::dump(const SelectionDAG *G) const {
4703  cerr << (void*)this << ": ";
4704
4705  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4706    if (i) cerr << ",";
4707    if (getValueType(i) == MVT::Other)
4708      cerr << "ch";
4709    else
4710      cerr << getValueType(i).getMVTString();
4711  }
4712  cerr << " = " << getOperationName(G);
4713
4714  cerr << " ";
4715  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4716    if (i) cerr << ", ";
4717    cerr << (void*)getOperand(i).Val;
4718    if (unsigned RN = getOperand(i).ResNo)
4719      cerr << ":" << RN;
4720  }
4721
4722  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4723    SDNode *Mask = getOperand(2).Val;
4724    cerr << "<";
4725    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4726      if (i) cerr << ",";
4727      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4728        cerr << "u";
4729      else
4730        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4731    }
4732    cerr << ">";
4733  }
4734
4735  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4736    cerr << "<" << CSDN->getValue() << ">";
4737  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4738    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4739      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4740    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4741      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4742    else {
4743      cerr << "<APFloat(";
4744      CSDN->getValueAPF().convertToAPInt().dump();
4745      cerr << ")>";
4746    }
4747  } else if (const GlobalAddressSDNode *GADN =
4748             dyn_cast<GlobalAddressSDNode>(this)) {
4749    int offset = GADN->getOffset();
4750    cerr << "<";
4751    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4752    if (offset > 0)
4753      cerr << " + " << offset;
4754    else
4755      cerr << " " << offset;
4756  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4757    cerr << "<" << FIDN->getIndex() << ">";
4758  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4759    cerr << "<" << JTDN->getIndex() << ">";
4760  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4761    int offset = CP->getOffset();
4762    if (CP->isMachineConstantPoolEntry())
4763      cerr << "<" << *CP->getMachineCPVal() << ">";
4764    else
4765      cerr << "<" << *CP->getConstVal() << ">";
4766    if (offset > 0)
4767      cerr << " + " << offset;
4768    else
4769      cerr << " " << offset;
4770  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4771    cerr << "<";
4772    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4773    if (LBB)
4774      cerr << LBB->getName() << " ";
4775    cerr << (const void*)BBDN->getBasicBlock() << ">";
4776  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4777    if (G && R->getReg() &&
4778        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4779      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4780    } else {
4781      cerr << " #" << R->getReg();
4782    }
4783  } else if (const ExternalSymbolSDNode *ES =
4784             dyn_cast<ExternalSymbolSDNode>(this)) {
4785    cerr << "'" << ES->getSymbol() << "'";
4786  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4787    if (M->getValue())
4788      cerr << "<" << M->getValue() << ">";
4789    else
4790      cerr << "<null>";
4791  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4792    if (M->MO.getValue())
4793      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4794    else
4795      cerr << "<null:" << M->MO.getOffset() << ">";
4796  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4797    cerr << N->getArgFlags().getArgFlagsString();
4798  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4799    cerr << ":" << N->getVT().getMVTString();
4800  }
4801  else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4802    const Value *SrcValue = LD->getSrcValue();
4803    int SrcOffset = LD->getSrcValueOffset();
4804    cerr << " <";
4805    if (SrcValue)
4806      cerr << SrcValue;
4807    else
4808      cerr << "null";
4809    cerr << ":" << SrcOffset << ">";
4810
4811    bool doExt = true;
4812    switch (LD->getExtensionType()) {
4813    default: doExt = false; break;
4814    case ISD::EXTLOAD:
4815      cerr << " <anyext ";
4816      break;
4817    case ISD::SEXTLOAD:
4818      cerr << " <sext ";
4819      break;
4820    case ISD::ZEXTLOAD:
4821      cerr << " <zext ";
4822      break;
4823    }
4824    if (doExt)
4825      cerr << LD->getMemoryVT().getMVTString() << ">";
4826
4827    const char *AM = getIndexedModeName(LD->getAddressingMode());
4828    if (*AM)
4829      cerr << " " << AM;
4830    if (LD->isVolatile())
4831      cerr << " <volatile>";
4832    cerr << " alignment=" << LD->getAlignment();
4833  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4834    const Value *SrcValue = ST->getSrcValue();
4835    int SrcOffset = ST->getSrcValueOffset();
4836    cerr << " <";
4837    if (SrcValue)
4838      cerr << SrcValue;
4839    else
4840      cerr << "null";
4841    cerr << ":" << SrcOffset << ">";
4842
4843    if (ST->isTruncatingStore())
4844      cerr << " <trunc "
4845           << ST->getMemoryVT().getMVTString() << ">";
4846
4847    const char *AM = getIndexedModeName(ST->getAddressingMode());
4848    if (*AM)
4849      cerr << " " << AM;
4850    if (ST->isVolatile())
4851      cerr << " <volatile>";
4852    cerr << " alignment=" << ST->getAlignment();
4853  } else if (const AtomicSDNode* AT = dyn_cast<AtomicSDNode>(this)) {
4854    const Value *SrcValue = AT->getSrcValue();
4855    int SrcOffset = AT->getSrcValueOffset();
4856    cerr << " <";
4857    if (SrcValue)
4858      cerr << SrcValue;
4859    else
4860      cerr << "null";
4861    cerr << ":" << SrcOffset << ">";
4862    if (AT->isVolatile())
4863      cerr << " <volatile>";
4864    cerr << " alignment=" << AT->getAlignment();
4865  }
4866}
4867
4868static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4869  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4870    if (N->getOperand(i).Val->hasOneUse())
4871      DumpNodes(N->getOperand(i).Val, indent+2, G);
4872    else
4873      cerr << "\n" << std::string(indent+2, ' ')
4874           << (void*)N->getOperand(i).Val << ": <multiple use>";
4875
4876
4877  cerr << "\n" << std::string(indent, ' ');
4878  N->dump(G);
4879}
4880
4881void SelectionDAG::dump() const {
4882  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4883  std::vector<const SDNode*> Nodes;
4884  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4885       I != E; ++I)
4886    Nodes.push_back(I);
4887
4888  std::sort(Nodes.begin(), Nodes.end());
4889
4890  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4891    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4892      DumpNodes(Nodes[i], 2, this);
4893  }
4894
4895  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4896
4897  cerr << "\n\n";
4898}
4899
4900const Type *ConstantPoolSDNode::getType() const {
4901  if (isMachineConstantPoolEntry())
4902    return Val.MachineCPVal->getType();
4903  return Val.ConstVal->getType();
4904}
4905