SelectionDAG.cpp revision fb384d61c78b60787ed65475d8403aee65023962
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "SDNodeOrdering.h"
16#include "SDNodeDbgValue.h"
17#include "llvm/CallingConv.h"
18#include "llvm/Constants.h"
19#include "llvm/DebugInfo.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalAlias.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Intrinsics.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/Assembly/Writer.h"
27#include "llvm/CodeGen/MachineBasicBlock.h"
28#include "llvm/CodeGen/MachineConstantPool.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineModuleInfo.h"
31#include "llvm/Target/TargetRegisterInfo.h"
32#include "llvm/DataLayout.h"
33#include "llvm/Target/TargetLowering.h"
34#include "llvm/Target/TargetSelectionDAGInfo.h"
35#include "llvm/Target/TargetOptions.h"
36#include "llvm/Target/TargetInstrInfo.h"
37#include "llvm/Target/TargetIntrinsicInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Support/CommandLine.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/ManagedStatic.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Support/Mutex.h"
46#include "llvm/ADT/SetVector.h"
47#include "llvm/ADT/SmallPtrSet.h"
48#include "llvm/ADT/SmallSet.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/StringExtras.h"
51#include <algorithm>
52#include <cmath>
53using namespace llvm;
54
55/// makeVTList - Return an instance of the SDVTList struct initialized with the
56/// specified members.
57static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
58  SDVTList Res = {VTs, NumVTs};
59  return Res;
60}
61
62static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
63  switch (VT.getSimpleVT().SimpleTy) {
64  default: llvm_unreachable("Unknown FP format");
65  case MVT::f16:     return &APFloat::IEEEhalf;
66  case MVT::f32:     return &APFloat::IEEEsingle;
67  case MVT::f64:     return &APFloat::IEEEdouble;
68  case MVT::f80:     return &APFloat::x87DoubleExtended;
69  case MVT::f128:    return &APFloat::IEEEquad;
70  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
71  }
72}
73
74// Default null implementations of the callbacks.
75void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
76void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
77
78//===----------------------------------------------------------------------===//
79//                              ConstantFPSDNode Class
80//===----------------------------------------------------------------------===//
81
82/// isExactlyValue - We don't rely on operator== working on double values, as
83/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
84/// As such, this method can be used to do an exact bit-for-bit comparison of
85/// two floating point values.
86bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
87  return getValueAPF().bitwiseIsEqual(V);
88}
89
90bool ConstantFPSDNode::isValueValidForType(EVT VT,
91                                           const APFloat& Val) {
92  assert(VT.isFloatingPoint() && "Can only convert between FP types");
93
94  // PPC long double cannot be converted to any other type.
95  if (VT == MVT::ppcf128 ||
96      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
97    return false;
98
99  // convert modifies in place, so make a copy.
100  APFloat Val2 = APFloat(Val);
101  bool losesInfo;
102  (void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
103                      &losesInfo);
104  return !losesInfo;
105}
106
107//===----------------------------------------------------------------------===//
108//                              ISD Namespace
109//===----------------------------------------------------------------------===//
110
111/// isBuildVectorAllOnes - Return true if the specified node is a
112/// BUILD_VECTOR where all of the elements are ~0 or undef.
113bool ISD::isBuildVectorAllOnes(const SDNode *N) {
114  // Look through a bit convert.
115  if (N->getOpcode() == ISD::BITCAST)
116    N = N->getOperand(0).getNode();
117
118  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
119
120  unsigned i = 0, e = N->getNumOperands();
121
122  // Skip over all of the undef values.
123  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
124    ++i;
125
126  // Do not accept an all-undef vector.
127  if (i == e) return false;
128
129  // Do not accept build_vectors that aren't all constants or which have non-~0
130  // elements. We have to be a bit careful here, as the type of the constant
131  // may not be the same as the type of the vector elements due to type
132  // legalization (the elements are promoted to a legal type for the target and
133  // a vector of a type may be legal when the base element type is not).
134  // We only want to check enough bits to cover the vector elements, because
135  // we care if the resultant vector is all ones, not whether the individual
136  // constants are.
137  SDValue NotZero = N->getOperand(i);
138  unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
139  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
140    if (CN->getAPIntValue().countTrailingOnes() < EltSize)
141      return false;
142  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
143    if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
144      return false;
145  } else
146    return false;
147
148  // Okay, we have at least one ~0 value, check to see if the rest match or are
149  // undefs. Even with the above element type twiddling, this should be OK, as
150  // the same type legalization should have applied to all the elements.
151  for (++i; i != e; ++i)
152    if (N->getOperand(i) != NotZero &&
153        N->getOperand(i).getOpcode() != ISD::UNDEF)
154      return false;
155  return true;
156}
157
158
159/// isBuildVectorAllZeros - Return true if the specified node is a
160/// BUILD_VECTOR where all of the elements are 0 or undef.
161bool ISD::isBuildVectorAllZeros(const SDNode *N) {
162  // Look through a bit convert.
163  if (N->getOpcode() == ISD::BITCAST)
164    N = N->getOperand(0).getNode();
165
166  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
167
168  unsigned i = 0, e = N->getNumOperands();
169
170  // Skip over all of the undef values.
171  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
172    ++i;
173
174  // Do not accept an all-undef vector.
175  if (i == e) return false;
176
177  // Do not accept build_vectors that aren't all constants or which have non-0
178  // elements.
179  SDValue Zero = N->getOperand(i);
180  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Zero)) {
181    if (!CN->isNullValue())
182      return false;
183  } else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Zero)) {
184    if (!CFPN->getValueAPF().isPosZero())
185      return false;
186  } else
187    return false;
188
189  // Okay, we have at least one 0 value, check to see if the rest match or are
190  // undefs.
191  for (++i; i != e; ++i)
192    if (N->getOperand(i) != Zero &&
193        N->getOperand(i).getOpcode() != ISD::UNDEF)
194      return false;
195  return true;
196}
197
198/// isScalarToVector - Return true if the specified node is a
199/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
200/// element is not an undef.
201bool ISD::isScalarToVector(const SDNode *N) {
202  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
203    return true;
204
205  if (N->getOpcode() != ISD::BUILD_VECTOR)
206    return false;
207  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
208    return false;
209  unsigned NumElems = N->getNumOperands();
210  if (NumElems == 1)
211    return false;
212  for (unsigned i = 1; i < NumElems; ++i) {
213    SDValue V = N->getOperand(i);
214    if (V.getOpcode() != ISD::UNDEF)
215      return false;
216  }
217  return true;
218}
219
220/// allOperandsUndef - Return true if the node has at least one operand
221/// and all operands of the specified node are ISD::UNDEF.
222bool ISD::allOperandsUndef(const SDNode *N) {
223  // Return false if the node has no operands.
224  // This is "logically inconsistent" with the definition of "all" but
225  // is probably the desired behavior.
226  if (N->getNumOperands() == 0)
227    return false;
228
229  for (unsigned i = 0, e = N->getNumOperands(); i != e ; ++i)
230    if (N->getOperand(i).getOpcode() != ISD::UNDEF)
231      return false;
232
233  return true;
234}
235
236/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
237/// when given the operation for (X op Y).
238ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
239  // To perform this operation, we just need to swap the L and G bits of the
240  // operation.
241  unsigned OldL = (Operation >> 2) & 1;
242  unsigned OldG = (Operation >> 1) & 1;
243  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
244                       (OldL << 1) |       // New G bit
245                       (OldG << 2));       // New L bit.
246}
247
248/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
249/// 'op' is a valid SetCC operation.
250ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
251  unsigned Operation = Op;
252  if (isInteger)
253    Operation ^= 7;   // Flip L, G, E bits, but not U.
254  else
255    Operation ^= 15;  // Flip all of the condition bits.
256
257  if (Operation > ISD::SETTRUE2)
258    Operation &= ~8;  // Don't let N and U bits get set.
259
260  return ISD::CondCode(Operation);
261}
262
263
264/// isSignedOp - For an integer comparison, return 1 if the comparison is a
265/// signed operation and 2 if the result is an unsigned comparison.  Return zero
266/// if the operation does not depend on the sign of the input (setne and seteq).
267static int isSignedOp(ISD::CondCode Opcode) {
268  switch (Opcode) {
269  default: llvm_unreachable("Illegal integer setcc operation!");
270  case ISD::SETEQ:
271  case ISD::SETNE: return 0;
272  case ISD::SETLT:
273  case ISD::SETLE:
274  case ISD::SETGT:
275  case ISD::SETGE: return 1;
276  case ISD::SETULT:
277  case ISD::SETULE:
278  case ISD::SETUGT:
279  case ISD::SETUGE: return 2;
280  }
281}
282
283/// getSetCCOrOperation - Return the result of a logical OR between different
284/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
285/// returns SETCC_INVALID if it is not possible to represent the resultant
286/// comparison.
287ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
288                                       bool isInteger) {
289  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
290    // Cannot fold a signed integer setcc with an unsigned integer setcc.
291    return ISD::SETCC_INVALID;
292
293  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
294
295  // If the N and U bits get set then the resultant comparison DOES suddenly
296  // care about orderedness, and is true when ordered.
297  if (Op > ISD::SETTRUE2)
298    Op &= ~16;     // Clear the U bit if the N bit is set.
299
300  // Canonicalize illegal integer setcc's.
301  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
302    Op = ISD::SETNE;
303
304  return ISD::CondCode(Op);
305}
306
307/// getSetCCAndOperation - Return the result of a logical AND between different
308/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
309/// function returns zero if it is not possible to represent the resultant
310/// comparison.
311ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
312                                        bool isInteger) {
313  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
314    // Cannot fold a signed setcc with an unsigned setcc.
315    return ISD::SETCC_INVALID;
316
317  // Combine all of the condition bits.
318  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
319
320  // Canonicalize illegal integer setcc's.
321  if (isInteger) {
322    switch (Result) {
323    default: break;
324    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
325    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
326    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
327    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
328    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
329    }
330  }
331
332  return Result;
333}
334
335//===----------------------------------------------------------------------===//
336//                           SDNode Profile Support
337//===----------------------------------------------------------------------===//
338
339/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
340///
341static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
342  ID.AddInteger(OpC);
343}
344
345/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
346/// solely with their pointer.
347static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
348  ID.AddPointer(VTList.VTs);
349}
350
351/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
352///
353static void AddNodeIDOperands(FoldingSetNodeID &ID,
354                              const SDValue *Ops, unsigned NumOps) {
355  for (; NumOps; --NumOps, ++Ops) {
356    ID.AddPointer(Ops->getNode());
357    ID.AddInteger(Ops->getResNo());
358  }
359}
360
361/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
362///
363static void AddNodeIDOperands(FoldingSetNodeID &ID,
364                              const SDUse *Ops, unsigned NumOps) {
365  for (; NumOps; --NumOps, ++Ops) {
366    ID.AddPointer(Ops->getNode());
367    ID.AddInteger(Ops->getResNo());
368  }
369}
370
371static void AddNodeIDNode(FoldingSetNodeID &ID,
372                          unsigned short OpC, SDVTList VTList,
373                          const SDValue *OpList, unsigned N) {
374  AddNodeIDOpcode(ID, OpC);
375  AddNodeIDValueTypes(ID, VTList);
376  AddNodeIDOperands(ID, OpList, N);
377}
378
379/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
380/// the NodeID data.
381static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
382  switch (N->getOpcode()) {
383  case ISD::TargetExternalSymbol:
384  case ISD::ExternalSymbol:
385    llvm_unreachable("Should only be used on nodes with operands");
386  default: break;  // Normal nodes don't need extra info.
387  case ISD::TargetConstant:
388  case ISD::Constant:
389    ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
390    break;
391  case ISD::TargetConstantFP:
392  case ISD::ConstantFP: {
393    ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
394    break;
395  }
396  case ISD::TargetGlobalAddress:
397  case ISD::GlobalAddress:
398  case ISD::TargetGlobalTLSAddress:
399  case ISD::GlobalTLSAddress: {
400    const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
401    ID.AddPointer(GA->getGlobal());
402    ID.AddInteger(GA->getOffset());
403    ID.AddInteger(GA->getTargetFlags());
404    ID.AddInteger(GA->getAddressSpace());
405    break;
406  }
407  case ISD::BasicBlock:
408    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
409    break;
410  case ISD::Register:
411    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
412    break;
413  case ISD::RegisterMask:
414    ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
415    break;
416  case ISD::SRCVALUE:
417    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
418    break;
419  case ISD::FrameIndex:
420  case ISD::TargetFrameIndex:
421    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
422    break;
423  case ISD::JumpTable:
424  case ISD::TargetJumpTable:
425    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
426    ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
427    break;
428  case ISD::ConstantPool:
429  case ISD::TargetConstantPool: {
430    const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
431    ID.AddInteger(CP->getAlignment());
432    ID.AddInteger(CP->getOffset());
433    if (CP->isMachineConstantPoolEntry())
434      CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
435    else
436      ID.AddPointer(CP->getConstVal());
437    ID.AddInteger(CP->getTargetFlags());
438    break;
439  }
440  case ISD::TargetIndex: {
441    const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
442    ID.AddInteger(TI->getIndex());
443    ID.AddInteger(TI->getOffset());
444    ID.AddInteger(TI->getTargetFlags());
445    break;
446  }
447  case ISD::LOAD: {
448    const LoadSDNode *LD = cast<LoadSDNode>(N);
449    ID.AddInteger(LD->getMemoryVT().getRawBits());
450    ID.AddInteger(LD->getRawSubclassData());
451    ID.AddInteger(LD->getPointerInfo().getAddrSpace());
452    break;
453  }
454  case ISD::STORE: {
455    const StoreSDNode *ST = cast<StoreSDNode>(N);
456    ID.AddInteger(ST->getMemoryVT().getRawBits());
457    ID.AddInteger(ST->getRawSubclassData());
458    ID.AddInteger(ST->getPointerInfo().getAddrSpace());
459    break;
460  }
461  case ISD::ATOMIC_CMP_SWAP:
462  case ISD::ATOMIC_SWAP:
463  case ISD::ATOMIC_LOAD_ADD:
464  case ISD::ATOMIC_LOAD_SUB:
465  case ISD::ATOMIC_LOAD_AND:
466  case ISD::ATOMIC_LOAD_OR:
467  case ISD::ATOMIC_LOAD_XOR:
468  case ISD::ATOMIC_LOAD_NAND:
469  case ISD::ATOMIC_LOAD_MIN:
470  case ISD::ATOMIC_LOAD_MAX:
471  case ISD::ATOMIC_LOAD_UMIN:
472  case ISD::ATOMIC_LOAD_UMAX:
473  case ISD::ATOMIC_LOAD:
474  case ISD::ATOMIC_STORE: {
475    const AtomicSDNode *AT = cast<AtomicSDNode>(N);
476    ID.AddInteger(AT->getMemoryVT().getRawBits());
477    ID.AddInteger(AT->getRawSubclassData());
478    ID.AddInteger(AT->getPointerInfo().getAddrSpace());
479    break;
480  }
481  case ISD::PREFETCH: {
482    const MemSDNode *PF = cast<MemSDNode>(N);
483    ID.AddInteger(PF->getPointerInfo().getAddrSpace());
484    break;
485  }
486  case ISD::VECTOR_SHUFFLE: {
487    const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
488    for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
489         i != e; ++i)
490      ID.AddInteger(SVN->getMaskElt(i));
491    break;
492  }
493  case ISD::TargetBlockAddress:
494  case ISD::BlockAddress: {
495    const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
496    ID.AddPointer(BA->getBlockAddress());
497    ID.AddInteger(BA->getOffset());
498    ID.AddInteger(BA->getTargetFlags());
499    break;
500  }
501  } // end switch (N->getOpcode())
502
503  // Target specific memory nodes could also have address spaces to check.
504  if (N->isTargetMemoryOpcode())
505    ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
506}
507
508/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
509/// data.
510static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
511  AddNodeIDOpcode(ID, N->getOpcode());
512  // Add the return value info.
513  AddNodeIDValueTypes(ID, N->getVTList());
514  // Add the operand info.
515  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
516
517  // Handle SDNode leafs with special info.
518  AddNodeIDCustom(ID, N);
519}
520
521/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
522/// the CSE map that carries volatility, temporalness, indexing mode, and
523/// extension/truncation information.
524///
525static inline unsigned
526encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
527                     bool isNonTemporal, bool isInvariant) {
528  assert((ConvType & 3) == ConvType &&
529         "ConvType may not require more than 2 bits!");
530  assert((AM & 7) == AM &&
531         "AM may not require more than 3 bits!");
532  return ConvType |
533         (AM << 2) |
534         (isVolatile << 5) |
535         (isNonTemporal << 6) |
536         (isInvariant << 7);
537}
538
539//===----------------------------------------------------------------------===//
540//                              SelectionDAG Class
541//===----------------------------------------------------------------------===//
542
543/// doNotCSE - Return true if CSE should not be performed for this node.
544static bool doNotCSE(SDNode *N) {
545  if (N->getValueType(0) == MVT::Glue)
546    return true; // Never CSE anything that produces a flag.
547
548  switch (N->getOpcode()) {
549  default: break;
550  case ISD::HANDLENODE:
551  case ISD::EH_LABEL:
552    return true;   // Never CSE these nodes.
553  }
554
555  // Check that remaining values produced are not flags.
556  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
557    if (N->getValueType(i) == MVT::Glue)
558      return true; // Never CSE anything that produces a flag.
559
560  return false;
561}
562
563/// RemoveDeadNodes - This method deletes all unreachable nodes in the
564/// SelectionDAG.
565void SelectionDAG::RemoveDeadNodes() {
566  // Create a dummy node (which is not added to allnodes), that adds a reference
567  // to the root node, preventing it from being deleted.
568  HandleSDNode Dummy(getRoot());
569
570  SmallVector<SDNode*, 128> DeadNodes;
571
572  // Add all obviously-dead nodes to the DeadNodes worklist.
573  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
574    if (I->use_empty())
575      DeadNodes.push_back(I);
576
577  RemoveDeadNodes(DeadNodes);
578
579  // If the root changed (e.g. it was a dead load, update the root).
580  setRoot(Dummy.getValue());
581}
582
583/// RemoveDeadNodes - This method deletes the unreachable nodes in the
584/// given list, and any nodes that become unreachable as a result.
585void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
586
587  // Process the worklist, deleting the nodes and adding their uses to the
588  // worklist.
589  while (!DeadNodes.empty()) {
590    SDNode *N = DeadNodes.pop_back_val();
591
592    for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
593      DUL->NodeDeleted(N, 0);
594
595    // Take the node out of the appropriate CSE map.
596    RemoveNodeFromCSEMaps(N);
597
598    // Next, brutally remove the operand list.  This is safe to do, as there are
599    // no cycles in the graph.
600    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
601      SDUse &Use = *I++;
602      SDNode *Operand = Use.getNode();
603      Use.set(SDValue());
604
605      // Now that we removed this operand, see if there are no uses of it left.
606      if (Operand->use_empty())
607        DeadNodes.push_back(Operand);
608    }
609
610    DeallocateNode(N);
611  }
612}
613
614void SelectionDAG::RemoveDeadNode(SDNode *N){
615  SmallVector<SDNode*, 16> DeadNodes(1, N);
616
617  // Create a dummy node that adds a reference to the root node, preventing
618  // it from being deleted.  (This matters if the root is an operand of the
619  // dead node.)
620  HandleSDNode Dummy(getRoot());
621
622  RemoveDeadNodes(DeadNodes);
623}
624
625void SelectionDAG::DeleteNode(SDNode *N) {
626  // First take this out of the appropriate CSE map.
627  RemoveNodeFromCSEMaps(N);
628
629  // Finally, remove uses due to operands of this node, remove from the
630  // AllNodes list, and delete the node.
631  DeleteNodeNotInCSEMaps(N);
632}
633
634void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
635  assert(N != AllNodes.begin() && "Cannot delete the entry node!");
636  assert(N->use_empty() && "Cannot delete a node that is not dead!");
637
638  // Drop all of the operands and decrement used node's use counts.
639  N->DropOperands();
640
641  DeallocateNode(N);
642}
643
644void SelectionDAG::DeallocateNode(SDNode *N) {
645  if (N->OperandsNeedDelete)
646    delete[] N->OperandList;
647
648  // Set the opcode to DELETED_NODE to help catch bugs when node
649  // memory is reallocated.
650  N->NodeType = ISD::DELETED_NODE;
651
652  NodeAllocator.Deallocate(AllNodes.remove(N));
653
654  // Remove the ordering of this node.
655  Ordering->remove(N);
656
657  // If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
658  ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
659  for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
660    DbgVals[i]->setIsInvalidated();
661}
662
663/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
664/// correspond to it.  This is useful when we're about to delete or repurpose
665/// the node.  We don't want future request for structurally identical nodes
666/// to return N anymore.
667bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
668  bool Erased = false;
669  switch (N->getOpcode()) {
670  case ISD::HANDLENODE: return false;  // noop.
671  case ISD::CONDCODE:
672    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
673           "Cond code doesn't exist!");
674    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
675    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
676    break;
677  case ISD::ExternalSymbol:
678    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
679    break;
680  case ISD::TargetExternalSymbol: {
681    ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
682    Erased = TargetExternalSymbols.erase(
683               std::pair<std::string,unsigned char>(ESN->getSymbol(),
684                                                    ESN->getTargetFlags()));
685    break;
686  }
687  case ISD::VALUETYPE: {
688    EVT VT = cast<VTSDNode>(N)->getVT();
689    if (VT.isExtended()) {
690      Erased = ExtendedValueTypeNodes.erase(VT);
691    } else {
692      Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
693      ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
694    }
695    break;
696  }
697  default:
698    // Remove it from the CSE Map.
699    assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
700    assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
701    Erased = CSEMap.RemoveNode(N);
702    break;
703  }
704#ifndef NDEBUG
705  // Verify that the node was actually in one of the CSE maps, unless it has a
706  // flag result (which cannot be CSE'd) or is one of the special cases that are
707  // not subject to CSE.
708  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
709      !N->isMachineOpcode() && !doNotCSE(N)) {
710    N->dump(this);
711    dbgs() << "\n";
712    llvm_unreachable("Node is not in map!");
713  }
714#endif
715  return Erased;
716}
717
718/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
719/// maps and modified in place. Add it back to the CSE maps, unless an identical
720/// node already exists, in which case transfer all its users to the existing
721/// node. This transfer can potentially trigger recursive merging.
722///
723void
724SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
725  // For node types that aren't CSE'd, just act as if no identical node
726  // already exists.
727  if (!doNotCSE(N)) {
728    SDNode *Existing = CSEMap.GetOrInsertNode(N);
729    if (Existing != N) {
730      // If there was already an existing matching node, use ReplaceAllUsesWith
731      // to replace the dead one with the existing one.  This can cause
732      // recursive merging of other unrelated nodes down the line.
733      ReplaceAllUsesWith(N, Existing);
734
735      // N is now dead. Inform the listeners and delete it.
736      for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
737        DUL->NodeDeleted(N, Existing);
738      DeleteNodeNotInCSEMaps(N);
739      return;
740    }
741  }
742
743  // If the node doesn't already exist, we updated it.  Inform listeners.
744  for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
745    DUL->NodeUpdated(N);
746}
747
748/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
749/// were replaced with those specified.  If this node is never memoized,
750/// return null, otherwise return a pointer to the slot it would take.  If a
751/// node already exists with these operands, the slot will be non-null.
752SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
753                                           void *&InsertPos) {
754  if (doNotCSE(N))
755    return 0;
756
757  SDValue Ops[] = { Op };
758  FoldingSetNodeID ID;
759  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
760  AddNodeIDCustom(ID, N);
761  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
762  return Node;
763}
764
765/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
766/// were replaced with those specified.  If this node is never memoized,
767/// return null, otherwise return a pointer to the slot it would take.  If a
768/// node already exists with these operands, the slot will be non-null.
769SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
770                                           SDValue Op1, SDValue Op2,
771                                           void *&InsertPos) {
772  if (doNotCSE(N))
773    return 0;
774
775  SDValue Ops[] = { Op1, Op2 };
776  FoldingSetNodeID ID;
777  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
778  AddNodeIDCustom(ID, N);
779  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
780  return Node;
781}
782
783
784/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
785/// were replaced with those specified.  If this node is never memoized,
786/// return null, otherwise return a pointer to the slot it would take.  If a
787/// node already exists with these operands, the slot will be non-null.
788SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
789                                           const SDValue *Ops,unsigned NumOps,
790                                           void *&InsertPos) {
791  if (doNotCSE(N))
792    return 0;
793
794  FoldingSetNodeID ID;
795  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
796  AddNodeIDCustom(ID, N);
797  SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
798  return Node;
799}
800
801#ifndef NDEBUG
802/// VerifyNodeCommon - Sanity check the given node.  Aborts if it is invalid.
803static void VerifyNodeCommon(SDNode *N) {
804  switch (N->getOpcode()) {
805  default:
806    break;
807  case ISD::BUILD_PAIR: {
808    EVT VT = N->getValueType(0);
809    assert(N->getNumValues() == 1 && "Too many results!");
810    assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
811           "Wrong return type!");
812    assert(N->getNumOperands() == 2 && "Wrong number of operands!");
813    assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
814           "Mismatched operand types!");
815    assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
816           "Wrong operand type!");
817    assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
818           "Wrong return type size");
819    break;
820  }
821  case ISD::BUILD_VECTOR: {
822    assert(N->getNumValues() == 1 && "Too many results!");
823    assert(N->getValueType(0).isVector() && "Wrong return type!");
824    assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
825           "Wrong number of operands!");
826    EVT EltVT = N->getValueType(0).getVectorElementType();
827    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
828      assert((I->getValueType() == EltVT ||
829             (EltVT.isInteger() && I->getValueType().isInteger() &&
830              EltVT.bitsLE(I->getValueType()))) &&
831            "Wrong operand type!");
832      assert(I->getValueType() == N->getOperand(0).getValueType() &&
833             "Operands must all have the same type");
834    }
835    break;
836  }
837  }
838}
839
840/// VerifySDNode - Sanity check the given SDNode.  Aborts if it is invalid.
841static void VerifySDNode(SDNode *N) {
842  // The SDNode allocators cannot be used to allocate nodes with fields that are
843  // not present in an SDNode!
844  assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
845  assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
846  assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
847  assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
848  assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
849  assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
850  assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
851  assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
852  assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
853  assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
854  assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
855  assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
856  assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
857  assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
858  assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
859  assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
860  assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
861  assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
862  assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
863
864  VerifyNodeCommon(N);
865}
866
867/// VerifyMachineNode - Sanity check the given MachineNode.  Aborts if it is
868/// invalid.
869static void VerifyMachineNode(SDNode *N) {
870  // The MachineNode allocators cannot be used to allocate nodes with fields
871  // that are not present in a MachineNode!
872  // Currently there are no such nodes.
873
874  VerifyNodeCommon(N);
875}
876#endif // NDEBUG
877
878/// getEVTAlignment - Compute the default alignment value for the
879/// given type.
880///
881unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
882  Type *Ty = VT == MVT::iPTR ?
883                   PointerType::get(Type::getInt8Ty(*getContext()), 0) :
884                   VT.getTypeForEVT(*getContext());
885
886  return TLI.getDataLayout()->getABITypeAlignment(Ty);
887}
888
889// EntryNode could meaningfully have debug info if we can find it...
890SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
891  : TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
892    OptLevel(OL), EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
893    Root(getEntryNode()), Ordering(0), UpdateListeners(0) {
894  AllNodes.push_back(&EntryNode);
895  Ordering = new SDNodeOrdering();
896  DbgInfo = new SDDbgInfo();
897}
898
899void SelectionDAG::init(MachineFunction &mf) {
900  MF = &mf;
901  Context = &mf.getFunction()->getContext();
902}
903
904SelectionDAG::~SelectionDAG() {
905  assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
906  allnodes_clear();
907  delete Ordering;
908  delete DbgInfo;
909}
910
911void SelectionDAG::allnodes_clear() {
912  assert(&*AllNodes.begin() == &EntryNode);
913  AllNodes.remove(AllNodes.begin());
914  while (!AllNodes.empty())
915    DeallocateNode(AllNodes.begin());
916}
917
918void SelectionDAG::clear() {
919  allnodes_clear();
920  OperandAllocator.Reset();
921  CSEMap.clear();
922
923  ExtendedValueTypeNodes.clear();
924  ExternalSymbols.clear();
925  TargetExternalSymbols.clear();
926  std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
927            static_cast<CondCodeSDNode*>(0));
928  std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
929            static_cast<SDNode*>(0));
930
931  EntryNode.UseList = 0;
932  AllNodes.push_back(&EntryNode);
933  Root = getEntryNode();
934  Ordering->clear();
935  DbgInfo->clear();
936}
937
938SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
939  return VT.bitsGT(Op.getValueType()) ?
940    getNode(ISD::ANY_EXTEND, DL, VT, Op) :
941    getNode(ISD::TRUNCATE, DL, VT, Op);
942}
943
944SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
945  return VT.bitsGT(Op.getValueType()) ?
946    getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
947    getNode(ISD::TRUNCATE, DL, VT, Op);
948}
949
950SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
951  return VT.bitsGT(Op.getValueType()) ?
952    getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
953    getNode(ISD::TRUNCATE, DL, VT, Op);
954}
955
956SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
957  assert(!VT.isVector() &&
958         "getZeroExtendInReg should use the vector element type instead of "
959         "the vector type!");
960  if (Op.getValueType() == VT) return Op;
961  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
962  APInt Imm = APInt::getLowBitsSet(BitWidth,
963                                   VT.getSizeInBits());
964  return getNode(ISD::AND, DL, Op.getValueType(), Op,
965                 getConstant(Imm, Op.getValueType()));
966}
967
968/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
969///
970SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
971  EVT EltVT = VT.getScalarType();
972  SDValue NegOne =
973    getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
974  return getNode(ISD::XOR, DL, VT, Val, NegOne);
975}
976
977SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
978  EVT EltVT = VT.getScalarType();
979  assert((EltVT.getSizeInBits() >= 64 ||
980         (uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
981         "getConstant with a uint64_t value that doesn't fit in the type!");
982  return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
983}
984
985SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
986  return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
987}
988
989SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
990  assert(VT.isInteger() && "Cannot create FP integer constant!");
991
992  EVT EltVT = VT.getScalarType();
993  const ConstantInt *Elt = &Val;
994
995  // In some cases the vector type is legal but the element type is illegal and
996  // needs to be promoted, for example v8i8 on ARM.  In this case, promote the
997  // inserted value (the type does not need to match the vector element type).
998  // Any extra bits introduced will be truncated away.
999  if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) ==
1000      TargetLowering::TypePromoteInteger) {
1001   EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT);
1002   APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
1003   Elt = ConstantInt::get(*getContext(), NewVal);
1004  }
1005
1006  assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
1007         "APInt size does not match type size!");
1008  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
1009  FoldingSetNodeID ID;
1010  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
1011  ID.AddPointer(Elt);
1012  void *IP = 0;
1013  SDNode *N = NULL;
1014  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1015    if (!VT.isVector())
1016      return SDValue(N, 0);
1017
1018  if (!N) {
1019    N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
1020    CSEMap.InsertNode(N, IP);
1021    AllNodes.push_back(N);
1022  }
1023
1024  SDValue Result(N, 0);
1025  if (VT.isVector()) {
1026    SmallVector<SDValue, 8> Ops;
1027    Ops.assign(VT.getVectorNumElements(), Result);
1028    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1029  }
1030  return Result;
1031}
1032
1033SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
1034  return getConstant(Val, TLI.getPointerTy(), isTarget);
1035}
1036
1037
1038SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
1039  return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
1040}
1041
1042SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
1043  assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
1044
1045  EVT EltVT = VT.getScalarType();
1046
1047  // Do the map lookup using the actual bit pattern for the floating point
1048  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
1049  // we don't have issues with SNANs.
1050  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
1051  FoldingSetNodeID ID;
1052  AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
1053  ID.AddPointer(&V);
1054  void *IP = 0;
1055  SDNode *N = NULL;
1056  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
1057    if (!VT.isVector())
1058      return SDValue(N, 0);
1059
1060  if (!N) {
1061    N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
1062    CSEMap.InsertNode(N, IP);
1063    AllNodes.push_back(N);
1064  }
1065
1066  SDValue Result(N, 0);
1067  if (VT.isVector()) {
1068    SmallVector<SDValue, 8> Ops;
1069    Ops.assign(VT.getVectorNumElements(), Result);
1070    // FIXME DebugLoc info might be appropriate here
1071    Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
1072  }
1073  return Result;
1074}
1075
1076SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
1077  EVT EltVT = VT.getScalarType();
1078  if (EltVT==MVT::f32)
1079    return getConstantFP(APFloat((float)Val), VT, isTarget);
1080  else if (EltVT==MVT::f64)
1081    return getConstantFP(APFloat(Val), VT, isTarget);
1082  else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::f16) {
1083    bool ignored;
1084    APFloat apf = APFloat(Val);
1085    apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
1086                &ignored);
1087    return getConstantFP(apf, VT, isTarget);
1088  } else
1089    llvm_unreachable("Unsupported type in getConstantFP");
1090}
1091
1092SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
1093                                       EVT VT, int64_t Offset,
1094                                       bool isTargetGA,
1095                                       unsigned char TargetFlags) {
1096  assert((TargetFlags == 0 || isTargetGA) &&
1097         "Cannot set target flags on target-independent globals");
1098
1099  // Truncate (with sign-extension) the offset value to the pointer size.
1100  unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
1101  if (BitWidth < 64)
1102    Offset = SignExtend64(Offset, BitWidth);
1103
1104  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1105  if (!GVar) {
1106    // If GV is an alias then use the aliasee for determining thread-localness.
1107    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
1108      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
1109  }
1110
1111  unsigned Opc;
1112  if (GVar && GVar->isThreadLocal())
1113    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
1114  else
1115    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
1116
1117  FoldingSetNodeID ID;
1118  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1119  ID.AddPointer(GV);
1120  ID.AddInteger(Offset);
1121  ID.AddInteger(TargetFlags);
1122  ID.AddInteger(GV->getType()->getAddressSpace());
1123  void *IP = 0;
1124  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1125    return SDValue(E, 0);
1126
1127  SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
1128                                                      Offset, TargetFlags);
1129  CSEMap.InsertNode(N, IP);
1130  AllNodes.push_back(N);
1131  return SDValue(N, 0);
1132}
1133
1134SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
1135  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
1136  FoldingSetNodeID ID;
1137  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1138  ID.AddInteger(FI);
1139  void *IP = 0;
1140  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1141    return SDValue(E, 0);
1142
1143  SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
1144  CSEMap.InsertNode(N, IP);
1145  AllNodes.push_back(N);
1146  return SDValue(N, 0);
1147}
1148
1149SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
1150                                   unsigned char TargetFlags) {
1151  assert((TargetFlags == 0 || isTarget) &&
1152         "Cannot set target flags on target-independent jump tables");
1153  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
1154  FoldingSetNodeID ID;
1155  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1156  ID.AddInteger(JTI);
1157  ID.AddInteger(TargetFlags);
1158  void *IP = 0;
1159  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1160    return SDValue(E, 0);
1161
1162  SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
1163                                                  TargetFlags);
1164  CSEMap.InsertNode(N, IP);
1165  AllNodes.push_back(N);
1166  return SDValue(N, 0);
1167}
1168
1169SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
1170                                      unsigned Alignment, int Offset,
1171                                      bool isTarget,
1172                                      unsigned char TargetFlags) {
1173  assert((TargetFlags == 0 || isTarget) &&
1174         "Cannot set target flags on target-independent globals");
1175  if (Alignment == 0)
1176    Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
1177  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1178  FoldingSetNodeID ID;
1179  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1180  ID.AddInteger(Alignment);
1181  ID.AddInteger(Offset);
1182  ID.AddPointer(C);
1183  ID.AddInteger(TargetFlags);
1184  void *IP = 0;
1185  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1186    return SDValue(E, 0);
1187
1188  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1189                                                     Alignment, TargetFlags);
1190  CSEMap.InsertNode(N, IP);
1191  AllNodes.push_back(N);
1192  return SDValue(N, 0);
1193}
1194
1195
1196SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
1197                                      unsigned Alignment, int Offset,
1198                                      bool isTarget,
1199                                      unsigned char TargetFlags) {
1200  assert((TargetFlags == 0 || isTarget) &&
1201         "Cannot set target flags on target-independent globals");
1202  if (Alignment == 0)
1203    Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
1204  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
1205  FoldingSetNodeID ID;
1206  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1207  ID.AddInteger(Alignment);
1208  ID.AddInteger(Offset);
1209  C->addSelectionDAGCSEId(ID);
1210  ID.AddInteger(TargetFlags);
1211  void *IP = 0;
1212  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1213    return SDValue(E, 0);
1214
1215  SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
1216                                                     Alignment, TargetFlags);
1217  CSEMap.InsertNode(N, IP);
1218  AllNodes.push_back(N);
1219  return SDValue(N, 0);
1220}
1221
1222SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
1223                                     unsigned char TargetFlags) {
1224  FoldingSetNodeID ID;
1225  AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), 0, 0);
1226  ID.AddInteger(Index);
1227  ID.AddInteger(Offset);
1228  ID.AddInteger(TargetFlags);
1229  void *IP = 0;
1230  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1231    return SDValue(E, 0);
1232
1233  SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset,
1234                                                    TargetFlags);
1235  CSEMap.InsertNode(N, IP);
1236  AllNodes.push_back(N);
1237  return SDValue(N, 0);
1238}
1239
1240SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
1241  FoldingSetNodeID ID;
1242  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
1243  ID.AddPointer(MBB);
1244  void *IP = 0;
1245  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1246    return SDValue(E, 0);
1247
1248  SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
1249  CSEMap.InsertNode(N, IP);
1250  AllNodes.push_back(N);
1251  return SDValue(N, 0);
1252}
1253
1254SDValue SelectionDAG::getValueType(EVT VT) {
1255  if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
1256      ValueTypeNodes.size())
1257    ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
1258
1259  SDNode *&N = VT.isExtended() ?
1260    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
1261
1262  if (N) return SDValue(N, 0);
1263  N = new (NodeAllocator) VTSDNode(VT);
1264  AllNodes.push_back(N);
1265  return SDValue(N, 0);
1266}
1267
1268SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
1269  SDNode *&N = ExternalSymbols[Sym];
1270  if (N) return SDValue(N, 0);
1271  N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
1272  AllNodes.push_back(N);
1273  return SDValue(N, 0);
1274}
1275
1276SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
1277                                              unsigned char TargetFlags) {
1278  SDNode *&N =
1279    TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
1280                                                               TargetFlags)];
1281  if (N) return SDValue(N, 0);
1282  N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
1283  AllNodes.push_back(N);
1284  return SDValue(N, 0);
1285}
1286
1287SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
1288  if ((unsigned)Cond >= CondCodeNodes.size())
1289    CondCodeNodes.resize(Cond+1);
1290
1291  if (CondCodeNodes[Cond] == 0) {
1292    CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
1293    CondCodeNodes[Cond] = N;
1294    AllNodes.push_back(N);
1295  }
1296
1297  return SDValue(CondCodeNodes[Cond], 0);
1298}
1299
1300// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
1301// the shuffle mask M that point at N1 to point at N2, and indices that point
1302// N2 to point at N1.
1303static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
1304  std::swap(N1, N2);
1305  int NElts = M.size();
1306  for (int i = 0; i != NElts; ++i) {
1307    if (M[i] >= NElts)
1308      M[i] -= NElts;
1309    else if (M[i] >= 0)
1310      M[i] += NElts;
1311  }
1312}
1313
1314SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
1315                                       SDValue N2, const int *Mask) {
1316  assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
1317  assert(VT.isVector() && N1.getValueType().isVector() &&
1318         "Vector Shuffle VTs must be a vectors");
1319  assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
1320         && "Vector Shuffle VTs must have same element type");
1321
1322  // Canonicalize shuffle undef, undef -> undef
1323  if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
1324    return getUNDEF(VT);
1325
1326  // Validate that all indices in Mask are within the range of the elements
1327  // input to the shuffle.
1328  unsigned NElts = VT.getVectorNumElements();
1329  SmallVector<int, 8> MaskVec;
1330  for (unsigned i = 0; i != NElts; ++i) {
1331    assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
1332    MaskVec.push_back(Mask[i]);
1333  }
1334
1335  // Canonicalize shuffle v, v -> v, undef
1336  if (N1 == N2) {
1337    N2 = getUNDEF(VT);
1338    for (unsigned i = 0; i != NElts; ++i)
1339      if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
1340  }
1341
1342  // Canonicalize shuffle undef, v -> v, undef.  Commute the shuffle mask.
1343  if (N1.getOpcode() == ISD::UNDEF)
1344    commuteShuffle(N1, N2, MaskVec);
1345
1346  // Canonicalize all index into lhs, -> shuffle lhs, undef
1347  // Canonicalize all index into rhs, -> shuffle rhs, undef
1348  bool AllLHS = true, AllRHS = true;
1349  bool N2Undef = N2.getOpcode() == ISD::UNDEF;
1350  for (unsigned i = 0; i != NElts; ++i) {
1351    if (MaskVec[i] >= (int)NElts) {
1352      if (N2Undef)
1353        MaskVec[i] = -1;
1354      else
1355        AllLHS = false;
1356    } else if (MaskVec[i] >= 0) {
1357      AllRHS = false;
1358    }
1359  }
1360  if (AllLHS && AllRHS)
1361    return getUNDEF(VT);
1362  if (AllLHS && !N2Undef)
1363    N2 = getUNDEF(VT);
1364  if (AllRHS) {
1365    N1 = getUNDEF(VT);
1366    commuteShuffle(N1, N2, MaskVec);
1367  }
1368
1369  // If Identity shuffle, or all shuffle in to undef, return that node.
1370  bool AllUndef = true;
1371  bool Identity = true;
1372  for (unsigned i = 0; i != NElts; ++i) {
1373    if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
1374    if (MaskVec[i] >= 0) AllUndef = false;
1375  }
1376  if (Identity && NElts == N1.getValueType().getVectorNumElements())
1377    return N1;
1378  if (AllUndef)
1379    return getUNDEF(VT);
1380
1381  FoldingSetNodeID ID;
1382  SDValue Ops[2] = { N1, N2 };
1383  AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
1384  for (unsigned i = 0; i != NElts; ++i)
1385    ID.AddInteger(MaskVec[i]);
1386
1387  void* IP = 0;
1388  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1389    return SDValue(E, 0);
1390
1391  // Allocate the mask array for the node out of the BumpPtrAllocator, since
1392  // SDNode doesn't have access to it.  This memory will be "leaked" when
1393  // the node is deallocated, but recovered when the NodeAllocator is released.
1394  int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
1395  memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
1396
1397  ShuffleVectorSDNode *N =
1398    new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
1399  CSEMap.InsertNode(N, IP);
1400  AllNodes.push_back(N);
1401  return SDValue(N, 0);
1402}
1403
1404SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
1405                                       SDValue Val, SDValue DTy,
1406                                       SDValue STy, SDValue Rnd, SDValue Sat,
1407                                       ISD::CvtCode Code) {
1408  // If the src and dest types are the same and the conversion is between
1409  // integer types of the same sign or two floats, no conversion is necessary.
1410  if (DTy == STy &&
1411      (Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
1412    return Val;
1413
1414  FoldingSetNodeID ID;
1415  SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
1416  AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
1417  void* IP = 0;
1418  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1419    return SDValue(E, 0);
1420
1421  CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
1422                                                           Code);
1423  CSEMap.InsertNode(N, IP);
1424  AllNodes.push_back(N);
1425  return SDValue(N, 0);
1426}
1427
1428SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
1429  FoldingSetNodeID ID;
1430  AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
1431  ID.AddInteger(RegNo);
1432  void *IP = 0;
1433  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1434    return SDValue(E, 0);
1435
1436  SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
1437  CSEMap.InsertNode(N, IP);
1438  AllNodes.push_back(N);
1439  return SDValue(N, 0);
1440}
1441
1442SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
1443  FoldingSetNodeID ID;
1444  AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), 0, 0);
1445  ID.AddPointer(RegMask);
1446  void *IP = 0;
1447  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1448    return SDValue(E, 0);
1449
1450  SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask);
1451  CSEMap.InsertNode(N, IP);
1452  AllNodes.push_back(N);
1453  return SDValue(N, 0);
1454}
1455
1456SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
1457  FoldingSetNodeID ID;
1458  SDValue Ops[] = { Root };
1459  AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
1460  ID.AddPointer(Label);
1461  void *IP = 0;
1462  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1463    return SDValue(E, 0);
1464
1465  SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
1466  CSEMap.InsertNode(N, IP);
1467  AllNodes.push_back(N);
1468  return SDValue(N, 0);
1469}
1470
1471
1472SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
1473                                      int64_t Offset,
1474                                      bool isTarget,
1475                                      unsigned char TargetFlags) {
1476  unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
1477
1478  FoldingSetNodeID ID;
1479  AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
1480  ID.AddPointer(BA);
1481  ID.AddInteger(Offset);
1482  ID.AddInteger(TargetFlags);
1483  void *IP = 0;
1484  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1485    return SDValue(E, 0);
1486
1487  SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset,
1488                                                     TargetFlags);
1489  CSEMap.InsertNode(N, IP);
1490  AllNodes.push_back(N);
1491  return SDValue(N, 0);
1492}
1493
1494SDValue SelectionDAG::getSrcValue(const Value *V) {
1495  assert((!V || V->getType()->isPointerTy()) &&
1496         "SrcValue is not a pointer?");
1497
1498  FoldingSetNodeID ID;
1499  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
1500  ID.AddPointer(V);
1501
1502  void *IP = 0;
1503  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1504    return SDValue(E, 0);
1505
1506  SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
1507  CSEMap.InsertNode(N, IP);
1508  AllNodes.push_back(N);
1509  return SDValue(N, 0);
1510}
1511
1512/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
1513SDValue SelectionDAG::getMDNode(const MDNode *MD) {
1514  FoldingSetNodeID ID;
1515  AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
1516  ID.AddPointer(MD);
1517
1518  void *IP = 0;
1519  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1520    return SDValue(E, 0);
1521
1522  SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
1523  CSEMap.InsertNode(N, IP);
1524  AllNodes.push_back(N);
1525  return SDValue(N, 0);
1526}
1527
1528
1529/// getShiftAmountOperand - Return the specified value casted to
1530/// the target's desired shift amount type.
1531SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
1532  EVT OpTy = Op.getValueType();
1533  MVT ShTy = TLI.getShiftAmountTy(LHSTy);
1534  if (OpTy == ShTy || OpTy.isVector()) return Op;
1535
1536  ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ?  ISD::TRUNCATE : ISD::ZERO_EXTEND;
1537  return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
1538}
1539
1540/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1541/// specified value type.
1542SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
1543  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1544  unsigned ByteSize = VT.getStoreSize();
1545  Type *Ty = VT.getTypeForEVT(*getContext());
1546  unsigned StackAlign =
1547  std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), minAlign);
1548
1549  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
1550  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1551}
1552
1553/// CreateStackTemporary - Create a stack temporary suitable for holding
1554/// either of the specified value types.
1555SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
1556  unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
1557                            VT2.getStoreSizeInBits())/8;
1558  Type *Ty1 = VT1.getTypeForEVT(*getContext());
1559  Type *Ty2 = VT2.getTypeForEVT(*getContext());
1560  const DataLayout *TD = TLI.getDataLayout();
1561  unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
1562                            TD->getPrefTypeAlignment(Ty2));
1563
1564  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1565  int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
1566  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1567}
1568
1569SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
1570                                SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
1571  // These setcc operations always fold.
1572  switch (Cond) {
1573  default: break;
1574  case ISD::SETFALSE:
1575  case ISD::SETFALSE2: return getConstant(0, VT);
1576  case ISD::SETTRUE:
1577  case ISD::SETTRUE2:  return getConstant(1, VT);
1578
1579  case ISD::SETOEQ:
1580  case ISD::SETOGT:
1581  case ISD::SETOGE:
1582  case ISD::SETOLT:
1583  case ISD::SETOLE:
1584  case ISD::SETONE:
1585  case ISD::SETO:
1586  case ISD::SETUO:
1587  case ISD::SETUEQ:
1588  case ISD::SETUNE:
1589    assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
1590    break;
1591  }
1592
1593  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
1594    const APInt &C2 = N2C->getAPIntValue();
1595    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1596      const APInt &C1 = N1C->getAPIntValue();
1597
1598      switch (Cond) {
1599      default: llvm_unreachable("Unknown integer setcc!");
1600      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1601      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1602      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1603      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1604      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1605      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1606      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1607      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1608      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1609      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1610      }
1611    }
1612  }
1613  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1614    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
1615      // No compile time operations on this type yet.
1616      if (N1C->getValueType(0) == MVT::ppcf128)
1617        return SDValue();
1618
1619      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1620      switch (Cond) {
1621      default: break;
1622      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1623                          return getUNDEF(VT);
1624                        // fall through
1625      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1626      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1627                          return getUNDEF(VT);
1628                        // fall through
1629      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1630                                           R==APFloat::cmpLessThan, VT);
1631      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1632                          return getUNDEF(VT);
1633                        // fall through
1634      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1635      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1636                          return getUNDEF(VT);
1637                        // fall through
1638      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1639      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1640                          return getUNDEF(VT);
1641                        // fall through
1642      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1643                                           R==APFloat::cmpEqual, VT);
1644      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1645                          return getUNDEF(VT);
1646                        // fall through
1647      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1648                                           R==APFloat::cmpEqual, VT);
1649      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1650      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1651      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1652                                           R==APFloat::cmpEqual, VT);
1653      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1654      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1655                                           R==APFloat::cmpLessThan, VT);
1656      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1657                                           R==APFloat::cmpUnordered, VT);
1658      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1659      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1660      }
1661    } else {
1662      // Ensure that the constant occurs on the RHS.
1663      return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1664    }
1665  }
1666
1667  // Could not fold it.
1668  return SDValue();
1669}
1670
1671/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1672/// use this predicate to simplify operations downstream.
1673bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
1674  // This predicate is not safe for vector operations.
1675  if (Op.getValueType().isVector())
1676    return false;
1677
1678  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1679  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1680}
1681
1682/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1683/// this predicate to simplify operations downstream.  Mask is known to be zero
1684/// for bits that V cannot have.
1685bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
1686                                     unsigned Depth) const {
1687  APInt KnownZero, KnownOne;
1688  ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
1689  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1690  return (KnownZero & Mask) == Mask;
1691}
1692
1693/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1694/// known to be either zero or one and return them in the KnownZero/KnownOne
1695/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1696/// processing.
1697void SelectionDAG::ComputeMaskedBits(SDValue Op, APInt &KnownZero,
1698                                     APInt &KnownOne, unsigned Depth) const {
1699  unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
1700
1701  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1702  if (Depth == 6)
1703    return;  // Limit search depth.
1704
1705  APInt KnownZero2, KnownOne2;
1706
1707  switch (Op.getOpcode()) {
1708  case ISD::Constant:
1709    // We know all of the bits for a constant!
1710    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
1711    KnownZero = ~KnownOne;
1712    return;
1713  case ISD::AND:
1714    // If either the LHS or the RHS are Zero, the result is zero.
1715    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1716    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1717    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1718    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1719
1720    // Output known-1 bits are only known if set in both the LHS & RHS.
1721    KnownOne &= KnownOne2;
1722    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1723    KnownZero |= KnownZero2;
1724    return;
1725  case ISD::OR:
1726    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1727    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1728    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1729    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1730
1731    // Output known-0 bits are only known if clear in both the LHS & RHS.
1732    KnownZero &= KnownZero2;
1733    // Output known-1 are known to be set if set in either the LHS | RHS.
1734    KnownOne |= KnownOne2;
1735    return;
1736  case ISD::XOR: {
1737    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1738    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1739    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1740    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1741
1742    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1743    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1744    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1745    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1746    KnownZero = KnownZeroOut;
1747    return;
1748  }
1749  case ISD::MUL: {
1750    ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
1751    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1752    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1753    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1754
1755    // If low bits are zero in either operand, output low known-0 bits.
1756    // Also compute a conserative estimate for high known-0 bits.
1757    // More trickiness is possible, but this is sufficient for the
1758    // interesting case of alignment computation.
1759    KnownOne.clearAllBits();
1760    unsigned TrailZ = KnownZero.countTrailingOnes() +
1761                      KnownZero2.countTrailingOnes();
1762    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1763                               KnownZero2.countLeadingOnes(),
1764                               BitWidth) - BitWidth;
1765
1766    TrailZ = std::min(TrailZ, BitWidth);
1767    LeadZ = std::min(LeadZ, BitWidth);
1768    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1769                APInt::getHighBitsSet(BitWidth, LeadZ);
1770    return;
1771  }
1772  case ISD::UDIV: {
1773    // For the purposes of computing leading zeros we can conservatively
1774    // treat a udiv as a logical right shift by the power of 2 known to
1775    // be less than the denominator.
1776    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
1777    unsigned LeadZ = KnownZero2.countLeadingOnes();
1778
1779    KnownOne2.clearAllBits();
1780    KnownZero2.clearAllBits();
1781    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
1782    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1783    if (RHSUnknownLeadingOnes != BitWidth)
1784      LeadZ = std::min(BitWidth,
1785                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1786
1787    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
1788    return;
1789  }
1790  case ISD::SELECT:
1791    ComputeMaskedBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
1792    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
1793    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1794    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1795
1796    // Only known if known in both the LHS and RHS.
1797    KnownOne &= KnownOne2;
1798    KnownZero &= KnownZero2;
1799    return;
1800  case ISD::SELECT_CC:
1801    ComputeMaskedBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
1802    ComputeMaskedBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
1803    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1804    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1805
1806    // Only known if known in both the LHS and RHS.
1807    KnownOne &= KnownOne2;
1808    KnownZero &= KnownZero2;
1809    return;
1810  case ISD::SADDO:
1811  case ISD::UADDO:
1812  case ISD::SSUBO:
1813  case ISD::USUBO:
1814  case ISD::SMULO:
1815  case ISD::UMULO:
1816    if (Op.getResNo() != 1)
1817      return;
1818    // The boolean result conforms to getBooleanContents.  Fall through.
1819  case ISD::SETCC:
1820    // If we know the result of a setcc has the top bits zero, use this info.
1821    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
1822        TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
1823      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1824    return;
1825  case ISD::SHL:
1826    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1827    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1828      unsigned ShAmt = SA->getZExtValue();
1829
1830      // If the shift count is an invalid immediate, don't do anything.
1831      if (ShAmt >= BitWidth)
1832        return;
1833
1834      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1835      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1836      KnownZero <<= ShAmt;
1837      KnownOne  <<= ShAmt;
1838      // low bits known zero.
1839      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1840    }
1841    return;
1842  case ISD::SRL:
1843    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1844    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1845      unsigned ShAmt = SA->getZExtValue();
1846
1847      // If the shift count is an invalid immediate, don't do anything.
1848      if (ShAmt >= BitWidth)
1849        return;
1850
1851      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1852      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1853      KnownZero = KnownZero.lshr(ShAmt);
1854      KnownOne  = KnownOne.lshr(ShAmt);
1855
1856      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1857      KnownZero |= HighBits;  // High bits known zero.
1858    }
1859    return;
1860  case ISD::SRA:
1861    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1862      unsigned ShAmt = SA->getZExtValue();
1863
1864      // If the shift count is an invalid immediate, don't do anything.
1865      if (ShAmt >= BitWidth)
1866        return;
1867
1868      // If any of the demanded bits are produced by the sign extension, we also
1869      // demand the input sign bit.
1870      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1871
1872      ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1873      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1874      KnownZero = KnownZero.lshr(ShAmt);
1875      KnownOne  = KnownOne.lshr(ShAmt);
1876
1877      // Handle the sign bits.
1878      APInt SignBit = APInt::getSignBit(BitWidth);
1879      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1880
1881      if (KnownZero.intersects(SignBit)) {
1882        KnownZero |= HighBits;  // New bits are known zero.
1883      } else if (KnownOne.intersects(SignBit)) {
1884        KnownOne  |= HighBits;  // New bits are known one.
1885      }
1886    }
1887    return;
1888  case ISD::SIGN_EXTEND_INREG: {
1889    EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1890    unsigned EBits = EVT.getScalarType().getSizeInBits();
1891
1892    // Sign extension.  Compute the demanded bits in the result that are not
1893    // present in the input.
1894    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
1895
1896    APInt InSignBit = APInt::getSignBit(EBits);
1897    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
1898
1899    // If the sign extended bits are demanded, we know that the sign
1900    // bit is demanded.
1901    InSignBit = InSignBit.zext(BitWidth);
1902    if (NewBits.getBoolValue())
1903      InputDemandedBits |= InSignBit;
1904
1905    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1906    KnownOne &= InputDemandedBits;
1907    KnownZero &= InputDemandedBits;
1908    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1909
1910    // If the sign bit of the input is known set or clear, then we know the
1911    // top bits of the result.
1912    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1913      KnownZero |= NewBits;
1914      KnownOne  &= ~NewBits;
1915    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1916      KnownOne  |= NewBits;
1917      KnownZero &= ~NewBits;
1918    } else {                              // Input sign bit unknown
1919      KnownZero &= ~NewBits;
1920      KnownOne  &= ~NewBits;
1921    }
1922    return;
1923  }
1924  case ISD::CTTZ:
1925  case ISD::CTTZ_ZERO_UNDEF:
1926  case ISD::CTLZ:
1927  case ISD::CTLZ_ZERO_UNDEF:
1928  case ISD::CTPOP: {
1929    unsigned LowBits = Log2_32(BitWidth)+1;
1930    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1931    KnownOne.clearAllBits();
1932    return;
1933  }
1934  case ISD::LOAD: {
1935    LoadSDNode *LD = cast<LoadSDNode>(Op);
1936    if (ISD::isZEXTLoad(Op.getNode())) {
1937      EVT VT = LD->getMemoryVT();
1938      unsigned MemBits = VT.getScalarType().getSizeInBits();
1939      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
1940    } else if (const MDNode *Ranges = LD->getRanges()) {
1941      computeMaskedBitsLoad(*Ranges, KnownZero);
1942    }
1943    return;
1944  }
1945  case ISD::ZERO_EXTEND: {
1946    EVT InVT = Op.getOperand(0).getValueType();
1947    unsigned InBits = InVT.getScalarType().getSizeInBits();
1948    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
1949    KnownZero = KnownZero.trunc(InBits);
1950    KnownOne = KnownOne.trunc(InBits);
1951    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1952    KnownZero = KnownZero.zext(BitWidth);
1953    KnownOne = KnownOne.zext(BitWidth);
1954    KnownZero |= NewBits;
1955    return;
1956  }
1957  case ISD::SIGN_EXTEND: {
1958    EVT InVT = Op.getOperand(0).getValueType();
1959    unsigned InBits = InVT.getScalarType().getSizeInBits();
1960    APInt InSignBit = APInt::getSignBit(InBits);
1961    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
1962
1963    KnownZero = KnownZero.trunc(InBits);
1964    KnownOne = KnownOne.trunc(InBits);
1965    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1966
1967    // Note if the sign bit is known to be zero or one.
1968    bool SignBitKnownZero = KnownZero.isNegative();
1969    bool SignBitKnownOne  = KnownOne.isNegative();
1970    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1971           "Sign bit can't be known to be both zero and one!");
1972
1973    KnownZero = KnownZero.zext(BitWidth);
1974    KnownOne = KnownOne.zext(BitWidth);
1975
1976    // If the sign bit is known zero or one, the top bits match.
1977    if (SignBitKnownZero)
1978      KnownZero |= NewBits;
1979    else if (SignBitKnownOne)
1980      KnownOne  |= NewBits;
1981    return;
1982  }
1983  case ISD::ANY_EXTEND: {
1984    EVT InVT = Op.getOperand(0).getValueType();
1985    unsigned InBits = InVT.getScalarType().getSizeInBits();
1986    KnownZero = KnownZero.trunc(InBits);
1987    KnownOne = KnownOne.trunc(InBits);
1988    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1989    KnownZero = KnownZero.zext(BitWidth);
1990    KnownOne = KnownOne.zext(BitWidth);
1991    return;
1992  }
1993  case ISD::TRUNCATE: {
1994    EVT InVT = Op.getOperand(0).getValueType();
1995    unsigned InBits = InVT.getScalarType().getSizeInBits();
1996    KnownZero = KnownZero.zext(InBits);
1997    KnownOne = KnownOne.zext(InBits);
1998    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
1999    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
2000    KnownZero = KnownZero.trunc(BitWidth);
2001    KnownOne = KnownOne.trunc(BitWidth);
2002    break;
2003  }
2004  case ISD::AssertZext: {
2005    EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2006    APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
2007    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2008    KnownZero |= (~InMask);
2009    KnownOne  &= (~KnownZero);
2010    return;
2011  }
2012  case ISD::FGETSIGN:
2013    // All bits are zero except the low bit.
2014    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
2015    return;
2016
2017  case ISD::SUB: {
2018    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
2019      // We know that the top bits of C-X are clear if X contains less bits
2020      // than C (i.e. no wrap-around can happen).  For example, 20-X is
2021      // positive if we can prove that X is >= 0 and < 16.
2022      if (CLHS->getAPIntValue().isNonNegative()) {
2023        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
2024        // NLZ can't be BitWidth with no sign bit
2025        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
2026        ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2027
2028        // If all of the MaskV bits are known to be zero, then we know the
2029        // output top bits are zero, because we now know that the output is
2030        // from [0-C].
2031        if ((KnownZero2 & MaskV) == MaskV) {
2032          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
2033          // Top bits known zero.
2034          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
2035        }
2036      }
2037    }
2038  }
2039  // fall through
2040  case ISD::ADD:
2041  case ISD::ADDE: {
2042    // Output known-0 bits are known if clear or set in both the low clear bits
2043    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
2044    // low 3 bits clear.
2045    ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
2046    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
2047    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
2048
2049    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2050    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
2051    KnownZeroOut = std::min(KnownZeroOut,
2052                            KnownZero2.countTrailingOnes());
2053
2054    if (Op.getOpcode() == ISD::ADD) {
2055      KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
2056      return;
2057    }
2058
2059    // With ADDE, a carry bit may be added in, so we can only use this
2060    // information if we know (at least) that the low two bits are clear.  We
2061    // then return to the caller that the low bit is unknown but that other bits
2062    // are known zero.
2063    if (KnownZeroOut >= 2) // ADDE
2064      KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
2065    return;
2066  }
2067  case ISD::SREM:
2068    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2069      const APInt &RA = Rem->getAPIntValue().abs();
2070      if (RA.isPowerOf2()) {
2071        APInt LowBits = RA - 1;
2072        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
2073        ComputeMaskedBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
2074
2075        // The low bits of the first operand are unchanged by the srem.
2076        KnownZero = KnownZero2 & LowBits;
2077        KnownOne = KnownOne2 & LowBits;
2078
2079        // If the first operand is non-negative or has all low bits zero, then
2080        // the upper bits are all zero.
2081        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
2082          KnownZero |= ~LowBits;
2083
2084        // If the first operand is negative and not all low bits are zero, then
2085        // the upper bits are all one.
2086        if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
2087          KnownOne |= ~LowBits;
2088        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2089      }
2090    }
2091    return;
2092  case ISD::UREM: {
2093    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2094      const APInt &RA = Rem->getAPIntValue();
2095      if (RA.isPowerOf2()) {
2096        APInt LowBits = (RA - 1);
2097        KnownZero |= ~LowBits;
2098        ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne,Depth+1);
2099        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
2100        break;
2101      }
2102    }
2103
2104    // Since the result is less than or equal to either operand, any leading
2105    // zero bits in either operand must also exist in the result.
2106    ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2107    ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
2108
2109    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
2110                                KnownZero2.countLeadingOnes());
2111    KnownOne.clearAllBits();
2112    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
2113    return;
2114  }
2115  case ISD::FrameIndex:
2116  case ISD::TargetFrameIndex:
2117    if (unsigned Align = InferPtrAlignment(Op)) {
2118      // The low bits are known zero if the pointer is aligned.
2119      KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
2120      return;
2121    }
2122    break;
2123
2124  default:
2125    if (Op.getOpcode() < ISD::BUILTIN_OP_END)
2126      break;
2127    // Fallthrough
2128  case ISD::INTRINSIC_WO_CHAIN:
2129  case ISD::INTRINSIC_W_CHAIN:
2130  case ISD::INTRINSIC_VOID:
2131    // Allow the target to implement this method for its nodes.
2132    TLI.computeMaskedBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
2133    return;
2134  }
2135}
2136
2137/// ComputeNumSignBits - Return the number of times the sign bit of the
2138/// register is replicated into the other bits.  We know that at least 1 bit
2139/// is always equal to the sign bit (itself), but other cases can give us
2140/// information.  For example, immediately after an "SRA X, 2", we know that
2141/// the top 3 bits are all equal to each other, so we return 3.
2142unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
2143  EVT VT = Op.getValueType();
2144  assert(VT.isInteger() && "Invalid VT!");
2145  unsigned VTBits = VT.getScalarType().getSizeInBits();
2146  unsigned Tmp, Tmp2;
2147  unsigned FirstAnswer = 1;
2148
2149  if (Depth == 6)
2150    return 1;  // Limit search depth.
2151
2152  switch (Op.getOpcode()) {
2153  default: break;
2154  case ISD::AssertSext:
2155    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2156    return VTBits-Tmp+1;
2157  case ISD::AssertZext:
2158    Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
2159    return VTBits-Tmp;
2160
2161  case ISD::Constant: {
2162    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
2163    return Val.getNumSignBits();
2164  }
2165
2166  case ISD::SIGN_EXTEND:
2167    Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
2168    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
2169
2170  case ISD::SIGN_EXTEND_INREG:
2171    // Max of the input and what this extends.
2172    Tmp =
2173      cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
2174    Tmp = VTBits-Tmp+1;
2175
2176    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2177    return std::max(Tmp, Tmp2);
2178
2179  case ISD::SRA:
2180    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2181    // SRA X, C   -> adds C sign bits.
2182    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2183      Tmp += C->getZExtValue();
2184      if (Tmp > VTBits) Tmp = VTBits;
2185    }
2186    return Tmp;
2187  case ISD::SHL:
2188    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2189      // shl destroys sign bits.
2190      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2191      if (C->getZExtValue() >= VTBits ||      // Bad shift.
2192          C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
2193      return Tmp - C->getZExtValue();
2194    }
2195    break;
2196  case ISD::AND:
2197  case ISD::OR:
2198  case ISD::XOR:    // NOT is handled here.
2199    // Logical binary ops preserve the number of sign bits at the worst.
2200    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2201    if (Tmp != 1) {
2202      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2203      FirstAnswer = std::min(Tmp, Tmp2);
2204      // We computed what we know about the sign bits as our first
2205      // answer. Now proceed to the generic code that uses
2206      // ComputeMaskedBits, and pick whichever answer is better.
2207    }
2208    break;
2209
2210  case ISD::SELECT:
2211    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2212    if (Tmp == 1) return 1;  // Early out.
2213    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
2214    return std::min(Tmp, Tmp2);
2215
2216  case ISD::SADDO:
2217  case ISD::UADDO:
2218  case ISD::SSUBO:
2219  case ISD::USUBO:
2220  case ISD::SMULO:
2221  case ISD::UMULO:
2222    if (Op.getResNo() != 1)
2223      break;
2224    // The boolean result conforms to getBooleanContents.  Fall through.
2225  case ISD::SETCC:
2226    // If setcc returns 0/-1, all bits are sign bits.
2227    if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
2228        TargetLowering::ZeroOrNegativeOneBooleanContent)
2229      return VTBits;
2230    break;
2231  case ISD::ROTL:
2232  case ISD::ROTR:
2233    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
2234      unsigned RotAmt = C->getZExtValue() & (VTBits-1);
2235
2236      // Handle rotate right by N like a rotate left by 32-N.
2237      if (Op.getOpcode() == ISD::ROTR)
2238        RotAmt = (VTBits-RotAmt) & (VTBits-1);
2239
2240      // If we aren't rotating out all of the known-in sign bits, return the
2241      // number that are left.  This handles rotl(sext(x), 1) for example.
2242      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2243      if (Tmp > RotAmt+1) return Tmp-RotAmt;
2244    }
2245    break;
2246  case ISD::ADD:
2247    // Add can have at most one carry bit.  Thus we know that the output
2248    // is, at worst, one more bit than the inputs.
2249    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2250    if (Tmp == 1) return 1;  // Early out.
2251
2252    // Special case decrementing a value (ADD X, -1):
2253    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2254      if (CRHS->isAllOnesValue()) {
2255        APInt KnownZero, KnownOne;
2256        ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
2257
2258        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2259        // sign bits set.
2260        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2261          return VTBits;
2262
2263        // If we are subtracting one from a positive number, there is no carry
2264        // out of the result.
2265        if (KnownZero.isNegative())
2266          return Tmp;
2267      }
2268
2269    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2270    if (Tmp2 == 1) return 1;
2271    return std::min(Tmp, Tmp2)-1;
2272
2273  case ISD::SUB:
2274    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
2275    if (Tmp2 == 1) return 1;
2276
2277    // Handle NEG.
2278    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
2279      if (CLHS->isNullValue()) {
2280        APInt KnownZero, KnownOne;
2281        ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
2282        // If the input is known to be 0 or 1, the output is 0/-1, which is all
2283        // sign bits set.
2284        if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
2285          return VTBits;
2286
2287        // If the input is known to be positive (the sign bit is known clear),
2288        // the output of the NEG has the same number of sign bits as the input.
2289        if (KnownZero.isNegative())
2290          return Tmp2;
2291
2292        // Otherwise, we treat this like a SUB.
2293      }
2294
2295    // Sub can have at most one carry bit.  Thus we know that the output
2296    // is, at worst, one more bit than the inputs.
2297    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
2298    if (Tmp == 1) return 1;  // Early out.
2299    return std::min(Tmp, Tmp2)-1;
2300  case ISD::TRUNCATE:
2301    // FIXME: it's tricky to do anything useful for this, but it is an important
2302    // case for targets like X86.
2303    break;
2304  }
2305
2306  // Handle LOADX separately here. EXTLOAD case will fallthrough.
2307  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
2308    unsigned ExtType = LD->getExtensionType();
2309    switch (ExtType) {
2310    default: break;
2311    case ISD::SEXTLOAD:    // '17' bits known
2312      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2313      return VTBits-Tmp+1;
2314    case ISD::ZEXTLOAD:    // '16' bits known
2315      Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
2316      return VTBits-Tmp;
2317    }
2318  }
2319
2320  // Allow the target to implement this method for its nodes.
2321  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2322      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2323      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2324      Op.getOpcode() == ISD::INTRINSIC_VOID) {
2325    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
2326    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
2327  }
2328
2329  // Finally, if we can prove that the top bits of the result are 0's or 1's,
2330  // use this information.
2331  APInt KnownZero, KnownOne;
2332  ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
2333
2334  APInt Mask;
2335  if (KnownZero.isNegative()) {        // sign bit is 0
2336    Mask = KnownZero;
2337  } else if (KnownOne.isNegative()) {  // sign bit is 1;
2338    Mask = KnownOne;
2339  } else {
2340    // Nothing known.
2341    return FirstAnswer;
2342  }
2343
2344  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2345  // the number of identical bits in the top of the input value.
2346  Mask = ~Mask;
2347  Mask <<= Mask.getBitWidth()-VTBits;
2348  // Return # leading zeros.  We use 'min' here in case Val was zero before
2349  // shifting.  We don't want to return '64' as for an i32 "0".
2350  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
2351}
2352
2353/// isBaseWithConstantOffset - Return true if the specified operand is an
2354/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
2355/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
2356/// semantics as an ADD.  This handles the equivalence:
2357///     X|Cst == X+Cst iff X&Cst = 0.
2358bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
2359  if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
2360      !isa<ConstantSDNode>(Op.getOperand(1)))
2361    return false;
2362
2363  if (Op.getOpcode() == ISD::OR &&
2364      !MaskedValueIsZero(Op.getOperand(0),
2365                     cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
2366    return false;
2367
2368  return true;
2369}
2370
2371
2372bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
2373  // If we're told that NaNs won't happen, assume they won't.
2374  if (getTarget().Options.NoNaNsFPMath)
2375    return true;
2376
2377  // If the value is a constant, we can obviously see if it is a NaN or not.
2378  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2379    return !C->getValueAPF().isNaN();
2380
2381  // TODO: Recognize more cases here.
2382
2383  return false;
2384}
2385
2386bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
2387  // If the value is a constant, we can obviously see if it is a zero or not.
2388  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
2389    return !C->isZero();
2390
2391  // TODO: Recognize more cases here.
2392  switch (Op.getOpcode()) {
2393  default: break;
2394  case ISD::OR:
2395    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
2396      return !C->isNullValue();
2397    break;
2398  }
2399
2400  return false;
2401}
2402
2403bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
2404  // Check the obvious case.
2405  if (A == B) return true;
2406
2407  // For for negative and positive zero.
2408  if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
2409    if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
2410      if (CA->isZero() && CB->isZero()) return true;
2411
2412  // Otherwise they may not be equal.
2413  return false;
2414}
2415
2416/// getNode - Gets or creates the specified node.
2417///
2418SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
2419  FoldingSetNodeID ID;
2420  AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
2421  void *IP = 0;
2422  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2423    return SDValue(E, 0);
2424
2425  SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
2426  CSEMap.InsertNode(N, IP);
2427
2428  AllNodes.push_back(N);
2429#ifndef NDEBUG
2430  VerifySDNode(N);
2431#endif
2432  return SDValue(N, 0);
2433}
2434
2435SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
2436                              EVT VT, SDValue Operand) {
2437  // Constant fold unary operations with an integer constant operand.
2438  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
2439    const APInt &Val = C->getAPIntValue();
2440    switch (Opcode) {
2441    default: break;
2442    case ISD::SIGN_EXTEND:
2443      return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
2444    case ISD::ANY_EXTEND:
2445    case ISD::ZERO_EXTEND:
2446    case ISD::TRUNCATE:
2447      return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
2448    case ISD::UINT_TO_FP:
2449    case ISD::SINT_TO_FP: {
2450      // No compile time operations on ppcf128.
2451      if (VT == MVT::ppcf128) break;
2452      APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2453      (void)apf.convertFromAPInt(Val,
2454                                 Opcode==ISD::SINT_TO_FP,
2455                                 APFloat::rmNearestTiesToEven);
2456      return getConstantFP(apf, VT);
2457    }
2458    case ISD::BITCAST:
2459      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
2460        return getConstantFP(APFloat(Val), VT);
2461      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
2462        return getConstantFP(APFloat(Val), VT);
2463      break;
2464    case ISD::BSWAP:
2465      return getConstant(Val.byteSwap(), VT);
2466    case ISD::CTPOP:
2467      return getConstant(Val.countPopulation(), VT);
2468    case ISD::CTLZ:
2469    case ISD::CTLZ_ZERO_UNDEF:
2470      return getConstant(Val.countLeadingZeros(), VT);
2471    case ISD::CTTZ:
2472    case ISD::CTTZ_ZERO_UNDEF:
2473      return getConstant(Val.countTrailingZeros(), VT);
2474    }
2475  }
2476
2477  // Constant fold unary operations with a floating point constant operand.
2478  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
2479    APFloat V = C->getValueAPF();    // make copy
2480    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
2481      switch (Opcode) {
2482      case ISD::FNEG:
2483        V.changeSign();
2484        return getConstantFP(V, VT);
2485      case ISD::FABS:
2486        V.clearSign();
2487        return getConstantFP(V, VT);
2488      case ISD::FCEIL: {
2489        APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
2490        if (fs == APFloat::opOK || fs == APFloat::opInexact)
2491          return getConstantFP(V, VT);
2492        break;
2493      }
2494      case ISD::FTRUNC: {
2495        APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
2496        if (fs == APFloat::opOK || fs == APFloat::opInexact)
2497          return getConstantFP(V, VT);
2498        break;
2499      }
2500      case ISD::FFLOOR: {
2501        APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
2502        if (fs == APFloat::opOK || fs == APFloat::opInexact)
2503          return getConstantFP(V, VT);
2504        break;
2505      }
2506      case ISD::FP_EXTEND: {
2507        bool ignored;
2508        // This can return overflow, underflow, or inexact; we don't care.
2509        // FIXME need to be more flexible about rounding mode.
2510        (void)V.convert(*EVTToAPFloatSemantics(VT),
2511                        APFloat::rmNearestTiesToEven, &ignored);
2512        return getConstantFP(V, VT);
2513      }
2514      case ISD::FP_TO_SINT:
2515      case ISD::FP_TO_UINT: {
2516        integerPart x[2];
2517        bool ignored;
2518        assert(integerPartWidth >= 64);
2519        // FIXME need to be more flexible about rounding mode.
2520        APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
2521                              Opcode==ISD::FP_TO_SINT,
2522                              APFloat::rmTowardZero, &ignored);
2523        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
2524          break;
2525        APInt api(VT.getSizeInBits(), x);
2526        return getConstant(api, VT);
2527      }
2528      case ISD::BITCAST:
2529        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
2530          return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
2531        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
2532          return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
2533        break;
2534      }
2535    }
2536  }
2537
2538  unsigned OpOpcode = Operand.getNode()->getOpcode();
2539  switch (Opcode) {
2540  case ISD::TokenFactor:
2541  case ISD::MERGE_VALUES:
2542  case ISD::CONCAT_VECTORS:
2543    return Operand;         // Factor, merge or concat of one node?  No need.
2544  case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
2545  case ISD::FP_EXTEND:
2546    assert(VT.isFloatingPoint() &&
2547           Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
2548    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
2549    assert((!VT.isVector() ||
2550            VT.getVectorNumElements() ==
2551            Operand.getValueType().getVectorNumElements()) &&
2552           "Vector element count mismatch!");
2553    if (Operand.getOpcode() == ISD::UNDEF)
2554      return getUNDEF(VT);
2555    break;
2556  case ISD::SIGN_EXTEND:
2557    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2558           "Invalid SIGN_EXTEND!");
2559    if (Operand.getValueType() == VT) return Operand;   // noop extension
2560    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2561           "Invalid sext node, dst < src!");
2562    assert((!VT.isVector() ||
2563            VT.getVectorNumElements() ==
2564            Operand.getValueType().getVectorNumElements()) &&
2565           "Vector element count mismatch!");
2566    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
2567      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2568    else if (OpOpcode == ISD::UNDEF)
2569      // sext(undef) = 0, because the top bits will all be the same.
2570      return getConstant(0, VT);
2571    break;
2572  case ISD::ZERO_EXTEND:
2573    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2574           "Invalid ZERO_EXTEND!");
2575    if (Operand.getValueType() == VT) return Operand;   // noop extension
2576    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2577           "Invalid zext node, dst < src!");
2578    assert((!VT.isVector() ||
2579            VT.getVectorNumElements() ==
2580            Operand.getValueType().getVectorNumElements()) &&
2581           "Vector element count mismatch!");
2582    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2583      return getNode(ISD::ZERO_EXTEND, DL, VT,
2584                     Operand.getNode()->getOperand(0));
2585    else if (OpOpcode == ISD::UNDEF)
2586      // zext(undef) = 0, because the top bits will be zero.
2587      return getConstant(0, VT);
2588    break;
2589  case ISD::ANY_EXTEND:
2590    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2591           "Invalid ANY_EXTEND!");
2592    if (Operand.getValueType() == VT) return Operand;   // noop extension
2593    assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
2594           "Invalid anyext node, dst < src!");
2595    assert((!VT.isVector() ||
2596            VT.getVectorNumElements() ==
2597            Operand.getValueType().getVectorNumElements()) &&
2598           "Vector element count mismatch!");
2599
2600    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2601        OpOpcode == ISD::ANY_EXTEND)
2602      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2603      return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2604    else if (OpOpcode == ISD::UNDEF)
2605      return getUNDEF(VT);
2606
2607    // (ext (trunx x)) -> x
2608    if (OpOpcode == ISD::TRUNCATE) {
2609      SDValue OpOp = Operand.getNode()->getOperand(0);
2610      if (OpOp.getValueType() == VT)
2611        return OpOp;
2612    }
2613    break;
2614  case ISD::TRUNCATE:
2615    assert(VT.isInteger() && Operand.getValueType().isInteger() &&
2616           "Invalid TRUNCATE!");
2617    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2618    assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
2619           "Invalid truncate node, src < dst!");
2620    assert((!VT.isVector() ||
2621            VT.getVectorNumElements() ==
2622            Operand.getValueType().getVectorNumElements()) &&
2623           "Vector element count mismatch!");
2624    if (OpOpcode == ISD::TRUNCATE)
2625      return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2626    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2627        OpOpcode == ISD::ANY_EXTEND) {
2628      // If the source is smaller than the dest, we still need an extend.
2629      if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
2630            .bitsLT(VT.getScalarType()))
2631        return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
2632      if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
2633        return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
2634      return Operand.getNode()->getOperand(0);
2635    }
2636    if (OpOpcode == ISD::UNDEF)
2637      return getUNDEF(VT);
2638    break;
2639  case ISD::BITCAST:
2640    // Basic sanity checking.
2641    assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
2642           && "Cannot BITCAST between types of different sizes!");
2643    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2644    if (OpOpcode == ISD::BITCAST)  // bitconv(bitconv(x)) -> bitconv(x)
2645      return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
2646    if (OpOpcode == ISD::UNDEF)
2647      return getUNDEF(VT);
2648    break;
2649  case ISD::SCALAR_TO_VECTOR:
2650    assert(VT.isVector() && !Operand.getValueType().isVector() &&
2651           (VT.getVectorElementType() == Operand.getValueType() ||
2652            (VT.getVectorElementType().isInteger() &&
2653             Operand.getValueType().isInteger() &&
2654             VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
2655           "Illegal SCALAR_TO_VECTOR node!");
2656    if (OpOpcode == ISD::UNDEF)
2657      return getUNDEF(VT);
2658    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2659    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2660        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2661        Operand.getConstantOperandVal(1) == 0 &&
2662        Operand.getOperand(0).getValueType() == VT)
2663      return Operand.getOperand(0);
2664    break;
2665  case ISD::FNEG:
2666    // -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
2667    if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
2668      return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
2669                     Operand.getNode()->getOperand(0));
2670    if (OpOpcode == ISD::FNEG)  // --X -> X
2671      return Operand.getNode()->getOperand(0);
2672    break;
2673  case ISD::FABS:
2674    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2675      return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
2676    break;
2677  }
2678
2679  SDNode *N;
2680  SDVTList VTs = getVTList(VT);
2681  if (VT != MVT::Glue) { // Don't CSE flag producing nodes
2682    FoldingSetNodeID ID;
2683    SDValue Ops[1] = { Operand };
2684    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2685    void *IP = 0;
2686    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2687      return SDValue(E, 0);
2688
2689    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2690    CSEMap.InsertNode(N, IP);
2691  } else {
2692    N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
2693  }
2694
2695  AllNodes.push_back(N);
2696#ifndef NDEBUG
2697  VerifySDNode(N);
2698#endif
2699  return SDValue(N, 0);
2700}
2701
2702SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
2703                                             EVT VT,
2704                                             ConstantSDNode *Cst1,
2705                                             ConstantSDNode *Cst2) {
2706  const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
2707
2708  switch (Opcode) {
2709  case ISD::ADD:  return getConstant(C1 + C2, VT);
2710  case ISD::SUB:  return getConstant(C1 - C2, VT);
2711  case ISD::MUL:  return getConstant(C1 * C2, VT);
2712  case ISD::UDIV:
2713    if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2714    break;
2715  case ISD::UREM:
2716    if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2717    break;
2718  case ISD::SDIV:
2719    if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2720    break;
2721  case ISD::SREM:
2722    if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2723    break;
2724  case ISD::AND:  return getConstant(C1 & C2, VT);
2725  case ISD::OR:   return getConstant(C1 | C2, VT);
2726  case ISD::XOR:  return getConstant(C1 ^ C2, VT);
2727  case ISD::SHL:  return getConstant(C1 << C2, VT);
2728  case ISD::SRL:  return getConstant(C1.lshr(C2), VT);
2729  case ISD::SRA:  return getConstant(C1.ashr(C2), VT);
2730  case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
2731  case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
2732  default: break;
2733  }
2734
2735  return SDValue();
2736}
2737
2738SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
2739                              SDValue N1, SDValue N2) {
2740  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
2741  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
2742  switch (Opcode) {
2743  default: break;
2744  case ISD::TokenFactor:
2745    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2746           N2.getValueType() == MVT::Other && "Invalid token factor!");
2747    // Fold trivial token factors.
2748    if (N1.getOpcode() == ISD::EntryToken) return N2;
2749    if (N2.getOpcode() == ISD::EntryToken) return N1;
2750    if (N1 == N2) return N1;
2751    break;
2752  case ISD::CONCAT_VECTORS:
2753    // Concat of UNDEFs is UNDEF.
2754    if (N1.getOpcode() == ISD::UNDEF &&
2755        N2.getOpcode() == ISD::UNDEF)
2756      return getUNDEF(VT);
2757
2758    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
2759    // one big BUILD_VECTOR.
2760    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
2761        N2.getOpcode() == ISD::BUILD_VECTOR) {
2762      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
2763                                    N1.getNode()->op_end());
2764      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
2765      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
2766    }
2767    break;
2768  case ISD::AND:
2769    assert(VT.isInteger() && "This operator does not apply to FP types!");
2770    assert(N1.getValueType() == N2.getValueType() &&
2771           N1.getValueType() == VT && "Binary operator types must match!");
2772    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2773    // worth handling here.
2774    if (N2C && N2C->isNullValue())
2775      return N2;
2776    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2777      return N1;
2778    break;
2779  case ISD::OR:
2780  case ISD::XOR:
2781  case ISD::ADD:
2782  case ISD::SUB:
2783    assert(VT.isInteger() && "This operator does not apply to FP types!");
2784    assert(N1.getValueType() == N2.getValueType() &&
2785           N1.getValueType() == VT && "Binary operator types must match!");
2786    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2787    // it's worth handling here.
2788    if (N2C && N2C->isNullValue())
2789      return N1;
2790    break;
2791  case ISD::UDIV:
2792  case ISD::UREM:
2793  case ISD::MULHU:
2794  case ISD::MULHS:
2795  case ISD::MUL:
2796  case ISD::SDIV:
2797  case ISD::SREM:
2798    assert(VT.isInteger() && "This operator does not apply to FP types!");
2799    assert(N1.getValueType() == N2.getValueType() &&
2800           N1.getValueType() == VT && "Binary operator types must match!");
2801    break;
2802  case ISD::FADD:
2803  case ISD::FSUB:
2804  case ISD::FMUL:
2805  case ISD::FDIV:
2806  case ISD::FREM:
2807    if (getTarget().Options.UnsafeFPMath) {
2808      if (Opcode == ISD::FADD) {
2809        // 0+x --> x
2810        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
2811          if (CFP->getValueAPF().isZero())
2812            return N2;
2813        // x+0 --> x
2814        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2815          if (CFP->getValueAPF().isZero())
2816            return N1;
2817      } else if (Opcode == ISD::FSUB) {
2818        // x-0 --> x
2819        if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
2820          if (CFP->getValueAPF().isZero())
2821            return N1;
2822      } else if (Opcode == ISD::FMUL) {
2823        ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1);
2824        SDValue V = N2;
2825
2826        // If the first operand isn't the constant, try the second
2827        if (!CFP) {
2828          CFP = dyn_cast<ConstantFPSDNode>(N2);
2829          V = N1;
2830        }
2831
2832        if (CFP) {
2833          // 0*x --> 0
2834          if (CFP->isZero())
2835            return SDValue(CFP,0);
2836          // 1*x --> x
2837          if (CFP->isExactlyValue(1.0))
2838            return V;
2839        }
2840      }
2841    }
2842    assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
2843    assert(N1.getValueType() == N2.getValueType() &&
2844           N1.getValueType() == VT && "Binary operator types must match!");
2845    break;
2846  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2847    assert(N1.getValueType() == VT &&
2848           N1.getValueType().isFloatingPoint() &&
2849           N2.getValueType().isFloatingPoint() &&
2850           "Invalid FCOPYSIGN!");
2851    break;
2852  case ISD::SHL:
2853  case ISD::SRA:
2854  case ISD::SRL:
2855  case ISD::ROTL:
2856  case ISD::ROTR:
2857    assert(VT == N1.getValueType() &&
2858           "Shift operators return type must be the same as their first arg");
2859    assert(VT.isInteger() && N2.getValueType().isInteger() &&
2860           "Shifts only work on integers");
2861    // Verify that the shift amount VT is bit enough to hold valid shift
2862    // amounts.  This catches things like trying to shift an i1024 value by an
2863    // i8, which is easy to fall into in generic code that uses
2864    // TLI.getShiftAmount().
2865    assert(N2.getValueType().getSizeInBits() >=
2866                   Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
2867           "Invalid use of small shift amount with oversized value!");
2868
2869    // Always fold shifts of i1 values so the code generator doesn't need to
2870    // handle them.  Since we know the size of the shift has to be less than the
2871    // size of the value, the shift/rotate count is guaranteed to be zero.
2872    if (VT == MVT::i1)
2873      return N1;
2874    if (N2C && N2C->isNullValue())
2875      return N1;
2876    break;
2877  case ISD::FP_ROUND_INREG: {
2878    EVT EVT = cast<VTSDNode>(N2)->getVT();
2879    assert(VT == N1.getValueType() && "Not an inreg round!");
2880    assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
2881           "Cannot FP_ROUND_INREG integer types");
2882    assert(EVT.isVector() == VT.isVector() &&
2883           "FP_ROUND_INREG type should be vector iff the operand "
2884           "type is vector!");
2885    assert((!EVT.isVector() ||
2886            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2887           "Vector element counts must match in FP_ROUND_INREG");
2888    assert(EVT.bitsLE(VT) && "Not rounding down!");
2889    (void)EVT;
2890    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2891    break;
2892  }
2893  case ISD::FP_ROUND:
2894    assert(VT.isFloatingPoint() &&
2895           N1.getValueType().isFloatingPoint() &&
2896           VT.bitsLE(N1.getValueType()) &&
2897           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2898    if (N1.getValueType() == VT) return N1;  // noop conversion.
2899    break;
2900  case ISD::AssertSext:
2901  case ISD::AssertZext: {
2902    EVT EVT = cast<VTSDNode>(N2)->getVT();
2903    assert(VT == N1.getValueType() && "Not an inreg extend!");
2904    assert(VT.isInteger() && EVT.isInteger() &&
2905           "Cannot *_EXTEND_INREG FP types");
2906    assert(!EVT.isVector() &&
2907           "AssertSExt/AssertZExt type should be the vector element type "
2908           "rather than the vector type!");
2909    assert(EVT.bitsLE(VT) && "Not extending!");
2910    if (VT == EVT) return N1; // noop assertion.
2911    break;
2912  }
2913  case ISD::SIGN_EXTEND_INREG: {
2914    EVT EVT = cast<VTSDNode>(N2)->getVT();
2915    assert(VT == N1.getValueType() && "Not an inreg extend!");
2916    assert(VT.isInteger() && EVT.isInteger() &&
2917           "Cannot *_EXTEND_INREG FP types");
2918    assert(EVT.isVector() == VT.isVector() &&
2919           "SIGN_EXTEND_INREG type should be vector iff the operand "
2920           "type is vector!");
2921    assert((!EVT.isVector() ||
2922            EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
2923           "Vector element counts must match in SIGN_EXTEND_INREG");
2924    assert(EVT.bitsLE(VT) && "Not extending!");
2925    if (EVT == VT) return N1;  // Not actually extending
2926
2927    if (N1C) {
2928      APInt Val = N1C->getAPIntValue();
2929      unsigned FromBits = EVT.getScalarType().getSizeInBits();
2930      Val <<= Val.getBitWidth()-FromBits;
2931      Val = Val.ashr(Val.getBitWidth()-FromBits);
2932      return getConstant(Val, VT);
2933    }
2934    break;
2935  }
2936  case ISD::EXTRACT_VECTOR_ELT:
2937    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2938    if (N1.getOpcode() == ISD::UNDEF)
2939      return getUNDEF(VT);
2940
2941    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2942    // expanding copies of large vectors from registers.
2943    if (N2C &&
2944        N1.getOpcode() == ISD::CONCAT_VECTORS &&
2945        N1.getNumOperands() > 0) {
2946      unsigned Factor =
2947        N1.getOperand(0).getValueType().getVectorNumElements();
2948      return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
2949                     N1.getOperand(N2C->getZExtValue() / Factor),
2950                     getConstant(N2C->getZExtValue() % Factor,
2951                                 N2.getValueType()));
2952    }
2953
2954    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2955    // expanding large vector constants.
2956    if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
2957      SDValue Elt = N1.getOperand(N2C->getZExtValue());
2958
2959      if (VT != Elt.getValueType())
2960        // If the vector element type is not legal, the BUILD_VECTOR operands
2961        // are promoted and implicitly truncated, and the result implicitly
2962        // extended. Make that explicit here.
2963        Elt = getAnyExtOrTrunc(Elt, DL, VT);
2964
2965      return Elt;
2966    }
2967
2968    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2969    // operations are lowered to scalars.
2970    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
2971      // If the indices are the same, return the inserted element else
2972      // if the indices are known different, extract the element from
2973      // the original vector.
2974      SDValue N1Op2 = N1.getOperand(2);
2975      ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
2976
2977      if (N1Op2C && N2C) {
2978        if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
2979          if (VT == N1.getOperand(1).getValueType())
2980            return N1.getOperand(1);
2981          else
2982            return getSExtOrTrunc(N1.getOperand(1), DL, VT);
2983        }
2984
2985        return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
2986      }
2987    }
2988    break;
2989  case ISD::EXTRACT_ELEMENT:
2990    assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
2991    assert(!N1.getValueType().isVector() && !VT.isVector() &&
2992           (N1.getValueType().isInteger() == VT.isInteger()) &&
2993           N1.getValueType() != VT &&
2994           "Wrong types for EXTRACT_ELEMENT!");
2995
2996    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2997    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2998    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2999    if (N1.getOpcode() == ISD::BUILD_PAIR)
3000      return N1.getOperand(N2C->getZExtValue());
3001
3002    // EXTRACT_ELEMENT of a constant int is also very common.
3003    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
3004      unsigned ElementSize = VT.getSizeInBits();
3005      unsigned Shift = ElementSize * N2C->getZExtValue();
3006      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
3007      return getConstant(ShiftedVal.trunc(ElementSize), VT);
3008    }
3009    break;
3010  case ISD::EXTRACT_SUBVECTOR: {
3011    SDValue Index = N2;
3012    if (VT.isSimple() && N1.getValueType().isSimple()) {
3013      assert(VT.isVector() && N1.getValueType().isVector() &&
3014             "Extract subvector VTs must be a vectors!");
3015      assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
3016             "Extract subvector VTs must have the same element type!");
3017      assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3018             "Extract subvector must be from larger vector to smaller vector!");
3019
3020      if (isa<ConstantSDNode>(Index.getNode())) {
3021        assert((VT.getVectorNumElements() +
3022                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3023                <= N1.getValueType().getVectorNumElements())
3024               && "Extract subvector overflow!");
3025      }
3026
3027      // Trivial extraction.
3028      if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
3029        return N1;
3030    }
3031    break;
3032  }
3033  }
3034
3035  if (N1C) {
3036    if (N2C) {
3037      SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
3038      if (SV.getNode()) return SV;
3039    } else {      // Cannonicalize constant to RHS if commutative
3040      if (isCommutativeBinOp(Opcode)) {
3041        std::swap(N1C, N2C);
3042        std::swap(N1, N2);
3043      }
3044    }
3045  }
3046
3047  // Constant fold FP operations.
3048  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
3049  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
3050  if (N1CFP) {
3051    if (!N2CFP && isCommutativeBinOp(Opcode)) {
3052      // Cannonicalize constant to RHS if commutative
3053      std::swap(N1CFP, N2CFP);
3054      std::swap(N1, N2);
3055    } else if (N2CFP && VT != MVT::ppcf128) {
3056      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
3057      APFloat::opStatus s;
3058      switch (Opcode) {
3059      case ISD::FADD:
3060        s = V1.add(V2, APFloat::rmNearestTiesToEven);
3061        if (s != APFloat::opInvalidOp)
3062          return getConstantFP(V1, VT);
3063        break;
3064      case ISD::FSUB:
3065        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
3066        if (s!=APFloat::opInvalidOp)
3067          return getConstantFP(V1, VT);
3068        break;
3069      case ISD::FMUL:
3070        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
3071        if (s!=APFloat::opInvalidOp)
3072          return getConstantFP(V1, VT);
3073        break;
3074      case ISD::FDIV:
3075        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
3076        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3077          return getConstantFP(V1, VT);
3078        break;
3079      case ISD::FREM :
3080        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
3081        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
3082          return getConstantFP(V1, VT);
3083        break;
3084      case ISD::FCOPYSIGN:
3085        V1.copySign(V2);
3086        return getConstantFP(V1, VT);
3087      default: break;
3088      }
3089    }
3090
3091    if (Opcode == ISD::FP_ROUND) {
3092      APFloat V = N1CFP->getValueAPF();    // make copy
3093      bool ignored;
3094      // This can return overflow, underflow, or inexact; we don't care.
3095      // FIXME need to be more flexible about rounding mode.
3096      (void)V.convert(*EVTToAPFloatSemantics(VT),
3097                      APFloat::rmNearestTiesToEven, &ignored);
3098      return getConstantFP(V, VT);
3099    }
3100  }
3101
3102  // Canonicalize an UNDEF to the RHS, even over a constant.
3103  if (N1.getOpcode() == ISD::UNDEF) {
3104    if (isCommutativeBinOp(Opcode)) {
3105      std::swap(N1, N2);
3106    } else {
3107      switch (Opcode) {
3108      case ISD::FP_ROUND_INREG:
3109      case ISD::SIGN_EXTEND_INREG:
3110      case ISD::SUB:
3111      case ISD::FSUB:
3112      case ISD::FDIV:
3113      case ISD::FREM:
3114      case ISD::SRA:
3115        return N1;     // fold op(undef, arg2) -> undef
3116      case ISD::UDIV:
3117      case ISD::SDIV:
3118      case ISD::UREM:
3119      case ISD::SREM:
3120      case ISD::SRL:
3121      case ISD::SHL:
3122        if (!VT.isVector())
3123          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
3124        // For vectors, we can't easily build an all zero vector, just return
3125        // the LHS.
3126        return N2;
3127      }
3128    }
3129  }
3130
3131  // Fold a bunch of operators when the RHS is undef.
3132  if (N2.getOpcode() == ISD::UNDEF) {
3133    switch (Opcode) {
3134    case ISD::XOR:
3135      if (N1.getOpcode() == ISD::UNDEF)
3136        // Handle undef ^ undef -> 0 special case. This is a common
3137        // idiom (misuse).
3138        return getConstant(0, VT);
3139      // fallthrough
3140    case ISD::ADD:
3141    case ISD::ADDC:
3142    case ISD::ADDE:
3143    case ISD::SUB:
3144    case ISD::UDIV:
3145    case ISD::SDIV:
3146    case ISD::UREM:
3147    case ISD::SREM:
3148      return N2;       // fold op(arg1, undef) -> undef
3149    case ISD::FADD:
3150    case ISD::FSUB:
3151    case ISD::FMUL:
3152    case ISD::FDIV:
3153    case ISD::FREM:
3154      if (getTarget().Options.UnsafeFPMath)
3155        return N2;
3156      break;
3157    case ISD::MUL:
3158    case ISD::AND:
3159    case ISD::SRL:
3160    case ISD::SHL:
3161      if (!VT.isVector())
3162        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
3163      // For vectors, we can't easily build an all zero vector, just return
3164      // the LHS.
3165      return N1;
3166    case ISD::OR:
3167      if (!VT.isVector())
3168        return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
3169      // For vectors, we can't easily build an all one vector, just return
3170      // the LHS.
3171      return N1;
3172    case ISD::SRA:
3173      return N1;
3174    }
3175  }
3176
3177  // Memoize this node if possible.
3178  SDNode *N;
3179  SDVTList VTs = getVTList(VT);
3180  if (VT != MVT::Glue) {
3181    SDValue Ops[] = { N1, N2 };
3182    FoldingSetNodeID ID;
3183    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
3184    void *IP = 0;
3185    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3186      return SDValue(E, 0);
3187
3188    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3189    CSEMap.InsertNode(N, IP);
3190  } else {
3191    N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
3192  }
3193
3194  AllNodes.push_back(N);
3195#ifndef NDEBUG
3196  VerifySDNode(N);
3197#endif
3198  return SDValue(N, 0);
3199}
3200
3201SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3202                              SDValue N1, SDValue N2, SDValue N3) {
3203  // Perform various simplifications.
3204  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
3205  switch (Opcode) {
3206  case ISD::CONCAT_VECTORS:
3207    // A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
3208    // one big BUILD_VECTOR.
3209    if (N1.getOpcode() == ISD::BUILD_VECTOR &&
3210        N2.getOpcode() == ISD::BUILD_VECTOR &&
3211        N3.getOpcode() == ISD::BUILD_VECTOR) {
3212      SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
3213                                    N1.getNode()->op_end());
3214      Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
3215      Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
3216      return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
3217    }
3218    break;
3219  case ISD::SETCC: {
3220    // Use FoldSetCC to simplify SETCC's.
3221    SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
3222    if (Simp.getNode()) return Simp;
3223    break;
3224  }
3225  case ISD::SELECT:
3226    if (N1C) {
3227     if (N1C->getZExtValue())
3228       return N2;             // select true, X, Y -> X
3229     return N3;             // select false, X, Y -> Y
3230    }
3231
3232    if (N2 == N3) return N2;   // select C, X, X -> X
3233    break;
3234  case ISD::VECTOR_SHUFFLE:
3235    llvm_unreachable("should use getVectorShuffle constructor!");
3236  case ISD::INSERT_SUBVECTOR: {
3237    SDValue Index = N3;
3238    if (VT.isSimple() && N1.getValueType().isSimple()
3239        && N2.getValueType().isSimple()) {
3240      assert(VT.isVector() && N1.getValueType().isVector() &&
3241             N2.getValueType().isVector() &&
3242             "Insert subvector VTs must be a vectors");
3243      assert(VT == N1.getValueType() &&
3244             "Dest and insert subvector source types must match!");
3245      assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
3246             "Insert subvector must be from smaller vector to larger vector!");
3247      if (isa<ConstantSDNode>(Index.getNode())) {
3248        assert((N2.getValueType().getVectorNumElements() +
3249                cast<ConstantSDNode>(Index.getNode())->getZExtValue()
3250                <= VT.getVectorNumElements())
3251               && "Insert subvector overflow!");
3252      }
3253
3254      // Trivial insertion.
3255      if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
3256        return N2;
3257    }
3258    break;
3259  }
3260  case ISD::BITCAST:
3261    // Fold bit_convert nodes from a type to themselves.
3262    if (N1.getValueType() == VT)
3263      return N1;
3264    break;
3265  }
3266
3267  // Memoize node if it doesn't produce a flag.
3268  SDNode *N;
3269  SDVTList VTs = getVTList(VT);
3270  if (VT != MVT::Glue) {
3271    SDValue Ops[] = { N1, N2, N3 };
3272    FoldingSetNodeID ID;
3273    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3274    void *IP = 0;
3275    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3276      return SDValue(E, 0);
3277
3278    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3279    CSEMap.InsertNode(N, IP);
3280  } else {
3281    N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
3282  }
3283
3284  AllNodes.push_back(N);
3285#ifndef NDEBUG
3286  VerifySDNode(N);
3287#endif
3288  return SDValue(N, 0);
3289}
3290
3291SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3292                              SDValue N1, SDValue N2, SDValue N3,
3293                              SDValue N4) {
3294  SDValue Ops[] = { N1, N2, N3, N4 };
3295  return getNode(Opcode, DL, VT, Ops, 4);
3296}
3297
3298SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
3299                              SDValue N1, SDValue N2, SDValue N3,
3300                              SDValue N4, SDValue N5) {
3301  SDValue Ops[] = { N1, N2, N3, N4, N5 };
3302  return getNode(Opcode, DL, VT, Ops, 5);
3303}
3304
3305/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
3306/// the incoming stack arguments to be loaded from the stack.
3307SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
3308  SmallVector<SDValue, 8> ArgChains;
3309
3310  // Include the original chain at the beginning of the list. When this is
3311  // used by target LowerCall hooks, this helps legalize find the
3312  // CALLSEQ_BEGIN node.
3313  ArgChains.push_back(Chain);
3314
3315  // Add a chain value for each stack argument.
3316  for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
3317       UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
3318    if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
3319      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
3320        if (FI->getIndex() < 0)
3321          ArgChains.push_back(SDValue(L, 1));
3322
3323  // Build a tokenfactor for all the chains.
3324  return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
3325                 &ArgChains[0], ArgChains.size());
3326}
3327
3328/// SplatByte - Distribute ByteVal over NumBits bits.
3329static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
3330  APInt Val = APInt(NumBits, ByteVal);
3331  unsigned Shift = 8;
3332  for (unsigned i = NumBits; i > 8; i >>= 1) {
3333    Val = (Val << Shift) | Val;
3334    Shift <<= 1;
3335  }
3336  return Val;
3337}
3338
3339/// getMemsetValue - Vectorized representation of the memset value
3340/// operand.
3341static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
3342                              DebugLoc dl) {
3343  assert(Value.getOpcode() != ISD::UNDEF);
3344
3345  unsigned NumBits = VT.getScalarType().getSizeInBits();
3346  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3347    APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
3348    if (VT.isInteger())
3349      return DAG.getConstant(Val, VT);
3350    return DAG.getConstantFP(APFloat(Val), VT);
3351  }
3352
3353  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
3354  if (NumBits > 8) {
3355    // Use a multiplication with 0x010101... to extend the input to the
3356    // required length.
3357    APInt Magic = SplatByte(NumBits, 0x01);
3358    Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
3359  }
3360
3361  return Value;
3362}
3363
3364/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3365/// used when a memcpy is turned into a memset when the source is a constant
3366/// string ptr.
3367static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
3368                                  const TargetLowering &TLI, StringRef Str) {
3369  // Handle vector with all elements zero.
3370  if (Str.empty()) {
3371    if (VT.isInteger())
3372      return DAG.getConstant(0, VT);
3373    else if (VT == MVT::f32 || VT == MVT::f64)
3374      return DAG.getConstantFP(0.0, VT);
3375    else if (VT.isVector()) {
3376      unsigned NumElts = VT.getVectorNumElements();
3377      MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
3378      return DAG.getNode(ISD::BITCAST, dl, VT,
3379                         DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
3380                                                             EltVT, NumElts)));
3381    } else
3382      llvm_unreachable("Expected type!");
3383  }
3384
3385  assert(!VT.isVector() && "Can't handle vector type here!");
3386  unsigned NumVTBytes = VT.getSizeInBits() / 8;
3387  unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
3388
3389  uint64_t Val = 0;
3390  if (TLI.isLittleEndian()) {
3391    for (unsigned i = 0; i != NumBytes; ++i)
3392      Val |= (uint64_t)(unsigned char)Str[i] << i*8;
3393  } else {
3394    for (unsigned i = 0; i != NumBytes; ++i)
3395      Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
3396  }
3397
3398  return DAG.getConstant(Val, VT);
3399}
3400
3401/// getMemBasePlusOffset - Returns base and offset node for the
3402///
3403static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
3404                                      SelectionDAG &DAG) {
3405  EVT VT = Base.getValueType();
3406  return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
3407                     VT, Base, DAG.getConstant(Offset, VT));
3408}
3409
3410/// isMemSrcFromString - Returns true if memcpy source is a string constant.
3411///
3412static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
3413  unsigned SrcDelta = 0;
3414  GlobalAddressSDNode *G = NULL;
3415  if (Src.getOpcode() == ISD::GlobalAddress)
3416    G = cast<GlobalAddressSDNode>(Src);
3417  else if (Src.getOpcode() == ISD::ADD &&
3418           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3419           Src.getOperand(1).getOpcode() == ISD::Constant) {
3420    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
3421    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
3422  }
3423  if (!G)
3424    return false;
3425
3426  return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false);
3427}
3428
3429/// FindOptimalMemOpLowering - Determines the optimial series memory ops
3430/// to replace the memset / memcpy. Return true if the number of memory ops
3431/// is below the threshold. It returns the types of the sequence of
3432/// memory ops to perform memset / memcpy by reference.
3433static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
3434                                     unsigned Limit, uint64_t Size,
3435                                     unsigned DstAlign, unsigned SrcAlign,
3436                                     bool IsZeroVal,
3437                                     bool MemcpyStrSrc,
3438                                     SelectionDAG &DAG,
3439                                     const TargetLowering &TLI) {
3440  assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
3441         "Expecting memcpy / memset source to meet alignment requirement!");
3442  // If 'SrcAlign' is zero, that means the memory operation does not need to
3443  // load the value, i.e. memset or memcpy from constant string. Otherwise,
3444  // it's the inferred alignment of the source. 'DstAlign', on the other hand,
3445  // is the specified alignment of the memory operation. If it is zero, that
3446  // means it's possible to change the alignment of the destination.
3447  // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
3448  // not need to be loaded.
3449  EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
3450                                   IsZeroVal, MemcpyStrSrc,
3451                                   DAG.getMachineFunction());
3452
3453  if (VT == MVT::Other) {
3454    if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment() ||
3455        TLI.allowsUnalignedMemoryAccesses(VT)) {
3456      VT = TLI.getPointerTy();
3457    } else {
3458      switch (DstAlign & 7) {
3459      case 0:  VT = MVT::i64; break;
3460      case 4:  VT = MVT::i32; break;
3461      case 2:  VT = MVT::i16; break;
3462      default: VT = MVT::i8;  break;
3463      }
3464    }
3465
3466    MVT LVT = MVT::i64;
3467    while (!TLI.isTypeLegal(LVT))
3468      LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
3469    assert(LVT.isInteger());
3470
3471    if (VT.bitsGT(LVT))
3472      VT = LVT;
3473  }
3474
3475  unsigned NumMemOps = 0;
3476  while (Size != 0) {
3477    unsigned VTSize = VT.getSizeInBits() / 8;
3478    while (VTSize > Size) {
3479      // For now, only use non-vector load / store's for the left-over pieces.
3480      if (VT.isVector() || VT.isFloatingPoint()) {
3481        VT = MVT::i64;
3482        while (!TLI.isTypeLegal(VT))
3483          VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3484        VTSize = VT.getSizeInBits() / 8;
3485      } else {
3486        // This can result in a type that is not legal on the target, e.g.
3487        // 1 or 2 bytes on PPC.
3488        VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
3489        VTSize >>= 1;
3490      }
3491    }
3492
3493    if (++NumMemOps > Limit)
3494      return false;
3495    MemOps.push_back(VT);
3496    Size -= VTSize;
3497  }
3498
3499  return true;
3500}
3501
3502static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3503                                       SDValue Chain, SDValue Dst,
3504                                       SDValue Src, uint64_t Size,
3505                                       unsigned Align, bool isVol,
3506                                       bool AlwaysInline,
3507                                       MachinePointerInfo DstPtrInfo,
3508                                       MachinePointerInfo SrcPtrInfo) {
3509  // Turn a memcpy of undef to nop.
3510  if (Src.getOpcode() == ISD::UNDEF)
3511    return Chain;
3512
3513  // Expand memcpy to a series of load and store ops if the size operand falls
3514  // below a certain threshold.
3515  // TODO: In the AlwaysInline case, if the size is big then generate a loop
3516  // rather than maybe a humongous number of loads and stores.
3517  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3518  std::vector<EVT> MemOps;
3519  bool DstAlignCanChange = false;
3520  MachineFunction &MF = DAG.getMachineFunction();
3521  MachineFrameInfo *MFI = MF.getFrameInfo();
3522  bool OptSize =
3523    MF.getFunction()->getFnAttributes().
3524      hasAttribute(Attributes::OptimizeForSize);
3525  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3526  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3527    DstAlignCanChange = true;
3528  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3529  if (Align > SrcAlign)
3530    SrcAlign = Align;
3531  StringRef Str;
3532  bool CopyFromStr = isMemSrcFromString(Src, Str);
3533  bool isZeroStr = CopyFromStr && Str.empty();
3534  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
3535
3536  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3537                                (DstAlignCanChange ? 0 : Align),
3538                                (isZeroStr ? 0 : SrcAlign),
3539                                true, CopyFromStr, DAG, TLI))
3540    return SDValue();
3541
3542  if (DstAlignCanChange) {
3543    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3544    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3545    if (NewAlign > Align) {
3546      // Give the stack frame object a larger alignment if needed.
3547      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3548        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3549      Align = NewAlign;
3550    }
3551  }
3552
3553  SmallVector<SDValue, 8> OutChains;
3554  unsigned NumMemOps = MemOps.size();
3555  uint64_t SrcOff = 0, DstOff = 0;
3556  for (unsigned i = 0; i != NumMemOps; ++i) {
3557    EVT VT = MemOps[i];
3558    unsigned VTSize = VT.getSizeInBits() / 8;
3559    SDValue Value, Store;
3560
3561    if (CopyFromStr &&
3562        (isZeroStr || (VT.isInteger() && !VT.isVector()))) {
3563      // It's unlikely a store of a vector immediate can be done in a single
3564      // instruction. It would require a load from a constantpool first.
3565      // We only handle zero vectors here.
3566      // FIXME: Handle other cases where store of vector immediate is done in
3567      // a single instruction.
3568      Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
3569      Store = DAG.getStore(Chain, dl, Value,
3570                           getMemBasePlusOffset(Dst, DstOff, DAG),
3571                           DstPtrInfo.getWithOffset(DstOff), isVol,
3572                           false, Align);
3573    } else {
3574      // The type might not be legal for the target.  This should only happen
3575      // if the type is smaller than a legal type, as on PPC, so the right
3576      // thing to do is generate a LoadExt/StoreTrunc pair.  These simplify
3577      // to Load/Store if NVT==VT.
3578      // FIXME does the case above also need this?
3579      EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
3580      assert(NVT.bitsGE(VT));
3581      Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
3582                             getMemBasePlusOffset(Src, SrcOff, DAG),
3583                             SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
3584                             MinAlign(SrcAlign, SrcOff));
3585      Store = DAG.getTruncStore(Chain, dl, Value,
3586                                getMemBasePlusOffset(Dst, DstOff, DAG),
3587                                DstPtrInfo.getWithOffset(DstOff), VT, isVol,
3588                                false, Align);
3589    }
3590    OutChains.push_back(Store);
3591    SrcOff += VTSize;
3592    DstOff += VTSize;
3593  }
3594
3595  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3596                     &OutChains[0], OutChains.size());
3597}
3598
3599static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
3600                                        SDValue Chain, SDValue Dst,
3601                                        SDValue Src, uint64_t Size,
3602                                        unsigned Align,  bool isVol,
3603                                        bool AlwaysInline,
3604                                        MachinePointerInfo DstPtrInfo,
3605                                        MachinePointerInfo SrcPtrInfo) {
3606  // Turn a memmove of undef to nop.
3607  if (Src.getOpcode() == ISD::UNDEF)
3608    return Chain;
3609
3610  // Expand memmove to a series of load and store ops if the size operand falls
3611  // below a certain threshold.
3612  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3613  std::vector<EVT> MemOps;
3614  bool DstAlignCanChange = false;
3615  MachineFunction &MF = DAG.getMachineFunction();
3616  MachineFrameInfo *MFI = MF.getFrameInfo();
3617  bool OptSize = MF.getFunction()->getFnAttributes().
3618    hasAttribute(Attributes::OptimizeForSize);
3619  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3620  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3621    DstAlignCanChange = true;
3622  unsigned SrcAlign = DAG.InferPtrAlignment(Src);
3623  if (Align > SrcAlign)
3624    SrcAlign = Align;
3625  unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
3626
3627  if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
3628                                (DstAlignCanChange ? 0 : Align),
3629                                SrcAlign, true, false, DAG, TLI))
3630    return SDValue();
3631
3632  if (DstAlignCanChange) {
3633    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3634    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3635    if (NewAlign > Align) {
3636      // Give the stack frame object a larger alignment if needed.
3637      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3638        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3639      Align = NewAlign;
3640    }
3641  }
3642
3643  uint64_t SrcOff = 0, DstOff = 0;
3644  SmallVector<SDValue, 8> LoadValues;
3645  SmallVector<SDValue, 8> LoadChains;
3646  SmallVector<SDValue, 8> OutChains;
3647  unsigned NumMemOps = MemOps.size();
3648  for (unsigned i = 0; i < NumMemOps; i++) {
3649    EVT VT = MemOps[i];
3650    unsigned VTSize = VT.getSizeInBits() / 8;
3651    SDValue Value, Store;
3652
3653    Value = DAG.getLoad(VT, dl, Chain,
3654                        getMemBasePlusOffset(Src, SrcOff, DAG),
3655                        SrcPtrInfo.getWithOffset(SrcOff), isVol,
3656                        false, false, SrcAlign);
3657    LoadValues.push_back(Value);
3658    LoadChains.push_back(Value.getValue(1));
3659    SrcOff += VTSize;
3660  }
3661  Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3662                      &LoadChains[0], LoadChains.size());
3663  OutChains.clear();
3664  for (unsigned i = 0; i < NumMemOps; i++) {
3665    EVT VT = MemOps[i];
3666    unsigned VTSize = VT.getSizeInBits() / 8;
3667    SDValue Value, Store;
3668
3669    Store = DAG.getStore(Chain, dl, LoadValues[i],
3670                         getMemBasePlusOffset(Dst, DstOff, DAG),
3671                         DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
3672    OutChains.push_back(Store);
3673    DstOff += VTSize;
3674  }
3675
3676  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3677                     &OutChains[0], OutChains.size());
3678}
3679
3680static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
3681                               SDValue Chain, SDValue Dst,
3682                               SDValue Src, uint64_t Size,
3683                               unsigned Align, bool isVol,
3684                               MachinePointerInfo DstPtrInfo) {
3685  // Turn a memset of undef to nop.
3686  if (Src.getOpcode() == ISD::UNDEF)
3687    return Chain;
3688
3689  // Expand memset to a series of load/store ops if the size operand
3690  // falls below a certain threshold.
3691  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3692  std::vector<EVT> MemOps;
3693  bool DstAlignCanChange = false;
3694  MachineFunction &MF = DAG.getMachineFunction();
3695  MachineFrameInfo *MFI = MF.getFrameInfo();
3696  bool OptSize = MF.getFunction()->getFnAttributes().
3697    hasAttribute(Attributes::OptimizeForSize);
3698  FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
3699  if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
3700    DstAlignCanChange = true;
3701  bool IsZeroVal =
3702    isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
3703  if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
3704                                Size, (DstAlignCanChange ? 0 : Align), 0,
3705                                IsZeroVal, false, DAG, TLI))
3706    return SDValue();
3707
3708  if (DstAlignCanChange) {
3709    Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
3710    unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
3711    if (NewAlign > Align) {
3712      // Give the stack frame object a larger alignment if needed.
3713      if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
3714        MFI->setObjectAlignment(FI->getIndex(), NewAlign);
3715      Align = NewAlign;
3716    }
3717  }
3718
3719  SmallVector<SDValue, 8> OutChains;
3720  uint64_t DstOff = 0;
3721  unsigned NumMemOps = MemOps.size();
3722
3723  // Find the largest store and generate the bit pattern for it.
3724  EVT LargestVT = MemOps[0];
3725  for (unsigned i = 1; i < NumMemOps; i++)
3726    if (MemOps[i].bitsGT(LargestVT))
3727      LargestVT = MemOps[i];
3728  SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
3729
3730  for (unsigned i = 0; i < NumMemOps; i++) {
3731    EVT VT = MemOps[i];
3732
3733    // If this store is smaller than the largest store see whether we can get
3734    // the smaller value for free with a truncate.
3735    SDValue Value = MemSetValue;
3736    if (VT.bitsLT(LargestVT)) {
3737      if (!LargestVT.isVector() && !VT.isVector() &&
3738          TLI.isTruncateFree(LargestVT, VT))
3739        Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
3740      else
3741        Value = getMemsetValue(Src, VT, DAG, dl);
3742    }
3743    assert(Value.getValueType() == VT && "Value with wrong type.");
3744    SDValue Store = DAG.getStore(Chain, dl, Value,
3745                                 getMemBasePlusOffset(Dst, DstOff, DAG),
3746                                 DstPtrInfo.getWithOffset(DstOff),
3747                                 isVol, false, Align);
3748    OutChains.push_back(Store);
3749    DstOff += VT.getSizeInBits() / 8;
3750  }
3751
3752  return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3753                     &OutChains[0], OutChains.size());
3754}
3755
3756SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
3757                                SDValue Src, SDValue Size,
3758                                unsigned Align, bool isVol, bool AlwaysInline,
3759                                MachinePointerInfo DstPtrInfo,
3760                                MachinePointerInfo SrcPtrInfo) {
3761
3762  // Check to see if we should lower the memcpy to loads and stores first.
3763  // For cases within the target-specified limits, this is the best choice.
3764  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3765  if (ConstantSize) {
3766    // Memcpy with size zero? Just return the original chain.
3767    if (ConstantSize->isNullValue())
3768      return Chain;
3769
3770    SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3771                                             ConstantSize->getZExtValue(),Align,
3772                                isVol, false, DstPtrInfo, SrcPtrInfo);
3773    if (Result.getNode())
3774      return Result;
3775  }
3776
3777  // Then check to see if we should lower the memcpy with target-specific
3778  // code. If the target chooses to do this, this is the next best.
3779  SDValue Result =
3780    TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
3781                                isVol, AlwaysInline,
3782                                DstPtrInfo, SrcPtrInfo);
3783  if (Result.getNode())
3784    return Result;
3785
3786  // If we really need inline code and the target declined to provide it,
3787  // use a (potentially long) sequence of loads and stores.
3788  if (AlwaysInline) {
3789    assert(ConstantSize && "AlwaysInline requires a constant size!");
3790    return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
3791                                   ConstantSize->getZExtValue(), Align, isVol,
3792                                   true, DstPtrInfo, SrcPtrInfo);
3793  }
3794
3795  // FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
3796  // memcpy is not guaranteed to be safe. libc memcpys aren't required to
3797  // respect volatile, so they may do things like read or write memory
3798  // beyond the given memory regions. But fixing this isn't easy, and most
3799  // people don't care.
3800
3801  // Emit a library call.
3802  TargetLowering::ArgListTy Args;
3803  TargetLowering::ArgListEntry Entry;
3804  Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
3805  Entry.Node = Dst; Args.push_back(Entry);
3806  Entry.Node = Src; Args.push_back(Entry);
3807  Entry.Node = Size; Args.push_back(Entry);
3808  // FIXME: pass in DebugLoc
3809  TargetLowering::
3810  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
3811                    false, false, false, false, 0,
3812                    TLI.getLibcallCallingConv(RTLIB::MEMCPY),
3813                    /*isTailCall=*/false,
3814                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
3815                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
3816                                      TLI.getPointerTy()),
3817                    Args, *this, dl);
3818  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
3819
3820  return CallResult.second;
3821}
3822
3823SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
3824                                 SDValue Src, SDValue Size,
3825                                 unsigned Align, bool isVol,
3826                                 MachinePointerInfo DstPtrInfo,
3827                                 MachinePointerInfo SrcPtrInfo) {
3828
3829  // Check to see if we should lower the memmove to loads and stores first.
3830  // For cases within the target-specified limits, this is the best choice.
3831  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3832  if (ConstantSize) {
3833    // Memmove with size zero? Just return the original chain.
3834    if (ConstantSize->isNullValue())
3835      return Chain;
3836
3837    SDValue Result =
3838      getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
3839                               ConstantSize->getZExtValue(), Align, isVol,
3840                               false, DstPtrInfo, SrcPtrInfo);
3841    if (Result.getNode())
3842      return Result;
3843  }
3844
3845  // Then check to see if we should lower the memmove with target-specific
3846  // code. If the target chooses to do this, this is the next best.
3847  SDValue Result =
3848    TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3849                                 DstPtrInfo, SrcPtrInfo);
3850  if (Result.getNode())
3851    return Result;
3852
3853  // FIXME: If the memmove is volatile, lowering it to plain libc memmove may
3854  // not be safe.  See memcpy above for more details.
3855
3856  // Emit a library call.
3857  TargetLowering::ArgListTy Args;
3858  TargetLowering::ArgListEntry Entry;
3859  Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
3860  Entry.Node = Dst; Args.push_back(Entry);
3861  Entry.Node = Src; Args.push_back(Entry);
3862  Entry.Node = Size; Args.push_back(Entry);
3863  // FIXME:  pass in DebugLoc
3864  TargetLowering::
3865  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
3866                    false, false, false, false, 0,
3867                    TLI.getLibcallCallingConv(RTLIB::MEMMOVE),
3868                    /*isTailCall=*/false,
3869                    /*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
3870                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
3871                                      TLI.getPointerTy()),
3872                    Args, *this, dl);
3873  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
3874
3875  return CallResult.second;
3876}
3877
3878SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
3879                                SDValue Src, SDValue Size,
3880                                unsigned Align, bool isVol,
3881                                MachinePointerInfo DstPtrInfo) {
3882
3883  // Check to see if we should lower the memset to stores first.
3884  // For cases within the target-specified limits, this is the best choice.
3885  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
3886  if (ConstantSize) {
3887    // Memset with size zero? Just return the original chain.
3888    if (ConstantSize->isNullValue())
3889      return Chain;
3890
3891    SDValue Result =
3892      getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
3893                      Align, isVol, DstPtrInfo);
3894
3895    if (Result.getNode())
3896      return Result;
3897  }
3898
3899  // Then check to see if we should lower the memset with target-specific
3900  // code. If the target chooses to do this, this is the next best.
3901  SDValue Result =
3902    TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
3903                                DstPtrInfo);
3904  if (Result.getNode())
3905    return Result;
3906
3907  // Emit a library call.
3908  Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*getContext());
3909  TargetLowering::ArgListTy Args;
3910  TargetLowering::ArgListEntry Entry;
3911  Entry.Node = Dst; Entry.Ty = IntPtrTy;
3912  Args.push_back(Entry);
3913  // Extend or truncate the argument to be an i32 value for the call.
3914  if (Src.getValueType().bitsGT(MVT::i32))
3915    Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
3916  else
3917    Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
3918  Entry.Node = Src;
3919  Entry.Ty = Type::getInt32Ty(*getContext());
3920  Entry.isSExt = true;
3921  Args.push_back(Entry);
3922  Entry.Node = Size;
3923  Entry.Ty = IntPtrTy;
3924  Entry.isSExt = false;
3925  Args.push_back(Entry);
3926  // FIXME: pass in DebugLoc
3927  TargetLowering::
3928  CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
3929                    false, false, false, false, 0,
3930                    TLI.getLibcallCallingConv(RTLIB::MEMSET),
3931                    /*isTailCall=*/false,
3932                    /*doesNotReturn*/false, /*isReturnValueUsed=*/false,
3933                    getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
3934                                      TLI.getPointerTy()),
3935                    Args, *this, dl);
3936  std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
3937
3938  return CallResult.second;
3939}
3940
3941SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3942                                SDValue Chain, SDValue Ptr, SDValue Cmp,
3943                                SDValue Swp, MachinePointerInfo PtrInfo,
3944                                unsigned Alignment,
3945                                AtomicOrdering Ordering,
3946                                SynchronizationScope SynchScope) {
3947  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
3948    Alignment = getEVTAlignment(MemVT);
3949
3950  MachineFunction &MF = getMachineFunction();
3951
3952  // All atomics are load and store, except for ATMOIC_LOAD and ATOMIC_STORE.
3953  // For now, atomics are considered to be volatile always.
3954  // FIXME: Volatile isn't really correct; we should keep track of atomic
3955  // orderings in the memoperand.
3956  unsigned Flags = MachineMemOperand::MOVolatile;
3957  if (Opcode != ISD::ATOMIC_STORE)
3958    Flags |= MachineMemOperand::MOLoad;
3959  if (Opcode != ISD::ATOMIC_LOAD)
3960    Flags |= MachineMemOperand::MOStore;
3961
3962  MachineMemOperand *MMO =
3963    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
3964
3965  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
3966                   Ordering, SynchScope);
3967}
3968
3969SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
3970                                SDValue Chain,
3971                                SDValue Ptr, SDValue Cmp,
3972                                SDValue Swp, MachineMemOperand *MMO,
3973                                AtomicOrdering Ordering,
3974                                SynchronizationScope SynchScope) {
3975  assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
3976  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
3977
3978  EVT VT = Cmp.getValueType();
3979
3980  SDVTList VTs = getVTList(VT, MVT::Other);
3981  FoldingSetNodeID ID;
3982  ID.AddInteger(MemVT.getRawBits());
3983  SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
3984  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
3985  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
3986  void* IP = 0;
3987  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
3988    cast<AtomicSDNode>(E)->refineAlignment(MMO);
3989    return SDValue(E, 0);
3990  }
3991  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
3992                                               Ptr, Cmp, Swp, MMO, Ordering,
3993                                               SynchScope);
3994  CSEMap.InsertNode(N, IP);
3995  AllNodes.push_back(N);
3996  return SDValue(N, 0);
3997}
3998
3999SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4000                                SDValue Chain,
4001                                SDValue Ptr, SDValue Val,
4002                                const Value* PtrVal,
4003                                unsigned Alignment,
4004                                AtomicOrdering Ordering,
4005                                SynchronizationScope SynchScope) {
4006  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4007    Alignment = getEVTAlignment(MemVT);
4008
4009  MachineFunction &MF = getMachineFunction();
4010  // An atomic store does not load. An atomic load does not store.
4011  // (An atomicrmw obviously both loads and stores.)
4012  // For now, atomics are considered to be volatile always, and they are
4013  // chained as such.
4014  // FIXME: Volatile isn't really correct; we should keep track of atomic
4015  // orderings in the memoperand.
4016  unsigned Flags = MachineMemOperand::MOVolatile;
4017  if (Opcode != ISD::ATOMIC_STORE)
4018    Flags |= MachineMemOperand::MOLoad;
4019  if (Opcode != ISD::ATOMIC_LOAD)
4020    Flags |= MachineMemOperand::MOStore;
4021
4022  MachineMemOperand *MMO =
4023    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4024                            MemVT.getStoreSize(), Alignment);
4025
4026  return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
4027                   Ordering, SynchScope);
4028}
4029
4030SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4031                                SDValue Chain,
4032                                SDValue Ptr, SDValue Val,
4033                                MachineMemOperand *MMO,
4034                                AtomicOrdering Ordering,
4035                                SynchronizationScope SynchScope) {
4036  assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
4037          Opcode == ISD::ATOMIC_LOAD_SUB ||
4038          Opcode == ISD::ATOMIC_LOAD_AND ||
4039          Opcode == ISD::ATOMIC_LOAD_OR ||
4040          Opcode == ISD::ATOMIC_LOAD_XOR ||
4041          Opcode == ISD::ATOMIC_LOAD_NAND ||
4042          Opcode == ISD::ATOMIC_LOAD_MIN ||
4043          Opcode == ISD::ATOMIC_LOAD_MAX ||
4044          Opcode == ISD::ATOMIC_LOAD_UMIN ||
4045          Opcode == ISD::ATOMIC_LOAD_UMAX ||
4046          Opcode == ISD::ATOMIC_SWAP ||
4047          Opcode == ISD::ATOMIC_STORE) &&
4048         "Invalid Atomic Op");
4049
4050  EVT VT = Val.getValueType();
4051
4052  SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
4053                                               getVTList(VT, MVT::Other);
4054  FoldingSetNodeID ID;
4055  ID.AddInteger(MemVT.getRawBits());
4056  SDValue Ops[] = {Chain, Ptr, Val};
4057  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
4058  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4059  void* IP = 0;
4060  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4061    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4062    return SDValue(E, 0);
4063  }
4064  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4065                                               Ptr, Val, MMO,
4066                                               Ordering, SynchScope);
4067  CSEMap.InsertNode(N, IP);
4068  AllNodes.push_back(N);
4069  return SDValue(N, 0);
4070}
4071
4072SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4073                                EVT VT, SDValue Chain,
4074                                SDValue Ptr,
4075                                const Value* PtrVal,
4076                                unsigned Alignment,
4077                                AtomicOrdering Ordering,
4078                                SynchronizationScope SynchScope) {
4079  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4080    Alignment = getEVTAlignment(MemVT);
4081
4082  MachineFunction &MF = getMachineFunction();
4083  // An atomic store does not load. An atomic load does not store.
4084  // (An atomicrmw obviously both loads and stores.)
4085  // For now, atomics are considered to be volatile always, and they are
4086  // chained as such.
4087  // FIXME: Volatile isn't really correct; we should keep track of atomic
4088  // orderings in the memoperand.
4089  unsigned Flags = MachineMemOperand::MOVolatile;
4090  if (Opcode != ISD::ATOMIC_STORE)
4091    Flags |= MachineMemOperand::MOLoad;
4092  if (Opcode != ISD::ATOMIC_LOAD)
4093    Flags |= MachineMemOperand::MOStore;
4094
4095  MachineMemOperand *MMO =
4096    MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
4097                            MemVT.getStoreSize(), Alignment);
4098
4099  return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
4100                   Ordering, SynchScope);
4101}
4102
4103SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
4104                                EVT VT, SDValue Chain,
4105                                SDValue Ptr,
4106                                MachineMemOperand *MMO,
4107                                AtomicOrdering Ordering,
4108                                SynchronizationScope SynchScope) {
4109  assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
4110
4111  SDVTList VTs = getVTList(VT, MVT::Other);
4112  FoldingSetNodeID ID;
4113  ID.AddInteger(MemVT.getRawBits());
4114  SDValue Ops[] = {Chain, Ptr};
4115  AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
4116  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4117  void* IP = 0;
4118  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4119    cast<AtomicSDNode>(E)->refineAlignment(MMO);
4120    return SDValue(E, 0);
4121  }
4122  SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
4123                                               Ptr, MMO, Ordering, SynchScope);
4124  CSEMap.InsertNode(N, IP);
4125  AllNodes.push_back(N);
4126  return SDValue(N, 0);
4127}
4128
4129/// getMergeValues - Create a MERGE_VALUES node from the given operands.
4130SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
4131                                     DebugLoc dl) {
4132  if (NumOps == 1)
4133    return Ops[0];
4134
4135  SmallVector<EVT, 4> VTs;
4136  VTs.reserve(NumOps);
4137  for (unsigned i = 0; i < NumOps; ++i)
4138    VTs.push_back(Ops[i].getValueType());
4139  return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
4140                 Ops, NumOps);
4141}
4142
4143SDValue
4144SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
4145                                  const EVT *VTs, unsigned NumVTs,
4146                                  const SDValue *Ops, unsigned NumOps,
4147                                  EVT MemVT, MachinePointerInfo PtrInfo,
4148                                  unsigned Align, bool Vol,
4149                                  bool ReadMem, bool WriteMem) {
4150  return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
4151                             MemVT, PtrInfo, Align, Vol,
4152                             ReadMem, WriteMem);
4153}
4154
4155SDValue
4156SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4157                                  const SDValue *Ops, unsigned NumOps,
4158                                  EVT MemVT, MachinePointerInfo PtrInfo,
4159                                  unsigned Align, bool Vol,
4160                                  bool ReadMem, bool WriteMem) {
4161  if (Align == 0)  // Ensure that codegen never sees alignment 0
4162    Align = getEVTAlignment(MemVT);
4163
4164  MachineFunction &MF = getMachineFunction();
4165  unsigned Flags = 0;
4166  if (WriteMem)
4167    Flags |= MachineMemOperand::MOStore;
4168  if (ReadMem)
4169    Flags |= MachineMemOperand::MOLoad;
4170  if (Vol)
4171    Flags |= MachineMemOperand::MOVolatile;
4172  MachineMemOperand *MMO =
4173    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
4174
4175  return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
4176}
4177
4178SDValue
4179SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
4180                                  const SDValue *Ops, unsigned NumOps,
4181                                  EVT MemVT, MachineMemOperand *MMO) {
4182  assert((Opcode == ISD::INTRINSIC_VOID ||
4183          Opcode == ISD::INTRINSIC_W_CHAIN ||
4184          Opcode == ISD::PREFETCH ||
4185          Opcode == ISD::LIFETIME_START ||
4186          Opcode == ISD::LIFETIME_END ||
4187          (Opcode <= INT_MAX &&
4188           (int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
4189         "Opcode is not a memory-accessing opcode!");
4190
4191  // Memoize the node unless it returns a flag.
4192  MemIntrinsicSDNode *N;
4193  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4194    FoldingSetNodeID ID;
4195    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4196    ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4197    void *IP = 0;
4198    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4199      cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
4200      return SDValue(E, 0);
4201    }
4202
4203    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4204                                               MemVT, MMO);
4205    CSEMap.InsertNode(N, IP);
4206  } else {
4207    N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
4208                                               MemVT, MMO);
4209  }
4210  AllNodes.push_back(N);
4211  return SDValue(N, 0);
4212}
4213
4214/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4215/// MachinePointerInfo record from it.  This is particularly useful because the
4216/// code generator has many cases where it doesn't bother passing in a
4217/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4218static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
4219  // If this is FI+Offset, we can model it.
4220  if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
4221    return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
4222
4223  // If this is (FI+Offset1)+Offset2, we can model it.
4224  if (Ptr.getOpcode() != ISD::ADD ||
4225      !isa<ConstantSDNode>(Ptr.getOperand(1)) ||
4226      !isa<FrameIndexSDNode>(Ptr.getOperand(0)))
4227    return MachinePointerInfo();
4228
4229  int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4230  return MachinePointerInfo::getFixedStack(FI, Offset+
4231                       cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
4232}
4233
4234/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
4235/// MachinePointerInfo record from it.  This is particularly useful because the
4236/// code generator has many cases where it doesn't bother passing in a
4237/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
4238static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
4239  // If the 'Offset' value isn't a constant, we can't handle this.
4240  if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
4241    return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
4242  if (OffsetOp.getOpcode() == ISD::UNDEF)
4243    return InferPointerInfo(Ptr);
4244  return MachinePointerInfo();
4245}
4246
4247
4248SDValue
4249SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4250                      EVT VT, DebugLoc dl, SDValue Chain,
4251                      SDValue Ptr, SDValue Offset,
4252                      MachinePointerInfo PtrInfo, EVT MemVT,
4253                      bool isVolatile, bool isNonTemporal, bool isInvariant,
4254                      unsigned Alignment, const MDNode *TBAAInfo,
4255                      const MDNode *Ranges) {
4256  assert(Chain.getValueType() == MVT::Other &&
4257        "Invalid chain type");
4258  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4259    Alignment = getEVTAlignment(VT);
4260
4261  unsigned Flags = MachineMemOperand::MOLoad;
4262  if (isVolatile)
4263    Flags |= MachineMemOperand::MOVolatile;
4264  if (isNonTemporal)
4265    Flags |= MachineMemOperand::MONonTemporal;
4266  if (isInvariant)
4267    Flags |= MachineMemOperand::MOInvariant;
4268
4269  // If we don't have a PtrInfo, infer the trivial frame index case to simplify
4270  // clients.
4271  if (PtrInfo.V == 0)
4272    PtrInfo = InferPointerInfo(Ptr, Offset);
4273
4274  MachineFunction &MF = getMachineFunction();
4275  MachineMemOperand *MMO =
4276    MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
4277                            TBAAInfo, Ranges);
4278  return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
4279}
4280
4281SDValue
4282SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
4283                      EVT VT, DebugLoc dl, SDValue Chain,
4284                      SDValue Ptr, SDValue Offset, EVT MemVT,
4285                      MachineMemOperand *MMO) {
4286  if (VT == MemVT) {
4287    ExtType = ISD::NON_EXTLOAD;
4288  } else if (ExtType == ISD::NON_EXTLOAD) {
4289    assert(VT == MemVT && "Non-extending load from different memory type!");
4290  } else {
4291    // Extending load.
4292    assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
4293           "Should only be an extending load, not truncating!");
4294    assert(VT.isInteger() == MemVT.isInteger() &&
4295           "Cannot convert from FP to Int or Int -> FP!");
4296    assert(VT.isVector() == MemVT.isVector() &&
4297           "Cannot use trunc store to convert to or from a vector!");
4298    assert((!VT.isVector() ||
4299            VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
4300           "Cannot use trunc store to change the number of vector elements!");
4301  }
4302
4303  bool Indexed = AM != ISD::UNINDEXED;
4304  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
4305         "Unindexed load with an offset!");
4306
4307  SDVTList VTs = Indexed ?
4308    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
4309  SDValue Ops[] = { Chain, Ptr, Offset };
4310  FoldingSetNodeID ID;
4311  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
4312  ID.AddInteger(MemVT.getRawBits());
4313  ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
4314                                     MMO->isNonTemporal(),
4315                                     MMO->isInvariant()));
4316  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4317  void *IP = 0;
4318  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4319    cast<LoadSDNode>(E)->refineAlignment(MMO);
4320    return SDValue(E, 0);
4321  }
4322  SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
4323                                             MemVT, MMO);
4324  CSEMap.InsertNode(N, IP);
4325  AllNodes.push_back(N);
4326  return SDValue(N, 0);
4327}
4328
4329SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
4330                              SDValue Chain, SDValue Ptr,
4331                              MachinePointerInfo PtrInfo,
4332                              bool isVolatile, bool isNonTemporal,
4333                              bool isInvariant, unsigned Alignment,
4334                              const MDNode *TBAAInfo,
4335                              const MDNode *Ranges) {
4336  SDValue Undef = getUNDEF(Ptr.getValueType());
4337  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
4338                 PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
4339                 TBAAInfo, Ranges);
4340}
4341
4342SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
4343                                 SDValue Chain, SDValue Ptr,
4344                                 MachinePointerInfo PtrInfo, EVT MemVT,
4345                                 bool isVolatile, bool isNonTemporal,
4346                                 unsigned Alignment, const MDNode *TBAAInfo) {
4347  SDValue Undef = getUNDEF(Ptr.getValueType());
4348  return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
4349                 PtrInfo, MemVT, isVolatile, isNonTemporal, false, Alignment,
4350                 TBAAInfo);
4351}
4352
4353
4354SDValue
4355SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
4356                             SDValue Offset, ISD::MemIndexedMode AM) {
4357  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
4358  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
4359         "Load is already a indexed load!");
4360  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
4361                 LD->getChain(), Base, Offset, LD->getPointerInfo(),
4362                 LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(),
4363                 false, LD->getAlignment());
4364}
4365
4366SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4367                               SDValue Ptr, MachinePointerInfo PtrInfo,
4368                               bool isVolatile, bool isNonTemporal,
4369                               unsigned Alignment, const MDNode *TBAAInfo) {
4370  assert(Chain.getValueType() == MVT::Other &&
4371        "Invalid chain type");
4372  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4373    Alignment = getEVTAlignment(Val.getValueType());
4374
4375  unsigned Flags = MachineMemOperand::MOStore;
4376  if (isVolatile)
4377    Flags |= MachineMemOperand::MOVolatile;
4378  if (isNonTemporal)
4379    Flags |= MachineMemOperand::MONonTemporal;
4380
4381  if (PtrInfo.V == 0)
4382    PtrInfo = InferPointerInfo(Ptr);
4383
4384  MachineFunction &MF = getMachineFunction();
4385  MachineMemOperand *MMO =
4386    MF.getMachineMemOperand(PtrInfo, Flags,
4387                            Val.getValueType().getStoreSize(), Alignment,
4388                            TBAAInfo);
4389
4390  return getStore(Chain, dl, Val, Ptr, MMO);
4391}
4392
4393SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
4394                               SDValue Ptr, MachineMemOperand *MMO) {
4395  assert(Chain.getValueType() == MVT::Other &&
4396        "Invalid chain type");
4397  EVT VT = Val.getValueType();
4398  SDVTList VTs = getVTList(MVT::Other);
4399  SDValue Undef = getUNDEF(Ptr.getValueType());
4400  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4401  FoldingSetNodeID ID;
4402  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4403  ID.AddInteger(VT.getRawBits());
4404  ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
4405                                     MMO->isNonTemporal(), MMO->isInvariant()));
4406  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4407  void *IP = 0;
4408  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4409    cast<StoreSDNode>(E)->refineAlignment(MMO);
4410    return SDValue(E, 0);
4411  }
4412  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4413                                              false, VT, MMO);
4414  CSEMap.InsertNode(N, IP);
4415  AllNodes.push_back(N);
4416  return SDValue(N, 0);
4417}
4418
4419SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4420                                    SDValue Ptr, MachinePointerInfo PtrInfo,
4421                                    EVT SVT,bool isVolatile, bool isNonTemporal,
4422                                    unsigned Alignment,
4423                                    const MDNode *TBAAInfo) {
4424  assert(Chain.getValueType() == MVT::Other &&
4425        "Invalid chain type");
4426  if (Alignment == 0)  // Ensure that codegen never sees alignment 0
4427    Alignment = getEVTAlignment(SVT);
4428
4429  unsigned Flags = MachineMemOperand::MOStore;
4430  if (isVolatile)
4431    Flags |= MachineMemOperand::MOVolatile;
4432  if (isNonTemporal)
4433    Flags |= MachineMemOperand::MONonTemporal;
4434
4435  if (PtrInfo.V == 0)
4436    PtrInfo = InferPointerInfo(Ptr);
4437
4438  MachineFunction &MF = getMachineFunction();
4439  MachineMemOperand *MMO =
4440    MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
4441                            TBAAInfo);
4442
4443  return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
4444}
4445
4446SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
4447                                    SDValue Ptr, EVT SVT,
4448                                    MachineMemOperand *MMO) {
4449  EVT VT = Val.getValueType();
4450
4451  assert(Chain.getValueType() == MVT::Other &&
4452        "Invalid chain type");
4453  if (VT == SVT)
4454    return getStore(Chain, dl, Val, Ptr, MMO);
4455
4456  assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
4457         "Should only be a truncating store, not extending!");
4458  assert(VT.isInteger() == SVT.isInteger() &&
4459         "Can't do FP-INT conversion!");
4460  assert(VT.isVector() == SVT.isVector() &&
4461         "Cannot use trunc store to convert to or from a vector!");
4462  assert((!VT.isVector() ||
4463          VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
4464         "Cannot use trunc store to change the number of vector elements!");
4465
4466  SDVTList VTs = getVTList(MVT::Other);
4467  SDValue Undef = getUNDEF(Ptr.getValueType());
4468  SDValue Ops[] = { Chain, Val, Ptr, Undef };
4469  FoldingSetNodeID ID;
4470  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4471  ID.AddInteger(SVT.getRawBits());
4472  ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
4473                                     MMO->isNonTemporal(), MMO->isInvariant()));
4474  ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
4475  void *IP = 0;
4476  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
4477    cast<StoreSDNode>(E)->refineAlignment(MMO);
4478    return SDValue(E, 0);
4479  }
4480  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
4481                                              true, SVT, MMO);
4482  CSEMap.InsertNode(N, IP);
4483  AllNodes.push_back(N);
4484  return SDValue(N, 0);
4485}
4486
4487SDValue
4488SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
4489                              SDValue Offset, ISD::MemIndexedMode AM) {
4490  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
4491  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
4492         "Store is already a indexed store!");
4493  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
4494  SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
4495  FoldingSetNodeID ID;
4496  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
4497  ID.AddInteger(ST->getMemoryVT().getRawBits());
4498  ID.AddInteger(ST->getRawSubclassData());
4499  ID.AddInteger(ST->getPointerInfo().getAddrSpace());
4500  void *IP = 0;
4501  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4502    return SDValue(E, 0);
4503
4504  SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
4505                                              ST->isTruncatingStore(),
4506                                              ST->getMemoryVT(),
4507                                              ST->getMemOperand());
4508  CSEMap.InsertNode(N, IP);
4509  AllNodes.push_back(N);
4510  return SDValue(N, 0);
4511}
4512
4513SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
4514                               SDValue Chain, SDValue Ptr,
4515                               SDValue SV,
4516                               unsigned Align) {
4517  SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
4518  return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
4519}
4520
4521SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4522                              const SDUse *Ops, unsigned NumOps) {
4523  switch (NumOps) {
4524  case 0: return getNode(Opcode, DL, VT);
4525  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4526  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4527  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4528  default: break;
4529  }
4530
4531  // Copy from an SDUse array into an SDValue array for use with
4532  // the regular getNode logic.
4533  SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
4534  return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
4535}
4536
4537SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
4538                              const SDValue *Ops, unsigned NumOps) {
4539  switch (NumOps) {
4540  case 0: return getNode(Opcode, DL, VT);
4541  case 1: return getNode(Opcode, DL, VT, Ops[0]);
4542  case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
4543  case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
4544  default: break;
4545  }
4546
4547  switch (Opcode) {
4548  default: break;
4549  case ISD::SELECT_CC: {
4550    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
4551    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
4552           "LHS and RHS of condition must have same type!");
4553    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4554           "True and False arms of SelectCC must have same type!");
4555    assert(Ops[2].getValueType() == VT &&
4556           "select_cc node must be of same type as true and false value!");
4557    break;
4558  }
4559  case ISD::BR_CC: {
4560    assert(NumOps == 5 && "BR_CC takes 5 operands!");
4561    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
4562           "LHS/RHS of comparison should match types!");
4563    break;
4564  }
4565  }
4566
4567  // Memoize nodes.
4568  SDNode *N;
4569  SDVTList VTs = getVTList(VT);
4570
4571  if (VT != MVT::Glue) {
4572    FoldingSetNodeID ID;
4573    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
4574    void *IP = 0;
4575
4576    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4577      return SDValue(E, 0);
4578
4579    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4580    CSEMap.InsertNode(N, IP);
4581  } else {
4582    N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
4583  }
4584
4585  AllNodes.push_back(N);
4586#ifndef NDEBUG
4587  VerifySDNode(N);
4588#endif
4589  return SDValue(N, 0);
4590}
4591
4592SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4593                              const std::vector<EVT> &ResultTys,
4594                              const SDValue *Ops, unsigned NumOps) {
4595  return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
4596                 Ops, NumOps);
4597}
4598
4599SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
4600                              const EVT *VTs, unsigned NumVTs,
4601                              const SDValue *Ops, unsigned NumOps) {
4602  if (NumVTs == 1)
4603    return getNode(Opcode, DL, VTs[0], Ops, NumOps);
4604  return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
4605}
4606
4607SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4608                              const SDValue *Ops, unsigned NumOps) {
4609  if (VTList.NumVTs == 1)
4610    return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
4611
4612#if 0
4613  switch (Opcode) {
4614  // FIXME: figure out how to safely handle things like
4615  // int foo(int x) { return 1 << (x & 255); }
4616  // int bar() { return foo(256); }
4617  case ISD::SRA_PARTS:
4618  case ISD::SRL_PARTS:
4619  case ISD::SHL_PARTS:
4620    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4621        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
4622      return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4623    else if (N3.getOpcode() == ISD::AND)
4624      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
4625        // If the and is only masking out bits that cannot effect the shift,
4626        // eliminate the and.
4627        unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
4628        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
4629          return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
4630      }
4631    break;
4632  }
4633#endif
4634
4635  // Memoize the node unless it returns a flag.
4636  SDNode *N;
4637  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
4638    FoldingSetNodeID ID;
4639    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
4640    void *IP = 0;
4641    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
4642      return SDValue(E, 0);
4643
4644    if (NumOps == 1) {
4645      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4646    } else if (NumOps == 2) {
4647      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4648    } else if (NumOps == 3) {
4649      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4650                                            Ops[2]);
4651    } else {
4652      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4653    }
4654    CSEMap.InsertNode(N, IP);
4655  } else {
4656    if (NumOps == 1) {
4657      N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
4658    } else if (NumOps == 2) {
4659      N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
4660    } else if (NumOps == 3) {
4661      N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
4662                                            Ops[2]);
4663    } else {
4664      N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
4665    }
4666  }
4667  AllNodes.push_back(N);
4668#ifndef NDEBUG
4669  VerifySDNode(N);
4670#endif
4671  return SDValue(N, 0);
4672}
4673
4674SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
4675  return getNode(Opcode, DL, VTList, 0, 0);
4676}
4677
4678SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4679                              SDValue N1) {
4680  SDValue Ops[] = { N1 };
4681  return getNode(Opcode, DL, VTList, Ops, 1);
4682}
4683
4684SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4685                              SDValue N1, SDValue N2) {
4686  SDValue Ops[] = { N1, N2 };
4687  return getNode(Opcode, DL, VTList, Ops, 2);
4688}
4689
4690SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4691                              SDValue N1, SDValue N2, SDValue N3) {
4692  SDValue Ops[] = { N1, N2, N3 };
4693  return getNode(Opcode, DL, VTList, Ops, 3);
4694}
4695
4696SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4697                              SDValue N1, SDValue N2, SDValue N3,
4698                              SDValue N4) {
4699  SDValue Ops[] = { N1, N2, N3, N4 };
4700  return getNode(Opcode, DL, VTList, Ops, 4);
4701}
4702
4703SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
4704                              SDValue N1, SDValue N2, SDValue N3,
4705                              SDValue N4, SDValue N5) {
4706  SDValue Ops[] = { N1, N2, N3, N4, N5 };
4707  return getNode(Opcode, DL, VTList, Ops, 5);
4708}
4709
4710SDVTList SelectionDAG::getVTList(EVT VT) {
4711  return makeVTList(SDNode::getValueTypeList(VT), 1);
4712}
4713
4714SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
4715  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4716       E = VTList.rend(); I != E; ++I)
4717    if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
4718      return *I;
4719
4720  EVT *Array = Allocator.Allocate<EVT>(2);
4721  Array[0] = VT1;
4722  Array[1] = VT2;
4723  SDVTList Result = makeVTList(Array, 2);
4724  VTList.push_back(Result);
4725  return Result;
4726}
4727
4728SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
4729  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4730       E = VTList.rend(); I != E; ++I)
4731    if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4732                          I->VTs[2] == VT3)
4733      return *I;
4734
4735  EVT *Array = Allocator.Allocate<EVT>(3);
4736  Array[0] = VT1;
4737  Array[1] = VT2;
4738  Array[2] = VT3;
4739  SDVTList Result = makeVTList(Array, 3);
4740  VTList.push_back(Result);
4741  return Result;
4742}
4743
4744SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
4745  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4746       E = VTList.rend(); I != E; ++I)
4747    if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
4748                          I->VTs[2] == VT3 && I->VTs[3] == VT4)
4749      return *I;
4750
4751  EVT *Array = Allocator.Allocate<EVT>(4);
4752  Array[0] = VT1;
4753  Array[1] = VT2;
4754  Array[2] = VT3;
4755  Array[3] = VT4;
4756  SDVTList Result = makeVTList(Array, 4);
4757  VTList.push_back(Result);
4758  return Result;
4759}
4760
4761SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
4762  switch (NumVTs) {
4763    case 0: llvm_unreachable("Cannot have nodes without results!");
4764    case 1: return getVTList(VTs[0]);
4765    case 2: return getVTList(VTs[0], VTs[1]);
4766    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
4767    case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
4768    default: break;
4769  }
4770
4771  for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
4772       E = VTList.rend(); I != E; ++I) {
4773    if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
4774      continue;
4775
4776    if (std::equal(&VTs[2], &VTs[NumVTs], &I->VTs[2]))
4777      return *I;
4778  }
4779
4780  EVT *Array = Allocator.Allocate<EVT>(NumVTs);
4781  std::copy(VTs, VTs+NumVTs, Array);
4782  SDVTList Result = makeVTList(Array, NumVTs);
4783  VTList.push_back(Result);
4784  return Result;
4785}
4786
4787
4788/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
4789/// specified operands.  If the resultant node already exists in the DAG,
4790/// this does not modify the specified node, instead it returns the node that
4791/// already exists.  If the resultant node does not exist in the DAG, the
4792/// input node is returned.  As a degenerate case, if you specify the same
4793/// input operands as the node already has, the input node is returned.
4794SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
4795  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
4796
4797  // Check to see if there is no change.
4798  if (Op == N->getOperand(0)) return N;
4799
4800  // See if the modified node already exists.
4801  void *InsertPos = 0;
4802  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
4803    return Existing;
4804
4805  // Nope it doesn't.  Remove the node from its current place in the maps.
4806  if (InsertPos)
4807    if (!RemoveNodeFromCSEMaps(N))
4808      InsertPos = 0;
4809
4810  // Now we update the operands.
4811  N->OperandList[0].set(Op);
4812
4813  // If this gets put into a CSE map, add it.
4814  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4815  return N;
4816}
4817
4818SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
4819  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
4820
4821  // Check to see if there is no change.
4822  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
4823    return N;   // No operands changed, just return the input node.
4824
4825  // See if the modified node already exists.
4826  void *InsertPos = 0;
4827  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
4828    return Existing;
4829
4830  // Nope it doesn't.  Remove the node from its current place in the maps.
4831  if (InsertPos)
4832    if (!RemoveNodeFromCSEMaps(N))
4833      InsertPos = 0;
4834
4835  // Now we update the operands.
4836  if (N->OperandList[0] != Op1)
4837    N->OperandList[0].set(Op1);
4838  if (N->OperandList[1] != Op2)
4839    N->OperandList[1].set(Op2);
4840
4841  // If this gets put into a CSE map, add it.
4842  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4843  return N;
4844}
4845
4846SDNode *SelectionDAG::
4847UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
4848  SDValue Ops[] = { Op1, Op2, Op3 };
4849  return UpdateNodeOperands(N, Ops, 3);
4850}
4851
4852SDNode *SelectionDAG::
4853UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4854                   SDValue Op3, SDValue Op4) {
4855  SDValue Ops[] = { Op1, Op2, Op3, Op4 };
4856  return UpdateNodeOperands(N, Ops, 4);
4857}
4858
4859SDNode *SelectionDAG::
4860UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
4861                   SDValue Op3, SDValue Op4, SDValue Op5) {
4862  SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
4863  return UpdateNodeOperands(N, Ops, 5);
4864}
4865
4866SDNode *SelectionDAG::
4867UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
4868  assert(N->getNumOperands() == NumOps &&
4869         "Update with wrong number of operands");
4870
4871  // Check to see if there is no change.
4872  bool AnyChange = false;
4873  for (unsigned i = 0; i != NumOps; ++i) {
4874    if (Ops[i] != N->getOperand(i)) {
4875      AnyChange = true;
4876      break;
4877    }
4878  }
4879
4880  // No operands changed, just return the input node.
4881  if (!AnyChange) return N;
4882
4883  // See if the modified node already exists.
4884  void *InsertPos = 0;
4885  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
4886    return Existing;
4887
4888  // Nope it doesn't.  Remove the node from its current place in the maps.
4889  if (InsertPos)
4890    if (!RemoveNodeFromCSEMaps(N))
4891      InsertPos = 0;
4892
4893  // Now we update the operands.
4894  for (unsigned i = 0; i != NumOps; ++i)
4895    if (N->OperandList[i] != Ops[i])
4896      N->OperandList[i].set(Ops[i]);
4897
4898  // If this gets put into a CSE map, add it.
4899  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
4900  return N;
4901}
4902
4903/// DropOperands - Release the operands and set this node to have
4904/// zero operands.
4905void SDNode::DropOperands() {
4906  // Unlike the code in MorphNodeTo that does this, we don't need to
4907  // watch for dead nodes here.
4908  for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
4909    SDUse &Use = *I++;
4910    Use.set(SDValue());
4911  }
4912}
4913
4914/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
4915/// machine opcode.
4916///
4917SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4918                                   EVT VT) {
4919  SDVTList VTs = getVTList(VT);
4920  return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
4921}
4922
4923SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4924                                   EVT VT, SDValue Op1) {
4925  SDVTList VTs = getVTList(VT);
4926  SDValue Ops[] = { Op1 };
4927  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4928}
4929
4930SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4931                                   EVT VT, SDValue Op1,
4932                                   SDValue Op2) {
4933  SDVTList VTs = getVTList(VT);
4934  SDValue Ops[] = { Op1, Op2 };
4935  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4936}
4937
4938SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4939                                   EVT VT, SDValue Op1,
4940                                   SDValue Op2, SDValue Op3) {
4941  SDVTList VTs = getVTList(VT);
4942  SDValue Ops[] = { Op1, Op2, Op3 };
4943  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
4944}
4945
4946SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4947                                   EVT VT, const SDValue *Ops,
4948                                   unsigned NumOps) {
4949  SDVTList VTs = getVTList(VT);
4950  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4951}
4952
4953SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4954                                   EVT VT1, EVT VT2, const SDValue *Ops,
4955                                   unsigned NumOps) {
4956  SDVTList VTs = getVTList(VT1, VT2);
4957  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4958}
4959
4960SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4961                                   EVT VT1, EVT VT2) {
4962  SDVTList VTs = getVTList(VT1, VT2);
4963  return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
4964}
4965
4966SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4967                                   EVT VT1, EVT VT2, EVT VT3,
4968                                   const SDValue *Ops, unsigned NumOps) {
4969  SDVTList VTs = getVTList(VT1, VT2, VT3);
4970  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4971}
4972
4973SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4974                                   EVT VT1, EVT VT2, EVT VT3, EVT VT4,
4975                                   const SDValue *Ops, unsigned NumOps) {
4976  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
4977  return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
4978}
4979
4980SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4981                                   EVT VT1, EVT VT2,
4982                                   SDValue Op1) {
4983  SDVTList VTs = getVTList(VT1, VT2);
4984  SDValue Ops[] = { Op1 };
4985  return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
4986}
4987
4988SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4989                                   EVT VT1, EVT VT2,
4990                                   SDValue Op1, SDValue Op2) {
4991  SDVTList VTs = getVTList(VT1, VT2);
4992  SDValue Ops[] = { Op1, Op2 };
4993  return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
4994}
4995
4996SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
4997                                   EVT VT1, EVT VT2,
4998                                   SDValue Op1, SDValue Op2,
4999                                   SDValue Op3) {
5000  SDVTList VTs = getVTList(VT1, VT2);
5001  SDValue Ops[] = { Op1, Op2, Op3 };
5002  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5003}
5004
5005SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5006                                   EVT VT1, EVT VT2, EVT VT3,
5007                                   SDValue Op1, SDValue Op2,
5008                                   SDValue Op3) {
5009  SDVTList VTs = getVTList(VT1, VT2, VT3);
5010  SDValue Ops[] = { Op1, Op2, Op3 };
5011  return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
5012}
5013
5014SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
5015                                   SDVTList VTs, const SDValue *Ops,
5016                                   unsigned NumOps) {
5017  N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
5018  // Reset the NodeID to -1.
5019  N->setNodeId(-1);
5020  return N;
5021}
5022
5023/// UpdadeDebugLocOnMergedSDNode - If the opt level is -O0 then it throws away
5024/// the line number information on the merged node since it is not possible to
5025/// preserve the information that operation is associated with multiple lines.
5026/// This will make the debugger working better at -O0, were there is a higher
5027/// probability having other instructions associated with that line.
5028///
5029SDNode *SelectionDAG::UpdadeDebugLocOnMergedSDNode(SDNode *N, DebugLoc OLoc) {
5030  DebugLoc NLoc = N->getDebugLoc();
5031  if (!(NLoc.isUnknown()) && (OptLevel == CodeGenOpt::None) && (OLoc != NLoc)) {
5032    N->setDebugLoc(DebugLoc());
5033  }
5034  return N;
5035}
5036
5037/// MorphNodeTo - This *mutates* the specified node to have the specified
5038/// return type, opcode, and operands.
5039///
5040/// Note that MorphNodeTo returns the resultant node.  If there is already a
5041/// node of the specified opcode and operands, it returns that node instead of
5042/// the current one.  Note that the DebugLoc need not be the same.
5043///
5044/// Using MorphNodeTo is faster than creating a new node and swapping it in
5045/// with ReplaceAllUsesWith both because it often avoids allocating a new
5046/// node, and because it doesn't require CSE recalculation for any of
5047/// the node's users.
5048///
5049SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
5050                                  SDVTList VTs, const SDValue *Ops,
5051                                  unsigned NumOps) {
5052  // If an identical node already exists, use it.
5053  void *IP = 0;
5054  if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
5055    FoldingSetNodeID ID;
5056    AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
5057    if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
5058      return UpdadeDebugLocOnMergedSDNode(ON, N->getDebugLoc());
5059  }
5060
5061  if (!RemoveNodeFromCSEMaps(N))
5062    IP = 0;
5063
5064  // Start the morphing.
5065  N->NodeType = Opc;
5066  N->ValueList = VTs.VTs;
5067  N->NumValues = VTs.NumVTs;
5068
5069  // Clear the operands list, updating used nodes to remove this from their
5070  // use list.  Keep track of any operands that become dead as a result.
5071  SmallPtrSet<SDNode*, 16> DeadNodeSet;
5072  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
5073    SDUse &Use = *I++;
5074    SDNode *Used = Use.getNode();
5075    Use.set(SDValue());
5076    if (Used->use_empty())
5077      DeadNodeSet.insert(Used);
5078  }
5079
5080  if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
5081    // Initialize the memory references information.
5082    MN->setMemRefs(0, 0);
5083    // If NumOps is larger than the # of operands we can have in a
5084    // MachineSDNode, reallocate the operand list.
5085    if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
5086      if (MN->OperandsNeedDelete)
5087        delete[] MN->OperandList;
5088      if (NumOps > array_lengthof(MN->LocalOperands))
5089        // We're creating a final node that will live unmorphed for the
5090        // remainder of the current SelectionDAG iteration, so we can allocate
5091        // the operands directly out of a pool with no recycling metadata.
5092        MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5093                         Ops, NumOps);
5094      else
5095        MN->InitOperands(MN->LocalOperands, Ops, NumOps);
5096      MN->OperandsNeedDelete = false;
5097    } else
5098      MN->InitOperands(MN->OperandList, Ops, NumOps);
5099  } else {
5100    // If NumOps is larger than the # of operands we currently have, reallocate
5101    // the operand list.
5102    if (NumOps > N->NumOperands) {
5103      if (N->OperandsNeedDelete)
5104        delete[] N->OperandList;
5105      N->InitOperands(new SDUse[NumOps], Ops, NumOps);
5106      N->OperandsNeedDelete = true;
5107    } else
5108      N->InitOperands(N->OperandList, Ops, NumOps);
5109  }
5110
5111  // Delete any nodes that are still dead after adding the uses for the
5112  // new operands.
5113  if (!DeadNodeSet.empty()) {
5114    SmallVector<SDNode *, 16> DeadNodes;
5115    for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
5116         E = DeadNodeSet.end(); I != E; ++I)
5117      if ((*I)->use_empty())
5118        DeadNodes.push_back(*I);
5119    RemoveDeadNodes(DeadNodes);
5120  }
5121
5122  if (IP)
5123    CSEMap.InsertNode(N, IP);   // Memoize the new node.
5124  return N;
5125}
5126
5127
5128/// getMachineNode - These are used for target selectors to create a new node
5129/// with specified return type(s), MachineInstr opcode, and operands.
5130///
5131/// Note that getMachineNode returns the resultant node.  If there is already a
5132/// node of the specified opcode and operands, it returns that node instead of
5133/// the current one.
5134MachineSDNode *
5135SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
5136  SDVTList VTs = getVTList(VT);
5137  return getMachineNode(Opcode, dl, VTs, 0, 0);
5138}
5139
5140MachineSDNode *
5141SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
5142  SDVTList VTs = getVTList(VT);
5143  SDValue Ops[] = { Op1 };
5144  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5145}
5146
5147MachineSDNode *
5148SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5149                             SDValue Op1, SDValue Op2) {
5150  SDVTList VTs = getVTList(VT);
5151  SDValue Ops[] = { Op1, Op2 };
5152  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5153}
5154
5155MachineSDNode *
5156SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5157                             SDValue Op1, SDValue Op2, SDValue Op3) {
5158  SDVTList VTs = getVTList(VT);
5159  SDValue Ops[] = { Op1, Op2, Op3 };
5160  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5161}
5162
5163MachineSDNode *
5164SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
5165                             const SDValue *Ops, unsigned NumOps) {
5166  SDVTList VTs = getVTList(VT);
5167  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5168}
5169
5170MachineSDNode *
5171SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
5172  SDVTList VTs = getVTList(VT1, VT2);
5173  return getMachineNode(Opcode, dl, VTs, 0, 0);
5174}
5175
5176MachineSDNode *
5177SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5178                             EVT VT1, EVT VT2, SDValue Op1) {
5179  SDVTList VTs = getVTList(VT1, VT2);
5180  SDValue Ops[] = { Op1 };
5181  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5182}
5183
5184MachineSDNode *
5185SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5186                             EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
5187  SDVTList VTs = getVTList(VT1, VT2);
5188  SDValue Ops[] = { Op1, Op2 };
5189  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5190}
5191
5192MachineSDNode *
5193SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5194                             EVT VT1, EVT VT2, SDValue Op1,
5195                             SDValue Op2, SDValue Op3) {
5196  SDVTList VTs = getVTList(VT1, VT2);
5197  SDValue Ops[] = { Op1, Op2, Op3 };
5198  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5199}
5200
5201MachineSDNode *
5202SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5203                             EVT VT1, EVT VT2,
5204                             const SDValue *Ops, unsigned NumOps) {
5205  SDVTList VTs = getVTList(VT1, VT2);
5206  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5207}
5208
5209MachineSDNode *
5210SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5211                             EVT VT1, EVT VT2, EVT VT3,
5212                             SDValue Op1, SDValue Op2) {
5213  SDVTList VTs = getVTList(VT1, VT2, VT3);
5214  SDValue Ops[] = { Op1, Op2 };
5215  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5216}
5217
5218MachineSDNode *
5219SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5220                             EVT VT1, EVT VT2, EVT VT3,
5221                             SDValue Op1, SDValue Op2, SDValue Op3) {
5222  SDVTList VTs = getVTList(VT1, VT2, VT3);
5223  SDValue Ops[] = { Op1, Op2, Op3 };
5224  return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
5225}
5226
5227MachineSDNode *
5228SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5229                             EVT VT1, EVT VT2, EVT VT3,
5230                             const SDValue *Ops, unsigned NumOps) {
5231  SDVTList VTs = getVTList(VT1, VT2, VT3);
5232  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5233}
5234
5235MachineSDNode *
5236SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
5237                             EVT VT2, EVT VT3, EVT VT4,
5238                             const SDValue *Ops, unsigned NumOps) {
5239  SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
5240  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5241}
5242
5243MachineSDNode *
5244SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
5245                             const std::vector<EVT> &ResultTys,
5246                             const SDValue *Ops, unsigned NumOps) {
5247  SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
5248  return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
5249}
5250
5251MachineSDNode *
5252SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
5253                             const SDValue *Ops, unsigned NumOps) {
5254  bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
5255  MachineSDNode *N;
5256  void *IP = 0;
5257
5258  if (DoCSE) {
5259    FoldingSetNodeID ID;
5260    AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
5261    IP = 0;
5262    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
5263      return cast<MachineSDNode>(UpdadeDebugLocOnMergedSDNode(E, DL));
5264    }
5265  }
5266
5267  // Allocate a new MachineSDNode.
5268  N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
5269
5270  // Initialize the operands list.
5271  if (NumOps > array_lengthof(N->LocalOperands))
5272    // We're creating a final node that will live unmorphed for the
5273    // remainder of the current SelectionDAG iteration, so we can allocate
5274    // the operands directly out of a pool with no recycling metadata.
5275    N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
5276                    Ops, NumOps);
5277  else
5278    N->InitOperands(N->LocalOperands, Ops, NumOps);
5279  N->OperandsNeedDelete = false;
5280
5281  if (DoCSE)
5282    CSEMap.InsertNode(N, IP);
5283
5284  AllNodes.push_back(N);
5285#ifndef NDEBUG
5286  VerifyMachineNode(N);
5287#endif
5288  return N;
5289}
5290
5291/// getTargetExtractSubreg - A convenience function for creating
5292/// TargetOpcode::EXTRACT_SUBREG nodes.
5293SDValue
5294SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
5295                                     SDValue Operand) {
5296  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5297  SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
5298                                  VT, Operand, SRIdxVal);
5299  return SDValue(Subreg, 0);
5300}
5301
5302/// getTargetInsertSubreg - A convenience function for creating
5303/// TargetOpcode::INSERT_SUBREG nodes.
5304SDValue
5305SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
5306                                    SDValue Operand, SDValue Subreg) {
5307  SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
5308  SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
5309                                  VT, Operand, Subreg, SRIdxVal);
5310  return SDValue(Result, 0);
5311}
5312
5313/// getNodeIfExists - Get the specified node if it's already available, or
5314/// else return NULL.
5315SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
5316                                      const SDValue *Ops, unsigned NumOps) {
5317  if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
5318    FoldingSetNodeID ID;
5319    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
5320    void *IP = 0;
5321    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
5322      return E;
5323  }
5324  return NULL;
5325}
5326
5327/// getDbgValue - Creates a SDDbgValue node.
5328///
5329SDDbgValue *
5330SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
5331                          DebugLoc DL, unsigned O) {
5332  return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
5333}
5334
5335SDDbgValue *
5336SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
5337                          DebugLoc DL, unsigned O) {
5338  return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
5339}
5340
5341SDDbgValue *
5342SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
5343                          DebugLoc DL, unsigned O) {
5344  return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
5345}
5346
5347namespace {
5348
5349/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
5350/// pointed to by a use iterator is deleted, increment the use iterator
5351/// so that it doesn't dangle.
5352///
5353class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
5354  SDNode::use_iterator &UI;
5355  SDNode::use_iterator &UE;
5356
5357  virtual void NodeDeleted(SDNode *N, SDNode *E) {
5358    // Increment the iterator as needed.
5359    while (UI != UE && N == *UI)
5360      ++UI;
5361  }
5362
5363public:
5364  RAUWUpdateListener(SelectionDAG &d,
5365                     SDNode::use_iterator &ui,
5366                     SDNode::use_iterator &ue)
5367    : SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
5368};
5369
5370}
5371
5372/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5373/// This can cause recursive merging of nodes in the DAG.
5374///
5375/// This version assumes From has a single result value.
5376///
5377void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
5378  SDNode *From = FromN.getNode();
5379  assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
5380         "Cannot replace with this method!");
5381  assert(From != To.getNode() && "Cannot replace uses of with self");
5382
5383  // Iterate over all the existing uses of From. New uses will be added
5384  // to the beginning of the use list, which we avoid visiting.
5385  // This specifically avoids visiting uses of From that arise while the
5386  // replacement is happening, because any such uses would be the result
5387  // of CSE: If an existing node looks like From after one of its operands
5388  // is replaced by To, we don't want to replace of all its users with To
5389  // too. See PR3018 for more info.
5390  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5391  RAUWUpdateListener Listener(*this, UI, UE);
5392  while (UI != UE) {
5393    SDNode *User = *UI;
5394
5395    // This node is about to morph, remove its old self from the CSE maps.
5396    RemoveNodeFromCSEMaps(User);
5397
5398    // A user can appear in a use list multiple times, and when this
5399    // happens the uses are usually next to each other in the list.
5400    // To help reduce the number of CSE recomputations, process all
5401    // the uses of this user that we can find this way.
5402    do {
5403      SDUse &Use = UI.getUse();
5404      ++UI;
5405      Use.set(To);
5406    } while (UI != UE && *UI == User);
5407
5408    // Now that we have modified User, add it back to the CSE maps.  If it
5409    // already exists there, recursively merge the results together.
5410    AddModifiedNodeToCSEMaps(User);
5411  }
5412
5413  // If we just RAUW'd the root, take note.
5414  if (FromN == getRoot())
5415    setRoot(To);
5416}
5417
5418/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5419/// This can cause recursive merging of nodes in the DAG.
5420///
5421/// This version assumes that for each value of From, there is a
5422/// corresponding value in To in the same position with the same type.
5423///
5424void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
5425#ifndef NDEBUG
5426  for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
5427    assert((!From->hasAnyUseOfValue(i) ||
5428            From->getValueType(i) == To->getValueType(i)) &&
5429           "Cannot use this version of ReplaceAllUsesWith!");
5430#endif
5431
5432  // Handle the trivial case.
5433  if (From == To)
5434    return;
5435
5436  // Iterate over just the existing users of From. See the comments in
5437  // the ReplaceAllUsesWith above.
5438  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5439  RAUWUpdateListener Listener(*this, UI, UE);
5440  while (UI != UE) {
5441    SDNode *User = *UI;
5442
5443    // This node is about to morph, remove its old self from the CSE maps.
5444    RemoveNodeFromCSEMaps(User);
5445
5446    // A user can appear in a use list multiple times, and when this
5447    // happens the uses are usually next to each other in the list.
5448    // To help reduce the number of CSE recomputations, process all
5449    // the uses of this user that we can find this way.
5450    do {
5451      SDUse &Use = UI.getUse();
5452      ++UI;
5453      Use.setNode(To);
5454    } while (UI != UE && *UI == User);
5455
5456    // Now that we have modified User, add it back to the CSE maps.  If it
5457    // already exists there, recursively merge the results together.
5458    AddModifiedNodeToCSEMaps(User);
5459  }
5460
5461  // If we just RAUW'd the root, take note.
5462  if (From == getRoot().getNode())
5463    setRoot(SDValue(To, getRoot().getResNo()));
5464}
5465
5466/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
5467/// This can cause recursive merging of nodes in the DAG.
5468///
5469/// This version can replace From with any result values.  To must match the
5470/// number and types of values returned by From.
5471void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
5472  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
5473    return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
5474
5475  // Iterate over just the existing users of From. See the comments in
5476  // the ReplaceAllUsesWith above.
5477  SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
5478  RAUWUpdateListener Listener(*this, UI, UE);
5479  while (UI != UE) {
5480    SDNode *User = *UI;
5481
5482    // This node is about to morph, remove its old self from the CSE maps.
5483    RemoveNodeFromCSEMaps(User);
5484
5485    // A user can appear in a use list multiple times, and when this
5486    // happens the uses are usually next to each other in the list.
5487    // To help reduce the number of CSE recomputations, process all
5488    // the uses of this user that we can find this way.
5489    do {
5490      SDUse &Use = UI.getUse();
5491      const SDValue &ToOp = To[Use.getResNo()];
5492      ++UI;
5493      Use.set(ToOp);
5494    } while (UI != UE && *UI == User);
5495
5496    // Now that we have modified User, add it back to the CSE maps.  If it
5497    // already exists there, recursively merge the results together.
5498    AddModifiedNodeToCSEMaps(User);
5499  }
5500
5501  // If we just RAUW'd the root, take note.
5502  if (From == getRoot().getNode())
5503    setRoot(SDValue(To[getRoot().getResNo()]));
5504}
5505
5506/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
5507/// uses of other values produced by From.getNode() alone.  The Deleted
5508/// vector is handled the same way as for ReplaceAllUsesWith.
5509void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
5510  // Handle the really simple, really trivial case efficiently.
5511  if (From == To) return;
5512
5513  // Handle the simple, trivial, case efficiently.
5514  if (From.getNode()->getNumValues() == 1) {
5515    ReplaceAllUsesWith(From, To);
5516    return;
5517  }
5518
5519  // Iterate over just the existing users of From. See the comments in
5520  // the ReplaceAllUsesWith above.
5521  SDNode::use_iterator UI = From.getNode()->use_begin(),
5522                       UE = From.getNode()->use_end();
5523  RAUWUpdateListener Listener(*this, UI, UE);
5524  while (UI != UE) {
5525    SDNode *User = *UI;
5526    bool UserRemovedFromCSEMaps = false;
5527
5528    // A user can appear in a use list multiple times, and when this
5529    // happens the uses are usually next to each other in the list.
5530    // To help reduce the number of CSE recomputations, process all
5531    // the uses of this user that we can find this way.
5532    do {
5533      SDUse &Use = UI.getUse();
5534
5535      // Skip uses of different values from the same node.
5536      if (Use.getResNo() != From.getResNo()) {
5537        ++UI;
5538        continue;
5539      }
5540
5541      // If this node hasn't been modified yet, it's still in the CSE maps,
5542      // so remove its old self from the CSE maps.
5543      if (!UserRemovedFromCSEMaps) {
5544        RemoveNodeFromCSEMaps(User);
5545        UserRemovedFromCSEMaps = true;
5546      }
5547
5548      ++UI;
5549      Use.set(To);
5550    } while (UI != UE && *UI == User);
5551
5552    // We are iterating over all uses of the From node, so if a use
5553    // doesn't use the specific value, no changes are made.
5554    if (!UserRemovedFromCSEMaps)
5555      continue;
5556
5557    // Now that we have modified User, add it back to the CSE maps.  If it
5558    // already exists there, recursively merge the results together.
5559    AddModifiedNodeToCSEMaps(User);
5560  }
5561
5562  // If we just RAUW'd the root, take note.
5563  if (From == getRoot())
5564    setRoot(To);
5565}
5566
5567namespace {
5568  /// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
5569  /// to record information about a use.
5570  struct UseMemo {
5571    SDNode *User;
5572    unsigned Index;
5573    SDUse *Use;
5574  };
5575
5576  /// operator< - Sort Memos by User.
5577  bool operator<(const UseMemo &L, const UseMemo &R) {
5578    return (intptr_t)L.User < (intptr_t)R.User;
5579  }
5580}
5581
5582/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
5583/// uses of other values produced by From.getNode() alone.  The same value
5584/// may appear in both the From and To list.  The Deleted vector is
5585/// handled the same way as for ReplaceAllUsesWith.
5586void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
5587                                              const SDValue *To,
5588                                              unsigned Num){
5589  // Handle the simple, trivial case efficiently.
5590  if (Num == 1)
5591    return ReplaceAllUsesOfValueWith(*From, *To);
5592
5593  // Read up all the uses and make records of them. This helps
5594  // processing new uses that are introduced during the
5595  // replacement process.
5596  SmallVector<UseMemo, 4> Uses;
5597  for (unsigned i = 0; i != Num; ++i) {
5598    unsigned FromResNo = From[i].getResNo();
5599    SDNode *FromNode = From[i].getNode();
5600    for (SDNode::use_iterator UI = FromNode->use_begin(),
5601         E = FromNode->use_end(); UI != E; ++UI) {
5602      SDUse &Use = UI.getUse();
5603      if (Use.getResNo() == FromResNo) {
5604        UseMemo Memo = { *UI, i, &Use };
5605        Uses.push_back(Memo);
5606      }
5607    }
5608  }
5609
5610  // Sort the uses, so that all the uses from a given User are together.
5611  std::sort(Uses.begin(), Uses.end());
5612
5613  for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
5614       UseIndex != UseIndexEnd; ) {
5615    // We know that this user uses some value of From.  If it is the right
5616    // value, update it.
5617    SDNode *User = Uses[UseIndex].User;
5618
5619    // This node is about to morph, remove its old self from the CSE maps.
5620    RemoveNodeFromCSEMaps(User);
5621
5622    // The Uses array is sorted, so all the uses for a given User
5623    // are next to each other in the list.
5624    // To help reduce the number of CSE recomputations, process all
5625    // the uses of this user that we can find this way.
5626    do {
5627      unsigned i = Uses[UseIndex].Index;
5628      SDUse &Use = *Uses[UseIndex].Use;
5629      ++UseIndex;
5630
5631      Use.set(To[i]);
5632    } while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
5633
5634    // Now that we have modified User, add it back to the CSE maps.  If it
5635    // already exists there, recursively merge the results together.
5636    AddModifiedNodeToCSEMaps(User);
5637  }
5638}
5639
5640/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
5641/// based on their topological order. It returns the maximum id and a vector
5642/// of the SDNodes* in assigned order by reference.
5643unsigned SelectionDAG::AssignTopologicalOrder() {
5644
5645  unsigned DAGSize = 0;
5646
5647  // SortedPos tracks the progress of the algorithm. Nodes before it are
5648  // sorted, nodes after it are unsorted. When the algorithm completes
5649  // it is at the end of the list.
5650  allnodes_iterator SortedPos = allnodes_begin();
5651
5652  // Visit all the nodes. Move nodes with no operands to the front of
5653  // the list immediately. Annotate nodes that do have operands with their
5654  // operand count. Before we do this, the Node Id fields of the nodes
5655  // may contain arbitrary values. After, the Node Id fields for nodes
5656  // before SortedPos will contain the topological sort index, and the
5657  // Node Id fields for nodes At SortedPos and after will contain the
5658  // count of outstanding operands.
5659  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
5660    SDNode *N = I++;
5661    checkForCycles(N);
5662    unsigned Degree = N->getNumOperands();
5663    if (Degree == 0) {
5664      // A node with no uses, add it to the result array immediately.
5665      N->setNodeId(DAGSize++);
5666      allnodes_iterator Q = N;
5667      if (Q != SortedPos)
5668        SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
5669      assert(SortedPos != AllNodes.end() && "Overran node list");
5670      ++SortedPos;
5671    } else {
5672      // Temporarily use the Node Id as scratch space for the degree count.
5673      N->setNodeId(Degree);
5674    }
5675  }
5676
5677  // Visit all the nodes. As we iterate, move nodes into sorted order,
5678  // such that by the time the end is reached all nodes will be sorted.
5679  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
5680    SDNode *N = I;
5681    checkForCycles(N);
5682    // N is in sorted position, so all its uses have one less operand
5683    // that needs to be sorted.
5684    for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5685         UI != UE; ++UI) {
5686      SDNode *P = *UI;
5687      unsigned Degree = P->getNodeId();
5688      assert(Degree != 0 && "Invalid node degree");
5689      --Degree;
5690      if (Degree == 0) {
5691        // All of P's operands are sorted, so P may sorted now.
5692        P->setNodeId(DAGSize++);
5693        if (P != SortedPos)
5694          SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
5695        assert(SortedPos != AllNodes.end() && "Overran node list");
5696        ++SortedPos;
5697      } else {
5698        // Update P's outstanding operand count.
5699        P->setNodeId(Degree);
5700      }
5701    }
5702    if (I == SortedPos) {
5703#ifndef NDEBUG
5704      SDNode *S = ++I;
5705      dbgs() << "Overran sorted position:\n";
5706      S->dumprFull();
5707#endif
5708      llvm_unreachable(0);
5709    }
5710  }
5711
5712  assert(SortedPos == AllNodes.end() &&
5713         "Topological sort incomplete!");
5714  assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
5715         "First node in topological sort is not the entry token!");
5716  assert(AllNodes.front().getNodeId() == 0 &&
5717         "First node in topological sort has non-zero id!");
5718  assert(AllNodes.front().getNumOperands() == 0 &&
5719         "First node in topological sort has operands!");
5720  assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
5721         "Last node in topologic sort has unexpected id!");
5722  assert(AllNodes.back().use_empty() &&
5723         "Last node in topologic sort has users!");
5724  assert(DAGSize == allnodes_size() && "Node count mismatch!");
5725  return DAGSize;
5726}
5727
5728/// AssignOrdering - Assign an order to the SDNode.
5729void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
5730  assert(SD && "Trying to assign an order to a null node!");
5731  Ordering->add(SD, Order);
5732}
5733
5734/// GetOrdering - Get the order for the SDNode.
5735unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
5736  assert(SD && "Trying to get the order of a null node!");
5737  return Ordering->getOrder(SD);
5738}
5739
5740/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
5741/// value is produced by SD.
5742void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
5743  DbgInfo->add(DB, SD, isParameter);
5744  if (SD)
5745    SD->setHasDebugValue(true);
5746}
5747
5748/// TransferDbgValues - Transfer SDDbgValues.
5749void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
5750  if (From == To || !From.getNode()->getHasDebugValue())
5751    return;
5752  SDNode *FromNode = From.getNode();
5753  SDNode *ToNode = To.getNode();
5754  ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
5755  SmallVector<SDDbgValue *, 2> ClonedDVs;
5756  for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
5757       I != E; ++I) {
5758    SDDbgValue *Dbg = *I;
5759    if (Dbg->getKind() == SDDbgValue::SDNODE) {
5760      SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
5761                                      Dbg->getOffset(), Dbg->getDebugLoc(),
5762                                      Dbg->getOrder());
5763      ClonedDVs.push_back(Clone);
5764    }
5765  }
5766  for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
5767         E = ClonedDVs.end(); I != E; ++I)
5768    AddDbgValue(*I, ToNode, false);
5769}
5770
5771//===----------------------------------------------------------------------===//
5772//                              SDNode Class
5773//===----------------------------------------------------------------------===//
5774
5775HandleSDNode::~HandleSDNode() {
5776  DropOperands();
5777}
5778
5779GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
5780                                         const GlobalValue *GA,
5781                                         EVT VT, int64_t o, unsigned char TF)
5782  : SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
5783  TheGlobal = GA;
5784}
5785
5786MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
5787                     MachineMemOperand *mmo)
5788 : SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
5789  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5790                                      MMO->isNonTemporal(), MMO->isInvariant());
5791  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5792  assert(isNonTemporal() == MMO->isNonTemporal() &&
5793         "Non-temporal encoding error!");
5794  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5795}
5796
5797MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
5798                     const SDValue *Ops, unsigned NumOps, EVT memvt,
5799                     MachineMemOperand *mmo)
5800   : SDNode(Opc, dl, VTs, Ops, NumOps),
5801     MemoryVT(memvt), MMO(mmo) {
5802  SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
5803                                      MMO->isNonTemporal(), MMO->isInvariant());
5804  assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
5805  assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
5806}
5807
5808/// Profile - Gather unique data for the node.
5809///
5810void SDNode::Profile(FoldingSetNodeID &ID) const {
5811  AddNodeIDNode(ID, this);
5812}
5813
5814namespace {
5815  struct EVTArray {
5816    std::vector<EVT> VTs;
5817
5818    EVTArray() {
5819      VTs.reserve(MVT::LAST_VALUETYPE);
5820      for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
5821        VTs.push_back(MVT((MVT::SimpleValueType)i));
5822    }
5823  };
5824}
5825
5826static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
5827static ManagedStatic<EVTArray> SimpleVTArray;
5828static ManagedStatic<sys::SmartMutex<true> > VTMutex;
5829
5830/// getValueTypeList - Return a pointer to the specified value type.
5831///
5832const EVT *SDNode::getValueTypeList(EVT VT) {
5833  if (VT.isExtended()) {
5834    sys::SmartScopedLock<true> Lock(*VTMutex);
5835    return &(*EVTs->insert(VT).first);
5836  } else {
5837    assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
5838           "Value type out of range!");
5839    return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
5840  }
5841}
5842
5843/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
5844/// indicated value.  This method ignores uses of other values defined by this
5845/// operation.
5846bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
5847  assert(Value < getNumValues() && "Bad value!");
5848
5849  // TODO: Only iterate over uses of a given value of the node
5850  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
5851    if (UI.getUse().getResNo() == Value) {
5852      if (NUses == 0)
5853        return false;
5854      --NUses;
5855    }
5856  }
5857
5858  // Found exactly the right number of uses?
5859  return NUses == 0;
5860}
5861
5862
5863/// hasAnyUseOfValue - Return true if there are any use of the indicated
5864/// value. This method ignores uses of other values defined by this operation.
5865bool SDNode::hasAnyUseOfValue(unsigned Value) const {
5866  assert(Value < getNumValues() && "Bad value!");
5867
5868  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
5869    if (UI.getUse().getResNo() == Value)
5870      return true;
5871
5872  return false;
5873}
5874
5875
5876/// isOnlyUserOf - Return true if this node is the only use of N.
5877///
5878bool SDNode::isOnlyUserOf(SDNode *N) const {
5879  bool Seen = false;
5880  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
5881    SDNode *User = *I;
5882    if (User == this)
5883      Seen = true;
5884    else
5885      return false;
5886  }
5887
5888  return Seen;
5889}
5890
5891/// isOperand - Return true if this node is an operand of N.
5892///
5893bool SDValue::isOperandOf(SDNode *N) const {
5894  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
5895    if (*this == N->getOperand(i))
5896      return true;
5897  return false;
5898}
5899
5900bool SDNode::isOperandOf(SDNode *N) const {
5901  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
5902    if (this == N->OperandList[i].getNode())
5903      return true;
5904  return false;
5905}
5906
5907/// reachesChainWithoutSideEffects - Return true if this operand (which must
5908/// be a chain) reaches the specified operand without crossing any
5909/// side-effecting instructions on any chain path.  In practice, this looks
5910/// through token factors and non-volatile loads.  In order to remain efficient,
5911/// this only looks a couple of nodes in, it does not do an exhaustive search.
5912bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
5913                                               unsigned Depth) const {
5914  if (*this == Dest) return true;
5915
5916  // Don't search too deeply, we just want to be able to see through
5917  // TokenFactor's etc.
5918  if (Depth == 0) return false;
5919
5920  // If this is a token factor, all inputs to the TF happen in parallel.  If any
5921  // of the operands of the TF does not reach dest, then we cannot do the xform.
5922  if (getOpcode() == ISD::TokenFactor) {
5923    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
5924      if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
5925        return false;
5926    return true;
5927  }
5928
5929  // Loads don't have side effects, look through them.
5930  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
5931    if (!Ld->isVolatile())
5932      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
5933  }
5934  return false;
5935}
5936
5937/// hasPredecessor - Return true if N is a predecessor of this node.
5938/// N is either an operand of this node, or can be reached by recursively
5939/// traversing up the operands.
5940/// NOTE: This is an expensive method. Use it carefully.
5941bool SDNode::hasPredecessor(const SDNode *N) const {
5942  SmallPtrSet<const SDNode *, 32> Visited;
5943  SmallVector<const SDNode *, 16> Worklist;
5944  return hasPredecessorHelper(N, Visited, Worklist);
5945}
5946
5947bool SDNode::hasPredecessorHelper(const SDNode *N,
5948                                  SmallPtrSet<const SDNode *, 32> &Visited,
5949                                  SmallVector<const SDNode *, 16> &Worklist) const {
5950  if (Visited.empty()) {
5951    Worklist.push_back(this);
5952  } else {
5953    // Take a look in the visited set. If we've already encountered this node
5954    // we needn't search further.
5955    if (Visited.count(N))
5956      return true;
5957  }
5958
5959  // Haven't visited N yet. Continue the search.
5960  while (!Worklist.empty()) {
5961    const SDNode *M = Worklist.pop_back_val();
5962    for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
5963      SDNode *Op = M->getOperand(i).getNode();
5964      if (Visited.insert(Op))
5965        Worklist.push_back(Op);
5966      if (Op == N)
5967        return true;
5968    }
5969  }
5970
5971  return false;
5972}
5973
5974uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
5975  assert(Num < NumOperands && "Invalid child # of SDNode!");
5976  return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
5977}
5978
5979SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
5980  assert(N->getNumValues() == 1 &&
5981         "Can't unroll a vector with multiple results!");
5982
5983  EVT VT = N->getValueType(0);
5984  unsigned NE = VT.getVectorNumElements();
5985  EVT EltVT = VT.getVectorElementType();
5986  DebugLoc dl = N->getDebugLoc();
5987
5988  SmallVector<SDValue, 8> Scalars;
5989  SmallVector<SDValue, 4> Operands(N->getNumOperands());
5990
5991  // If ResNE is 0, fully unroll the vector op.
5992  if (ResNE == 0)
5993    ResNE = NE;
5994  else if (NE > ResNE)
5995    NE = ResNE;
5996
5997  unsigned i;
5998  for (i= 0; i != NE; ++i) {
5999    for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
6000      SDValue Operand = N->getOperand(j);
6001      EVT OperandVT = Operand.getValueType();
6002      if (OperandVT.isVector()) {
6003        // A vector operand; extract a single element.
6004        EVT OperandEltVT = OperandVT.getVectorElementType();
6005        Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
6006                              OperandEltVT,
6007                              Operand,
6008                              getConstant(i, TLI.getPointerTy()));
6009      } else {
6010        // A scalar operand; just use it as is.
6011        Operands[j] = Operand;
6012      }
6013    }
6014
6015    switch (N->getOpcode()) {
6016    default:
6017      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6018                                &Operands[0], Operands.size()));
6019      break;
6020    case ISD::VSELECT:
6021      Scalars.push_back(getNode(ISD::SELECT, dl, EltVT,
6022                                &Operands[0], Operands.size()));
6023      break;
6024    case ISD::SHL:
6025    case ISD::SRA:
6026    case ISD::SRL:
6027    case ISD::ROTL:
6028    case ISD::ROTR:
6029      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
6030                                getShiftAmountOperand(Operands[0].getValueType(),
6031                                                      Operands[1])));
6032      break;
6033    case ISD::SIGN_EXTEND_INREG:
6034    case ISD::FP_ROUND_INREG: {
6035      EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
6036      Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
6037                                Operands[0],
6038                                getValueType(ExtVT)));
6039    }
6040    }
6041  }
6042
6043  for (; i < ResNE; ++i)
6044    Scalars.push_back(getUNDEF(EltVT));
6045
6046  return getNode(ISD::BUILD_VECTOR, dl,
6047                 EVT::getVectorVT(*getContext(), EltVT, ResNE),
6048                 &Scalars[0], Scalars.size());
6049}
6050
6051
6052/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
6053/// location that is 'Dist' units away from the location that the 'Base' load
6054/// is loading from.
6055bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
6056                                     unsigned Bytes, int Dist) const {
6057  if (LD->getChain() != Base->getChain())
6058    return false;
6059  EVT VT = LD->getValueType(0);
6060  if (VT.getSizeInBits() / 8 != Bytes)
6061    return false;
6062
6063  SDValue Loc = LD->getOperand(1);
6064  SDValue BaseLoc = Base->getOperand(1);
6065  if (Loc.getOpcode() == ISD::FrameIndex) {
6066    if (BaseLoc.getOpcode() != ISD::FrameIndex)
6067      return false;
6068    const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
6069    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
6070    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
6071    int FS  = MFI->getObjectSize(FI);
6072    int BFS = MFI->getObjectSize(BFI);
6073    if (FS != BFS || FS != (int)Bytes) return false;
6074    return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
6075  }
6076
6077  // Handle X+C
6078  if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
6079      cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
6080    return true;
6081
6082  const GlobalValue *GV1 = NULL;
6083  const GlobalValue *GV2 = NULL;
6084  int64_t Offset1 = 0;
6085  int64_t Offset2 = 0;
6086  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
6087  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
6088  if (isGA1 && isGA2 && GV1 == GV2)
6089    return Offset1 == (Offset2 + Dist*Bytes);
6090  return false;
6091}
6092
6093
6094/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
6095/// it cannot be inferred.
6096unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
6097  // If this is a GlobalAddress + cst, return the alignment.
6098  const GlobalValue *GV;
6099  int64_t GVOffset = 0;
6100  if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
6101    unsigned PtrWidth = TLI.getPointerTy().getSizeInBits();
6102    APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
6103    llvm::ComputeMaskedBits(const_cast<GlobalValue*>(GV), KnownZero, KnownOne,
6104                            TLI.getDataLayout());
6105    unsigned AlignBits = KnownZero.countTrailingOnes();
6106    unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
6107    if (Align)
6108      return MinAlign(Align, GVOffset);
6109  }
6110
6111  // If this is a direct reference to a stack slot, use information about the
6112  // stack slot's alignment.
6113  int FrameIdx = 1 << 31;
6114  int64_t FrameOffset = 0;
6115  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
6116    FrameIdx = FI->getIndex();
6117  } else if (isBaseWithConstantOffset(Ptr) &&
6118             isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
6119    // Handle FI+Cst
6120    FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
6121    FrameOffset = Ptr.getConstantOperandVal(1);
6122  }
6123
6124  if (FrameIdx != (1 << 31)) {
6125    const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
6126    unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
6127                                    FrameOffset);
6128    return FIInfoAlign;
6129  }
6130
6131  return 0;
6132}
6133
6134// getAddressSpace - Return the address space this GlobalAddress belongs to.
6135unsigned GlobalAddressSDNode::getAddressSpace() const {
6136  return getGlobal()->getType()->getAddressSpace();
6137}
6138
6139
6140Type *ConstantPoolSDNode::getType() const {
6141  if (isMachineConstantPoolEntry())
6142    return Val.MachineCPVal->getType();
6143  return Val.ConstVal->getType();
6144}
6145
6146bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
6147                                        APInt &SplatUndef,
6148                                        unsigned &SplatBitSize,
6149                                        bool &HasAnyUndefs,
6150                                        unsigned MinSplatBits,
6151                                        bool isBigEndian) {
6152  EVT VT = getValueType(0);
6153  assert(VT.isVector() && "Expected a vector type");
6154  unsigned sz = VT.getSizeInBits();
6155  if (MinSplatBits > sz)
6156    return false;
6157
6158  SplatValue = APInt(sz, 0);
6159  SplatUndef = APInt(sz, 0);
6160
6161  // Get the bits.  Bits with undefined values (when the corresponding element
6162  // of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
6163  // in SplatValue.  If any of the values are not constant, give up and return
6164  // false.
6165  unsigned int nOps = getNumOperands();
6166  assert(nOps > 0 && "isConstantSplat has 0-size build vector");
6167  unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
6168
6169  for (unsigned j = 0; j < nOps; ++j) {
6170    unsigned i = isBigEndian ? nOps-1-j : j;
6171    SDValue OpVal = getOperand(i);
6172    unsigned BitPos = j * EltBitSize;
6173
6174    if (OpVal.getOpcode() == ISD::UNDEF)
6175      SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
6176    else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
6177      SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
6178                    zextOrTrunc(sz) << BitPos;
6179    else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
6180      SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
6181     else
6182      return false;
6183  }
6184
6185  // The build_vector is all constants or undefs.  Find the smallest element
6186  // size that splats the vector.
6187
6188  HasAnyUndefs = (SplatUndef != 0);
6189  while (sz > 8) {
6190
6191    unsigned HalfSize = sz / 2;
6192    APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
6193    APInt LowValue = SplatValue.trunc(HalfSize);
6194    APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
6195    APInt LowUndef = SplatUndef.trunc(HalfSize);
6196
6197    // If the two halves do not match (ignoring undef bits), stop here.
6198    if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
6199        MinSplatBits > HalfSize)
6200      break;
6201
6202    SplatValue = HighValue | LowValue;
6203    SplatUndef = HighUndef & LowUndef;
6204
6205    sz = HalfSize;
6206  }
6207
6208  SplatBitSize = sz;
6209  return true;
6210}
6211
6212bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
6213  // Find the first non-undef value in the shuffle mask.
6214  unsigned i, e;
6215  for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
6216    /* search */;
6217
6218  assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
6219
6220  // Make sure all remaining elements are either undef or the same as the first
6221  // non-undef value.
6222  for (int Idx = Mask[i]; i != e; ++i)
6223    if (Mask[i] >= 0 && Mask[i] != Idx)
6224      return false;
6225  return true;
6226}
6227
6228#ifdef XDEBUG
6229static void checkForCyclesHelper(const SDNode *N,
6230                                 SmallPtrSet<const SDNode*, 32> &Visited,
6231                                 SmallPtrSet<const SDNode*, 32> &Checked) {
6232  // If this node has already been checked, don't check it again.
6233  if (Checked.count(N))
6234    return;
6235
6236  // If a node has already been visited on this depth-first walk, reject it as
6237  // a cycle.
6238  if (!Visited.insert(N)) {
6239    dbgs() << "Offending node:\n";
6240    N->dumprFull();
6241    errs() << "Detected cycle in SelectionDAG\n";
6242    abort();
6243  }
6244
6245  for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
6246    checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
6247
6248  Checked.insert(N);
6249  Visited.erase(N);
6250}
6251#endif
6252
6253void llvm::checkForCycles(const llvm::SDNode *N) {
6254#ifdef XDEBUG
6255  assert(N && "Checking nonexistant SDNode");
6256  SmallPtrSet<const SDNode*, 32> visited;
6257  SmallPtrSet<const SDNode*, 32> checked;
6258  checkForCyclesHelper(N, visited, checked);
6259#endif
6260}
6261
6262void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
6263  checkForCycles(DAG->getRoot().getNode());
6264}
6265