SelectionDAG.cpp revision fb4db316d835fa9774d608ac58336a24c7867192
1//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13#include "llvm/CodeGen/SelectionDAG.h"
14#include "llvm/Constants.h"
15#include "llvm/GlobalAlias.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CallingConv.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineConstantPool.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineModuleInfo.h"
25#include "llvm/CodeGen/PseudoSourceValue.h"
26#include "llvm/Support/MathExtras.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetData.h"
29#include "llvm/Target/TargetLowering.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Target/TargetMachine.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/StringExtras.h"
37#include <algorithm>
38#include <cmath>
39using namespace llvm;
40
41/// makeVTList - Return an instance of the SDVTList struct initialized with the
42/// specified members.
43static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
44  SDVTList Res = {VTs, NumVTs};
45  return Res;
46}
47
48static const fltSemantics *MVTToAPFloatSemantics(MVT::ValueType VT) {
49  switch (VT) {
50  default: assert(0 && "Unknown FP format");
51  case MVT::f32:     return &APFloat::IEEEsingle;
52  case MVT::f64:     return &APFloat::IEEEdouble;
53  case MVT::f80:     return &APFloat::x87DoubleExtended;
54  case MVT::f128:    return &APFloat::IEEEquad;
55  case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
56  }
57}
58
59SelectionDAG::DAGUpdateListener::~DAGUpdateListener() {}
60
61//===----------------------------------------------------------------------===//
62//                              ConstantFPSDNode Class
63//===----------------------------------------------------------------------===//
64
65/// isExactlyValue - We don't rely on operator== working on double values, as
66/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
67/// As such, this method can be used to do an exact bit-for-bit comparison of
68/// two floating point values.
69bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
70  return Value.bitwiseIsEqual(V);
71}
72
73bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
74                                           const APFloat& Val) {
75  assert(MVT::isFloatingPoint(VT) && "Can only convert between FP types");
76
77  // PPC long double cannot be converted to any other type.
78  if (VT == MVT::ppcf128 ||
79      &Val.getSemantics() == &APFloat::PPCDoubleDouble)
80    return false;
81
82  // convert modifies in place, so make a copy.
83  APFloat Val2 = APFloat(Val);
84  return Val2.convert(*MVTToAPFloatSemantics(VT),
85                      APFloat::rmNearestTiesToEven) == APFloat::opOK;
86}
87
88//===----------------------------------------------------------------------===//
89//                              ISD Namespace
90//===----------------------------------------------------------------------===//
91
92/// isBuildVectorAllOnes - Return true if the specified node is a
93/// BUILD_VECTOR where all of the elements are ~0 or undef.
94bool ISD::isBuildVectorAllOnes(const SDNode *N) {
95  // Look through a bit convert.
96  if (N->getOpcode() == ISD::BIT_CONVERT)
97    N = N->getOperand(0).Val;
98
99  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
100
101  unsigned i = 0, e = N->getNumOperands();
102
103  // Skip over all of the undef values.
104  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
105    ++i;
106
107  // Do not accept an all-undef vector.
108  if (i == e) return false;
109
110  // Do not accept build_vectors that aren't all constants or which have non-~0
111  // elements.
112  SDOperand NotZero = N->getOperand(i);
113  if (isa<ConstantSDNode>(NotZero)) {
114    if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
115      return false;
116  } else if (isa<ConstantFPSDNode>(NotZero)) {
117    if (!cast<ConstantFPSDNode>(NotZero)->getValueAPF().
118                convertToAPInt().isAllOnesValue())
119      return false;
120  } else
121    return false;
122
123  // Okay, we have at least one ~0 value, check to see if the rest match or are
124  // undefs.
125  for (++i; i != e; ++i)
126    if (N->getOperand(i) != NotZero &&
127        N->getOperand(i).getOpcode() != ISD::UNDEF)
128      return false;
129  return true;
130}
131
132
133/// isBuildVectorAllZeros - Return true if the specified node is a
134/// BUILD_VECTOR where all of the elements are 0 or undef.
135bool ISD::isBuildVectorAllZeros(const SDNode *N) {
136  // Look through a bit convert.
137  if (N->getOpcode() == ISD::BIT_CONVERT)
138    N = N->getOperand(0).Val;
139
140  if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
141
142  unsigned i = 0, e = N->getNumOperands();
143
144  // Skip over all of the undef values.
145  while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
146    ++i;
147
148  // Do not accept an all-undef vector.
149  if (i == e) return false;
150
151  // Do not accept build_vectors that aren't all constants or which have non-~0
152  // elements.
153  SDOperand Zero = N->getOperand(i);
154  if (isa<ConstantSDNode>(Zero)) {
155    if (!cast<ConstantSDNode>(Zero)->isNullValue())
156      return false;
157  } else if (isa<ConstantFPSDNode>(Zero)) {
158    if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
159      return false;
160  } else
161    return false;
162
163  // Okay, we have at least one ~0 value, check to see if the rest match or are
164  // undefs.
165  for (++i; i != e; ++i)
166    if (N->getOperand(i) != Zero &&
167        N->getOperand(i).getOpcode() != ISD::UNDEF)
168      return false;
169  return true;
170}
171
172/// isScalarToVector - Return true if the specified node is a
173/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
174/// element is not an undef.
175bool ISD::isScalarToVector(const SDNode *N) {
176  if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
177    return true;
178
179  if (N->getOpcode() != ISD::BUILD_VECTOR)
180    return false;
181  if (N->getOperand(0).getOpcode() == ISD::UNDEF)
182    return false;
183  unsigned NumElems = N->getNumOperands();
184  for (unsigned i = 1; i < NumElems; ++i) {
185    SDOperand V = N->getOperand(i);
186    if (V.getOpcode() != ISD::UNDEF)
187      return false;
188  }
189  return true;
190}
191
192
193/// isDebugLabel - Return true if the specified node represents a debug
194/// label (i.e. ISD::LABEL or TargetInstrInfo::LABEL node and third operand
195/// is 0).
196bool ISD::isDebugLabel(const SDNode *N) {
197  SDOperand Zero;
198  if (N->getOpcode() == ISD::LABEL)
199    Zero = N->getOperand(2);
200  else if (N->isTargetOpcode() &&
201           N->getTargetOpcode() == TargetInstrInfo::LABEL)
202    // Chain moved to last operand.
203    Zero = N->getOperand(1);
204  else
205    return false;
206  return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
207}
208
209/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
210/// when given the operation for (X op Y).
211ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
212  // To perform this operation, we just need to swap the L and G bits of the
213  // operation.
214  unsigned OldL = (Operation >> 2) & 1;
215  unsigned OldG = (Operation >> 1) & 1;
216  return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits
217                       (OldL << 1) |       // New G bit
218                       (OldG << 2));        // New L bit.
219}
220
221/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
222/// 'op' is a valid SetCC operation.
223ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
224  unsigned Operation = Op;
225  if (isInteger)
226    Operation ^= 7;   // Flip L, G, E bits, but not U.
227  else
228    Operation ^= 15;  // Flip all of the condition bits.
229  if (Operation > ISD::SETTRUE2)
230    Operation &= ~8;     // Don't let N and U bits get set.
231  return ISD::CondCode(Operation);
232}
233
234
235/// isSignedOp - For an integer comparison, return 1 if the comparison is a
236/// signed operation and 2 if the result is an unsigned comparison.  Return zero
237/// if the operation does not depend on the sign of the input (setne and seteq).
238static int isSignedOp(ISD::CondCode Opcode) {
239  switch (Opcode) {
240  default: assert(0 && "Illegal integer setcc operation!");
241  case ISD::SETEQ:
242  case ISD::SETNE: return 0;
243  case ISD::SETLT:
244  case ISD::SETLE:
245  case ISD::SETGT:
246  case ISD::SETGE: return 1;
247  case ISD::SETULT:
248  case ISD::SETULE:
249  case ISD::SETUGT:
250  case ISD::SETUGE: return 2;
251  }
252}
253
254/// getSetCCOrOperation - Return the result of a logical OR between different
255/// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function
256/// returns SETCC_INVALID if it is not possible to represent the resultant
257/// comparison.
258ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
259                                       bool isInteger) {
260  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
261    // Cannot fold a signed integer setcc with an unsigned integer setcc.
262    return ISD::SETCC_INVALID;
263
264  unsigned Op = Op1 | Op2;  // Combine all of the condition bits.
265
266  // If the N and U bits get set then the resultant comparison DOES suddenly
267  // care about orderedness, and is true when ordered.
268  if (Op > ISD::SETTRUE2)
269    Op &= ~16;     // Clear the U bit if the N bit is set.
270
271  // Canonicalize illegal integer setcc's.
272  if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT
273    Op = ISD::SETNE;
274
275  return ISD::CondCode(Op);
276}
277
278/// getSetCCAndOperation - Return the result of a logical AND between different
279/// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This
280/// function returns zero if it is not possible to represent the resultant
281/// comparison.
282ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
283                                        bool isInteger) {
284  if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
285    // Cannot fold a signed setcc with an unsigned setcc.
286    return ISD::SETCC_INVALID;
287
288  // Combine all of the condition bits.
289  ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
290
291  // Canonicalize illegal integer setcc's.
292  if (isInteger) {
293    switch (Result) {
294    default: break;
295    case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT
296    case ISD::SETOEQ:                                 // SETEQ  & SETU[LG]E
297    case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE
298    case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE
299    case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE
300    }
301  }
302
303  return Result;
304}
305
306const TargetMachine &SelectionDAG::getTarget() const {
307  return TLI.getTargetMachine();
308}
309
310//===----------------------------------------------------------------------===//
311//                           SDNode Profile Support
312//===----------------------------------------------------------------------===//
313
314/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
315///
316static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  {
317  ID.AddInteger(OpC);
318}
319
320/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
321/// solely with their pointer.
322static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
323  ID.AddPointer(VTList.VTs);
324}
325
326/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
327///
328static void AddNodeIDOperands(FoldingSetNodeID &ID,
329                              SDOperandPtr Ops, unsigned NumOps) {
330  for (; NumOps; --NumOps, ++Ops) {
331    ID.AddPointer(Ops->Val);
332    ID.AddInteger(Ops->ResNo);
333  }
334}
335
336static void AddNodeIDNode(FoldingSetNodeID &ID,
337                          unsigned short OpC, SDVTList VTList,
338                          SDOperandPtr OpList, unsigned N) {
339  AddNodeIDOpcode(ID, OpC);
340  AddNodeIDValueTypes(ID, VTList);
341  AddNodeIDOperands(ID, OpList, N);
342}
343
344
345/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
346/// data.
347static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
348  AddNodeIDOpcode(ID, N->getOpcode());
349  // Add the return value info.
350  AddNodeIDValueTypes(ID, N->getVTList());
351  // Add the operand info.
352  AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
353
354  // Handle SDNode leafs with special info.
355  switch (N->getOpcode()) {
356  default: break;  // Normal nodes don't need extra info.
357  case ISD::ARG_FLAGS:
358    ID.AddInteger(cast<ARG_FLAGSSDNode>(N)->getArgFlags().getRawBits());
359    break;
360  case ISD::TargetConstant:
361  case ISD::Constant:
362    ID.Add(cast<ConstantSDNode>(N)->getAPIntValue());
363    break;
364  case ISD::TargetConstantFP:
365  case ISD::ConstantFP: {
366    ID.Add(cast<ConstantFPSDNode>(N)->getValueAPF());
367    break;
368  }
369  case ISD::TargetGlobalAddress:
370  case ISD::GlobalAddress:
371  case ISD::TargetGlobalTLSAddress:
372  case ISD::GlobalTLSAddress: {
373    GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
374    ID.AddPointer(GA->getGlobal());
375    ID.AddInteger(GA->getOffset());
376    break;
377  }
378  case ISD::BasicBlock:
379    ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
380    break;
381  case ISD::Register:
382    ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
383    break;
384  case ISD::SRCVALUE:
385    ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
386    break;
387  case ISD::MEMOPERAND: {
388    const MachineMemOperand &MO = cast<MemOperandSDNode>(N)->MO;
389    ID.AddPointer(MO.getValue());
390    ID.AddInteger(MO.getFlags());
391    ID.AddInteger(MO.getOffset());
392    ID.AddInteger(MO.getSize());
393    ID.AddInteger(MO.getAlignment());
394    break;
395  }
396  case ISD::FrameIndex:
397  case ISD::TargetFrameIndex:
398    ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
399    break;
400  case ISD::JumpTable:
401  case ISD::TargetJumpTable:
402    ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
403    break;
404  case ISD::ConstantPool:
405  case ISD::TargetConstantPool: {
406    ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
407    ID.AddInteger(CP->getAlignment());
408    ID.AddInteger(CP->getOffset());
409    if (CP->isMachineConstantPoolEntry())
410      CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
411    else
412      ID.AddPointer(CP->getConstVal());
413    break;
414  }
415  case ISD::LOAD: {
416    LoadSDNode *LD = cast<LoadSDNode>(N);
417    ID.AddInteger(LD->getAddressingMode());
418    ID.AddInteger(LD->getExtensionType());
419    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
420    ID.AddInteger(LD->getAlignment());
421    ID.AddInteger(LD->isVolatile());
422    break;
423  }
424  case ISD::STORE: {
425    StoreSDNode *ST = cast<StoreSDNode>(N);
426    ID.AddInteger(ST->getAddressingMode());
427    ID.AddInteger(ST->isTruncatingStore());
428    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
429    ID.AddInteger(ST->getAlignment());
430    ID.AddInteger(ST->isVolatile());
431    break;
432  }
433  }
434}
435
436//===----------------------------------------------------------------------===//
437//                              SelectionDAG Class
438//===----------------------------------------------------------------------===//
439
440/// RemoveDeadNodes - This method deletes all unreachable nodes in the
441/// SelectionDAG.
442void SelectionDAG::RemoveDeadNodes() {
443  // Create a dummy node (which is not added to allnodes), that adds a reference
444  // to the root node, preventing it from being deleted.
445  HandleSDNode Dummy(getRoot());
446
447  SmallVector<SDNode*, 128> DeadNodes;
448
449  // Add all obviously-dead nodes to the DeadNodes worklist.
450  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
451    if (I->use_empty())
452      DeadNodes.push_back(I);
453
454  // Process the worklist, deleting the nodes and adding their uses to the
455  // worklist.
456  while (!DeadNodes.empty()) {
457    SDNode *N = DeadNodes.back();
458    DeadNodes.pop_back();
459
460    // Take the node out of the appropriate CSE map.
461    RemoveNodeFromCSEMaps(N);
462
463    // Next, brutally remove the operand list.  This is safe to do, as there are
464    // no cycles in the graph.
465    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
466      SDNode *Operand = I->getVal();
467      Operand->removeUser(std::distance(N->op_begin(), I), N);
468
469      // Now that we removed this operand, see if there are no uses of it left.
470      if (Operand->use_empty())
471        DeadNodes.push_back(Operand);
472    }
473    if (N->OperandsNeedDelete) {
474      delete[] N->OperandList;
475    }
476    N->OperandList = 0;
477    N->NumOperands = 0;
478
479    // Finally, remove N itself.
480    AllNodes.erase(N);
481  }
482
483  // If the root changed (e.g. it was a dead load, update the root).
484  setRoot(Dummy.getValue());
485}
486
487void SelectionDAG::RemoveDeadNode(SDNode *N, DAGUpdateListener *UpdateListener){
488  SmallVector<SDNode*, 16> DeadNodes;
489  DeadNodes.push_back(N);
490
491  // Process the worklist, deleting the nodes and adding their uses to the
492  // worklist.
493  while (!DeadNodes.empty()) {
494    SDNode *N = DeadNodes.back();
495    DeadNodes.pop_back();
496
497    if (UpdateListener)
498      UpdateListener->NodeDeleted(N);
499
500    // Take the node out of the appropriate CSE map.
501    RemoveNodeFromCSEMaps(N);
502
503    // Next, brutally remove the operand list.  This is safe to do, as there are
504    // no cycles in the graph.
505    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
506      SDNode *Operand = I->getVal();
507      Operand->removeUser(std::distance(N->op_begin(), I), N);
508
509      // Now that we removed this operand, see if there are no uses of it left.
510      if (Operand->use_empty())
511        DeadNodes.push_back(Operand);
512    }
513    if (N->OperandsNeedDelete) {
514      delete[] N->OperandList;
515    }
516    N->OperandList = 0;
517    N->NumOperands = 0;
518
519    // Finally, remove N itself.
520    AllNodes.erase(N);
521  }
522}
523
524void SelectionDAG::DeleteNode(SDNode *N) {
525  assert(N->use_empty() && "Cannot delete a node that is not dead!");
526
527  // First take this out of the appropriate CSE map.
528  RemoveNodeFromCSEMaps(N);
529
530  // Finally, remove uses due to operands of this node, remove from the
531  // AllNodes list, and delete the node.
532  DeleteNodeNotInCSEMaps(N);
533}
534
535void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
536
537  // Remove it from the AllNodes list.
538  AllNodes.remove(N);
539
540  // Drop all of the operands and decrement used nodes use counts.
541  for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
542    I->getVal()->removeUser(std::distance(N->op_begin(), I), N);
543  if (N->OperandsNeedDelete) {
544    delete[] N->OperandList;
545  }
546  N->OperandList = 0;
547  N->NumOperands = 0;
548
549  delete N;
550}
551
552/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
553/// correspond to it.  This is useful when we're about to delete or repurpose
554/// the node.  We don't want future request for structurally identical nodes
555/// to return N anymore.
556void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
557  bool Erased = false;
558  switch (N->getOpcode()) {
559  case ISD::HANDLENODE: return;  // noop.
560  case ISD::STRING:
561    Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
562    break;
563  case ISD::CONDCODE:
564    assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
565           "Cond code doesn't exist!");
566    Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
567    CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
568    break;
569  case ISD::ExternalSymbol:
570    Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
571    break;
572  case ISD::TargetExternalSymbol:
573    Erased =
574      TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
575    break;
576  case ISD::VALUETYPE: {
577    MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
578    if (MVT::isExtendedVT(VT)) {
579      Erased = ExtendedValueTypeNodes.erase(VT);
580    } else {
581      Erased = ValueTypeNodes[VT] != 0;
582      ValueTypeNodes[VT] = 0;
583    }
584    break;
585  }
586  default:
587    // Remove it from the CSE Map.
588    Erased = CSEMap.RemoveNode(N);
589    break;
590  }
591#ifndef NDEBUG
592  // Verify that the node was actually in one of the CSE maps, unless it has a
593  // flag result (which cannot be CSE'd) or is one of the special cases that are
594  // not subject to CSE.
595  if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
596      !N->isTargetOpcode()) {
597    N->dump(this);
598    cerr << "\n";
599    assert(0 && "Node is not in map!");
600  }
601#endif
602}
603
604/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It
605/// has been taken out and modified in some way.  If the specified node already
606/// exists in the CSE maps, do not modify the maps, but return the existing node
607/// instead.  If it doesn't exist, add it and return null.
608///
609SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
610  assert(N->getNumOperands() && "This is a leaf node!");
611  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
612    return 0;    // Never add these nodes.
613
614  // Check that remaining values produced are not flags.
615  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
616    if (N->getValueType(i) == MVT::Flag)
617      return 0;   // Never CSE anything that produces a flag.
618
619  SDNode *New = CSEMap.GetOrInsertNode(N);
620  if (New != N) return New;  // Node already existed.
621  return 0;
622}
623
624/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
625/// were replaced with those specified.  If this node is never memoized,
626/// return null, otherwise return a pointer to the slot it would take.  If a
627/// node already exists with these operands, the slot will be non-null.
628SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
629                                           void *&InsertPos) {
630  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
631    return 0;    // Never add these nodes.
632
633  // Check that remaining values produced are not flags.
634  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
635    if (N->getValueType(i) == MVT::Flag)
636      return 0;   // Never CSE anything that produces a flag.
637
638  SDOperand Ops[] = { Op };
639  FoldingSetNodeID ID;
640  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
641  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
642}
643
644/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
645/// were replaced with those specified.  If this node is never memoized,
646/// return null, otherwise return a pointer to the slot it would take.  If a
647/// node already exists with these operands, the slot will be non-null.
648SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
649                                           SDOperand Op1, SDOperand Op2,
650                                           void *&InsertPos) {
651  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
652    return 0;    // Never add these nodes.
653
654  // Check that remaining values produced are not flags.
655  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
656    if (N->getValueType(i) == MVT::Flag)
657      return 0;   // Never CSE anything that produces a flag.
658
659  SDOperand Ops[] = { Op1, Op2 };
660  FoldingSetNodeID ID;
661  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
662  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
663}
664
665
666/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
667/// were replaced with those specified.  If this node is never memoized,
668/// return null, otherwise return a pointer to the slot it would take.  If a
669/// node already exists with these operands, the slot will be non-null.
670SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
671                                           SDOperandPtr Ops,unsigned NumOps,
672                                           void *&InsertPos) {
673  if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
674    return 0;    // Never add these nodes.
675
676  // Check that remaining values produced are not flags.
677  for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
678    if (N->getValueType(i) == MVT::Flag)
679      return 0;   // Never CSE anything that produces a flag.
680
681  FoldingSetNodeID ID;
682  AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
683
684  if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
685    ID.AddInteger(LD->getAddressingMode());
686    ID.AddInteger(LD->getExtensionType());
687    ID.AddInteger((unsigned int)(LD->getMemoryVT()));
688    ID.AddInteger(LD->getAlignment());
689    ID.AddInteger(LD->isVolatile());
690  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
691    ID.AddInteger(ST->getAddressingMode());
692    ID.AddInteger(ST->isTruncatingStore());
693    ID.AddInteger((unsigned int)(ST->getMemoryVT()));
694    ID.AddInteger(ST->getAlignment());
695    ID.AddInteger(ST->isVolatile());
696  }
697
698  return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
699}
700
701
702SelectionDAG::~SelectionDAG() {
703  while (!AllNodes.empty()) {
704    SDNode *N = AllNodes.begin();
705    N->SetNextInBucket(0);
706    if (N->OperandsNeedDelete) {
707      delete [] N->OperandList;
708    }
709    N->OperandList = 0;
710    N->NumOperands = 0;
711    AllNodes.pop_front();
712  }
713}
714
715SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
716  if (Op.getValueType() == VT) return Op;
717  APInt Imm = APInt::getLowBitsSet(Op.getValueSizeInBits(),
718                                   MVT::getSizeInBits(VT));
719  return getNode(ISD::AND, Op.getValueType(), Op,
720                 getConstant(Imm, Op.getValueType()));
721}
722
723SDOperand SelectionDAG::getString(const std::string &Val) {
724  StringSDNode *&N = StringNodes[Val];
725  if (!N) {
726    N = new StringSDNode(Val);
727    AllNodes.push_back(N);
728  }
729  return SDOperand(N, 0);
730}
731
732SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
733  MVT::ValueType EltVT =
734    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
735
736  return getConstant(APInt(MVT::getSizeInBits(EltVT), Val), VT, isT);
737}
738
739SDOperand SelectionDAG::getConstant(const APInt &Val, MVT::ValueType VT, bool isT) {
740  assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
741
742  MVT::ValueType EltVT =
743    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
744
745  assert(Val.getBitWidth() == MVT::getSizeInBits(EltVT) &&
746         "APInt size does not match type size!");
747
748  unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
749  FoldingSetNodeID ID;
750  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
751  ID.Add(Val);
752  void *IP = 0;
753  SDNode *N = NULL;
754  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
755    if (!MVT::isVector(VT))
756      return SDOperand(N, 0);
757  if (!N) {
758    N = new ConstantSDNode(isT, Val, EltVT);
759    CSEMap.InsertNode(N, IP);
760    AllNodes.push_back(N);
761  }
762
763  SDOperand Result(N, 0);
764  if (MVT::isVector(VT)) {
765    SmallVector<SDOperand, 8> Ops;
766    Ops.assign(MVT::getVectorNumElements(VT), Result);
767    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
768  }
769  return Result;
770}
771
772SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
773  return getConstant(Val, TLI.getPointerTy(), isTarget);
774}
775
776
777SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
778                                      bool isTarget) {
779  assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
780
781  MVT::ValueType EltVT =
782    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
783
784  // Do the map lookup using the actual bit pattern for the floating point
785  // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
786  // we don't have issues with SNANs.
787  unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
788  FoldingSetNodeID ID;
789  AddNodeIDNode(ID, Opc, getVTList(EltVT), (SDOperand*)0, 0);
790  ID.Add(V);
791  void *IP = 0;
792  SDNode *N = NULL;
793  if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
794    if (!MVT::isVector(VT))
795      return SDOperand(N, 0);
796  if (!N) {
797    N = new ConstantFPSDNode(isTarget, V, EltVT);
798    CSEMap.InsertNode(N, IP);
799    AllNodes.push_back(N);
800  }
801
802  SDOperand Result(N, 0);
803  if (MVT::isVector(VT)) {
804    SmallVector<SDOperand, 8> Ops;
805    Ops.assign(MVT::getVectorNumElements(VT), Result);
806    Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
807  }
808  return Result;
809}
810
811SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
812                                      bool isTarget) {
813  MVT::ValueType EltVT =
814    MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
815  if (EltVT==MVT::f32)
816    return getConstantFP(APFloat((float)Val), VT, isTarget);
817  else
818    return getConstantFP(APFloat(Val), VT, isTarget);
819}
820
821SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
822                                         MVT::ValueType VT, int Offset,
823                                         bool isTargetGA) {
824  unsigned Opc;
825
826  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
827  if (!GVar) {
828    // If GV is an alias then use the aliasee for determining thread-localness.
829    if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
830      GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal());
831  }
832
833  if (GVar && GVar->isThreadLocal())
834    Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
835  else
836    Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
837
838  FoldingSetNodeID ID;
839  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
840  ID.AddPointer(GV);
841  ID.AddInteger(Offset);
842  void *IP = 0;
843  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
844   return SDOperand(E, 0);
845  SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
846  CSEMap.InsertNode(N, IP);
847  AllNodes.push_back(N);
848  return SDOperand(N, 0);
849}
850
851SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
852                                      bool isTarget) {
853  unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
854  FoldingSetNodeID ID;
855  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
856  ID.AddInteger(FI);
857  void *IP = 0;
858  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
859    return SDOperand(E, 0);
860  SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
861  CSEMap.InsertNode(N, IP);
862  AllNodes.push_back(N);
863  return SDOperand(N, 0);
864}
865
866SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
867  unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
868  FoldingSetNodeID ID;
869  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
870  ID.AddInteger(JTI);
871  void *IP = 0;
872  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
873    return SDOperand(E, 0);
874  SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
875  CSEMap.InsertNode(N, IP);
876  AllNodes.push_back(N);
877  return SDOperand(N, 0);
878}
879
880SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
881                                        unsigned Alignment, int Offset,
882                                        bool isTarget) {
883  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
884  FoldingSetNodeID ID;
885  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
886  ID.AddInteger(Alignment);
887  ID.AddInteger(Offset);
888  ID.AddPointer(C);
889  void *IP = 0;
890  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
891    return SDOperand(E, 0);
892  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
893  CSEMap.InsertNode(N, IP);
894  AllNodes.push_back(N);
895  return SDOperand(N, 0);
896}
897
898
899SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
900                                        MVT::ValueType VT,
901                                        unsigned Alignment, int Offset,
902                                        bool isTarget) {
903  unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
904  FoldingSetNodeID ID;
905  AddNodeIDNode(ID, Opc, getVTList(VT), (SDOperand*)0, 0);
906  ID.AddInteger(Alignment);
907  ID.AddInteger(Offset);
908  C->AddSelectionDAGCSEId(ID);
909  void *IP = 0;
910  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
911    return SDOperand(E, 0);
912  SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
913  CSEMap.InsertNode(N, IP);
914  AllNodes.push_back(N);
915  return SDOperand(N, 0);
916}
917
918
919SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
920  FoldingSetNodeID ID;
921  AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), (SDOperand*)0, 0);
922  ID.AddPointer(MBB);
923  void *IP = 0;
924  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
925    return SDOperand(E, 0);
926  SDNode *N = new BasicBlockSDNode(MBB);
927  CSEMap.InsertNode(N, IP);
928  AllNodes.push_back(N);
929  return SDOperand(N, 0);
930}
931
932SDOperand SelectionDAG::getArgFlags(ISD::ArgFlagsTy Flags) {
933  FoldingSetNodeID ID;
934  AddNodeIDNode(ID, ISD::ARG_FLAGS, getVTList(MVT::Other), (SDOperand*)0, 0);
935  ID.AddInteger(Flags.getRawBits());
936  void *IP = 0;
937  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
938    return SDOperand(E, 0);
939  SDNode *N = new ARG_FLAGSSDNode(Flags);
940  CSEMap.InsertNode(N, IP);
941  AllNodes.push_back(N);
942  return SDOperand(N, 0);
943}
944
945SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
946  if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
947    ValueTypeNodes.resize(VT+1);
948
949  SDNode *&N = MVT::isExtendedVT(VT) ?
950    ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
951
952  if (N) return SDOperand(N, 0);
953  N = new VTSDNode(VT);
954  AllNodes.push_back(N);
955  return SDOperand(N, 0);
956}
957
958SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
959  SDNode *&N = ExternalSymbols[Sym];
960  if (N) return SDOperand(N, 0);
961  N = new ExternalSymbolSDNode(false, Sym, VT);
962  AllNodes.push_back(N);
963  return SDOperand(N, 0);
964}
965
966SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
967                                                MVT::ValueType VT) {
968  SDNode *&N = TargetExternalSymbols[Sym];
969  if (N) return SDOperand(N, 0);
970  N = new ExternalSymbolSDNode(true, Sym, VT);
971  AllNodes.push_back(N);
972  return SDOperand(N, 0);
973}
974
975SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
976  if ((unsigned)Cond >= CondCodeNodes.size())
977    CondCodeNodes.resize(Cond+1);
978
979  if (CondCodeNodes[Cond] == 0) {
980    CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
981    AllNodes.push_back(CondCodeNodes[Cond]);
982  }
983  return SDOperand(CondCodeNodes[Cond], 0);
984}
985
986SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
987  FoldingSetNodeID ID;
988  AddNodeIDNode(ID, ISD::Register, getVTList(VT), (SDOperand*)0, 0);
989  ID.AddInteger(RegNo);
990  void *IP = 0;
991  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
992    return SDOperand(E, 0);
993  SDNode *N = new RegisterSDNode(RegNo, VT);
994  CSEMap.InsertNode(N, IP);
995  AllNodes.push_back(N);
996  return SDOperand(N, 0);
997}
998
999SDOperand SelectionDAG::getSrcValue(const Value *V) {
1000  assert((!V || isa<PointerType>(V->getType())) &&
1001         "SrcValue is not a pointer?");
1002
1003  FoldingSetNodeID ID;
1004  AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), (SDOperand*)0, 0);
1005  ID.AddPointer(V);
1006
1007  void *IP = 0;
1008  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1009    return SDOperand(E, 0);
1010
1011  SDNode *N = new SrcValueSDNode(V);
1012  CSEMap.InsertNode(N, IP);
1013  AllNodes.push_back(N);
1014  return SDOperand(N, 0);
1015}
1016
1017SDOperand SelectionDAG::getMemOperand(const MachineMemOperand &MO) {
1018  const Value *v = MO.getValue();
1019  assert((!v || isa<PointerType>(v->getType())) &&
1020         "SrcValue is not a pointer?");
1021
1022  FoldingSetNodeID ID;
1023  AddNodeIDNode(ID, ISD::MEMOPERAND, getVTList(MVT::Other), (SDOperand*)0, 0);
1024  ID.AddPointer(v);
1025  ID.AddInteger(MO.getFlags());
1026  ID.AddInteger(MO.getOffset());
1027  ID.AddInteger(MO.getSize());
1028  ID.AddInteger(MO.getAlignment());
1029
1030  void *IP = 0;
1031  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1032    return SDOperand(E, 0);
1033
1034  SDNode *N = new MemOperandSDNode(MO);
1035  CSEMap.InsertNode(N, IP);
1036  AllNodes.push_back(N);
1037  return SDOperand(N, 0);
1038}
1039
1040/// CreateStackTemporary - Create a stack temporary, suitable for holding the
1041/// specified value type.
1042SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
1043  MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
1044  unsigned ByteSize = MVT::getSizeInBits(VT)/8;
1045  const Type *Ty = MVT::getTypeForValueType(VT);
1046  unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
1047  int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
1048  return getFrameIndex(FrameIdx, TLI.getPointerTy());
1049}
1050
1051
1052SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
1053                                  SDOperand N2, ISD::CondCode Cond) {
1054  // These setcc operations always fold.
1055  switch (Cond) {
1056  default: break;
1057  case ISD::SETFALSE:
1058  case ISD::SETFALSE2: return getConstant(0, VT);
1059  case ISD::SETTRUE:
1060  case ISD::SETTRUE2:  return getConstant(1, VT);
1061
1062  case ISD::SETOEQ:
1063  case ISD::SETOGT:
1064  case ISD::SETOGE:
1065  case ISD::SETOLT:
1066  case ISD::SETOLE:
1067  case ISD::SETONE:
1068  case ISD::SETO:
1069  case ISD::SETUO:
1070  case ISD::SETUEQ:
1071  case ISD::SETUNE:
1072    assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
1073    break;
1074  }
1075
1076  if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
1077    const APInt &C2 = N2C->getAPIntValue();
1078    if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1079      const APInt &C1 = N1C->getAPIntValue();
1080
1081      switch (Cond) {
1082      default: assert(0 && "Unknown integer setcc!");
1083      case ISD::SETEQ:  return getConstant(C1 == C2, VT);
1084      case ISD::SETNE:  return getConstant(C1 != C2, VT);
1085      case ISD::SETULT: return getConstant(C1.ult(C2), VT);
1086      case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
1087      case ISD::SETULE: return getConstant(C1.ule(C2), VT);
1088      case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
1089      case ISD::SETLT:  return getConstant(C1.slt(C2), VT);
1090      case ISD::SETGT:  return getConstant(C1.sgt(C2), VT);
1091      case ISD::SETLE:  return getConstant(C1.sle(C2), VT);
1092      case ISD::SETGE:  return getConstant(C1.sge(C2), VT);
1093      }
1094    }
1095  }
1096  if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1097    if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
1098      // No compile time operations on this type yet.
1099      if (N1C->getValueType(0) == MVT::ppcf128)
1100        return SDOperand();
1101
1102      APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
1103      switch (Cond) {
1104      default: break;
1105      case ISD::SETEQ:  if (R==APFloat::cmpUnordered)
1106                          return getNode(ISD::UNDEF, VT);
1107                        // fall through
1108      case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1109      case ISD::SETNE:  if (R==APFloat::cmpUnordered)
1110                          return getNode(ISD::UNDEF, VT);
1111                        // fall through
1112      case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
1113                                           R==APFloat::cmpLessThan, VT);
1114      case ISD::SETLT:  if (R==APFloat::cmpUnordered)
1115                          return getNode(ISD::UNDEF, VT);
1116                        // fall through
1117      case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1118      case ISD::SETGT:  if (R==APFloat::cmpUnordered)
1119                          return getNode(ISD::UNDEF, VT);
1120                        // fall through
1121      case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1122      case ISD::SETLE:  if (R==APFloat::cmpUnordered)
1123                          return getNode(ISD::UNDEF, VT);
1124                        // fall through
1125      case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
1126                                           R==APFloat::cmpEqual, VT);
1127      case ISD::SETGE:  if (R==APFloat::cmpUnordered)
1128                          return getNode(ISD::UNDEF, VT);
1129                        // fall through
1130      case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
1131                                           R==APFloat::cmpEqual, VT);
1132      case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT);
1133      case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT);
1134      case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1135                                           R==APFloat::cmpEqual, VT);
1136      case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1137      case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1138                                           R==APFloat::cmpLessThan, VT);
1139      case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1140                                           R==APFloat::cmpUnordered, VT);
1141      case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1142      case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
1143      }
1144    } else {
1145      // Ensure that the constant occurs on the RHS.
1146      return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1147    }
1148  }
1149
1150  // Could not fold it.
1151  return SDOperand();
1152}
1153
1154/// SignBitIsZero - Return true if the sign bit of Op is known to be zero.  We
1155/// use this predicate to simplify operations downstream.
1156bool SelectionDAG::SignBitIsZero(SDOperand Op, unsigned Depth) const {
1157  unsigned BitWidth = Op.getValueSizeInBits();
1158  return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
1159}
1160
1161/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
1162/// this predicate to simplify operations downstream.  Mask is known to be zero
1163/// for bits that V cannot have.
1164bool SelectionDAG::MaskedValueIsZero(SDOperand Op, const APInt &Mask,
1165                                     unsigned Depth) const {
1166  APInt KnownZero, KnownOne;
1167  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1168  assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1169  return (KnownZero & Mask) == Mask;
1170}
1171
1172/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1173/// known to be either zero or one and return them in the KnownZero/KnownOne
1174/// bitsets.  This code only analyzes bits in Mask, in order to short-circuit
1175/// processing.
1176void SelectionDAG::ComputeMaskedBits(SDOperand Op, const APInt &Mask,
1177                                     APInt &KnownZero, APInt &KnownOne,
1178                                     unsigned Depth) const {
1179  unsigned BitWidth = Mask.getBitWidth();
1180  assert(BitWidth == MVT::getSizeInBits(Op.getValueType()) &&
1181         "Mask size mismatches value type size!");
1182
1183  KnownZero = KnownOne = APInt(BitWidth, 0);   // Don't know anything.
1184  if (Depth == 6 || Mask == 0)
1185    return;  // Limit search depth.
1186
1187  APInt KnownZero2, KnownOne2;
1188
1189  switch (Op.getOpcode()) {
1190  case ISD::Constant:
1191    // We know all of the bits for a constant!
1192    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & Mask;
1193    KnownZero = ~KnownOne & Mask;
1194    return;
1195  case ISD::AND:
1196    // If either the LHS or the RHS are Zero, the result is zero.
1197    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1198    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownZero,
1199                      KnownZero2, KnownOne2, Depth+1);
1200    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1201    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1202
1203    // Output known-1 bits are only known if set in both the LHS & RHS.
1204    KnownOne &= KnownOne2;
1205    // Output known-0 are known to be clear if zero in either the LHS | RHS.
1206    KnownZero |= KnownZero2;
1207    return;
1208  case ISD::OR:
1209    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1210    ComputeMaskedBits(Op.getOperand(0), Mask & ~KnownOne,
1211                      KnownZero2, KnownOne2, Depth+1);
1212    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1213    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1214
1215    // Output known-0 bits are only known if clear in both the LHS & RHS.
1216    KnownZero &= KnownZero2;
1217    // Output known-1 are known to be set if set in either the LHS | RHS.
1218    KnownOne |= KnownOne2;
1219    return;
1220  case ISD::XOR: {
1221    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1222    ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1223    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1224    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1225
1226    // Output known-0 bits are known if clear or set in both the LHS & RHS.
1227    APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1228    // Output known-1 are known to be set if set in only one of the LHS, RHS.
1229    KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1230    KnownZero = KnownZeroOut;
1231    return;
1232  }
1233  case ISD::MUL: {
1234    APInt Mask2 = APInt::getAllOnesValue(BitWidth);
1235    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero, KnownOne, Depth+1);
1236    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1237    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1238    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1239
1240    // If low bits are zero in either operand, output low known-0 bits.
1241    // Also compute a conserative estimate for high known-0 bits.
1242    // More trickiness is possible, but this is sufficient for the
1243    // interesting case of alignment computation.
1244    KnownOne.clear();
1245    unsigned TrailZ = KnownZero.countTrailingOnes() +
1246                      KnownZero2.countTrailingOnes();
1247    unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
1248                               KnownZero2.countLeadingOnes(),
1249                               BitWidth) - BitWidth;
1250
1251    TrailZ = std::min(TrailZ, BitWidth);
1252    LeadZ = std::min(LeadZ, BitWidth);
1253    KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
1254                APInt::getHighBitsSet(BitWidth, LeadZ);
1255    KnownZero &= Mask;
1256    return;
1257  }
1258  case ISD::UDIV: {
1259    // For the purposes of computing leading zeros we can conservatively
1260    // treat a udiv as a logical right shift by the power of 2 known to
1261    // be less than the denominator.
1262    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1263    ComputeMaskedBits(Op.getOperand(0),
1264                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1265    unsigned LeadZ = KnownZero2.countLeadingOnes();
1266
1267    KnownOne2.clear();
1268    KnownZero2.clear();
1269    ComputeMaskedBits(Op.getOperand(1),
1270                      AllOnes, KnownZero2, KnownOne2, Depth+1);
1271    unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1272    if (RHSUnknownLeadingOnes != BitWidth)
1273      LeadZ = std::min(BitWidth,
1274                       LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1275
1276    KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
1277    return;
1278  }
1279  case ISD::SELECT:
1280    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1281    ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1282    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1283    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1284
1285    // Only known if known in both the LHS and RHS.
1286    KnownOne &= KnownOne2;
1287    KnownZero &= KnownZero2;
1288    return;
1289  case ISD::SELECT_CC:
1290    ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1291    ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1292    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1293    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1294
1295    // Only known if known in both the LHS and RHS.
1296    KnownOne &= KnownOne2;
1297    KnownZero &= KnownZero2;
1298    return;
1299  case ISD::SETCC:
1300    // If we know the result of a setcc has the top bits zero, use this info.
1301    if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult &&
1302        BitWidth > 1)
1303      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1304    return;
1305  case ISD::SHL:
1306    // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1307    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1308      unsigned ShAmt = SA->getValue();
1309
1310      // If the shift count is an invalid immediate, don't do anything.
1311      if (ShAmt >= BitWidth)
1312        return;
1313
1314      ComputeMaskedBits(Op.getOperand(0), Mask.lshr(ShAmt),
1315                        KnownZero, KnownOne, Depth+1);
1316      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1317      KnownZero <<= ShAmt;
1318      KnownOne  <<= ShAmt;
1319      // low bits known zero.
1320      KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
1321    }
1322    return;
1323  case ISD::SRL:
1324    // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1325    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1326      unsigned ShAmt = SA->getValue();
1327
1328      // If the shift count is an invalid immediate, don't do anything.
1329      if (ShAmt >= BitWidth)
1330        return;
1331
1332      ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt),
1333                        KnownZero, KnownOne, Depth+1);
1334      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1335      KnownZero = KnownZero.lshr(ShAmt);
1336      KnownOne  = KnownOne.lshr(ShAmt);
1337
1338      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1339      KnownZero |= HighBits;  // High bits known zero.
1340    }
1341    return;
1342  case ISD::SRA:
1343    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1344      unsigned ShAmt = SA->getValue();
1345
1346      // If the shift count is an invalid immediate, don't do anything.
1347      if (ShAmt >= BitWidth)
1348        return;
1349
1350      APInt InDemandedMask = (Mask << ShAmt);
1351      // If any of the demanded bits are produced by the sign extension, we also
1352      // demand the input sign bit.
1353      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt) & Mask;
1354      if (HighBits.getBoolValue())
1355        InDemandedMask |= APInt::getSignBit(BitWidth);
1356
1357      ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1358                        Depth+1);
1359      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1360      KnownZero = KnownZero.lshr(ShAmt);
1361      KnownOne  = KnownOne.lshr(ShAmt);
1362
1363      // Handle the sign bits.
1364      APInt SignBit = APInt::getSignBit(BitWidth);
1365      SignBit = SignBit.lshr(ShAmt);  // Adjust to where it is now in the mask.
1366
1367      if (KnownZero.intersects(SignBit)) {
1368        KnownZero |= HighBits;  // New bits are known zero.
1369      } else if (KnownOne.intersects(SignBit)) {
1370        KnownOne  |= HighBits;  // New bits are known one.
1371      }
1372    }
1373    return;
1374  case ISD::SIGN_EXTEND_INREG: {
1375    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1376    unsigned EBits = MVT::getSizeInBits(EVT);
1377
1378    // Sign extension.  Compute the demanded bits in the result that are not
1379    // present in the input.
1380    APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits) & Mask;
1381
1382    APInt InSignBit = APInt::getSignBit(EBits);
1383    APInt InputDemandedBits = Mask & APInt::getLowBitsSet(BitWidth, EBits);
1384
1385    // If the sign extended bits are demanded, we know that the sign
1386    // bit is demanded.
1387    InSignBit.zext(BitWidth);
1388    if (NewBits.getBoolValue())
1389      InputDemandedBits |= InSignBit;
1390
1391    ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1392                      KnownZero, KnownOne, Depth+1);
1393    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1394
1395    // If the sign bit of the input is known set or clear, then we know the
1396    // top bits of the result.
1397    if (KnownZero.intersects(InSignBit)) {         // Input sign bit known clear
1398      KnownZero |= NewBits;
1399      KnownOne  &= ~NewBits;
1400    } else if (KnownOne.intersects(InSignBit)) {   // Input sign bit known set
1401      KnownOne  |= NewBits;
1402      KnownZero &= ~NewBits;
1403    } else {                              // Input sign bit unknown
1404      KnownZero &= ~NewBits;
1405      KnownOne  &= ~NewBits;
1406    }
1407    return;
1408  }
1409  case ISD::CTTZ:
1410  case ISD::CTLZ:
1411  case ISD::CTPOP: {
1412    unsigned LowBits = Log2_32(BitWidth)+1;
1413    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1414    KnownOne  = APInt(BitWidth, 0);
1415    return;
1416  }
1417  case ISD::LOAD: {
1418    if (ISD::isZEXTLoad(Op.Val)) {
1419      LoadSDNode *LD = cast<LoadSDNode>(Op);
1420      MVT::ValueType VT = LD->getMemoryVT();
1421      unsigned MemBits = MVT::getSizeInBits(VT);
1422      KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits) & Mask;
1423    }
1424    return;
1425  }
1426  case ISD::ZERO_EXTEND: {
1427    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1428    unsigned InBits = MVT::getSizeInBits(InVT);
1429    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1430    APInt InMask    = Mask;
1431    InMask.trunc(InBits);
1432    KnownZero.trunc(InBits);
1433    KnownOne.trunc(InBits);
1434    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1435    KnownZero.zext(BitWidth);
1436    KnownOne.zext(BitWidth);
1437    KnownZero |= NewBits;
1438    return;
1439  }
1440  case ISD::SIGN_EXTEND: {
1441    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1442    unsigned InBits = MVT::getSizeInBits(InVT);
1443    APInt InSignBit = APInt::getSignBit(InBits);
1444    APInt NewBits   = APInt::getHighBitsSet(BitWidth, BitWidth - InBits) & Mask;
1445    APInt InMask = Mask;
1446    InMask.trunc(InBits);
1447
1448    // If any of the sign extended bits are demanded, we know that the sign
1449    // bit is demanded. Temporarily set this bit in the mask for our callee.
1450    if (NewBits.getBoolValue())
1451      InMask |= InSignBit;
1452
1453    KnownZero.trunc(InBits);
1454    KnownOne.trunc(InBits);
1455    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1456
1457    // Note if the sign bit is known to be zero or one.
1458    bool SignBitKnownZero = KnownZero.isNegative();
1459    bool SignBitKnownOne  = KnownOne.isNegative();
1460    assert(!(SignBitKnownZero && SignBitKnownOne) &&
1461           "Sign bit can't be known to be both zero and one!");
1462
1463    // If the sign bit wasn't actually demanded by our caller, we don't
1464    // want it set in the KnownZero and KnownOne result values. Reset the
1465    // mask and reapply it to the result values.
1466    InMask = Mask;
1467    InMask.trunc(InBits);
1468    KnownZero &= InMask;
1469    KnownOne  &= InMask;
1470
1471    KnownZero.zext(BitWidth);
1472    KnownOne.zext(BitWidth);
1473
1474    // If the sign bit is known zero or one, the top bits match.
1475    if (SignBitKnownZero)
1476      KnownZero |= NewBits;
1477    else if (SignBitKnownOne)
1478      KnownOne  |= NewBits;
1479    return;
1480  }
1481  case ISD::ANY_EXTEND: {
1482    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1483    unsigned InBits = MVT::getSizeInBits(InVT);
1484    APInt InMask = Mask;
1485    InMask.trunc(InBits);
1486    KnownZero.trunc(InBits);
1487    KnownOne.trunc(InBits);
1488    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1489    KnownZero.zext(BitWidth);
1490    KnownOne.zext(BitWidth);
1491    return;
1492  }
1493  case ISD::TRUNCATE: {
1494    MVT::ValueType InVT = Op.getOperand(0).getValueType();
1495    unsigned InBits = MVT::getSizeInBits(InVT);
1496    APInt InMask = Mask;
1497    InMask.zext(InBits);
1498    KnownZero.zext(InBits);
1499    KnownOne.zext(InBits);
1500    ComputeMaskedBits(Op.getOperand(0), InMask, KnownZero, KnownOne, Depth+1);
1501    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1502    KnownZero.trunc(BitWidth);
1503    KnownOne.trunc(BitWidth);
1504    break;
1505  }
1506  case ISD::AssertZext: {
1507    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1508    APInt InMask = APInt::getLowBitsSet(BitWidth, MVT::getSizeInBits(VT));
1509    ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1510                      KnownOne, Depth+1);
1511    KnownZero |= (~InMask) & Mask;
1512    return;
1513  }
1514  case ISD::FGETSIGN:
1515    // All bits are zero except the low bit.
1516    KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
1517    return;
1518
1519  case ISD::SUB: {
1520    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
1521      // We know that the top bits of C-X are clear if X contains less bits
1522      // than C (i.e. no wrap-around can happen).  For example, 20-X is
1523      // positive if we can prove that X is >= 0 and < 16.
1524      if (CLHS->getAPIntValue().isNonNegative()) {
1525        unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
1526        // NLZ can't be BitWidth with no sign bit
1527        APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
1528        ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero2, KnownOne2,
1529                          Depth+1);
1530
1531        // If all of the MaskV bits are known to be zero, then we know the
1532        // output top bits are zero, because we now know that the output is
1533        // from [0-C].
1534        if ((KnownZero2 & MaskV) == MaskV) {
1535          unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
1536          // Top bits known zero.
1537          KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
1538        }
1539      }
1540    }
1541  }
1542  // fall through
1543  case ISD::ADD: {
1544    // Output known-0 bits are known if clear or set in both the low clear bits
1545    // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the
1546    // low 3 bits clear.
1547    APInt Mask2 = APInt::getLowBitsSet(BitWidth, Mask.countTrailingOnes());
1548    ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
1549    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1550    unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
1551
1552    ComputeMaskedBits(Op.getOperand(1), Mask2, KnownZero2, KnownOne2, Depth+1);
1553    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1554    KnownZeroOut = std::min(KnownZeroOut,
1555                            KnownZero2.countTrailingOnes());
1556
1557    KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
1558    return;
1559  }
1560  case ISD::SREM:
1561    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1562      APInt RA = Rem->getAPIntValue();
1563      if (RA.isPowerOf2() || (-RA).isPowerOf2()) {
1564        APInt LowBits = RA.isStrictlyPositive() ? (RA - 1) : ~RA;
1565        APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
1566        ComputeMaskedBits(Op.getOperand(0), Mask2,KnownZero2,KnownOne2,Depth+1);
1567
1568        // The sign of a remainder is equal to the sign of the first
1569        // operand (zero being positive).
1570        if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1571          KnownZero2 |= ~LowBits;
1572        else if (KnownOne2[BitWidth-1])
1573          KnownOne2 |= ~LowBits;
1574
1575        KnownZero |= KnownZero2 & Mask;
1576        KnownOne |= KnownOne2 & Mask;
1577
1578        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1579      }
1580    }
1581    return;
1582  case ISD::UREM: {
1583    if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1584      APInt RA = Rem->getAPIntValue();
1585      if (RA.isPowerOf2()) {
1586        APInt LowBits = (RA - 1);
1587        APInt Mask2 = LowBits & Mask;
1588        KnownZero |= ~LowBits & Mask;
1589        ComputeMaskedBits(Op.getOperand(0), Mask2, KnownZero, KnownOne,Depth+1);
1590        assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
1591        break;
1592      }
1593    }
1594
1595    // Since the result is less than or equal to either operand, any leading
1596    // zero bits in either operand must also exist in the result.
1597    APInt AllOnes = APInt::getAllOnesValue(BitWidth);
1598    ComputeMaskedBits(Op.getOperand(0), AllOnes, KnownZero, KnownOne,
1599                      Depth+1);
1600    ComputeMaskedBits(Op.getOperand(1), AllOnes, KnownZero2, KnownOne2,
1601                      Depth+1);
1602
1603    uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
1604                                KnownZero2.countLeadingOnes());
1605    KnownOne.clear();
1606    KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
1607    return;
1608  }
1609  default:
1610    // Allow the target to implement this method for its nodes.
1611    if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1612  case ISD::INTRINSIC_WO_CHAIN:
1613  case ISD::INTRINSIC_W_CHAIN:
1614  case ISD::INTRINSIC_VOID:
1615      TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1616    }
1617    return;
1618  }
1619}
1620
1621/// ComputeNumSignBits - Return the number of times the sign bit of the
1622/// register is replicated into the other bits.  We know that at least 1 bit
1623/// is always equal to the sign bit (itself), but other cases can give us
1624/// information.  For example, immediately after an "SRA X, 2", we know that
1625/// the top 3 bits are all equal to each other, so we return 3.
1626unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1627  MVT::ValueType VT = Op.getValueType();
1628  assert(MVT::isInteger(VT) && "Invalid VT!");
1629  unsigned VTBits = MVT::getSizeInBits(VT);
1630  unsigned Tmp, Tmp2;
1631  unsigned FirstAnswer = 1;
1632
1633  if (Depth == 6)
1634    return 1;  // Limit search depth.
1635
1636  switch (Op.getOpcode()) {
1637  default: break;
1638  case ISD::AssertSext:
1639    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1640    return VTBits-Tmp+1;
1641  case ISD::AssertZext:
1642    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1643    return VTBits-Tmp;
1644
1645  case ISD::Constant: {
1646    const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
1647    // If negative, return # leading ones.
1648    if (Val.isNegative())
1649      return Val.countLeadingOnes();
1650
1651    // Return # leading zeros.
1652    return Val.countLeadingZeros();
1653  }
1654
1655  case ISD::SIGN_EXTEND:
1656    Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1657    return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1658
1659  case ISD::SIGN_EXTEND_INREG:
1660    // Max of the input and what this extends.
1661    Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1662    Tmp = VTBits-Tmp+1;
1663
1664    Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1665    return std::max(Tmp, Tmp2);
1666
1667  case ISD::SRA:
1668    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1669    // SRA X, C   -> adds C sign bits.
1670    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1671      Tmp += C->getValue();
1672      if (Tmp > VTBits) Tmp = VTBits;
1673    }
1674    return Tmp;
1675  case ISD::SHL:
1676    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1677      // shl destroys sign bits.
1678      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1679      if (C->getValue() >= VTBits ||      // Bad shift.
1680          C->getValue() >= Tmp) break;    // Shifted all sign bits out.
1681      return Tmp - C->getValue();
1682    }
1683    break;
1684  case ISD::AND:
1685  case ISD::OR:
1686  case ISD::XOR:    // NOT is handled here.
1687    // Logical binary ops preserve the number of sign bits at the worst.
1688    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1689    if (Tmp != 1) {
1690      Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1691      FirstAnswer = std::min(Tmp, Tmp2);
1692      // We computed what we know about the sign bits as our first
1693      // answer. Now proceed to the generic code that uses
1694      // ComputeMaskedBits, and pick whichever answer is better.
1695    }
1696    break;
1697
1698  case ISD::SELECT:
1699    Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1700    if (Tmp == 1) return 1;  // Early out.
1701    Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
1702    return std::min(Tmp, Tmp2);
1703
1704  case ISD::SETCC:
1705    // If setcc returns 0/-1, all bits are sign bits.
1706    if (TLI.getSetCCResultContents() ==
1707        TargetLowering::ZeroOrNegativeOneSetCCResult)
1708      return VTBits;
1709    break;
1710  case ISD::ROTL:
1711  case ISD::ROTR:
1712    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1713      unsigned RotAmt = C->getValue() & (VTBits-1);
1714
1715      // Handle rotate right by N like a rotate left by 32-N.
1716      if (Op.getOpcode() == ISD::ROTR)
1717        RotAmt = (VTBits-RotAmt) & (VTBits-1);
1718
1719      // If we aren't rotating out all of the known-in sign bits, return the
1720      // number that are left.  This handles rotl(sext(x), 1) for example.
1721      Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1722      if (Tmp > RotAmt+1) return Tmp-RotAmt;
1723    }
1724    break;
1725  case ISD::ADD:
1726    // Add can have at most one carry bit.  Thus we know that the output
1727    // is, at worst, one more bit than the inputs.
1728    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1729    if (Tmp == 1) return 1;  // Early out.
1730
1731    // Special case decrementing a value (ADD X, -1):
1732    if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1733      if (CRHS->isAllOnesValue()) {
1734        APInt KnownZero, KnownOne;
1735        APInt Mask = APInt::getAllOnesValue(VTBits);
1736        ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1737
1738        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1739        // sign bits set.
1740        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1741          return VTBits;
1742
1743        // If we are subtracting one from a positive number, there is no carry
1744        // out of the result.
1745        if (KnownZero.isNegative())
1746          return Tmp;
1747      }
1748
1749    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1750    if (Tmp2 == 1) return 1;
1751      return std::min(Tmp, Tmp2)-1;
1752    break;
1753
1754  case ISD::SUB:
1755    Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1756    if (Tmp2 == 1) return 1;
1757
1758    // Handle NEG.
1759    if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1760      if (CLHS->isNullValue()) {
1761        APInt KnownZero, KnownOne;
1762        APInt Mask = APInt::getAllOnesValue(VTBits);
1763        ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1764        // If the input is known to be 0 or 1, the output is 0/-1, which is all
1765        // sign bits set.
1766        if ((KnownZero | APInt(VTBits, 1)) == Mask)
1767          return VTBits;
1768
1769        // If the input is known to be positive (the sign bit is known clear),
1770        // the output of the NEG has the same number of sign bits as the input.
1771        if (KnownZero.isNegative())
1772          return Tmp2;
1773
1774        // Otherwise, we treat this like a SUB.
1775      }
1776
1777    // Sub can have at most one carry bit.  Thus we know that the output
1778    // is, at worst, one more bit than the inputs.
1779    Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1780    if (Tmp == 1) return 1;  // Early out.
1781      return std::min(Tmp, Tmp2)-1;
1782    break;
1783  case ISD::TRUNCATE:
1784    // FIXME: it's tricky to do anything useful for this, but it is an important
1785    // case for targets like X86.
1786    break;
1787  }
1788
1789  // Handle LOADX separately here. EXTLOAD case will fallthrough.
1790  if (Op.getOpcode() == ISD::LOAD) {
1791    LoadSDNode *LD = cast<LoadSDNode>(Op);
1792    unsigned ExtType = LD->getExtensionType();
1793    switch (ExtType) {
1794    default: break;
1795    case ISD::SEXTLOAD:    // '17' bits known
1796      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1797      return VTBits-Tmp+1;
1798    case ISD::ZEXTLOAD:    // '16' bits known
1799      Tmp = MVT::getSizeInBits(LD->getMemoryVT());
1800      return VTBits-Tmp;
1801    }
1802  }
1803
1804  // Allow the target to implement this method for its nodes.
1805  if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1806      Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1807      Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1808      Op.getOpcode() == ISD::INTRINSIC_VOID) {
1809    unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1810    if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
1811  }
1812
1813  // Finally, if we can prove that the top bits of the result are 0's or 1's,
1814  // use this information.
1815  APInt KnownZero, KnownOne;
1816  APInt Mask = APInt::getAllOnesValue(VTBits);
1817  ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1818
1819  if (KnownZero.isNegative()) {        // sign bit is 0
1820    Mask = KnownZero;
1821  } else if (KnownOne.isNegative()) {  // sign bit is 1;
1822    Mask = KnownOne;
1823  } else {
1824    // Nothing known.
1825    return FirstAnswer;
1826  }
1827
1828  // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
1829  // the number of identical bits in the top of the input value.
1830  Mask = ~Mask;
1831  Mask <<= Mask.getBitWidth()-VTBits;
1832  // Return # leading zeros.  We use 'min' here in case Val was zero before
1833  // shifting.  We don't want to return '64' as for an i32 "0".
1834  return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
1835}
1836
1837
1838bool SelectionDAG::isVerifiedDebugInfoDesc(SDOperand Op) const {
1839  GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1840  if (!GA) return false;
1841  GlobalVariable *GV = dyn_cast<GlobalVariable>(GA->getGlobal());
1842  if (!GV) return false;
1843  MachineModuleInfo *MMI = getMachineModuleInfo();
1844  return MMI && MMI->hasDebugInfo() && MMI->isVerified(GV);
1845}
1846
1847
1848/// getShuffleScalarElt - Returns the scalar element that will make up the ith
1849/// element of the result of the vector shuffle.
1850SDOperand SelectionDAG::getShuffleScalarElt(const SDNode *N, unsigned Idx) {
1851  MVT::ValueType VT = N->getValueType(0);
1852  SDOperand PermMask = N->getOperand(2);
1853  unsigned NumElems = PermMask.getNumOperands();
1854  SDOperand V = (Idx < NumElems) ? N->getOperand(0) : N->getOperand(1);
1855  Idx %= NumElems;
1856
1857  if (V.getOpcode() == ISD::BIT_CONVERT) {
1858    V = V.getOperand(0);
1859    if (MVT::getVectorNumElements(V.getValueType()) != NumElems)
1860      return SDOperand();
1861  }
1862  if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
1863    return (Idx == 0) ? V.getOperand(0)
1864                      : getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
1865  if (V.getOpcode() == ISD::BUILD_VECTOR)
1866    return V.getOperand(Idx);
1867  if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
1868    SDOperand Elt = PermMask.getOperand(Idx);
1869    if (Elt.getOpcode() == ISD::UNDEF)
1870      return getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
1871    return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Elt)->getValue());
1872  }
1873  return SDOperand();
1874}
1875
1876
1877/// getNode - Gets or creates the specified node.
1878///
1879SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1880  FoldingSetNodeID ID;
1881  AddNodeIDNode(ID, Opcode, getVTList(VT), (SDOperand*)0, 0);
1882  void *IP = 0;
1883  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1884    return SDOperand(E, 0);
1885  SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1886  CSEMap.InsertNode(N, IP);
1887
1888  AllNodes.push_back(N);
1889  return SDOperand(N, 0);
1890}
1891
1892SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1893                                SDOperand Operand) {
1894  // Constant fold unary operations with an integer constant operand.
1895  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1896    const APInt &Val = C->getAPIntValue();
1897    unsigned BitWidth = MVT::getSizeInBits(VT);
1898    switch (Opcode) {
1899    default: break;
1900    case ISD::SIGN_EXTEND:
1901      return getConstant(APInt(Val).sextOrTrunc(BitWidth), VT);
1902    case ISD::ANY_EXTEND:
1903    case ISD::ZERO_EXTEND:
1904    case ISD::TRUNCATE:
1905      return getConstant(APInt(Val).zextOrTrunc(BitWidth), VT);
1906    case ISD::UINT_TO_FP:
1907    case ISD::SINT_TO_FP: {
1908      const uint64_t zero[] = {0, 0};
1909      // No compile time operations on this type.
1910      if (VT==MVT::ppcf128)
1911        break;
1912      APFloat apf = APFloat(APInt(BitWidth, 2, zero));
1913      (void)apf.convertFromAPInt(Val,
1914                                 Opcode==ISD::SINT_TO_FP,
1915                                 APFloat::rmNearestTiesToEven);
1916      return getConstantFP(apf, VT);
1917    }
1918    case ISD::BIT_CONVERT:
1919      if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1920        return getConstantFP(Val.bitsToFloat(), VT);
1921      else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1922        return getConstantFP(Val.bitsToDouble(), VT);
1923      break;
1924    case ISD::BSWAP:
1925      return getConstant(Val.byteSwap(), VT);
1926    case ISD::CTPOP:
1927      return getConstant(Val.countPopulation(), VT);
1928    case ISD::CTLZ:
1929      return getConstant(Val.countLeadingZeros(), VT);
1930    case ISD::CTTZ:
1931      return getConstant(Val.countTrailingZeros(), VT);
1932    }
1933  }
1934
1935  // Constant fold unary operations with a floating point constant operand.
1936  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1937    APFloat V = C->getValueAPF();    // make copy
1938    if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
1939      switch (Opcode) {
1940      case ISD::FNEG:
1941        V.changeSign();
1942        return getConstantFP(V, VT);
1943      case ISD::FABS:
1944        V.clearSign();
1945        return getConstantFP(V, VT);
1946      case ISD::FP_ROUND:
1947      case ISD::FP_EXTEND:
1948        // This can return overflow, underflow, or inexact; we don't care.
1949        // FIXME need to be more flexible about rounding mode.
1950        (void)V.convert(*MVTToAPFloatSemantics(VT),
1951                        APFloat::rmNearestTiesToEven);
1952        return getConstantFP(V, VT);
1953      case ISD::FP_TO_SINT:
1954      case ISD::FP_TO_UINT: {
1955        integerPart x;
1956        assert(integerPartWidth >= 64);
1957        // FIXME need to be more flexible about rounding mode.
1958        APFloat::opStatus s = V.convertToInteger(&x, 64U,
1959                              Opcode==ISD::FP_TO_SINT,
1960                              APFloat::rmTowardZero);
1961        if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual
1962          break;
1963        return getConstant(x, VT);
1964      }
1965      case ISD::BIT_CONVERT:
1966        if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1967          return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1968        else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1969          return getConstant(V.convertToAPInt().getZExtValue(), VT);
1970        break;
1971      }
1972    }
1973  }
1974
1975  unsigned OpOpcode = Operand.Val->getOpcode();
1976  switch (Opcode) {
1977  case ISD::TokenFactor:
1978  case ISD::MERGE_VALUES:
1979    return Operand;         // Factor or merge of one node?  No need.
1980  case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
1981  case ISD::FP_EXTEND:
1982    assert(MVT::isFloatingPoint(VT) &&
1983           MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1984    if (Operand.getValueType() == VT) return Operand;  // noop conversion.
1985    if (Operand.getOpcode() == ISD::UNDEF)
1986      return getNode(ISD::UNDEF, VT);
1987    break;
1988  case ISD::SIGN_EXTEND:
1989    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1990           "Invalid SIGN_EXTEND!");
1991    if (Operand.getValueType() == VT) return Operand;   // noop extension
1992    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1993           && "Invalid sext node, dst < src!");
1994    if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1995      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1996    break;
1997  case ISD::ZERO_EXTEND:
1998    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1999           "Invalid ZERO_EXTEND!");
2000    if (Operand.getValueType() == VT) return Operand;   // noop extension
2001    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
2002           && "Invalid zext node, dst < src!");
2003    if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x)
2004      return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
2005    break;
2006  case ISD::ANY_EXTEND:
2007    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
2008           "Invalid ANY_EXTEND!");
2009    if (Operand.getValueType() == VT) return Operand;   // noop extension
2010    assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
2011           && "Invalid anyext node, dst < src!");
2012    if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
2013      // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x)
2014      return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2015    break;
2016  case ISD::TRUNCATE:
2017    assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
2018           "Invalid TRUNCATE!");
2019    if (Operand.getValueType() == VT) return Operand;   // noop truncate
2020    assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
2021           && "Invalid truncate node, src < dst!");
2022    if (OpOpcode == ISD::TRUNCATE)
2023      return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2024    else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
2025             OpOpcode == ISD::ANY_EXTEND) {
2026      // If the source is smaller than the dest, we still need an extend.
2027      if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
2028          < MVT::getSizeInBits(VT))
2029        return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
2030      else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
2031               > MVT::getSizeInBits(VT))
2032        return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
2033      else
2034        return Operand.Val->getOperand(0);
2035    }
2036    break;
2037  case ISD::BIT_CONVERT:
2038    // Basic sanity checking.
2039    assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
2040           && "Cannot BIT_CONVERT between types of different sizes!");
2041    if (VT == Operand.getValueType()) return Operand;  // noop conversion.
2042    if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x)
2043      return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
2044    if (OpOpcode == ISD::UNDEF)
2045      return getNode(ISD::UNDEF, VT);
2046    break;
2047  case ISD::SCALAR_TO_VECTOR:
2048    assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
2049           MVT::getVectorElementType(VT) == Operand.getValueType() &&
2050           "Illegal SCALAR_TO_VECTOR node!");
2051    if (OpOpcode == ISD::UNDEF)
2052      return getNode(ISD::UNDEF, VT);
2053    // scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
2054    if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
2055        isa<ConstantSDNode>(Operand.getOperand(1)) &&
2056        Operand.getConstantOperandVal(1) == 0 &&
2057        Operand.getOperand(0).getValueType() == VT)
2058      return Operand.getOperand(0);
2059    break;
2060  case ISD::FNEG:
2061    if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X)
2062      return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
2063                     Operand.Val->getOperand(0));
2064    if (OpOpcode == ISD::FNEG)  // --X -> X
2065      return Operand.Val->getOperand(0);
2066    break;
2067  case ISD::FABS:
2068    if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X)
2069      return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
2070    break;
2071  }
2072
2073  SDNode *N;
2074  SDVTList VTs = getVTList(VT);
2075  if (VT != MVT::Flag) { // Don't CSE flag producing nodes
2076    FoldingSetNodeID ID;
2077    SDOperand Ops[1] = { Operand };
2078    AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
2079    void *IP = 0;
2080    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2081      return SDOperand(E, 0);
2082    N = new UnarySDNode(Opcode, VTs, Operand);
2083    CSEMap.InsertNode(N, IP);
2084  } else {
2085    N = new UnarySDNode(Opcode, VTs, Operand);
2086  }
2087  AllNodes.push_back(N);
2088  return SDOperand(N, 0);
2089}
2090
2091
2092
2093SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2094                                SDOperand N1, SDOperand N2) {
2095  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2096  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2097  switch (Opcode) {
2098  default: break;
2099  case ISD::TokenFactor:
2100    assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
2101           N2.getValueType() == MVT::Other && "Invalid token factor!");
2102    // Fold trivial token factors.
2103    if (N1.getOpcode() == ISD::EntryToken) return N2;
2104    if (N2.getOpcode() == ISD::EntryToken) return N1;
2105    break;
2106  case ISD::AND:
2107    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2108           N1.getValueType() == VT && "Binary operator types must match!");
2109    // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's
2110    // worth handling here.
2111    if (N2C && N2C->isNullValue())
2112      return N2;
2113    if (N2C && N2C->isAllOnesValue())  // X & -1 -> X
2114      return N1;
2115    break;
2116  case ISD::OR:
2117  case ISD::XOR:
2118  case ISD::ADD:
2119  case ISD::SUB:
2120    assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
2121           N1.getValueType() == VT && "Binary operator types must match!");
2122    // (X ^|+- 0) -> X.  This commonly occurs when legalizing i64 values, so
2123    // it's worth handling here.
2124    if (N2C && N2C->isNullValue())
2125      return N1;
2126    break;
2127  case ISD::UDIV:
2128  case ISD::UREM:
2129  case ISD::MULHU:
2130  case ISD::MULHS:
2131    assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
2132    // fall through
2133  case ISD::MUL:
2134  case ISD::SDIV:
2135  case ISD::SREM:
2136  case ISD::FADD:
2137  case ISD::FSUB:
2138  case ISD::FMUL:
2139  case ISD::FDIV:
2140  case ISD::FREM:
2141    assert(N1.getValueType() == N2.getValueType() &&
2142           N1.getValueType() == VT && "Binary operator types must match!");
2143    break;
2144  case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match.
2145    assert(N1.getValueType() == VT &&
2146           MVT::isFloatingPoint(N1.getValueType()) &&
2147           MVT::isFloatingPoint(N2.getValueType()) &&
2148           "Invalid FCOPYSIGN!");
2149    break;
2150  case ISD::SHL:
2151  case ISD::SRA:
2152  case ISD::SRL:
2153  case ISD::ROTL:
2154  case ISD::ROTR:
2155    assert(VT == N1.getValueType() &&
2156           "Shift operators return type must be the same as their first arg");
2157    assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
2158           VT != MVT::i1 && "Shifts only work on integers");
2159    break;
2160  case ISD::FP_ROUND_INREG: {
2161    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2162    assert(VT == N1.getValueType() && "Not an inreg round!");
2163    assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
2164           "Cannot FP_ROUND_INREG integer types");
2165    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2166           "Not rounding down!");
2167    if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding.
2168    break;
2169  }
2170  case ISD::FP_ROUND:
2171    assert(MVT::isFloatingPoint(VT) &&
2172           MVT::isFloatingPoint(N1.getValueType()) &&
2173           MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
2174           isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
2175    if (N1.getValueType() == VT) return N1;  // noop conversion.
2176    break;
2177  case ISD::AssertSext:
2178  case ISD::AssertZext: {
2179    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2180    assert(VT == N1.getValueType() && "Not an inreg extend!");
2181    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2182           "Cannot *_EXTEND_INREG FP types");
2183    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2184           "Not extending!");
2185    if (VT == EVT) return N1; // noop assertion.
2186    break;
2187  }
2188  case ISD::SIGN_EXTEND_INREG: {
2189    MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2190    assert(VT == N1.getValueType() && "Not an inreg extend!");
2191    assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
2192           "Cannot *_EXTEND_INREG FP types");
2193    assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
2194           "Not extending!");
2195    if (EVT == VT) return N1;  // Not actually extending
2196
2197    if (N1C) {
2198      APInt Val = N1C->getAPIntValue();
2199      unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
2200      Val <<= Val.getBitWidth()-FromBits;
2201      Val = Val.ashr(Val.getBitWidth()-FromBits);
2202      return getConstant(Val, VT);
2203    }
2204    break;
2205  }
2206  case ISD::EXTRACT_VECTOR_ELT:
2207    assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2208
2209    // EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
2210    if (N1.getOpcode() == ISD::UNDEF)
2211      return getNode(ISD::UNDEF, VT);
2212
2213    // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2214    // expanding copies of large vectors from registers.
2215    if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2216        N1.getNumOperands() > 0) {
2217      unsigned Factor =
2218        MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2219      return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2220                     N1.getOperand(N2C->getValue() / Factor),
2221                     getConstant(N2C->getValue() % Factor, N2.getValueType()));
2222    }
2223
2224    // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2225    // expanding large vector constants.
2226    if (N1.getOpcode() == ISD::BUILD_VECTOR)
2227      return N1.getOperand(N2C->getValue());
2228
2229    // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2230    // operations are lowered to scalars.
2231    if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2232      if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2233        if (IEC == N2C)
2234          return N1.getOperand(1);
2235        else
2236          return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2237      }
2238    break;
2239  case ISD::EXTRACT_ELEMENT:
2240    assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2241    assert(!MVT::isVector(N1.getValueType()) &&
2242           MVT::isInteger(N1.getValueType()) &&
2243           !MVT::isVector(VT) && MVT::isInteger(VT) &&
2244           "EXTRACT_ELEMENT only applies to integers!");
2245
2246    // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2247    // 64-bit integers into 32-bit parts.  Instead of building the extract of
2248    // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2249    if (N1.getOpcode() == ISD::BUILD_PAIR)
2250      return N1.getOperand(N2C->getValue());
2251
2252    // EXTRACT_ELEMENT of a constant int is also very common.
2253    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2254      unsigned ElementSize = MVT::getSizeInBits(VT);
2255      unsigned Shift = ElementSize * N2C->getValue();
2256      APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
2257      return getConstant(ShiftedVal.trunc(ElementSize), VT);
2258    }
2259    break;
2260  case ISD::EXTRACT_SUBVECTOR:
2261    if (N1.getValueType() == VT) // Trivial extraction.
2262      return N1;
2263    break;
2264  }
2265
2266  if (N1C) {
2267    if (N2C) {
2268      APInt C1 = N1C->getAPIntValue(), C2 = N2C->getAPIntValue();
2269      switch (Opcode) {
2270      case ISD::ADD: return getConstant(C1 + C2, VT);
2271      case ISD::SUB: return getConstant(C1 - C2, VT);
2272      case ISD::MUL: return getConstant(C1 * C2, VT);
2273      case ISD::UDIV:
2274        if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
2275        break;
2276      case ISD::UREM :
2277        if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
2278        break;
2279      case ISD::SDIV :
2280        if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
2281        break;
2282      case ISD::SREM :
2283        if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
2284        break;
2285      case ISD::AND  : return getConstant(C1 & C2, VT);
2286      case ISD::OR   : return getConstant(C1 | C2, VT);
2287      case ISD::XOR  : return getConstant(C1 ^ C2, VT);
2288      case ISD::SHL  : return getConstant(C1 << C2, VT);
2289      case ISD::SRL  : return getConstant(C1.lshr(C2), VT);
2290      case ISD::SRA  : return getConstant(C1.ashr(C2), VT);
2291      case ISD::ROTL : return getConstant(C1.rotl(C2), VT);
2292      case ISD::ROTR : return getConstant(C1.rotr(C2), VT);
2293      default: break;
2294      }
2295    } else {      // Cannonicalize constant to RHS if commutative
2296      if (isCommutativeBinOp(Opcode)) {
2297        std::swap(N1C, N2C);
2298        std::swap(N1, N2);
2299      }
2300    }
2301  }
2302
2303  // Constant fold FP operations.
2304  ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2305  ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2306  if (N1CFP) {
2307    if (!N2CFP && isCommutativeBinOp(Opcode)) {
2308      // Cannonicalize constant to RHS if commutative
2309      std::swap(N1CFP, N2CFP);
2310      std::swap(N1, N2);
2311    } else if (N2CFP && VT != MVT::ppcf128) {
2312      APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2313      APFloat::opStatus s;
2314      switch (Opcode) {
2315      case ISD::FADD:
2316        s = V1.add(V2, APFloat::rmNearestTiesToEven);
2317        if (s != APFloat::opInvalidOp)
2318          return getConstantFP(V1, VT);
2319        break;
2320      case ISD::FSUB:
2321        s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2322        if (s!=APFloat::opInvalidOp)
2323          return getConstantFP(V1, VT);
2324        break;
2325      case ISD::FMUL:
2326        s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2327        if (s!=APFloat::opInvalidOp)
2328          return getConstantFP(V1, VT);
2329        break;
2330      case ISD::FDIV:
2331        s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2332        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2333          return getConstantFP(V1, VT);
2334        break;
2335      case ISD::FREM :
2336        s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2337        if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2338          return getConstantFP(V1, VT);
2339        break;
2340      case ISD::FCOPYSIGN:
2341        V1.copySign(V2);
2342        return getConstantFP(V1, VT);
2343      default: break;
2344      }
2345    }
2346  }
2347
2348  // Canonicalize an UNDEF to the RHS, even over a constant.
2349  if (N1.getOpcode() == ISD::UNDEF) {
2350    if (isCommutativeBinOp(Opcode)) {
2351      std::swap(N1, N2);
2352    } else {
2353      switch (Opcode) {
2354      case ISD::FP_ROUND_INREG:
2355      case ISD::SIGN_EXTEND_INREG:
2356      case ISD::SUB:
2357      case ISD::FSUB:
2358      case ISD::FDIV:
2359      case ISD::FREM:
2360      case ISD::SRA:
2361        return N1;     // fold op(undef, arg2) -> undef
2362      case ISD::UDIV:
2363      case ISD::SDIV:
2364      case ISD::UREM:
2365      case ISD::SREM:
2366      case ISD::SRL:
2367      case ISD::SHL:
2368        if (!MVT::isVector(VT))
2369          return getConstant(0, VT);    // fold op(undef, arg2) -> 0
2370        // For vectors, we can't easily build an all zero vector, just return
2371        // the LHS.
2372        return N2;
2373      }
2374    }
2375  }
2376
2377  // Fold a bunch of operators when the RHS is undef.
2378  if (N2.getOpcode() == ISD::UNDEF) {
2379    switch (Opcode) {
2380    case ISD::XOR:
2381      if (N1.getOpcode() == ISD::UNDEF)
2382        // Handle undef ^ undef -> 0 special case. This is a common
2383        // idiom (misuse).
2384        return getConstant(0, VT);
2385      // fallthrough
2386    case ISD::ADD:
2387    case ISD::ADDC:
2388    case ISD::ADDE:
2389    case ISD::SUB:
2390    case ISD::FADD:
2391    case ISD::FSUB:
2392    case ISD::FMUL:
2393    case ISD::FDIV:
2394    case ISD::FREM:
2395    case ISD::UDIV:
2396    case ISD::SDIV:
2397    case ISD::UREM:
2398    case ISD::SREM:
2399      return N2;       // fold op(arg1, undef) -> undef
2400    case ISD::MUL:
2401    case ISD::AND:
2402    case ISD::SRL:
2403    case ISD::SHL:
2404      if (!MVT::isVector(VT))
2405        return getConstant(0, VT);  // fold op(arg1, undef) -> 0
2406      // For vectors, we can't easily build an all zero vector, just return
2407      // the LHS.
2408      return N1;
2409    case ISD::OR:
2410      if (!MVT::isVector(VT))
2411        return getConstant(MVT::getIntVTBitMask(VT), VT);
2412      // For vectors, we can't easily build an all one vector, just return
2413      // the LHS.
2414      return N1;
2415    case ISD::SRA:
2416      return N1;
2417    }
2418  }
2419
2420  // Memoize this node if possible.
2421  SDNode *N;
2422  SDVTList VTs = getVTList(VT);
2423  if (VT != MVT::Flag) {
2424    SDOperand Ops[] = { N1, N2 };
2425    FoldingSetNodeID ID;
2426    AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2427    void *IP = 0;
2428    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2429      return SDOperand(E, 0);
2430    N = new BinarySDNode(Opcode, VTs, N1, N2);
2431    CSEMap.InsertNode(N, IP);
2432  } else {
2433    N = new BinarySDNode(Opcode, VTs, N1, N2);
2434  }
2435
2436  AllNodes.push_back(N);
2437  return SDOperand(N, 0);
2438}
2439
2440SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2441                                SDOperand N1, SDOperand N2, SDOperand N3) {
2442  // Perform various simplifications.
2443  ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2444  ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2445  switch (Opcode) {
2446  case ISD::SETCC: {
2447    // Use FoldSetCC to simplify SETCC's.
2448    SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2449    if (Simp.Val) return Simp;
2450    break;
2451  }
2452  case ISD::SELECT:
2453    if (N1C) {
2454     if (N1C->getValue())
2455        return N2;             // select true, X, Y -> X
2456      else
2457        return N3;             // select false, X, Y -> Y
2458    }
2459
2460    if (N2 == N3) return N2;   // select C, X, X -> X
2461    break;
2462  case ISD::BRCOND:
2463    if (N2C) {
2464      if (N2C->getValue()) // Unconditional branch
2465        return getNode(ISD::BR, MVT::Other, N1, N3);
2466      else
2467        return N1;         // Never-taken branch
2468    }
2469    break;
2470  case ISD::VECTOR_SHUFFLE:
2471    assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2472           MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2473           N3.getOpcode() == ISD::BUILD_VECTOR &&
2474           MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2475           "Illegal VECTOR_SHUFFLE node!");
2476    break;
2477  case ISD::BIT_CONVERT:
2478    // Fold bit_convert nodes from a type to themselves.
2479    if (N1.getValueType() == VT)
2480      return N1;
2481    break;
2482  }
2483
2484  // Memoize node if it doesn't produce a flag.
2485  SDNode *N;
2486  SDVTList VTs = getVTList(VT);
2487  if (VT != MVT::Flag) {
2488    SDOperand Ops[] = { N1, N2, N3 };
2489    FoldingSetNodeID ID;
2490    AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2491    void *IP = 0;
2492    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2493      return SDOperand(E, 0);
2494    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2495    CSEMap.InsertNode(N, IP);
2496  } else {
2497    N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2498  }
2499  AllNodes.push_back(N);
2500  return SDOperand(N, 0);
2501}
2502
2503SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2504                                SDOperand N1, SDOperand N2, SDOperand N3,
2505                                SDOperand N4) {
2506  SDOperand Ops[] = { N1, N2, N3, N4 };
2507  return getNode(Opcode, VT, Ops, 4);
2508}
2509
2510SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2511                                SDOperand N1, SDOperand N2, SDOperand N3,
2512                                SDOperand N4, SDOperand N5) {
2513  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2514  return getNode(Opcode, VT, Ops, 5);
2515}
2516
2517/// getMemsetValue - Vectorized representation of the memset value
2518/// operand.
2519static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
2520                                SelectionDAG &DAG) {
2521  unsigned NumBits = MVT::isVector(VT) ?
2522    MVT::getSizeInBits(MVT::getVectorElementType(VT)) : MVT::getSizeInBits(VT);
2523  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
2524    APInt Val = APInt(NumBits, C->getValue() & 255);
2525    unsigned Shift = 8;
2526    for (unsigned i = NumBits; i > 8; i >>= 1) {
2527      Val = (Val << Shift) | Val;
2528      Shift <<= 1;
2529    }
2530    if (MVT::isInteger(VT))
2531      return DAG.getConstant(Val, VT);
2532    return DAG.getConstantFP(APFloat(Val), VT);
2533  }
2534
2535  Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
2536  unsigned Shift = 8;
2537  for (unsigned i = NumBits; i > 8; i >>= 1) {
2538    Value = DAG.getNode(ISD::OR, VT,
2539                        DAG.getNode(ISD::SHL, VT, Value,
2540                                    DAG.getConstant(Shift, MVT::i8)), Value);
2541    Shift <<= 1;
2542  }
2543
2544  return Value;
2545}
2546
2547/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
2548/// used when a memcpy is turned into a memset when the source is a constant
2549/// string ptr.
2550static SDOperand getMemsetStringVal(MVT::ValueType VT, SelectionDAG &DAG,
2551                                    const TargetLowering &TLI,
2552                                    std::string &Str, unsigned Offset) {
2553  assert(!MVT::isVector(VT) && "Can't handle vector type here!");
2554  unsigned NumBits = MVT::getSizeInBits(VT);
2555  unsigned MSB = NumBits / 8;
2556  uint64_t Val = 0;
2557  if (TLI.isLittleEndian())
2558    Offset = Offset + MSB - 1;
2559  for (unsigned i = 0; i != MSB; ++i) {
2560    Val = (Val << 8) | (unsigned char)Str[Offset];
2561    Offset += TLI.isLittleEndian() ? -1 : 1;
2562  }
2563  return DAG.getConstant(Val, VT);
2564}
2565
2566/// getMemBasePlusOffset - Returns base and offset node for the
2567///
2568static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
2569                                      SelectionDAG &DAG) {
2570  MVT::ValueType VT = Base.getValueType();
2571  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
2572}
2573
2574/// isMemSrcFromString - Returns true if memcpy source is a string constant.
2575///
2576static bool isMemSrcFromString(SDOperand Src, std::string &Str,
2577                               uint64_t &SrcOff) {
2578  unsigned SrcDelta = 0;
2579  GlobalAddressSDNode *G = NULL;
2580  if (Src.getOpcode() == ISD::GlobalAddress)
2581    G = cast<GlobalAddressSDNode>(Src);
2582  else if (Src.getOpcode() == ISD::ADD &&
2583           Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
2584           Src.getOperand(1).getOpcode() == ISD::Constant) {
2585    G = cast<GlobalAddressSDNode>(Src.getOperand(0));
2586    SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getValue();
2587  }
2588  if (!G)
2589    return false;
2590
2591  GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
2592  if (GV && GV->isConstant()) {
2593    Str = GV->getStringValue(false);
2594    if (!Str.empty()) {
2595      SrcOff += SrcDelta;
2596      return true;
2597    }
2598  }
2599
2600  return false;
2601}
2602
2603/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
2604/// to replace the memset / memcpy is below the threshold. It also returns the
2605/// types of the sequence of memory ops to perform memset / memcpy.
2606static
2607bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
2608                              SDOperand Dst, SDOperand Src,
2609                              unsigned Limit, uint64_t Size, unsigned &Align,
2610                              SelectionDAG &DAG,
2611                              const TargetLowering &TLI) {
2612  bool AllowUnalign = TLI.allowsUnalignedMemoryAccesses();
2613
2614  std::string Str;
2615  uint64_t SrcOff = 0;
2616  bool isSrcStr = isMemSrcFromString(Src, Str, SrcOff);
2617  bool isSrcConst = isa<ConstantSDNode>(Src);
2618  MVT::ValueType VT= TLI.getOptimalMemOpType(Size, Align, isSrcConst, isSrcStr);
2619  if (VT != MVT::iAny) {
2620    unsigned NewAlign = (unsigned)
2621      TLI.getTargetData()->getABITypeAlignment(MVT::getTypeForValueType(VT));
2622    // If source is a string constant, this will require an unaligned load.
2623    if (NewAlign > Align && (isSrcConst || AllowUnalign)) {
2624      if (Dst.getOpcode() != ISD::FrameIndex) {
2625        // Can't change destination alignment. It requires a unaligned store.
2626        if (AllowUnalign)
2627          VT = MVT::iAny;
2628      } else {
2629        int FI = cast<FrameIndexSDNode>(Dst)->getIndex();
2630        MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
2631        if (MFI->isFixedObjectIndex(FI)) {
2632          // Can't change destination alignment. It requires a unaligned store.
2633          if (AllowUnalign)
2634            VT = MVT::iAny;
2635        } else {
2636          // Give the stack frame object a larger alignment if needed.
2637          if (MFI->getObjectAlignment(FI) < NewAlign)
2638            MFI->setObjectAlignment(FI, NewAlign);
2639          Align = NewAlign;
2640        }
2641      }
2642    }
2643  }
2644
2645  if (VT == MVT::iAny) {
2646    if (AllowUnalign) {
2647      VT = MVT::i64;
2648    } else {
2649      switch (Align & 7) {
2650      case 0:  VT = MVT::i64; break;
2651      case 4:  VT = MVT::i32; break;
2652      case 2:  VT = MVT::i16; break;
2653      default: VT = MVT::i8;  break;
2654      }
2655    }
2656
2657    MVT::ValueType LVT = MVT::i64;
2658    while (!TLI.isTypeLegal(LVT))
2659      LVT = (MVT::ValueType)((unsigned)LVT - 1);
2660    assert(MVT::isInteger(LVT));
2661
2662    if (VT > LVT)
2663      VT = LVT;
2664  }
2665
2666  unsigned NumMemOps = 0;
2667  while (Size != 0) {
2668    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2669    while (VTSize > Size) {
2670      // For now, only use non-vector load / store's for the left-over pieces.
2671      if (MVT::isVector(VT)) {
2672        VT = MVT::i64;
2673        while (!TLI.isTypeLegal(VT))
2674          VT = (MVT::ValueType)((unsigned)VT - 1);
2675        VTSize = MVT::getSizeInBits(VT) / 8;
2676      } else {
2677        VT = (MVT::ValueType)((unsigned)VT - 1);
2678        VTSize >>= 1;
2679      }
2680    }
2681
2682    if (++NumMemOps > Limit)
2683      return false;
2684    MemOps.push_back(VT);
2685    Size -= VTSize;
2686  }
2687
2688  return true;
2689}
2690
2691static SDOperand getMemcpyLoadsAndStores(SelectionDAG &DAG,
2692                                         SDOperand Chain, SDOperand Dst,
2693                                         SDOperand Src, uint64_t Size,
2694                                         unsigned Align, bool AlwaysInline,
2695                                         const Value *DstSV, uint64_t DstSVOff,
2696                                         const Value *SrcSV, uint64_t SrcSVOff){
2697  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2698
2699  // Expand memcpy to a series of load and store ops if the size operand falls
2700  // below a certain threshold.
2701  std::vector<MVT::ValueType> MemOps;
2702  uint64_t Limit = -1;
2703  if (!AlwaysInline)
2704    Limit = TLI.getMaxStoresPerMemcpy();
2705  unsigned DstAlign = Align;  // Destination alignment can change.
2706  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2707                                DAG, TLI))
2708    return SDOperand();
2709
2710  std::string Str;
2711  uint64_t SrcOff = 0, DstOff = 0;
2712  bool CopyFromStr = isMemSrcFromString(Src, Str, SrcOff);
2713
2714  SmallVector<SDOperand, 8> OutChains;
2715  unsigned NumMemOps = MemOps.size();
2716  for (unsigned i = 0; i < NumMemOps; i++) {
2717    MVT::ValueType VT = MemOps[i];
2718    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2719    SDOperand Value, Store;
2720
2721    if (CopyFromStr && !MVT::isVector(VT)) {
2722      // It's unlikely a store of a vector immediate can be done in a single
2723      // instruction. It would require a load from a constantpool first.
2724      // FIXME: Handle cases where store of vector immediate is done in a
2725      // single instruction.
2726      Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
2727      Store = DAG.getStore(Chain, Value,
2728                           getMemBasePlusOffset(Dst, DstOff, DAG),
2729                           DstSV, DstSVOff + DstOff);
2730    } else {
2731      Value = DAG.getLoad(VT, Chain,
2732                          getMemBasePlusOffset(Src, SrcOff, DAG),
2733                          SrcSV, SrcSVOff + SrcOff, false, Align);
2734      Store = DAG.getStore(Chain, Value,
2735                           getMemBasePlusOffset(Dst, DstOff, DAG),
2736                           DstSV, DstSVOff + DstOff, false, DstAlign);
2737    }
2738    OutChains.push_back(Store);
2739    SrcOff += VTSize;
2740    DstOff += VTSize;
2741  }
2742
2743  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2744                     &OutChains[0], OutChains.size());
2745}
2746
2747static SDOperand getMemmoveLoadsAndStores(SelectionDAG &DAG,
2748                                          SDOperand Chain, SDOperand Dst,
2749                                          SDOperand Src, uint64_t Size,
2750                                          unsigned Align, bool AlwaysInline,
2751                                          const Value *DstSV, uint64_t DstSVOff,
2752                                          const Value *SrcSV, uint64_t SrcSVOff){
2753  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2754
2755  // Expand memmove to a series of load and store ops if the size operand falls
2756  // below a certain threshold.
2757  std::vector<MVT::ValueType> MemOps;
2758  uint64_t Limit = -1;
2759  if (!AlwaysInline)
2760    Limit = TLI.getMaxStoresPerMemmove();
2761  unsigned DstAlign = Align;  // Destination alignment can change.
2762  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, Limit, Size, DstAlign,
2763                                DAG, TLI))
2764    return SDOperand();
2765
2766  uint64_t SrcOff = 0, DstOff = 0;
2767
2768  SmallVector<SDOperand, 8> LoadValues;
2769  SmallVector<SDOperand, 8> LoadChains;
2770  SmallVector<SDOperand, 8> OutChains;
2771  unsigned NumMemOps = MemOps.size();
2772  for (unsigned i = 0; i < NumMemOps; i++) {
2773    MVT::ValueType VT = MemOps[i];
2774    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2775    SDOperand Value, Store;
2776
2777    Value = DAG.getLoad(VT, Chain,
2778                        getMemBasePlusOffset(Src, SrcOff, DAG),
2779                        SrcSV, SrcSVOff + SrcOff, false, Align);
2780    LoadValues.push_back(Value);
2781    LoadChains.push_back(Value.getValue(1));
2782    SrcOff += VTSize;
2783  }
2784  Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2785                      &LoadChains[0], LoadChains.size());
2786  OutChains.clear();
2787  for (unsigned i = 0; i < NumMemOps; i++) {
2788    MVT::ValueType VT = MemOps[i];
2789    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2790    SDOperand Value, Store;
2791
2792    Store = DAG.getStore(Chain, LoadValues[i],
2793                         getMemBasePlusOffset(Dst, DstOff, DAG),
2794                         DstSV, DstSVOff + DstOff, false, DstAlign);
2795    OutChains.push_back(Store);
2796    DstOff += VTSize;
2797  }
2798
2799  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2800                     &OutChains[0], OutChains.size());
2801}
2802
2803static SDOperand getMemsetStores(SelectionDAG &DAG,
2804                                 SDOperand Chain, SDOperand Dst,
2805                                 SDOperand Src, uint64_t Size,
2806                                 unsigned Align,
2807                                 const Value *DstSV, uint64_t DstSVOff) {
2808  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2809
2810  // Expand memset to a series of load/store ops if the size operand
2811  // falls below a certain threshold.
2812  std::vector<MVT::ValueType> MemOps;
2813  if (!MeetsMaxMemopRequirement(MemOps, Dst, Src, TLI.getMaxStoresPerMemset(),
2814                                Size, Align, DAG, TLI))
2815    return SDOperand();
2816
2817  SmallVector<SDOperand, 8> OutChains;
2818  uint64_t DstOff = 0;
2819
2820  unsigned NumMemOps = MemOps.size();
2821  for (unsigned i = 0; i < NumMemOps; i++) {
2822    MVT::ValueType VT = MemOps[i];
2823    unsigned VTSize = MVT::getSizeInBits(VT) / 8;
2824    SDOperand Value = getMemsetValue(Src, VT, DAG);
2825    SDOperand Store = DAG.getStore(Chain, Value,
2826                                   getMemBasePlusOffset(Dst, DstOff, DAG),
2827                                   DstSV, DstSVOff + DstOff);
2828    OutChains.push_back(Store);
2829    DstOff += VTSize;
2830  }
2831
2832  return DAG.getNode(ISD::TokenFactor, MVT::Other,
2833                     &OutChains[0], OutChains.size());
2834}
2835
2836SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dst,
2837                                  SDOperand Src, SDOperand Size,
2838                                  unsigned Align, bool AlwaysInline,
2839                                  const Value *DstSV, uint64_t DstSVOff,
2840                                  const Value *SrcSV, uint64_t SrcSVOff) {
2841
2842  // Check to see if we should lower the memcpy to loads and stores first.
2843  // For cases within the target-specified limits, this is the best choice.
2844  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2845  if (ConstantSize) {
2846    // Memcpy with size zero? Just return the original chain.
2847    if (ConstantSize->isNullValue())
2848      return Chain;
2849
2850    SDOperand Result =
2851      getMemcpyLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2852                              Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2853    if (Result.Val)
2854      return Result;
2855  }
2856
2857  // Then check to see if we should lower the memcpy with target-specific
2858  // code. If the target chooses to do this, this is the next best.
2859  SDOperand Result =
2860    TLI.EmitTargetCodeForMemcpy(*this, Chain, Dst, Src, Size, Align,
2861                                AlwaysInline,
2862                                DstSV, DstSVOff, SrcSV, SrcSVOff);
2863  if (Result.Val)
2864    return Result;
2865
2866  // If we really need inline code and the target declined to provide it,
2867  // use a (potentially long) sequence of loads and stores.
2868  if (AlwaysInline) {
2869    assert(ConstantSize && "AlwaysInline requires a constant size!");
2870    return getMemcpyLoadsAndStores(*this, Chain, Dst, Src,
2871                                   ConstantSize->getValue(), Align, true,
2872                                   DstSV, DstSVOff, SrcSV, SrcSVOff);
2873  }
2874
2875  // Emit a library call.
2876  TargetLowering::ArgListTy Args;
2877  TargetLowering::ArgListEntry Entry;
2878  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2879  Entry.Node = Dst; Args.push_back(Entry);
2880  Entry.Node = Src; Args.push_back(Entry);
2881  Entry.Node = Size; Args.push_back(Entry);
2882  std::pair<SDOperand,SDOperand> CallResult =
2883    TLI.LowerCallTo(Chain, Type::VoidTy,
2884                    false, false, false, CallingConv::C, false,
2885                    getExternalSymbol("memcpy", TLI.getPointerTy()),
2886                    Args, *this);
2887  return CallResult.second;
2888}
2889
2890SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dst,
2891                                   SDOperand Src, SDOperand Size,
2892                                   unsigned Align,
2893                                   const Value *DstSV, uint64_t DstSVOff,
2894                                   const Value *SrcSV, uint64_t SrcSVOff) {
2895
2896  // Check to see if we should lower the memmove to loads and stores first.
2897  // For cases within the target-specified limits, this is the best choice.
2898  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2899  if (ConstantSize) {
2900    // Memmove with size zero? Just return the original chain.
2901    if (ConstantSize->isNullValue())
2902      return Chain;
2903
2904    SDOperand Result =
2905      getMemmoveLoadsAndStores(*this, Chain, Dst, Src, ConstantSize->getValue(),
2906                               Align, false, DstSV, DstSVOff, SrcSV, SrcSVOff);
2907    if (Result.Val)
2908      return Result;
2909  }
2910
2911  // Then check to see if we should lower the memmove with target-specific
2912  // code. If the target chooses to do this, this is the next best.
2913  SDOperand Result =
2914    TLI.EmitTargetCodeForMemmove(*this, Chain, Dst, Src, Size, Align,
2915                                 DstSV, DstSVOff, SrcSV, SrcSVOff);
2916  if (Result.Val)
2917    return Result;
2918
2919  // Emit a library call.
2920  TargetLowering::ArgListTy Args;
2921  TargetLowering::ArgListEntry Entry;
2922  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2923  Entry.Node = Dst; Args.push_back(Entry);
2924  Entry.Node = Src; Args.push_back(Entry);
2925  Entry.Node = Size; Args.push_back(Entry);
2926  std::pair<SDOperand,SDOperand> CallResult =
2927    TLI.LowerCallTo(Chain, Type::VoidTy,
2928                    false, false, false, CallingConv::C, false,
2929                    getExternalSymbol("memmove", TLI.getPointerTy()),
2930                    Args, *this);
2931  return CallResult.second;
2932}
2933
2934SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dst,
2935                                  SDOperand Src, SDOperand Size,
2936                                  unsigned Align,
2937                                  const Value *DstSV, uint64_t DstSVOff) {
2938
2939  // Check to see if we should lower the memset to stores first.
2940  // For cases within the target-specified limits, this is the best choice.
2941  ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
2942  if (ConstantSize) {
2943    // Memset with size zero? Just return the original chain.
2944    if (ConstantSize->isNullValue())
2945      return Chain;
2946
2947    SDOperand Result =
2948      getMemsetStores(*this, Chain, Dst, Src, ConstantSize->getValue(), Align,
2949                      DstSV, DstSVOff);
2950    if (Result.Val)
2951      return Result;
2952  }
2953
2954  // Then check to see if we should lower the memset with target-specific
2955  // code. If the target chooses to do this, this is the next best.
2956  SDOperand Result =
2957    TLI.EmitTargetCodeForMemset(*this, Chain, Dst, Src, Size, Align,
2958                                DstSV, DstSVOff);
2959  if (Result.Val)
2960    return Result;
2961
2962  // Emit a library call.
2963  const Type *IntPtrTy = TLI.getTargetData()->getIntPtrType();
2964  TargetLowering::ArgListTy Args;
2965  TargetLowering::ArgListEntry Entry;
2966  Entry.Node = Dst; Entry.Ty = IntPtrTy;
2967  Args.push_back(Entry);
2968  // Extend or truncate the argument to be an i32 value for the call.
2969  if (Src.getValueType() > MVT::i32)
2970    Src = getNode(ISD::TRUNCATE, MVT::i32, Src);
2971  else
2972    Src = getNode(ISD::ZERO_EXTEND, MVT::i32, Src);
2973  Entry.Node = Src; Entry.Ty = Type::Int32Ty; Entry.isSExt = true;
2974  Args.push_back(Entry);
2975  Entry.Node = Size; Entry.Ty = IntPtrTy; Entry.isSExt = false;
2976  Args.push_back(Entry);
2977  std::pair<SDOperand,SDOperand> CallResult =
2978    TLI.LowerCallTo(Chain, Type::VoidTy,
2979                    false, false, false, CallingConv::C, false,
2980                    getExternalSymbol("memset", TLI.getPointerTy()),
2981                    Args, *this);
2982  return CallResult.second;
2983}
2984
2985SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
2986                                  SDOperand Ptr, SDOperand Cmp,
2987                                  SDOperand Swp, MVT::ValueType VT) {
2988  assert(Opcode == ISD::ATOMIC_LCS && "Invalid Atomic Op");
2989  assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
2990  SDVTList VTs = getVTList(Cmp.getValueType(), MVT::Other);
2991  FoldingSetNodeID ID;
2992  SDOperand Ops[] = {Chain, Ptr, Cmp, Swp};
2993  AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
2994  ID.AddInteger((unsigned int)VT);
2995  void* IP = 0;
2996  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2997    return SDOperand(E, 0);
2998  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Cmp, Swp, VT);
2999  CSEMap.InsertNode(N, IP);
3000  AllNodes.push_back(N);
3001  return SDOperand(N, 0);
3002}
3003
3004SDOperand SelectionDAG::getAtomic(unsigned Opcode, SDOperand Chain,
3005                                  SDOperand Ptr, SDOperand Val,
3006                                  MVT::ValueType VT) {
3007  assert((   Opcode == ISD::ATOMIC_LAS || Opcode == ISD::ATOMIC_LSS
3008          || Opcode == ISD::ATOMIC_SWAP || Opcode == ISD::ATOMIC_LOAD_AND
3009          || Opcode == ISD::ATOMIC_LOAD_OR || Opcode == ISD::ATOMIC_LOAD_XOR
3010          || Opcode == ISD::ATOMIC_LOAD_MIN || Opcode == ISD::ATOMIC_LOAD_MAX
3011          || Opcode == ISD::ATOMIC_LOAD_UMIN || Opcode == ISD::ATOMIC_LOAD_UMAX)
3012         && "Invalid Atomic Op");
3013  SDVTList VTs = getVTList(Val.getValueType(), MVT::Other);
3014  FoldingSetNodeID ID;
3015  SDOperand Ops[] = {Chain, Ptr, Val};
3016  AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
3017  ID.AddInteger((unsigned int)VT);
3018  void* IP = 0;
3019  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3020    return SDOperand(E, 0);
3021  SDNode* N = new AtomicSDNode(Opcode, VTs, Chain, Ptr, Val, VT);
3022  CSEMap.InsertNode(N, IP);
3023  AllNodes.push_back(N);
3024  return SDOperand(N, 0);
3025}
3026
3027SDOperand
3028SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
3029                      MVT::ValueType VT, SDOperand Chain,
3030                      SDOperand Ptr, SDOperand Offset,
3031                      const Value *SV, int SVOffset, MVT::ValueType EVT,
3032                      bool isVolatile, unsigned Alignment) {
3033  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3034    const Type *Ty = 0;
3035    if (VT != MVT::iPTR) {
3036      Ty = MVT::getTypeForValueType(VT);
3037    } else if (SV) {
3038      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3039      assert(PT && "Value for load must be a pointer");
3040      Ty = PT->getElementType();
3041    }
3042    assert(Ty && "Could not get type information for load");
3043    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3044  }
3045
3046  if (VT == EVT) {
3047    ExtType = ISD::NON_EXTLOAD;
3048  } else if (ExtType == ISD::NON_EXTLOAD) {
3049    assert(VT == EVT && "Non-extending load from different memory type!");
3050  } else {
3051    // Extending load.
3052    if (MVT::isVector(VT))
3053      assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
3054    else
3055      assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
3056             "Should only be an extending load, not truncating!");
3057    assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
3058           "Cannot sign/zero extend a FP/Vector load!");
3059    assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
3060           "Cannot convert from FP to Int or Int -> FP!");
3061  }
3062
3063  bool Indexed = AM != ISD::UNINDEXED;
3064  assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
3065         "Unindexed load with an offset!");
3066
3067  SDVTList VTs = Indexed ?
3068    getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
3069  SDOperand Ops[] = { Chain, Ptr, Offset };
3070  FoldingSetNodeID ID;
3071  AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
3072  ID.AddInteger(AM);
3073  ID.AddInteger(ExtType);
3074  ID.AddInteger((unsigned int)EVT);
3075  ID.AddInteger(Alignment);
3076  ID.AddInteger(isVolatile);
3077  void *IP = 0;
3078  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3079    return SDOperand(E, 0);
3080  SDNode *N = new LoadSDNode(Ops, VTs, AM, ExtType, EVT, SV, SVOffset,
3081                             Alignment, isVolatile);
3082  CSEMap.InsertNode(N, IP);
3083  AllNodes.push_back(N);
3084  return SDOperand(N, 0);
3085}
3086
3087SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
3088                                SDOperand Chain, SDOperand Ptr,
3089                                const Value *SV, int SVOffset,
3090                                bool isVolatile, unsigned Alignment) {
3091  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3092  return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, Chain, Ptr, Undef,
3093                 SV, SVOffset, VT, isVolatile, Alignment);
3094}
3095
3096SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
3097                                   SDOperand Chain, SDOperand Ptr,
3098                                   const Value *SV,
3099                                   int SVOffset, MVT::ValueType EVT,
3100                                   bool isVolatile, unsigned Alignment) {
3101  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3102  return getLoad(ISD::UNINDEXED, ExtType, VT, Chain, Ptr, Undef,
3103                 SV, SVOffset, EVT, isVolatile, Alignment);
3104}
3105
3106SDOperand
3107SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
3108                             SDOperand Offset, ISD::MemIndexedMode AM) {
3109  LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
3110  assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
3111         "Load is already a indexed load!");
3112  return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(),
3113                 LD->getChain(), Base, Offset, LD->getSrcValue(),
3114                 LD->getSrcValueOffset(), LD->getMemoryVT(),
3115                 LD->isVolatile(), LD->getAlignment());
3116}
3117
3118SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
3119                                 SDOperand Ptr, const Value *SV, int SVOffset,
3120                                 bool isVolatile, unsigned Alignment) {
3121  MVT::ValueType VT = Val.getValueType();
3122
3123  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3124    const Type *Ty = 0;
3125    if (VT != MVT::iPTR) {
3126      Ty = MVT::getTypeForValueType(VT);
3127    } else if (SV) {
3128      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3129      assert(PT && "Value for store must be a pointer");
3130      Ty = PT->getElementType();
3131    }
3132    assert(Ty && "Could not get type information for store");
3133    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3134  }
3135  SDVTList VTs = getVTList(MVT::Other);
3136  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3137  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3138  FoldingSetNodeID ID;
3139  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3140  ID.AddInteger(ISD::UNINDEXED);
3141  ID.AddInteger(false);
3142  ID.AddInteger((unsigned int)VT);
3143  ID.AddInteger(Alignment);
3144  ID.AddInteger(isVolatile);
3145  void *IP = 0;
3146  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3147    return SDOperand(E, 0);
3148  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
3149                              VT, SV, SVOffset, Alignment, isVolatile);
3150  CSEMap.InsertNode(N, IP);
3151  AllNodes.push_back(N);
3152  return SDOperand(N, 0);
3153}
3154
3155SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
3156                                      SDOperand Ptr, const Value *SV,
3157                                      int SVOffset, MVT::ValueType SVT,
3158                                      bool isVolatile, unsigned Alignment) {
3159  MVT::ValueType VT = Val.getValueType();
3160
3161  if (VT == SVT)
3162    return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
3163
3164  assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
3165         "Not a truncation?");
3166  assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
3167         "Can't do FP-INT conversion!");
3168
3169  if (Alignment == 0) { // Ensure that codegen never sees alignment 0
3170    const Type *Ty = 0;
3171    if (VT != MVT::iPTR) {
3172      Ty = MVT::getTypeForValueType(VT);
3173    } else if (SV) {
3174      const PointerType *PT = dyn_cast<PointerType>(SV->getType());
3175      assert(PT && "Value for store must be a pointer");
3176      Ty = PT->getElementType();
3177    }
3178    assert(Ty && "Could not get type information for store");
3179    Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
3180  }
3181  SDVTList VTs = getVTList(MVT::Other);
3182  SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
3183  SDOperand Ops[] = { Chain, Val, Ptr, Undef };
3184  FoldingSetNodeID ID;
3185  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3186  ID.AddInteger(ISD::UNINDEXED);
3187  ID.AddInteger(1);
3188  ID.AddInteger((unsigned int)SVT);
3189  ID.AddInteger(Alignment);
3190  ID.AddInteger(isVolatile);
3191  void *IP = 0;
3192  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3193    return SDOperand(E, 0);
3194  SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
3195                              SVT, SV, SVOffset, Alignment, isVolatile);
3196  CSEMap.InsertNode(N, IP);
3197  AllNodes.push_back(N);
3198  return SDOperand(N, 0);
3199}
3200
3201SDOperand
3202SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
3203                              SDOperand Offset, ISD::MemIndexedMode AM) {
3204  StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
3205  assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
3206         "Store is already a indexed store!");
3207  SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
3208  SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
3209  FoldingSetNodeID ID;
3210  AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
3211  ID.AddInteger(AM);
3212  ID.AddInteger(ST->isTruncatingStore());
3213  ID.AddInteger((unsigned int)(ST->getMemoryVT()));
3214  ID.AddInteger(ST->getAlignment());
3215  ID.AddInteger(ST->isVolatile());
3216  void *IP = 0;
3217  if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3218    return SDOperand(E, 0);
3219  SDNode *N = new StoreSDNode(Ops, VTs, AM,
3220                              ST->isTruncatingStore(), ST->getMemoryVT(),
3221                              ST->getSrcValue(), ST->getSrcValueOffset(),
3222                              ST->getAlignment(), ST->isVolatile());
3223  CSEMap.InsertNode(N, IP);
3224  AllNodes.push_back(N);
3225  return SDOperand(N, 0);
3226}
3227
3228SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
3229                                 SDOperand Chain, SDOperand Ptr,
3230                                 SDOperand SV) {
3231  SDOperand Ops[] = { Chain, Ptr, SV };
3232  return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
3233}
3234
3235SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
3236                                SDOperandPtr Ops, unsigned NumOps) {
3237  switch (NumOps) {
3238  case 0: return getNode(Opcode, VT);
3239  case 1: return getNode(Opcode, VT, Ops[0]);
3240  case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
3241  case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
3242  default: break;
3243  }
3244
3245  switch (Opcode) {
3246  default: break;
3247  case ISD::SELECT_CC: {
3248    assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
3249    assert(Ops[0].getValueType() == Ops[1].getValueType() &&
3250           "LHS and RHS of condition must have same type!");
3251    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3252           "True and False arms of SelectCC must have same type!");
3253    assert(Ops[2].getValueType() == VT &&
3254           "select_cc node must be of same type as true and false value!");
3255    break;
3256  }
3257  case ISD::BR_CC: {
3258    assert(NumOps == 5 && "BR_CC takes 5 operands!");
3259    assert(Ops[2].getValueType() == Ops[3].getValueType() &&
3260           "LHS/RHS of comparison should match types!");
3261    break;
3262  }
3263  }
3264
3265  // Memoize nodes.
3266  SDNode *N;
3267  SDVTList VTs = getVTList(VT);
3268  if (VT != MVT::Flag) {
3269    FoldingSetNodeID ID;
3270    AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
3271    void *IP = 0;
3272    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3273      return SDOperand(E, 0);
3274    N = new SDNode(Opcode, VTs, Ops, NumOps);
3275    CSEMap.InsertNode(N, IP);
3276  } else {
3277    N = new SDNode(Opcode, VTs, Ops, NumOps);
3278  }
3279  AllNodes.push_back(N);
3280  return SDOperand(N, 0);
3281}
3282
3283SDOperand SelectionDAG::getNode(unsigned Opcode,
3284                                std::vector<MVT::ValueType> &ResultTys,
3285                                SDOperandPtr Ops, unsigned NumOps) {
3286  return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
3287                 Ops, NumOps);
3288}
3289
3290SDOperand SelectionDAG::getNode(unsigned Opcode,
3291                                const MVT::ValueType *VTs, unsigned NumVTs,
3292                                SDOperandPtr Ops, unsigned NumOps) {
3293  if (NumVTs == 1)
3294    return getNode(Opcode, VTs[0], Ops, NumOps);
3295  return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
3296}
3297
3298SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3299                                SDOperandPtr Ops, unsigned NumOps) {
3300  if (VTList.NumVTs == 1)
3301    return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
3302
3303  switch (Opcode) {
3304  // FIXME: figure out how to safely handle things like
3305  // int foo(int x) { return 1 << (x & 255); }
3306  // int bar() { return foo(256); }
3307#if 0
3308  case ISD::SRA_PARTS:
3309  case ISD::SRL_PARTS:
3310  case ISD::SHL_PARTS:
3311    if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3312        cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
3313      return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3314    else if (N3.getOpcode() == ISD::AND)
3315      if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
3316        // If the and is only masking out bits that cannot effect the shift,
3317        // eliminate the and.
3318        unsigned NumBits = MVT::getSizeInBits(VT)*2;
3319        if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
3320          return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
3321      }
3322    break;
3323#endif
3324  }
3325
3326  // Memoize the node unless it returns a flag.
3327  SDNode *N;
3328  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3329    FoldingSetNodeID ID;
3330    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3331    void *IP = 0;
3332    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3333      return SDOperand(E, 0);
3334    if (NumOps == 1)
3335      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3336    else if (NumOps == 2)
3337      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3338    else if (NumOps == 3)
3339      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3340    else
3341      N = new SDNode(Opcode, VTList, Ops, NumOps);
3342    CSEMap.InsertNode(N, IP);
3343  } else {
3344    if (NumOps == 1)
3345      N = new UnarySDNode(Opcode, VTList, Ops[0]);
3346    else if (NumOps == 2)
3347      N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
3348    else if (NumOps == 3)
3349      N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
3350    else
3351      N = new SDNode(Opcode, VTList, Ops, NumOps);
3352  }
3353  AllNodes.push_back(N);
3354  return SDOperand(N, 0);
3355}
3356
3357SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
3358  return getNode(Opcode, VTList, (SDOperand*)0, 0);
3359}
3360
3361SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3362                                SDOperand N1) {
3363  SDOperand Ops[] = { N1 };
3364  return getNode(Opcode, VTList, Ops, 1);
3365}
3366
3367SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3368                                SDOperand N1, SDOperand N2) {
3369  SDOperand Ops[] = { N1, N2 };
3370  return getNode(Opcode, VTList, Ops, 2);
3371}
3372
3373SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3374                                SDOperand N1, SDOperand N2, SDOperand N3) {
3375  SDOperand Ops[] = { N1, N2, N3 };
3376  return getNode(Opcode, VTList, Ops, 3);
3377}
3378
3379SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3380                                SDOperand N1, SDOperand N2, SDOperand N3,
3381                                SDOperand N4) {
3382  SDOperand Ops[] = { N1, N2, N3, N4 };
3383  return getNode(Opcode, VTList, Ops, 4);
3384}
3385
3386SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
3387                                SDOperand N1, SDOperand N2, SDOperand N3,
3388                                SDOperand N4, SDOperand N5) {
3389  SDOperand Ops[] = { N1, N2, N3, N4, N5 };
3390  return getNode(Opcode, VTList, Ops, 5);
3391}
3392
3393SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
3394  return makeVTList(SDNode::getValueTypeList(VT), 1);
3395}
3396
3397SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
3398  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3399       E = VTList.end(); I != E; ++I) {
3400    if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
3401      return makeVTList(&(*I)[0], 2);
3402  }
3403  std::vector<MVT::ValueType> V;
3404  V.push_back(VT1);
3405  V.push_back(VT2);
3406  VTList.push_front(V);
3407  return makeVTList(&(*VTList.begin())[0], 2);
3408}
3409SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
3410                                 MVT::ValueType VT3) {
3411  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3412       E = VTList.end(); I != E; ++I) {
3413    if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
3414        (*I)[2] == VT3)
3415      return makeVTList(&(*I)[0], 3);
3416  }
3417  std::vector<MVT::ValueType> V;
3418  V.push_back(VT1);
3419  V.push_back(VT2);
3420  V.push_back(VT3);
3421  VTList.push_front(V);
3422  return makeVTList(&(*VTList.begin())[0], 3);
3423}
3424
3425SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
3426  switch (NumVTs) {
3427    case 0: assert(0 && "Cannot have nodes without results!");
3428    case 1: return getVTList(VTs[0]);
3429    case 2: return getVTList(VTs[0], VTs[1]);
3430    case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
3431    default: break;
3432  }
3433
3434  for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
3435       E = VTList.end(); I != E; ++I) {
3436    if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
3437
3438    bool NoMatch = false;
3439    for (unsigned i = 2; i != NumVTs; ++i)
3440      if (VTs[i] != (*I)[i]) {
3441        NoMatch = true;
3442        break;
3443      }
3444    if (!NoMatch)
3445      return makeVTList(&*I->begin(), NumVTs);
3446  }
3447
3448  VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
3449  return makeVTList(&*VTList.begin()->begin(), NumVTs);
3450}
3451
3452
3453/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
3454/// specified operands.  If the resultant node already exists in the DAG,
3455/// this does not modify the specified node, instead it returns the node that
3456/// already exists.  If the resultant node does not exist in the DAG, the
3457/// input node is returned.  As a degenerate case, if you specify the same
3458/// input operands as the node already has, the input node is returned.
3459SDOperand SelectionDAG::
3460UpdateNodeOperands(SDOperand InN, SDOperand Op) {
3461  SDNode *N = InN.Val;
3462  assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
3463
3464  // Check to see if there is no change.
3465  if (Op == N->getOperand(0)) return InN;
3466
3467  // See if the modified node already exists.
3468  void *InsertPos = 0;
3469  if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
3470    return SDOperand(Existing, InN.ResNo);
3471
3472  // Nope it doesn't.  Remove the node from it's current place in the maps.
3473  if (InsertPos)
3474    RemoveNodeFromCSEMaps(N);
3475
3476  // Now we update the operands.
3477  N->OperandList[0].getVal()->removeUser(0, N);
3478  N->OperandList[0] = Op;
3479  N->OperandList[0].setUser(N);
3480  Op.Val->addUser(0, N);
3481
3482  // If this gets put into a CSE map, add it.
3483  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3484  return InN;
3485}
3486
3487SDOperand SelectionDAG::
3488UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
3489  SDNode *N = InN.Val;
3490  assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
3491
3492  // Check to see if there is no change.
3493  if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
3494    return InN;   // No operands changed, just return the input node.
3495
3496  // See if the modified node already exists.
3497  void *InsertPos = 0;
3498  if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
3499    return SDOperand(Existing, InN.ResNo);
3500
3501  // Nope it doesn't.  Remove the node from it's current place in the maps.
3502  if (InsertPos)
3503    RemoveNodeFromCSEMaps(N);
3504
3505  // Now we update the operands.
3506  if (N->OperandList[0] != Op1) {
3507    N->OperandList[0].getVal()->removeUser(0, N);
3508    N->OperandList[0] = Op1;
3509    N->OperandList[0].setUser(N);
3510    Op1.Val->addUser(0, N);
3511  }
3512  if (N->OperandList[1] != Op2) {
3513    N->OperandList[1].getVal()->removeUser(1, N);
3514    N->OperandList[1] = Op2;
3515    N->OperandList[1].setUser(N);
3516    Op2.Val->addUser(1, N);
3517  }
3518
3519  // If this gets put into a CSE map, add it.
3520  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3521  return InN;
3522}
3523
3524SDOperand SelectionDAG::
3525UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
3526  SDOperand Ops[] = { Op1, Op2, Op3 };
3527  return UpdateNodeOperands(N, Ops, 3);
3528}
3529
3530SDOperand SelectionDAG::
3531UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3532                   SDOperand Op3, SDOperand Op4) {
3533  SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
3534  return UpdateNodeOperands(N, Ops, 4);
3535}
3536
3537SDOperand SelectionDAG::
3538UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
3539                   SDOperand Op3, SDOperand Op4, SDOperand Op5) {
3540  SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
3541  return UpdateNodeOperands(N, Ops, 5);
3542}
3543
3544SDOperand SelectionDAG::
3545UpdateNodeOperands(SDOperand InN, SDOperandPtr Ops, unsigned NumOps) {
3546  SDNode *N = InN.Val;
3547  assert(N->getNumOperands() == NumOps &&
3548         "Update with wrong number of operands");
3549
3550  // Check to see if there is no change.
3551  bool AnyChange = false;
3552  for (unsigned i = 0; i != NumOps; ++i) {
3553    if (Ops[i] != N->getOperand(i)) {
3554      AnyChange = true;
3555      break;
3556    }
3557  }
3558
3559  // No operands changed, just return the input node.
3560  if (!AnyChange) return InN;
3561
3562  // See if the modified node already exists.
3563  void *InsertPos = 0;
3564  if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
3565    return SDOperand(Existing, InN.ResNo);
3566
3567  // Nope it doesn't.  Remove the node from its current place in the maps.
3568  if (InsertPos)
3569    RemoveNodeFromCSEMaps(N);
3570
3571  // Now we update the operands.
3572  for (unsigned i = 0; i != NumOps; ++i) {
3573    if (N->OperandList[i] != Ops[i]) {
3574      N->OperandList[i].getVal()->removeUser(i, N);
3575      N->OperandList[i] = Ops[i];
3576      N->OperandList[i].setUser(N);
3577      Ops[i].Val->addUser(i, N);
3578    }
3579  }
3580
3581  // If this gets put into a CSE map, add it.
3582  if (InsertPos) CSEMap.InsertNode(N, InsertPos);
3583  return InN;
3584}
3585
3586/// MorphNodeTo - This frees the operands of the current node, resets the
3587/// opcode, types, and operands to the specified value.  This should only be
3588/// used by the SelectionDAG class.
3589void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
3590                         SDOperandPtr Ops, unsigned NumOps) {
3591  NodeType = Opc;
3592  ValueList = L.VTs;
3593  NumValues = L.NumVTs;
3594
3595  // Clear the operands list, updating used nodes to remove this from their
3596  // use list.
3597  for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
3598    I->getVal()->removeUser(std::distance(op_begin(), I), this);
3599
3600  // If NumOps is larger than the # of operands we currently have, reallocate
3601  // the operand list.
3602  if (NumOps > NumOperands) {
3603    if (OperandsNeedDelete) {
3604      delete [] OperandList;
3605    }
3606    OperandList = new SDUse[NumOps];
3607    OperandsNeedDelete = true;
3608  }
3609
3610  // Assign the new operands.
3611  NumOperands = NumOps;
3612
3613  for (unsigned i = 0, e = NumOps; i != e; ++i) {
3614    OperandList[i] = Ops[i];
3615    OperandList[i].setUser(this);
3616    SDNode *N = OperandList[i].getVal();
3617    N->addUser(i, this);
3618    ++N->UsesSize;
3619  }
3620}
3621
3622/// SelectNodeTo - These are used for target selectors to *mutate* the
3623/// specified node to have the specified return type, Target opcode, and
3624/// operands.  Note that target opcodes are stored as
3625/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
3626///
3627/// Note that SelectNodeTo returns the resultant node.  If there is already a
3628/// node of the specified opcode and operands, it returns that node instead of
3629/// the current one.
3630SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3631                                   MVT::ValueType VT) {
3632  SDVTList VTs = getVTList(VT);
3633  FoldingSetNodeID ID;
3634  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, (SDOperand*)0, 0);
3635  void *IP = 0;
3636  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3637    return ON;
3638
3639  RemoveNodeFromCSEMaps(N);
3640
3641  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, SDOperandPtr(), 0);
3642
3643  CSEMap.InsertNode(N, IP);
3644  return N;
3645}
3646
3647SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3648                                   MVT::ValueType VT, SDOperand Op1) {
3649  // If an identical node already exists, use it.
3650  SDVTList VTs = getVTList(VT);
3651  SDOperand Ops[] = { Op1 };
3652
3653  FoldingSetNodeID ID;
3654  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3655  void *IP = 0;
3656  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3657    return ON;
3658
3659  RemoveNodeFromCSEMaps(N);
3660  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
3661  CSEMap.InsertNode(N, IP);
3662  return N;
3663}
3664
3665SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3666                                   MVT::ValueType VT, SDOperand Op1,
3667                                   SDOperand Op2) {
3668  // If an identical node already exists, use it.
3669  SDVTList VTs = getVTList(VT);
3670  SDOperand Ops[] = { Op1, Op2 };
3671
3672  FoldingSetNodeID ID;
3673  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3674  void *IP = 0;
3675  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3676    return ON;
3677
3678  RemoveNodeFromCSEMaps(N);
3679
3680  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3681
3682  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3683  return N;
3684}
3685
3686SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3687                                   MVT::ValueType VT, SDOperand Op1,
3688                                   SDOperand Op2, SDOperand Op3) {
3689  // If an identical node already exists, use it.
3690  SDVTList VTs = getVTList(VT);
3691  SDOperand Ops[] = { Op1, Op2, Op3 };
3692  FoldingSetNodeID ID;
3693  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3694  void *IP = 0;
3695  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3696    return ON;
3697
3698  RemoveNodeFromCSEMaps(N);
3699
3700  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3701
3702  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3703  return N;
3704}
3705
3706SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3707                                   MVT::ValueType VT, SDOperandPtr Ops,
3708                                   unsigned NumOps) {
3709  // If an identical node already exists, use it.
3710  SDVTList VTs = getVTList(VT);
3711  FoldingSetNodeID ID;
3712  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3713  void *IP = 0;
3714  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3715    return ON;
3716
3717  RemoveNodeFromCSEMaps(N);
3718  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3719
3720  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3721  return N;
3722}
3723
3724SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3725                                   MVT::ValueType VT1, MVT::ValueType VT2,
3726                                   SDOperand Op1, SDOperand Op2) {
3727  SDVTList VTs = getVTList(VT1, VT2);
3728  FoldingSetNodeID ID;
3729  SDOperand Ops[] = { Op1, Op2 };
3730  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3731  void *IP = 0;
3732  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3733    return ON;
3734
3735  RemoveNodeFromCSEMaps(N);
3736  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3737  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3738  return N;
3739}
3740
3741SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3742                                   MVT::ValueType VT1, MVT::ValueType VT2,
3743                                   SDOperand Op1, SDOperand Op2,
3744                                   SDOperand Op3) {
3745  // If an identical node already exists, use it.
3746  SDVTList VTs = getVTList(VT1, VT2);
3747  SDOperand Ops[] = { Op1, Op2, Op3 };
3748  FoldingSetNodeID ID;
3749  AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3750  void *IP = 0;
3751  if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3752    return ON;
3753
3754  RemoveNodeFromCSEMaps(N);
3755
3756  N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3757  CSEMap.InsertNode(N, IP);   // Memoize the new node.
3758  return N;
3759}
3760
3761
3762/// getTargetNode - These are used for target selectors to create a new node
3763/// with specified return type(s), target opcode, and operands.
3764///
3765/// Note that getTargetNode returns the resultant node.  If there is already a
3766/// node of the specified opcode and operands, it returns that node instead of
3767/// the current one.
3768SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3769  return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3770}
3771SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3772                                    SDOperand Op1) {
3773  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3774}
3775SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3776                                    SDOperand Op1, SDOperand Op2) {
3777  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3778}
3779SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3780                                    SDOperand Op1, SDOperand Op2,
3781                                    SDOperand Op3) {
3782  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3783}
3784SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3785                                    SDOperandPtr Ops, unsigned NumOps) {
3786  return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3787}
3788SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3789                                    MVT::ValueType VT2) {
3790  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3791  SDOperand Op;
3792  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3793}
3794SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3795                                    MVT::ValueType VT2, SDOperand Op1) {
3796  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3797  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3798}
3799SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3800                                    MVT::ValueType VT2, SDOperand Op1,
3801                                    SDOperand Op2) {
3802  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3803  SDOperand Ops[] = { Op1, Op2 };
3804  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3805}
3806SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3807                                    MVT::ValueType VT2, SDOperand Op1,
3808                                    SDOperand Op2, SDOperand Op3) {
3809  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3810  SDOperand Ops[] = { Op1, Op2, Op3 };
3811  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3812}
3813SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3814                                    MVT::ValueType VT2,
3815                                    SDOperandPtr Ops, unsigned NumOps) {
3816  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3817  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3818}
3819SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3820                                    MVT::ValueType VT2, MVT::ValueType VT3,
3821                                    SDOperand Op1, SDOperand Op2) {
3822  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3823  SDOperand Ops[] = { Op1, Op2 };
3824  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3825}
3826SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3827                                    MVT::ValueType VT2, MVT::ValueType VT3,
3828                                    SDOperand Op1, SDOperand Op2,
3829                                    SDOperand Op3) {
3830  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3831  SDOperand Ops[] = { Op1, Op2, Op3 };
3832  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3833}
3834SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3835                                    MVT::ValueType VT2, MVT::ValueType VT3,
3836                                    SDOperandPtr Ops, unsigned NumOps) {
3837  const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3838  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3839}
3840SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3841                                    MVT::ValueType VT2, MVT::ValueType VT3,
3842                                    MVT::ValueType VT4,
3843                                    SDOperandPtr Ops, unsigned NumOps) {
3844  std::vector<MVT::ValueType> VTList;
3845  VTList.push_back(VT1);
3846  VTList.push_back(VT2);
3847  VTList.push_back(VT3);
3848  VTList.push_back(VT4);
3849  const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3850  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3851}
3852SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3853                                    std::vector<MVT::ValueType> &ResultTys,
3854                                    SDOperandPtr Ops, unsigned NumOps) {
3855  const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3856  return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3857                 Ops, NumOps).Val;
3858}
3859
3860/// getNodeIfExists - Get the specified node if it's already available, or
3861/// else return NULL.
3862SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
3863                                      SDOperandPtr Ops, unsigned NumOps) {
3864  if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
3865    FoldingSetNodeID ID;
3866    AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
3867    void *IP = 0;
3868    if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
3869      return E;
3870  }
3871  return NULL;
3872}
3873
3874
3875/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3876/// This can cause recursive merging of nodes in the DAG.
3877///
3878/// This version assumes From has a single result value.
3879///
3880void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand To,
3881                                      DAGUpdateListener *UpdateListener) {
3882  SDNode *From = FromN.Val;
3883  assert(From->getNumValues() == 1 && FromN.ResNo == 0 &&
3884         "Cannot replace with this method!");
3885  assert(From != To.Val && "Cannot replace uses of with self");
3886
3887  while (!From->use_empty()) {
3888    SDNode::use_iterator UI = From->use_begin();
3889    SDNode *U = UI->getUser();
3890
3891    // This node is about to morph, remove its old self from the CSE maps.
3892    RemoveNodeFromCSEMaps(U);
3893    int operandNum = 0;
3894    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3895         I != E; ++I, ++operandNum)
3896      if (I->getVal() == From) {
3897        From->removeUser(operandNum, U);
3898        *I = To;
3899        I->setUser(U);
3900        To.Val->addUser(operandNum, U);
3901      }
3902
3903    // Now that we have modified U, add it back to the CSE maps.  If it already
3904    // exists there, recursively merge the results together.
3905    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3906      ReplaceAllUsesWith(U, Existing, UpdateListener);
3907      // U is now dead.  Inform the listener if it exists and delete it.
3908      if (UpdateListener)
3909        UpdateListener->NodeDeleted(U);
3910      DeleteNodeNotInCSEMaps(U);
3911    } else {
3912      // If the node doesn't already exist, we updated it.  Inform a listener if
3913      // it exists.
3914      if (UpdateListener)
3915        UpdateListener->NodeUpdated(U);
3916    }
3917  }
3918}
3919
3920/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3921/// This can cause recursive merging of nodes in the DAG.
3922///
3923/// This version assumes From/To have matching types and numbers of result
3924/// values.
3925///
3926void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3927                                      DAGUpdateListener *UpdateListener) {
3928  assert(From != To && "Cannot replace uses of with self");
3929  assert(From->getNumValues() == To->getNumValues() &&
3930         "Cannot use this version of ReplaceAllUsesWith!");
3931  if (From->getNumValues() == 1)   // If possible, use the faster version.
3932    return ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0),
3933                              UpdateListener);
3934
3935  while (!From->use_empty()) {
3936    SDNode::use_iterator UI = From->use_begin();
3937    SDNode *U = UI->getUser();
3938
3939    // This node is about to morph, remove its old self from the CSE maps.
3940    RemoveNodeFromCSEMaps(U);
3941    int operandNum = 0;
3942    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3943         I != E; ++I, ++operandNum)
3944      if (I->getVal() == From) {
3945        From->removeUser(operandNum, U);
3946        I->getVal() = To;
3947        To->addUser(operandNum, U);
3948      }
3949
3950    // Now that we have modified U, add it back to the CSE maps.  If it already
3951    // exists there, recursively merge the results together.
3952    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3953      ReplaceAllUsesWith(U, Existing, UpdateListener);
3954      // U is now dead.  Inform the listener if it exists and delete it.
3955      if (UpdateListener)
3956        UpdateListener->NodeDeleted(U);
3957      DeleteNodeNotInCSEMaps(U);
3958    } else {
3959      // If the node doesn't already exist, we updated it.  Inform a listener if
3960      // it exists.
3961      if (UpdateListener)
3962        UpdateListener->NodeUpdated(U);
3963    }
3964  }
3965}
3966
3967/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3968/// This can cause recursive merging of nodes in the DAG.
3969///
3970/// This version can replace From with any result values.  To must match the
3971/// number and types of values returned by From.
3972void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3973                                      SDOperandPtr To,
3974                                      DAGUpdateListener *UpdateListener) {
3975  if (From->getNumValues() == 1)  // Handle the simple case efficiently.
3976    return ReplaceAllUsesWith(SDOperand(From, 0), To[0], UpdateListener);
3977
3978  while (!From->use_empty()) {
3979    SDNode::use_iterator UI = From->use_begin();
3980    SDNode *U = UI->getUser();
3981
3982    // This node is about to morph, remove its old self from the CSE maps.
3983    RemoveNodeFromCSEMaps(U);
3984    int operandNum = 0;
3985    for (SDNode::op_iterator I = U->op_begin(), E = U->op_end();
3986         I != E; ++I, ++operandNum)
3987      if (I->getVal() == From) {
3988        const SDOperand &ToOp = To[I->getSDOperand().ResNo];
3989        From->removeUser(operandNum, U);
3990        *I = ToOp;
3991        I->setUser(U);
3992        ToOp.Val->addUser(operandNum, U);
3993      }
3994
3995    // Now that we have modified U, add it back to the CSE maps.  If it already
3996    // exists there, recursively merge the results together.
3997    if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3998      ReplaceAllUsesWith(U, Existing, UpdateListener);
3999      // U is now dead.  Inform the listener if it exists and delete it.
4000      if (UpdateListener)
4001        UpdateListener->NodeDeleted(U);
4002      DeleteNodeNotInCSEMaps(U);
4003    } else {
4004      // If the node doesn't already exist, we updated it.  Inform a listener if
4005      // it exists.
4006      if (UpdateListener)
4007        UpdateListener->NodeUpdated(U);
4008    }
4009  }
4010}
4011
4012namespace {
4013  /// ChainedSetUpdaterListener - This class is a DAGUpdateListener that removes
4014  /// any deleted nodes from the set passed into its constructor and recursively
4015  /// notifies another update listener if specified.
4016  class ChainedSetUpdaterListener :
4017  public SelectionDAG::DAGUpdateListener {
4018    SmallSetVector<SDNode*, 16> &Set;
4019    SelectionDAG::DAGUpdateListener *Chain;
4020  public:
4021    ChainedSetUpdaterListener(SmallSetVector<SDNode*, 16> &set,
4022                              SelectionDAG::DAGUpdateListener *chain)
4023      : Set(set), Chain(chain) {}
4024
4025    virtual void NodeDeleted(SDNode *N) {
4026      Set.remove(N);
4027      if (Chain) Chain->NodeDeleted(N);
4028    }
4029    virtual void NodeUpdated(SDNode *N) {
4030      if (Chain) Chain->NodeUpdated(N);
4031    }
4032  };
4033}
4034
4035/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
4036/// uses of other values produced by From.Val alone.  The Deleted vector is
4037/// handled the same way as for ReplaceAllUsesWith.
4038void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
4039                                             DAGUpdateListener *UpdateListener){
4040  assert(From != To && "Cannot replace a value with itself");
4041
4042  // Handle the simple, trivial, case efficiently.
4043  if (From.Val->getNumValues() == 1) {
4044    ReplaceAllUsesWith(From, To, UpdateListener);
4045    return;
4046  }
4047
4048  if (From.use_empty()) return;
4049
4050  // Get all of the users of From.Val.  We want these in a nice,
4051  // deterministically ordered and uniqued set, so we use a SmallSetVector.
4052  SmallSetVector<SDNode*, 16> Users;
4053  for (SDNode::use_iterator UI = From.Val->use_begin(),
4054      E = From.Val->use_end(); UI != E; ++UI) {
4055    SDNode *User = UI->getUser();
4056    if (!Users.count(User))
4057      Users.insert(User);
4058  }
4059
4060  // When one of the recursive merges deletes nodes from the graph, we need to
4061  // make sure that UpdateListener is notified *and* that the node is removed
4062  // from Users if present.  CSUL does this.
4063  ChainedSetUpdaterListener CSUL(Users, UpdateListener);
4064
4065  while (!Users.empty()) {
4066    // We know that this user uses some value of From.  If it is the right
4067    // value, update it.
4068    SDNode *User = Users.back();
4069    Users.pop_back();
4070
4071    // Scan for an operand that matches From.
4072    SDNode::op_iterator Op = User->op_begin(), E = User->op_end();
4073    for (; Op != E; ++Op)
4074      if (*Op == From) break;
4075
4076    // If there are no matches, the user must use some other result of From.
4077    if (Op == E) continue;
4078
4079    // Okay, we know this user needs to be updated.  Remove its old self
4080    // from the CSE maps.
4081    RemoveNodeFromCSEMaps(User);
4082
4083    // Update all operands that match "From" in case there are multiple uses.
4084    for (; Op != E; ++Op) {
4085      if (*Op == From) {
4086        From.Val->removeUser(Op-User->op_begin(), User);
4087        *Op = To;
4088        Op->setUser(User);
4089        To.Val->addUser(Op-User->op_begin(), User);
4090      }
4091    }
4092
4093    // Now that we have modified User, add it back to the CSE maps.  If it
4094    // already exists there, recursively merge the results together.
4095    SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
4096    if (!Existing) {
4097      if (UpdateListener) UpdateListener->NodeUpdated(User);
4098      continue;  // Continue on to next user.
4099    }
4100
4101    // If there was already an existing matching node, use ReplaceAllUsesWith
4102    // to replace the dead one with the existing one.  This can cause
4103    // recursive merging of other unrelated nodes down the line.  The merging
4104    // can cause deletion of nodes that used the old value.  To handle this, we
4105    // use CSUL to remove them from the Users set.
4106    ReplaceAllUsesWith(User, Existing, &CSUL);
4107
4108    // User is now dead.  Notify a listener if present.
4109    if (UpdateListener) UpdateListener->NodeDeleted(User);
4110    DeleteNodeNotInCSEMaps(User);
4111  }
4112}
4113
4114/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
4115/// their allnodes order. It returns the maximum id.
4116unsigned SelectionDAG::AssignNodeIds() {
4117  unsigned Id = 0;
4118  for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
4119    SDNode *N = I;
4120    N->setNodeId(Id++);
4121  }
4122  return Id;
4123}
4124
4125/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
4126/// based on their topological order. It returns the maximum id and a vector
4127/// of the SDNodes* in assigned order by reference.
4128unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
4129  unsigned DAGSize = AllNodes.size();
4130  std::vector<unsigned> InDegree(DAGSize);
4131  std::vector<SDNode*> Sources;
4132
4133  // Use a two pass approach to avoid using a std::map which is slow.
4134  unsigned Id = 0;
4135  for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
4136    SDNode *N = I;
4137    N->setNodeId(Id++);
4138    unsigned Degree = N->use_size();
4139    InDegree[N->getNodeId()] = Degree;
4140    if (Degree == 0)
4141      Sources.push_back(N);
4142  }
4143
4144  TopOrder.clear();
4145  while (!Sources.empty()) {
4146    SDNode *N = Sources.back();
4147    Sources.pop_back();
4148    TopOrder.push_back(N);
4149    for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
4150      SDNode *P = I->getVal();
4151      unsigned Degree = --InDegree[P->getNodeId()];
4152      if (Degree == 0)
4153        Sources.push_back(P);
4154    }
4155  }
4156
4157  // Second pass, assign the actual topological order as node ids.
4158  Id = 0;
4159  for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
4160       TI != TE; ++TI)
4161    (*TI)->setNodeId(Id++);
4162
4163  return Id;
4164}
4165
4166
4167
4168//===----------------------------------------------------------------------===//
4169//                              SDNode Class
4170//===----------------------------------------------------------------------===//
4171
4172// Out-of-line virtual method to give class a home.
4173void SDNode::ANCHOR() {}
4174void UnarySDNode::ANCHOR() {}
4175void BinarySDNode::ANCHOR() {}
4176void TernarySDNode::ANCHOR() {}
4177void HandleSDNode::ANCHOR() {}
4178void StringSDNode::ANCHOR() {}
4179void ConstantSDNode::ANCHOR() {}
4180void ConstantFPSDNode::ANCHOR() {}
4181void GlobalAddressSDNode::ANCHOR() {}
4182void FrameIndexSDNode::ANCHOR() {}
4183void JumpTableSDNode::ANCHOR() {}
4184void ConstantPoolSDNode::ANCHOR() {}
4185void BasicBlockSDNode::ANCHOR() {}
4186void SrcValueSDNode::ANCHOR() {}
4187void MemOperandSDNode::ANCHOR() {}
4188void RegisterSDNode::ANCHOR() {}
4189void ExternalSymbolSDNode::ANCHOR() {}
4190void CondCodeSDNode::ANCHOR() {}
4191void ARG_FLAGSSDNode::ANCHOR() {}
4192void VTSDNode::ANCHOR() {}
4193void LoadSDNode::ANCHOR() {}
4194void StoreSDNode::ANCHOR() {}
4195void AtomicSDNode::ANCHOR() {}
4196
4197HandleSDNode::~HandleSDNode() {
4198  SDVTList VTs = { 0, 0 };
4199  MorphNodeTo(ISD::HANDLENODE, VTs, SDOperandPtr(), 0);  // Drops operand uses.
4200}
4201
4202GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
4203                                         MVT::ValueType VT, int o)
4204  : SDNode(isa<GlobalVariable>(GA) &&
4205           cast<GlobalVariable>(GA)->isThreadLocal() ?
4206           // Thread Local
4207           (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
4208           // Non Thread Local
4209           (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
4210           getSDVTList(VT)), Offset(o) {
4211  TheGlobal = const_cast<GlobalValue*>(GA);
4212}
4213
4214/// getMemOperand - Return a MachineMemOperand object describing the memory
4215/// reference performed by this load or store.
4216MachineMemOperand LSBaseSDNode::getMemOperand() const {
4217  int Size = (MVT::getSizeInBits(getMemoryVT()) + 7) >> 3;
4218  int Flags =
4219    getOpcode() == ISD::LOAD ? MachineMemOperand::MOLoad :
4220                               MachineMemOperand::MOStore;
4221  if (IsVolatile) Flags |= MachineMemOperand::MOVolatile;
4222
4223  // Check if the load references a frame index, and does not have
4224  // an SV attached.
4225  const FrameIndexSDNode *FI =
4226    dyn_cast<const FrameIndexSDNode>(getBasePtr().Val);
4227  if (!getSrcValue() && FI)
4228    return MachineMemOperand(PseudoSourceValue::getFixedStack(), Flags,
4229                             FI->getIndex(), Size, Alignment);
4230  else
4231    return MachineMemOperand(getSrcValue(), Flags,
4232                             getSrcValueOffset(), Size, Alignment);
4233}
4234
4235/// Profile - Gather unique data for the node.
4236///
4237void SDNode::Profile(FoldingSetNodeID &ID) {
4238  AddNodeIDNode(ID, this);
4239}
4240
4241/// getValueTypeList - Return a pointer to the specified value type.
4242///
4243const MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
4244  if (MVT::isExtendedVT(VT)) {
4245    static std::set<MVT::ValueType> EVTs;
4246    return &(*EVTs.insert(VT).first);
4247  } else {
4248    static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
4249    VTs[VT] = VT;
4250    return &VTs[VT];
4251  }
4252}
4253
4254/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
4255/// indicated value.  This method ignores uses of other values defined by this
4256/// operation.
4257bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
4258  assert(Value < getNumValues() && "Bad value!");
4259
4260  // If there is only one value, this is easy.
4261  if (getNumValues() == 1)
4262    return use_size() == NUses;
4263  if (use_size() < NUses) return false;
4264
4265  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4266
4267  SmallPtrSet<SDNode*, 32> UsersHandled;
4268
4269  // TODO: Only iterate over uses of a given value of the node
4270  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4271    if (*UI == TheValue) {
4272      if (NUses == 0)
4273        return false;
4274      --NUses;
4275    }
4276  }
4277
4278  // Found exactly the right number of uses?
4279  return NUses == 0;
4280}
4281
4282
4283/// hasAnyUseOfValue - Return true if there are any use of the indicated
4284/// value. This method ignores uses of other values defined by this operation.
4285bool SDNode::hasAnyUseOfValue(unsigned Value) const {
4286  assert(Value < getNumValues() && "Bad value!");
4287
4288  if (use_empty()) return false;
4289
4290  SDOperand TheValue(const_cast<SDNode *>(this), Value);
4291
4292  SmallPtrSet<SDNode*, 32> UsersHandled;
4293
4294  for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
4295    SDNode *User = UI->getUser();
4296    if (User->getNumOperands() == 1 ||
4297        UsersHandled.insert(User))     // First time we've seen this?
4298      for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
4299        if (User->getOperand(i) == TheValue) {
4300          return true;
4301        }
4302  }
4303
4304  return false;
4305}
4306
4307
4308/// isOnlyUseOf - Return true if this node is the only use of N.
4309///
4310bool SDNode::isOnlyUseOf(SDNode *N) const {
4311  bool Seen = false;
4312  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
4313    SDNode *User = I->getUser();
4314    if (User == this)
4315      Seen = true;
4316    else
4317      return false;
4318  }
4319
4320  return Seen;
4321}
4322
4323/// isOperand - Return true if this node is an operand of N.
4324///
4325bool SDOperand::isOperandOf(SDNode *N) const {
4326  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4327    if (*this == N->getOperand(i))
4328      return true;
4329  return false;
4330}
4331
4332bool SDNode::isOperandOf(SDNode *N) const {
4333  for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
4334    if (this == N->OperandList[i].getVal())
4335      return true;
4336  return false;
4337}
4338
4339/// reachesChainWithoutSideEffects - Return true if this operand (which must
4340/// be a chain) reaches the specified operand without crossing any
4341/// side-effecting instructions.  In practice, this looks through token
4342/// factors and non-volatile loads.  In order to remain efficient, this only
4343/// looks a couple of nodes in, it does not do an exhaustive search.
4344bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
4345                                               unsigned Depth) const {
4346  if (*this == Dest) return true;
4347
4348  // Don't search too deeply, we just want to be able to see through
4349  // TokenFactor's etc.
4350  if (Depth == 0) return false;
4351
4352  // If this is a token factor, all inputs to the TF happen in parallel.  If any
4353  // of the operands of the TF reach dest, then we can do the xform.
4354  if (getOpcode() == ISD::TokenFactor) {
4355    for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
4356      if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
4357        return true;
4358    return false;
4359  }
4360
4361  // Loads don't have side effects, look through them.
4362  if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
4363    if (!Ld->isVolatile())
4364      return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
4365  }
4366  return false;
4367}
4368
4369
4370static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
4371                            SmallPtrSet<SDNode *, 32> &Visited) {
4372  if (found || !Visited.insert(N))
4373    return;
4374
4375  for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
4376    SDNode *Op = N->getOperand(i).Val;
4377    if (Op == P) {
4378      found = true;
4379      return;
4380    }
4381    findPredecessor(Op, P, found, Visited);
4382  }
4383}
4384
4385/// isPredecessorOf - Return true if this node is a predecessor of N. This node
4386/// is either an operand of N or it can be reached by recursively traversing
4387/// up the operands.
4388/// NOTE: this is an expensive method. Use it carefully.
4389bool SDNode::isPredecessorOf(SDNode *N) const {
4390  SmallPtrSet<SDNode *, 32> Visited;
4391  bool found = false;
4392  findPredecessor(N, this, found, Visited);
4393  return found;
4394}
4395
4396uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
4397  assert(Num < NumOperands && "Invalid child # of SDNode!");
4398  return cast<ConstantSDNode>(OperandList[Num])->getValue();
4399}
4400
4401std::string SDNode::getOperationName(const SelectionDAG *G) const {
4402  switch (getOpcode()) {
4403  default:
4404    if (getOpcode() < ISD::BUILTIN_OP_END)
4405      return "<<Unknown DAG Node>>";
4406    else {
4407      if (G) {
4408        if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
4409          if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
4410            return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
4411
4412        TargetLowering &TLI = G->getTargetLoweringInfo();
4413        const char *Name =
4414          TLI.getTargetNodeName(getOpcode());
4415        if (Name) return Name;
4416      }
4417
4418      return "<<Unknown Target Node>>";
4419    }
4420
4421  case ISD::PREFETCH:      return "Prefetch";
4422  case ISD::MEMBARRIER:    return "MemBarrier";
4423  case ISD::ATOMIC_LCS:    return "AtomicLCS";
4424  case ISD::ATOMIC_LAS:    return "AtomicLAS";
4425  case ISD::ATOMIC_LSS:    return "AtomicLSS";
4426  case ISD::ATOMIC_LOAD_AND:  return "AtomicLoadAnd";
4427  case ISD::ATOMIC_LOAD_OR:   return "AtomicLoadOr";
4428  case ISD::ATOMIC_LOAD_XOR:  return "AtomicLoadXor";
4429  case ISD::ATOMIC_LOAD_MIN:  return "AtomicLoadMin";
4430  case ISD::ATOMIC_LOAD_MAX:  return "AtomicLoadMax";
4431  case ISD::ATOMIC_LOAD_UMIN: return "AtomicLoadUMin";
4432  case ISD::ATOMIC_LOAD_UMAX: return "AtomicLoadUMax";
4433  case ISD::ATOMIC_SWAP:   return "AtomicSWAP";
4434  case ISD::PCMARKER:      return "PCMarker";
4435  case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
4436  case ISD::SRCVALUE:      return "SrcValue";
4437  case ISD::MEMOPERAND:    return "MemOperand";
4438  case ISD::EntryToken:    return "EntryToken";
4439  case ISD::TokenFactor:   return "TokenFactor";
4440  case ISD::AssertSext:    return "AssertSext";
4441  case ISD::AssertZext:    return "AssertZext";
4442
4443  case ISD::STRING:        return "String";
4444  case ISD::BasicBlock:    return "BasicBlock";
4445  case ISD::ARG_FLAGS:     return "ArgFlags";
4446  case ISD::VALUETYPE:     return "ValueType";
4447  case ISD::Register:      return "Register";
4448
4449  case ISD::Constant:      return "Constant";
4450  case ISD::ConstantFP:    return "ConstantFP";
4451  case ISD::GlobalAddress: return "GlobalAddress";
4452  case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
4453  case ISD::FrameIndex:    return "FrameIndex";
4454  case ISD::JumpTable:     return "JumpTable";
4455  case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
4456  case ISD::RETURNADDR: return "RETURNADDR";
4457  case ISD::FRAMEADDR: return "FRAMEADDR";
4458  case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
4459  case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
4460  case ISD::EHSELECTION: return "EHSELECTION";
4461  case ISD::EH_RETURN: return "EH_RETURN";
4462  case ISD::ConstantPool:  return "ConstantPool";
4463  case ISD::ExternalSymbol: return "ExternalSymbol";
4464  case ISD::INTRINSIC_WO_CHAIN: {
4465    unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
4466    return Intrinsic::getName((Intrinsic::ID)IID);
4467  }
4468  case ISD::INTRINSIC_VOID:
4469  case ISD::INTRINSIC_W_CHAIN: {
4470    unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
4471    return Intrinsic::getName((Intrinsic::ID)IID);
4472  }
4473
4474  case ISD::BUILD_VECTOR:   return "BUILD_VECTOR";
4475  case ISD::TargetConstant: return "TargetConstant";
4476  case ISD::TargetConstantFP:return "TargetConstantFP";
4477  case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
4478  case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
4479  case ISD::TargetFrameIndex: return "TargetFrameIndex";
4480  case ISD::TargetJumpTable:  return "TargetJumpTable";
4481  case ISD::TargetConstantPool:  return "TargetConstantPool";
4482  case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
4483
4484  case ISD::CopyToReg:     return "CopyToReg";
4485  case ISD::CopyFromReg:   return "CopyFromReg";
4486  case ISD::UNDEF:         return "undef";
4487  case ISD::MERGE_VALUES:  return "merge_values";
4488  case ISD::INLINEASM:     return "inlineasm";
4489  case ISD::LABEL:         return "label";
4490  case ISD::DECLARE:       return "declare";
4491  case ISD::HANDLENODE:    return "handlenode";
4492  case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
4493  case ISD::CALL:          return "call";
4494
4495  // Unary operators
4496  case ISD::FABS:   return "fabs";
4497  case ISD::FNEG:   return "fneg";
4498  case ISD::FSQRT:  return "fsqrt";
4499  case ISD::FSIN:   return "fsin";
4500  case ISD::FCOS:   return "fcos";
4501  case ISD::FPOWI:  return "fpowi";
4502  case ISD::FPOW:   return "fpow";
4503
4504  // Binary operators
4505  case ISD::ADD:    return "add";
4506  case ISD::SUB:    return "sub";
4507  case ISD::MUL:    return "mul";
4508  case ISD::MULHU:  return "mulhu";
4509  case ISD::MULHS:  return "mulhs";
4510  case ISD::SDIV:   return "sdiv";
4511  case ISD::UDIV:   return "udiv";
4512  case ISD::SREM:   return "srem";
4513  case ISD::UREM:   return "urem";
4514  case ISD::SMUL_LOHI:  return "smul_lohi";
4515  case ISD::UMUL_LOHI:  return "umul_lohi";
4516  case ISD::SDIVREM:    return "sdivrem";
4517  case ISD::UDIVREM:    return "divrem";
4518  case ISD::AND:    return "and";
4519  case ISD::OR:     return "or";
4520  case ISD::XOR:    return "xor";
4521  case ISD::SHL:    return "shl";
4522  case ISD::SRA:    return "sra";
4523  case ISD::SRL:    return "srl";
4524  case ISD::ROTL:   return "rotl";
4525  case ISD::ROTR:   return "rotr";
4526  case ISD::FADD:   return "fadd";
4527  case ISD::FSUB:   return "fsub";
4528  case ISD::FMUL:   return "fmul";
4529  case ISD::FDIV:   return "fdiv";
4530  case ISD::FREM:   return "frem";
4531  case ISD::FCOPYSIGN: return "fcopysign";
4532  case ISD::FGETSIGN:  return "fgetsign";
4533
4534  case ISD::SETCC:       return "setcc";
4535  case ISD::VSETCC:      return "vsetcc";
4536  case ISD::SELECT:      return "select";
4537  case ISD::SELECT_CC:   return "select_cc";
4538  case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt";
4539  case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt";
4540  case ISD::CONCAT_VECTORS:      return "concat_vectors";
4541  case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector";
4542  case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector";
4543  case ISD::VECTOR_SHUFFLE:      return "vector_shuffle";
4544  case ISD::CARRY_FALSE:         return "carry_false";
4545  case ISD::ADDC:        return "addc";
4546  case ISD::ADDE:        return "adde";
4547  case ISD::SUBC:        return "subc";
4548  case ISD::SUBE:        return "sube";
4549  case ISD::SHL_PARTS:   return "shl_parts";
4550  case ISD::SRA_PARTS:   return "sra_parts";
4551  case ISD::SRL_PARTS:   return "srl_parts";
4552
4553  case ISD::EXTRACT_SUBREG:     return "extract_subreg";
4554  case ISD::INSERT_SUBREG:      return "insert_subreg";
4555
4556  // Conversion operators.
4557  case ISD::SIGN_EXTEND: return "sign_extend";
4558  case ISD::ZERO_EXTEND: return "zero_extend";
4559  case ISD::ANY_EXTEND:  return "any_extend";
4560  case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
4561  case ISD::TRUNCATE:    return "truncate";
4562  case ISD::FP_ROUND:    return "fp_round";
4563  case ISD::FLT_ROUNDS_: return "flt_rounds";
4564  case ISD::FP_ROUND_INREG: return "fp_round_inreg";
4565  case ISD::FP_EXTEND:   return "fp_extend";
4566
4567  case ISD::SINT_TO_FP:  return "sint_to_fp";
4568  case ISD::UINT_TO_FP:  return "uint_to_fp";
4569  case ISD::FP_TO_SINT:  return "fp_to_sint";
4570  case ISD::FP_TO_UINT:  return "fp_to_uint";
4571  case ISD::BIT_CONVERT: return "bit_convert";
4572
4573    // Control flow instructions
4574  case ISD::BR:      return "br";
4575  case ISD::BRIND:   return "brind";
4576  case ISD::BR_JT:   return "br_jt";
4577  case ISD::BRCOND:  return "brcond";
4578  case ISD::BR_CC:   return "br_cc";
4579  case ISD::RET:     return "ret";
4580  case ISD::CALLSEQ_START:  return "callseq_start";
4581  case ISD::CALLSEQ_END:    return "callseq_end";
4582
4583    // Other operators
4584  case ISD::LOAD:               return "load";
4585  case ISD::STORE:              return "store";
4586  case ISD::VAARG:              return "vaarg";
4587  case ISD::VACOPY:             return "vacopy";
4588  case ISD::VAEND:              return "vaend";
4589  case ISD::VASTART:            return "vastart";
4590  case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
4591  case ISD::EXTRACT_ELEMENT:    return "extract_element";
4592  case ISD::BUILD_PAIR:         return "build_pair";
4593  case ISD::STACKSAVE:          return "stacksave";
4594  case ISD::STACKRESTORE:       return "stackrestore";
4595  case ISD::TRAP:               return "trap";
4596
4597  // Bit manipulation
4598  case ISD::BSWAP:   return "bswap";
4599  case ISD::CTPOP:   return "ctpop";
4600  case ISD::CTTZ:    return "cttz";
4601  case ISD::CTLZ:    return "ctlz";
4602
4603  // Debug info
4604  case ISD::LOCATION: return "location";
4605  case ISD::DEBUG_LOC: return "debug_loc";
4606
4607  // Trampolines
4608  case ISD::TRAMPOLINE: return "trampoline";
4609
4610  case ISD::CONDCODE:
4611    switch (cast<CondCodeSDNode>(this)->get()) {
4612    default: assert(0 && "Unknown setcc condition!");
4613    case ISD::SETOEQ:  return "setoeq";
4614    case ISD::SETOGT:  return "setogt";
4615    case ISD::SETOGE:  return "setoge";
4616    case ISD::SETOLT:  return "setolt";
4617    case ISD::SETOLE:  return "setole";
4618    case ISD::SETONE:  return "setone";
4619
4620    case ISD::SETO:    return "seto";
4621    case ISD::SETUO:   return "setuo";
4622    case ISD::SETUEQ:  return "setue";
4623    case ISD::SETUGT:  return "setugt";
4624    case ISD::SETUGE:  return "setuge";
4625    case ISD::SETULT:  return "setult";
4626    case ISD::SETULE:  return "setule";
4627    case ISD::SETUNE:  return "setune";
4628
4629    case ISD::SETEQ:   return "seteq";
4630    case ISD::SETGT:   return "setgt";
4631    case ISD::SETGE:   return "setge";
4632    case ISD::SETLT:   return "setlt";
4633    case ISD::SETLE:   return "setle";
4634    case ISD::SETNE:   return "setne";
4635    }
4636  }
4637}
4638
4639const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
4640  switch (AM) {
4641  default:
4642    return "";
4643  case ISD::PRE_INC:
4644    return "<pre-inc>";
4645  case ISD::PRE_DEC:
4646    return "<pre-dec>";
4647  case ISD::POST_INC:
4648    return "<post-inc>";
4649  case ISD::POST_DEC:
4650    return "<post-dec>";
4651  }
4652}
4653
4654std::string ISD::ArgFlagsTy::getArgFlagsString() {
4655  std::string S = "< ";
4656
4657  if (isZExt())
4658    S += "zext ";
4659  if (isSExt())
4660    S += "sext ";
4661  if (isInReg())
4662    S += "inreg ";
4663  if (isSRet())
4664    S += "sret ";
4665  if (isByVal())
4666    S += "byval ";
4667  if (isNest())
4668    S += "nest ";
4669  if (getByValAlign())
4670    S += "byval-align:" + utostr(getByValAlign()) + " ";
4671  if (getOrigAlign())
4672    S += "orig-align:" + utostr(getOrigAlign()) + " ";
4673  if (getByValSize())
4674    S += "byval-size:" + utostr(getByValSize()) + " ";
4675  return S + ">";
4676}
4677
4678void SDNode::dump() const { dump(0); }
4679void SDNode::dump(const SelectionDAG *G) const {
4680  cerr << (void*)this << ": ";
4681
4682  for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
4683    if (i) cerr << ",";
4684    if (getValueType(i) == MVT::Other)
4685      cerr << "ch";
4686    else
4687      cerr << MVT::getValueTypeString(getValueType(i));
4688  }
4689  cerr << " = " << getOperationName(G);
4690
4691  cerr << " ";
4692  for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
4693    if (i) cerr << ", ";
4694    cerr << (void*)getOperand(i).Val;
4695    if (unsigned RN = getOperand(i).ResNo)
4696      cerr << ":" << RN;
4697  }
4698
4699  if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
4700    SDNode *Mask = getOperand(2).Val;
4701    cerr << "<";
4702    for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
4703      if (i) cerr << ",";
4704      if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
4705        cerr << "u";
4706      else
4707        cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
4708    }
4709    cerr << ">";
4710  }
4711
4712  if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
4713    cerr << "<" << CSDN->getValue() << ">";
4714  } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
4715    if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
4716      cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
4717    else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
4718      cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
4719    else {
4720      cerr << "<APFloat(";
4721      CSDN->getValueAPF().convertToAPInt().dump();
4722      cerr << ")>";
4723    }
4724  } else if (const GlobalAddressSDNode *GADN =
4725             dyn_cast<GlobalAddressSDNode>(this)) {
4726    int offset = GADN->getOffset();
4727    cerr << "<";
4728    WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
4729    if (offset > 0)
4730      cerr << " + " << offset;
4731    else
4732      cerr << " " << offset;
4733  } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
4734    cerr << "<" << FIDN->getIndex() << ">";
4735  } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
4736    cerr << "<" << JTDN->getIndex() << ">";
4737  } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
4738    int offset = CP->getOffset();
4739    if (CP->isMachineConstantPoolEntry())
4740      cerr << "<" << *CP->getMachineCPVal() << ">";
4741    else
4742      cerr << "<" << *CP->getConstVal() << ">";
4743    if (offset > 0)
4744      cerr << " + " << offset;
4745    else
4746      cerr << " " << offset;
4747  } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
4748    cerr << "<";
4749    const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
4750    if (LBB)
4751      cerr << LBB->getName() << " ";
4752    cerr << (const void*)BBDN->getBasicBlock() << ">";
4753  } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
4754    if (G && R->getReg() &&
4755        TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
4756      cerr << " " << G->getTarget().getRegisterInfo()->getName(R->getReg());
4757    } else {
4758      cerr << " #" << R->getReg();
4759    }
4760  } else if (const ExternalSymbolSDNode *ES =
4761             dyn_cast<ExternalSymbolSDNode>(this)) {
4762    cerr << "'" << ES->getSymbol() << "'";
4763  } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
4764    if (M->getValue())
4765      cerr << "<" << M->getValue() << ">";
4766    else
4767      cerr << "<null>";
4768  } else if (const MemOperandSDNode *M = dyn_cast<MemOperandSDNode>(this)) {
4769    if (M->MO.getValue())
4770      cerr << "<" << M->MO.getValue() << ":" << M->MO.getOffset() << ">";
4771    else
4772      cerr << "<null:" << M->MO.getOffset() << ">";
4773  } else if (const ARG_FLAGSSDNode *N = dyn_cast<ARG_FLAGSSDNode>(this)) {
4774    cerr << N->getArgFlags().getArgFlagsString();
4775  } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
4776    cerr << ":" << MVT::getValueTypeString(N->getVT());
4777  } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
4778    const Value *SrcValue = LD->getSrcValue();
4779    int SrcOffset = LD->getSrcValueOffset();
4780    cerr << " <";
4781    if (SrcValue)
4782      cerr << SrcValue;
4783    else
4784      cerr << "null";
4785    cerr << ":" << SrcOffset << ">";
4786
4787    bool doExt = true;
4788    switch (LD->getExtensionType()) {
4789    default: doExt = false; break;
4790    case ISD::EXTLOAD:
4791      cerr << " <anyext ";
4792      break;
4793    case ISD::SEXTLOAD:
4794      cerr << " <sext ";
4795      break;
4796    case ISD::ZEXTLOAD:
4797      cerr << " <zext ";
4798      break;
4799    }
4800    if (doExt)
4801      cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
4802
4803    const char *AM = getIndexedModeName(LD->getAddressingMode());
4804    if (*AM)
4805      cerr << " " << AM;
4806    if (LD->isVolatile())
4807      cerr << " <volatile>";
4808    cerr << " alignment=" << LD->getAlignment();
4809  } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
4810    const Value *SrcValue = ST->getSrcValue();
4811    int SrcOffset = ST->getSrcValueOffset();
4812    cerr << " <";
4813    if (SrcValue)
4814      cerr << SrcValue;
4815    else
4816      cerr << "null";
4817    cerr << ":" << SrcOffset << ">";
4818
4819    if (ST->isTruncatingStore())
4820      cerr << " <trunc "
4821           << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
4822
4823    const char *AM = getIndexedModeName(ST->getAddressingMode());
4824    if (*AM)
4825      cerr << " " << AM;
4826    if (ST->isVolatile())
4827      cerr << " <volatile>";
4828    cerr << " alignment=" << ST->getAlignment();
4829  }
4830}
4831
4832static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4833  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4834    if (N->getOperand(i).Val->hasOneUse())
4835      DumpNodes(N->getOperand(i).Val, indent+2, G);
4836    else
4837      cerr << "\n" << std::string(indent+2, ' ')
4838           << (void*)N->getOperand(i).Val << ": <multiple use>";
4839
4840
4841  cerr << "\n" << std::string(indent, ' ');
4842  N->dump(G);
4843}
4844
4845void SelectionDAG::dump() const {
4846  cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4847  std::vector<const SDNode*> Nodes;
4848  for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4849       I != E; ++I)
4850    Nodes.push_back(I);
4851
4852  std::sort(Nodes.begin(), Nodes.end());
4853
4854  for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4855    if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4856      DumpNodes(Nodes[i], 2, this);
4857  }
4858
4859  if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4860
4861  cerr << "\n\n";
4862}
4863
4864const Type *ConstantPoolSDNode::getType() const {
4865  if (isMachineConstantPoolEntry())
4866    return Val.MachineCPVal->getType();
4867  return Val.ConstVal->getType();
4868}
4869