SelectionDAGISel.cpp revision 0db79d86de74c315813d60f51ed842c0ba0f34dd
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "llvm/Analysis/AliasAnalysis.h"
16#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/CodeGen/ScheduleDAG.h"
18#include "llvm/CallingConv.h"
19#include "llvm/Constants.h"
20#include "llvm/DerivedTypes.h"
21#include "llvm/Function.h"
22#include "llvm/GlobalVariable.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/CodeGen/MachineModuleInfo.h"
28#include "llvm/CodeGen/MachineFunction.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SchedulerRegistry.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/CodeGen/SSARegMap.h"
35#include "llvm/Target/MRegisterInfo.h"
36#include "llvm/Target/TargetAsmInfo.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Target/TargetFrameInfo.h"
39#include "llvm/Target/TargetInstrInfo.h"
40#include "llvm/Target/TargetLowering.h"
41#include "llvm/Target/TargetMachine.h"
42#include "llvm/Target/TargetOptions.h"
43#include "llvm/Transforms/Utils/BasicBlockUtils.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/Debug.h"
46#include "llvm/Support/Compiler.h"
47#include <algorithm>
48using namespace llvm;
49
50#ifndef NDEBUG
51static cl::opt<bool>
52ViewISelDAGs("view-isel-dags", cl::Hidden,
53          cl::desc("Pop up a window to show isel dags as they are selected"));
54static cl::opt<bool>
55ViewSchedDAGs("view-sched-dags", cl::Hidden,
56          cl::desc("Pop up a window to show sched dags as they are processed"));
57#else
58static const bool ViewISelDAGs = 0, ViewSchedDAGs = 0;
59#endif
60
61
62//===---------------------------------------------------------------------===//
63///
64/// RegisterScheduler class - Track the registration of instruction schedulers.
65///
66//===---------------------------------------------------------------------===//
67MachinePassRegistry RegisterScheduler::Registry;
68
69//===---------------------------------------------------------------------===//
70///
71/// ISHeuristic command line option for instruction schedulers.
72///
73//===---------------------------------------------------------------------===//
74namespace {
75  cl::opt<RegisterScheduler::FunctionPassCtor, false,
76          RegisterPassParser<RegisterScheduler> >
77  ISHeuristic("sched",
78              cl::init(&createDefaultScheduler),
79              cl::desc("Instruction schedulers available:"));
80
81  static RegisterScheduler
82  defaultListDAGScheduler("default", "  Best scheduler for the target",
83                          createDefaultScheduler);
84} // namespace
85
86namespace {
87  /// RegsForValue - This struct represents the physical registers that a
88  /// particular value is assigned and the type information about the value.
89  /// This is needed because values can be promoted into larger registers and
90  /// expanded into multiple smaller registers than the value.
91  struct VISIBILITY_HIDDEN RegsForValue {
92    /// Regs - This list hold the register (for legal and promoted values)
93    /// or register set (for expanded values) that the value should be assigned
94    /// to.
95    std::vector<unsigned> Regs;
96
97    /// RegVT - The value type of each register.
98    ///
99    MVT::ValueType RegVT;
100
101    /// ValueVT - The value type of the LLVM value, which may be promoted from
102    /// RegVT or made from merging the two expanded parts.
103    MVT::ValueType ValueVT;
104
105    RegsForValue() : RegVT(MVT::Other), ValueVT(MVT::Other) {}
106
107    RegsForValue(unsigned Reg, MVT::ValueType regvt, MVT::ValueType valuevt)
108      : RegVT(regvt), ValueVT(valuevt) {
109        Regs.push_back(Reg);
110    }
111    RegsForValue(const std::vector<unsigned> &regs,
112                 MVT::ValueType regvt, MVT::ValueType valuevt)
113      : Regs(regs), RegVT(regvt), ValueVT(valuevt) {
114    }
115
116    /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
117    /// this value and returns the result as a ValueVT value.  This uses
118    /// Chain/Flag as the input and updates them for the output Chain/Flag.
119    SDOperand getCopyFromRegs(SelectionDAG &DAG,
120                              SDOperand &Chain, SDOperand &Flag) const;
121
122    /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
123    /// specified value into the registers specified by this object.  This uses
124    /// Chain/Flag as the input and updates them for the output Chain/Flag.
125    void getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
126                       SDOperand &Chain, SDOperand &Flag,
127                       MVT::ValueType PtrVT) const;
128
129    /// AddInlineAsmOperands - Add this value to the specified inlineasm node
130    /// operand list.  This adds the code marker and includes the number of
131    /// values added into it.
132    void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
133                              std::vector<SDOperand> &Ops) const;
134  };
135}
136
137namespace llvm {
138  //===--------------------------------------------------------------------===//
139  /// createDefaultScheduler - This creates an instruction scheduler appropriate
140  /// for the target.
141  ScheduleDAG* createDefaultScheduler(SelectionDAGISel *IS,
142                                      SelectionDAG *DAG,
143                                      MachineBasicBlock *BB) {
144    TargetLowering &TLI = IS->getTargetLowering();
145
146    if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) {
147      return createTDListDAGScheduler(IS, DAG, BB);
148    } else {
149      assert(TLI.getSchedulingPreference() ==
150           TargetLowering::SchedulingForRegPressure && "Unknown sched type!");
151      return createBURRListDAGScheduler(IS, DAG, BB);
152    }
153  }
154
155
156  //===--------------------------------------------------------------------===//
157  /// FunctionLoweringInfo - This contains information that is global to a
158  /// function that is used when lowering a region of the function.
159  class FunctionLoweringInfo {
160  public:
161    TargetLowering &TLI;
162    Function &Fn;
163    MachineFunction &MF;
164    SSARegMap *RegMap;
165
166    FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
167
168    /// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
169    std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
170
171    /// ValueMap - Since we emit code for the function a basic block at a time,
172    /// we must remember which virtual registers hold the values for
173    /// cross-basic-block values.
174    DenseMap<const Value*, unsigned> ValueMap;
175
176    /// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
177    /// the entry block.  This allows the allocas to be efficiently referenced
178    /// anywhere in the function.
179    std::map<const AllocaInst*, int> StaticAllocaMap;
180
181    unsigned MakeReg(MVT::ValueType VT) {
182      return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
183    }
184
185    /// isExportedInst - Return true if the specified value is an instruction
186    /// exported from its block.
187    bool isExportedInst(const Value *V) {
188      return ValueMap.count(V);
189    }
190
191    unsigned CreateRegForValue(const Value *V);
192
193    unsigned InitializeRegForValue(const Value *V) {
194      unsigned &R = ValueMap[V];
195      assert(R == 0 && "Already initialized this value register!");
196      return R = CreateRegForValue(V);
197    }
198  };
199}
200
201/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
202/// PHI nodes or outside of the basic block that defines it, or used by a
203/// switch instruction, which may expand to multiple basic blocks.
204static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
205  if (isa<PHINode>(I)) return true;
206  BasicBlock *BB = I->getParent();
207  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
208    if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
209        // FIXME: Remove switchinst special case.
210        isa<SwitchInst>(*UI))
211      return true;
212  return false;
213}
214
215/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
216/// entry block, return true.  This includes arguments used by switches, since
217/// the switch may expand into multiple basic blocks.
218static bool isOnlyUsedInEntryBlock(Argument *A) {
219  BasicBlock *Entry = A->getParent()->begin();
220  for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
221    if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
222      return false;  // Use not in entry block.
223  return true;
224}
225
226FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
227                                           Function &fn, MachineFunction &mf)
228    : TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
229
230  // Create a vreg for each argument register that is not dead and is used
231  // outside of the entry block for the function.
232  for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
233       AI != E; ++AI)
234    if (!isOnlyUsedInEntryBlock(AI))
235      InitializeRegForValue(AI);
236
237  // Initialize the mapping of values to registers.  This is only set up for
238  // instruction values that are used outside of the block that defines
239  // them.
240  Function::iterator BB = Fn.begin(), EB = Fn.end();
241  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
242    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
243      if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
244        const Type *Ty = AI->getAllocatedType();
245        uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
246        unsigned Align =
247          std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
248                   AI->getAlignment());
249
250        TySize *= CUI->getZExtValue();   // Get total allocated size.
251        if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
252        StaticAllocaMap[AI] =
253          MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
254      }
255
256  for (; BB != EB; ++BB)
257    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
258      if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
259        if (!isa<AllocaInst>(I) ||
260            !StaticAllocaMap.count(cast<AllocaInst>(I)))
261          InitializeRegForValue(I);
262
263  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
264  // also creates the initial PHI MachineInstrs, though none of the input
265  // operands are populated.
266  for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
267    MachineBasicBlock *MBB = new MachineBasicBlock(BB);
268    MBBMap[BB] = MBB;
269    MF.getBasicBlockList().push_back(MBB);
270
271    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
272    // appropriate.
273    PHINode *PN;
274    for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
275      if (PN->use_empty()) continue;
276
277      MVT::ValueType VT = TLI.getValueType(PN->getType());
278      unsigned NumElements;
279      if (VT != MVT::Vector)
280        NumElements = TLI.getNumElements(VT);
281      else {
282        MVT::ValueType VT1,VT2;
283        NumElements =
284          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
285                                     VT1, VT2);
286      }
287      unsigned PHIReg = ValueMap[PN];
288      assert(PHIReg && "PHI node does not have an assigned virtual register!");
289      const TargetInstrInfo *TII = TLI.getTargetMachine().getInstrInfo();
290      for (unsigned i = 0; i != NumElements; ++i)
291        BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
292    }
293  }
294}
295
296/// CreateRegForValue - Allocate the appropriate number of virtual registers of
297/// the correctly promoted or expanded types.  Assign these registers
298/// consecutive vreg numbers and return the first assigned number.
299unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
300  MVT::ValueType VT = TLI.getValueType(V->getType());
301
302  // The number of multiples of registers that we need, to, e.g., split up
303  // a <2 x int64> -> 4 x i32 registers.
304  unsigned NumVectorRegs = 1;
305
306  // If this is a vector type, figure out what type it will decompose into
307  // and how many of the elements it will use.
308  if (VT == MVT::Vector) {
309    const VectorType *PTy = cast<VectorType>(V->getType());
310    unsigned NumElts = PTy->getNumElements();
311    MVT::ValueType EltTy = TLI.getValueType(PTy->getElementType());
312
313    // Divide the input until we get to a supported size.  This will always
314    // end with a scalar if the target doesn't support vectors.
315    while (NumElts > 1 && !TLI.isTypeLegal(getVectorType(EltTy, NumElts))) {
316      NumElts >>= 1;
317      NumVectorRegs <<= 1;
318    }
319    if (NumElts == 1)
320      VT = EltTy;
321    else
322      VT = getVectorType(EltTy, NumElts);
323  }
324
325  // The common case is that we will only create one register for this
326  // value.  If we have that case, create and return the virtual register.
327  unsigned NV = TLI.getNumElements(VT);
328  if (NV == 1) {
329    // If we are promoting this value, pick the next largest supported type.
330    MVT::ValueType PromotedType = TLI.getTypeToTransformTo(VT);
331    unsigned Reg = MakeReg(PromotedType);
332    // If this is a vector of supported or promoted types (e.g. 4 x i16),
333    // create all of the registers.
334    for (unsigned i = 1; i != NumVectorRegs; ++i)
335      MakeReg(PromotedType);
336    return Reg;
337  }
338
339  // If this value is represented with multiple target registers, make sure
340  // to create enough consecutive registers of the right (smaller) type.
341  VT = TLI.getTypeToExpandTo(VT);
342  unsigned R = MakeReg(VT);
343  for (unsigned i = 1; i != NV*NumVectorRegs; ++i)
344    MakeReg(VT);
345  return R;
346}
347
348//===----------------------------------------------------------------------===//
349/// SelectionDAGLowering - This is the common target-independent lowering
350/// implementation that is parameterized by a TargetLowering object.
351/// Also, targets can overload any lowering method.
352///
353namespace llvm {
354class SelectionDAGLowering {
355  MachineBasicBlock *CurMBB;
356
357  DenseMap<const Value*, SDOperand> NodeMap;
358
359  /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
360  /// them up and then emit token factor nodes when possible.  This allows us to
361  /// get simple disambiguation between loads without worrying about alias
362  /// analysis.
363  std::vector<SDOperand> PendingLoads;
364
365  /// Case - A pair of values to record the Value for a switch case, and the
366  /// case's target basic block.
367  typedef std::pair<Constant*, MachineBasicBlock*> Case;
368  typedef std::vector<Case>::iterator              CaseItr;
369  typedef std::pair<CaseItr, CaseItr>              CaseRange;
370
371  /// CaseRec - A struct with ctor used in lowering switches to a binary tree
372  /// of conditional branches.
373  struct CaseRec {
374    CaseRec(MachineBasicBlock *bb, Constant *lt, Constant *ge, CaseRange r) :
375    CaseBB(bb), LT(lt), GE(ge), Range(r) {}
376
377    /// CaseBB - The MBB in which to emit the compare and branch
378    MachineBasicBlock *CaseBB;
379    /// LT, GE - If nonzero, we know the current case value must be less-than or
380    /// greater-than-or-equal-to these Constants.
381    Constant *LT;
382    Constant *GE;
383    /// Range - A pair of iterators representing the range of case values to be
384    /// processed at this point in the binary search tree.
385    CaseRange Range;
386  };
387
388  /// The comparison function for sorting Case values.
389  struct CaseCmp {
390    bool operator () (const Case& C1, const Case& C2) {
391      assert(isa<ConstantInt>(C1.first) && isa<ConstantInt>(C2.first));
392      return cast<const ConstantInt>(C1.first)->getSExtValue() <
393        cast<const ConstantInt>(C2.first)->getSExtValue();
394    }
395  };
396
397public:
398  // TLI - This is information that describes the available target features we
399  // need for lowering.  This indicates when operations are unavailable,
400  // implemented with a libcall, etc.
401  TargetLowering &TLI;
402  SelectionDAG &DAG;
403  const TargetData *TD;
404
405  /// SwitchCases - Vector of CaseBlock structures used to communicate
406  /// SwitchInst code generation information.
407  std::vector<SelectionDAGISel::CaseBlock> SwitchCases;
408  SelectionDAGISel::JumpTable JT;
409
410  /// FuncInfo - Information about the function as a whole.
411  ///
412  FunctionLoweringInfo &FuncInfo;
413
414  SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
415                       FunctionLoweringInfo &funcinfo)
416    : TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
417      JT(0,0,0,0), FuncInfo(funcinfo) {
418  }
419
420  /// getRoot - Return the current virtual root of the Selection DAG.
421  ///
422  SDOperand getRoot() {
423    if (PendingLoads.empty())
424      return DAG.getRoot();
425
426    if (PendingLoads.size() == 1) {
427      SDOperand Root = PendingLoads[0];
428      DAG.setRoot(Root);
429      PendingLoads.clear();
430      return Root;
431    }
432
433    // Otherwise, we have to make a token factor node.
434    SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
435                                 &PendingLoads[0], PendingLoads.size());
436    PendingLoads.clear();
437    DAG.setRoot(Root);
438    return Root;
439  }
440
441  SDOperand CopyValueToVirtualRegister(Value *V, unsigned Reg);
442
443  void visit(Instruction &I) { visit(I.getOpcode(), I); }
444
445  void visit(unsigned Opcode, User &I) {
446    // Note: this doesn't use InstVisitor, because it has to work with
447    // ConstantExpr's in addition to instructions.
448    switch (Opcode) {
449    default: assert(0 && "Unknown instruction type encountered!");
450             abort();
451      // Build the switch statement using the Instruction.def file.
452#define HANDLE_INST(NUM, OPCODE, CLASS) \
453    case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
454#include "llvm/Instruction.def"
455    }
456  }
457
458  void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
459
460  SDOperand getLoadFrom(const Type *Ty, SDOperand Ptr,
461                        const Value *SV, SDOperand Root,
462                        bool isVolatile);
463
464  SDOperand getIntPtrConstant(uint64_t Val) {
465    return DAG.getConstant(Val, TLI.getPointerTy());
466  }
467
468  SDOperand getValue(const Value *V);
469
470  void setValue(const Value *V, SDOperand NewN) {
471    SDOperand &N = NodeMap[V];
472    assert(N.Val == 0 && "Already set a value for this node!");
473    N = NewN;
474  }
475
476  RegsForValue GetRegistersForValue(const std::string &ConstrCode,
477                                    MVT::ValueType VT,
478                                    bool OutReg, bool InReg,
479                                    std::set<unsigned> &OutputRegs,
480                                    std::set<unsigned> &InputRegs);
481
482  void FindMergedConditions(Value *Cond, MachineBasicBlock *TBB,
483                            MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
484                            unsigned Opc);
485  bool isExportableFromCurrentBlock(Value *V, const BasicBlock *FromBB);
486  void ExportFromCurrentBlock(Value *V);
487  void LowerCallTo(Instruction &I,
488                   const Type *CalledValueTy, unsigned CallingConv,
489                   bool IsTailCall, SDOperand Callee, unsigned OpIdx);
490
491  // Terminator instructions.
492  void visitRet(ReturnInst &I);
493  void visitBr(BranchInst &I);
494  void visitSwitch(SwitchInst &I);
495  void visitUnreachable(UnreachableInst &I) { /* noop */ }
496
497  // Helper for visitSwitch
498  void visitSwitchCase(SelectionDAGISel::CaseBlock &CB);
499  void visitJumpTable(SelectionDAGISel::JumpTable &JT);
500
501  // These all get lowered before this pass.
502  void visitInvoke(InvokeInst &I);
503  void visitInvoke(InvokeInst &I, bool AsTerminator);
504  void visitUnwind(UnwindInst &I);
505
506  void visitScalarBinary(User &I, unsigned OpCode);
507  void visitVectorBinary(User &I, unsigned OpCode);
508  void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
509  void visitShift(User &I, unsigned Opcode);
510  void visitAdd(User &I) {
511    if (isa<VectorType>(I.getType()))
512      visitVectorBinary(I, ISD::VADD);
513    else if (I.getType()->isFloatingPoint())
514      visitScalarBinary(I, ISD::FADD);
515    else
516      visitScalarBinary(I, ISD::ADD);
517  }
518  void visitSub(User &I);
519  void visitMul(User &I) {
520    if (isa<VectorType>(I.getType()))
521      visitVectorBinary(I, ISD::VMUL);
522    else if (I.getType()->isFloatingPoint())
523      visitScalarBinary(I, ISD::FMUL);
524    else
525      visitScalarBinary(I, ISD::MUL);
526  }
527  void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
528  void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
529  void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
530  void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
531  void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
532  void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
533  void visitAnd (User &I) { visitEitherBinary(I, ISD::AND,  ISD::VAND ); }
534  void visitOr  (User &I) { visitEitherBinary(I, ISD::OR,   ISD::VOR  ); }
535  void visitXor (User &I) { visitEitherBinary(I, ISD::XOR,  ISD::VXOR ); }
536  void visitShl (User &I) { visitShift(I, ISD::SHL); }
537  void visitLShr(User &I) { visitShift(I, ISD::SRL); }
538  void visitAShr(User &I) { visitShift(I, ISD::SRA); }
539  void visitICmp(User &I);
540  void visitFCmp(User &I);
541  // Visit the conversion instructions
542  void visitTrunc(User &I);
543  void visitZExt(User &I);
544  void visitSExt(User &I);
545  void visitFPTrunc(User &I);
546  void visitFPExt(User &I);
547  void visitFPToUI(User &I);
548  void visitFPToSI(User &I);
549  void visitUIToFP(User &I);
550  void visitSIToFP(User &I);
551  void visitPtrToInt(User &I);
552  void visitIntToPtr(User &I);
553  void visitBitCast(User &I);
554
555  void visitExtractElement(User &I);
556  void visitInsertElement(User &I);
557  void visitShuffleVector(User &I);
558
559  void visitGetElementPtr(User &I);
560  void visitSelect(User &I);
561
562  void visitMalloc(MallocInst &I);
563  void visitFree(FreeInst &I);
564  void visitAlloca(AllocaInst &I);
565  void visitLoad(LoadInst &I);
566  void visitStore(StoreInst &I);
567  void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
568  void visitCall(CallInst &I);
569  void visitInlineAsm(CallInst &I);
570  const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
571  void visitTargetIntrinsic(CallInst &I, unsigned Intrinsic);
572
573  void visitVAStart(CallInst &I);
574  void visitVAArg(VAArgInst &I);
575  void visitVAEnd(CallInst &I);
576  void visitVACopy(CallInst &I);
577
578  void visitMemIntrinsic(CallInst &I, unsigned Op);
579
580  void visitUserOp1(Instruction &I) {
581    assert(0 && "UserOp1 should not exist at instruction selection time!");
582    abort();
583  }
584  void visitUserOp2(Instruction &I) {
585    assert(0 && "UserOp2 should not exist at instruction selection time!");
586    abort();
587  }
588};
589} // end namespace llvm
590
591SDOperand SelectionDAGLowering::getValue(const Value *V) {
592  SDOperand &N = NodeMap[V];
593  if (N.Val) return N;
594
595  const Type *VTy = V->getType();
596  MVT::ValueType VT = TLI.getValueType(VTy);
597  if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
598    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
599      visit(CE->getOpcode(), *CE);
600      SDOperand N1 = NodeMap[V];
601      assert(N1.Val && "visit didn't populate the ValueMap!");
602      return N1;
603    } else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
604      return N = DAG.getGlobalAddress(GV, VT);
605    } else if (isa<ConstantPointerNull>(C)) {
606      return N = DAG.getConstant(0, TLI.getPointerTy());
607    } else if (isa<UndefValue>(C)) {
608      if (!isa<VectorType>(VTy))
609        return N = DAG.getNode(ISD::UNDEF, VT);
610
611      // Create a VBUILD_VECTOR of undef nodes.
612      const VectorType *PTy = cast<VectorType>(VTy);
613      unsigned NumElements = PTy->getNumElements();
614      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
615
616      SmallVector<SDOperand, 8> Ops;
617      Ops.assign(NumElements, DAG.getNode(ISD::UNDEF, PVT));
618
619      // Create a VConstant node with generic Vector type.
620      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
621      Ops.push_back(DAG.getValueType(PVT));
622      return N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector,
623                             &Ops[0], Ops.size());
624    } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
625      return N = DAG.getConstantFP(CFP->getValue(), VT);
626    } else if (const VectorType *PTy = dyn_cast<VectorType>(VTy)) {
627      unsigned NumElements = PTy->getNumElements();
628      MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
629
630      // Now that we know the number and type of the elements, push a
631      // Constant or ConstantFP node onto the ops list for each element of
632      // the packed constant.
633      SmallVector<SDOperand, 8> Ops;
634      if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
635        for (unsigned i = 0; i != NumElements; ++i)
636          Ops.push_back(getValue(CP->getOperand(i)));
637      } else {
638        assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
639        SDOperand Op;
640        if (MVT::isFloatingPoint(PVT))
641          Op = DAG.getConstantFP(0, PVT);
642        else
643          Op = DAG.getConstant(0, PVT);
644        Ops.assign(NumElements, Op);
645      }
646
647      // Create a VBUILD_VECTOR node with generic Vector type.
648      Ops.push_back(DAG.getConstant(NumElements, MVT::i32));
649      Ops.push_back(DAG.getValueType(PVT));
650      return NodeMap[V] = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0],
651                                      Ops.size());
652    } else {
653      // Canonicalize all constant ints to be unsigned.
654      return N = DAG.getConstant(cast<ConstantInt>(C)->getZExtValue(),VT);
655    }
656  }
657
658  if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
659    std::map<const AllocaInst*, int>::iterator SI =
660    FuncInfo.StaticAllocaMap.find(AI);
661    if (SI != FuncInfo.StaticAllocaMap.end())
662      return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
663  }
664
665  unsigned InReg = FuncInfo.ValueMap[V];
666  assert(InReg && "Value not in map!");
667
668  // If this type is not legal, make it so now.
669  if (VT != MVT::Vector) {
670    if (TLI.getTypeAction(VT) == TargetLowering::Expand) {
671      // Source must be expanded.  This input value is actually coming from the
672      // register pair InReg and InReg+1.
673      MVT::ValueType DestVT = TLI.getTypeToExpandTo(VT);
674      unsigned NumVals = TLI.getNumElements(VT);
675      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
676      if (NumVals == 1)
677        N = DAG.getNode(ISD::BIT_CONVERT, VT, N);
678      else {
679        assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
680        N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
681                       DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
682      }
683    } else {
684      MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
685      N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
686      if (TLI.getTypeAction(VT) == TargetLowering::Promote) // Promotion case
687        N = MVT::isFloatingPoint(VT)
688          ? DAG.getNode(ISD::FP_ROUND, VT, N)
689          : DAG.getNode(ISD::TRUNCATE, VT, N);
690    }
691  } else {
692    // Otherwise, if this is a vector, make it available as a generic vector
693    // here.
694    MVT::ValueType PTyElementVT, PTyLegalElementVT;
695    const VectorType *PTy = cast<VectorType>(VTy);
696    unsigned NE = TLI.getVectorTypeBreakdown(PTy, PTyElementVT,
697                                             PTyLegalElementVT);
698
699    // Build a VBUILD_VECTOR with the input registers.
700    SmallVector<SDOperand, 8> Ops;
701    if (PTyElementVT == PTyLegalElementVT) {
702      // If the value types are legal, just VBUILD the CopyFromReg nodes.
703      for (unsigned i = 0; i != NE; ++i)
704        Ops.push_back(DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
705                                         PTyElementVT));
706    } else if (PTyElementVT < PTyLegalElementVT) {
707      // If the register was promoted, use TRUNCATE of FP_ROUND as appropriate.
708      for (unsigned i = 0; i != NE; ++i) {
709        SDOperand Op = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
710                                          PTyElementVT);
711        if (MVT::isFloatingPoint(PTyElementVT))
712          Op = DAG.getNode(ISD::FP_ROUND, PTyElementVT, Op);
713        else
714          Op = DAG.getNode(ISD::TRUNCATE, PTyElementVT, Op);
715        Ops.push_back(Op);
716      }
717    } else {
718      // If the register was expanded, use BUILD_PAIR.
719      assert((NE & 1) == 0 && "Must expand into a multiple of 2 elements!");
720      for (unsigned i = 0; i != NE/2; ++i) {
721        SDOperand Op0 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
722                                           PTyElementVT);
723        SDOperand Op1 = DAG.getCopyFromReg(DAG.getEntryNode(), InReg++,
724                                           PTyElementVT);
725        Ops.push_back(DAG.getNode(ISD::BUILD_PAIR, VT, Op0, Op1));
726      }
727    }
728
729    Ops.push_back(DAG.getConstant(NE, MVT::i32));
730    Ops.push_back(DAG.getValueType(PTyLegalElementVT));
731    N = DAG.getNode(ISD::VBUILD_VECTOR, MVT::Vector, &Ops[0], Ops.size());
732
733    // Finally, use a VBIT_CONVERT to make this available as the appropriate
734    // vector type.
735    N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
736                    DAG.getConstant(PTy->getNumElements(),
737                                    MVT::i32),
738                    DAG.getValueType(TLI.getValueType(PTy->getElementType())));
739  }
740
741  return N;
742}
743
744
745void SelectionDAGLowering::visitRet(ReturnInst &I) {
746  if (I.getNumOperands() == 0) {
747    DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
748    return;
749  }
750  SmallVector<SDOperand, 8> NewValues;
751  NewValues.push_back(getRoot());
752  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
753    SDOperand RetOp = getValue(I.getOperand(i));
754
755    // If this is an integer return value, we need to promote it ourselves to
756    // the full width of a register, since LegalizeOp will use ANY_EXTEND rather
757    // than sign/zero.
758    // FIXME: C calling convention requires the return type to be promoted to
759    // at least 32-bit. But this is not necessary for non-C calling conventions.
760    if (MVT::isInteger(RetOp.getValueType()) &&
761        RetOp.getValueType() < MVT::i64) {
762      MVT::ValueType TmpVT;
763      if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
764        TmpVT = TLI.getTypeToTransformTo(MVT::i32);
765      else
766        TmpVT = MVT::i32;
767      const FunctionType *FTy = I.getParent()->getParent()->getFunctionType();
768      ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
769      if (FTy->paramHasAttr(0, FunctionType::SExtAttribute))
770        ExtendKind = ISD::SIGN_EXTEND;
771      if (FTy->paramHasAttr(0, FunctionType::ZExtAttribute))
772        ExtendKind = ISD::ZERO_EXTEND;
773      RetOp = DAG.getNode(ExtendKind, TmpVT, RetOp);
774    }
775    NewValues.push_back(RetOp);
776    NewValues.push_back(DAG.getConstant(false, MVT::i32));
777  }
778  DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
779                          &NewValues[0], NewValues.size()));
780}
781
782/// ExportFromCurrentBlock - If this condition isn't known to be exported from
783/// the current basic block, add it to ValueMap now so that we'll get a
784/// CopyTo/FromReg.
785void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
786  // No need to export constants.
787  if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
788
789  // Already exported?
790  if (FuncInfo.isExportedInst(V)) return;
791
792  unsigned Reg = FuncInfo.InitializeRegForValue(V);
793  PendingLoads.push_back(CopyValueToVirtualRegister(V, Reg));
794}
795
796bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
797                                                    const BasicBlock *FromBB) {
798  // The operands of the setcc have to be in this block.  We don't know
799  // how to export them from some other block.
800  if (Instruction *VI = dyn_cast<Instruction>(V)) {
801    // Can export from current BB.
802    if (VI->getParent() == FromBB)
803      return true;
804
805    // Is already exported, noop.
806    return FuncInfo.isExportedInst(V);
807  }
808
809  // If this is an argument, we can export it if the BB is the entry block or
810  // if it is already exported.
811  if (isa<Argument>(V)) {
812    if (FromBB == &FromBB->getParent()->getEntryBlock())
813      return true;
814
815    // Otherwise, can only export this if it is already exported.
816    return FuncInfo.isExportedInst(V);
817  }
818
819  // Otherwise, constants can always be exported.
820  return true;
821}
822
823static bool InBlock(const Value *V, const BasicBlock *BB) {
824  if (const Instruction *I = dyn_cast<Instruction>(V))
825    return I->getParent() == BB;
826  return true;
827}
828
829/// FindMergedConditions - If Cond is an expression like
830void SelectionDAGLowering::FindMergedConditions(Value *Cond,
831                                                MachineBasicBlock *TBB,
832                                                MachineBasicBlock *FBB,
833                                                MachineBasicBlock *CurBB,
834                                                unsigned Opc) {
835  // If this node is not part of the or/and tree, emit it as a branch.
836  Instruction *BOp = dyn_cast<Instruction>(Cond);
837
838  if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
839      (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
840      BOp->getParent() != CurBB->getBasicBlock() ||
841      !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
842      !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
843    const BasicBlock *BB = CurBB->getBasicBlock();
844
845    // If the leaf of the tree is a comparison, merge the condition into
846    // the caseblock.
847    if ((isa<ICmpInst>(Cond) || isa<FCmpInst>(Cond)) &&
848        // The operands of the cmp have to be in this block.  We don't know
849        // how to export them from some other block.  If this is the first block
850        // of the sequence, no exporting is needed.
851        (CurBB == CurMBB ||
852         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
853          isExportableFromCurrentBlock(BOp->getOperand(1), BB)))) {
854      BOp = cast<Instruction>(Cond);
855      ISD::CondCode Condition;
856      if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
857        switch (IC->getPredicate()) {
858        default: assert(0 && "Unknown icmp predicate opcode!");
859        case ICmpInst::ICMP_EQ:  Condition = ISD::SETEQ;  break;
860        case ICmpInst::ICMP_NE:  Condition = ISD::SETNE;  break;
861        case ICmpInst::ICMP_SLE: Condition = ISD::SETLE;  break;
862        case ICmpInst::ICMP_ULE: Condition = ISD::SETULE; break;
863        case ICmpInst::ICMP_SGE: Condition = ISD::SETGE;  break;
864        case ICmpInst::ICMP_UGE: Condition = ISD::SETUGE; break;
865        case ICmpInst::ICMP_SLT: Condition = ISD::SETLT;  break;
866        case ICmpInst::ICMP_ULT: Condition = ISD::SETULT; break;
867        case ICmpInst::ICMP_SGT: Condition = ISD::SETGT;  break;
868        case ICmpInst::ICMP_UGT: Condition = ISD::SETUGT; break;
869        }
870      } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
871        ISD::CondCode FPC, FOC;
872        switch (FC->getPredicate()) {
873        default: assert(0 && "Unknown fcmp predicate opcode!");
874        case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
875        case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
876        case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
877        case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
878        case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
879        case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
880        case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
881        case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
882        case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
883        case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
884        case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
885        case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
886        case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
887        case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
888        case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
889        case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
890        }
891        if (FiniteOnlyFPMath())
892          Condition = FOC;
893        else
894          Condition = FPC;
895      } else {
896        Condition = ISD::SETEQ; // silence warning.
897        assert(0 && "Unknown compare instruction");
898      }
899
900      SelectionDAGISel::CaseBlock CB(Condition, BOp->getOperand(0),
901                                     BOp->getOperand(1), TBB, FBB, CurBB);
902      SwitchCases.push_back(CB);
903      return;
904    }
905
906    // Create a CaseBlock record representing this branch.
907    SelectionDAGISel::CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
908                                   TBB, FBB, CurBB);
909    SwitchCases.push_back(CB);
910    return;
911  }
912
913
914  //  Create TmpBB after CurBB.
915  MachineFunction::iterator BBI = CurBB;
916  MachineBasicBlock *TmpBB = new MachineBasicBlock(CurBB->getBasicBlock());
917  CurBB->getParent()->getBasicBlockList().insert(++BBI, TmpBB);
918
919  if (Opc == Instruction::Or) {
920    // Codegen X | Y as:
921    //   jmp_if_X TBB
922    //   jmp TmpBB
923    // TmpBB:
924    //   jmp_if_Y TBB
925    //   jmp FBB
926    //
927
928    // Emit the LHS condition.
929    FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
930
931    // Emit the RHS condition into TmpBB.
932    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
933  } else {
934    assert(Opc == Instruction::And && "Unknown merge op!");
935    // Codegen X & Y as:
936    //   jmp_if_X TmpBB
937    //   jmp FBB
938    // TmpBB:
939    //   jmp_if_Y TBB
940    //   jmp FBB
941    //
942    //  This requires creation of TmpBB after CurBB.
943
944    // Emit the LHS condition.
945    FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
946
947    // Emit the RHS condition into TmpBB.
948    FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
949  }
950}
951
952/// If the set of cases should be emitted as a series of branches, return true.
953/// If we should emit this as a bunch of and/or'd together conditions, return
954/// false.
955static bool
956ShouldEmitAsBranches(const std::vector<SelectionDAGISel::CaseBlock> &Cases) {
957  if (Cases.size() != 2) return true;
958
959  // If this is two comparisons of the same values or'd or and'd together, they
960  // will get folded into a single comparison, so don't emit two blocks.
961  if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
962       Cases[0].CmpRHS == Cases[1].CmpRHS) ||
963      (Cases[0].CmpRHS == Cases[1].CmpLHS &&
964       Cases[0].CmpLHS == Cases[1].CmpRHS)) {
965    return false;
966  }
967
968  return true;
969}
970
971void SelectionDAGLowering::visitBr(BranchInst &I) {
972  // Update machine-CFG edges.
973  MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
974
975  // Figure out which block is immediately after the current one.
976  MachineBasicBlock *NextBlock = 0;
977  MachineFunction::iterator BBI = CurMBB;
978  if (++BBI != CurMBB->getParent()->end())
979    NextBlock = BBI;
980
981  if (I.isUnconditional()) {
982    // If this is not a fall-through branch, emit the branch.
983    if (Succ0MBB != NextBlock)
984      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
985                              DAG.getBasicBlock(Succ0MBB)));
986
987    // Update machine-CFG edges.
988    CurMBB->addSuccessor(Succ0MBB);
989
990    return;
991  }
992
993  // If this condition is one of the special cases we handle, do special stuff
994  // now.
995  Value *CondVal = I.getCondition();
996  MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
997
998  // If this is a series of conditions that are or'd or and'd together, emit
999  // this as a sequence of branches instead of setcc's with and/or operations.
1000  // For example, instead of something like:
1001  //     cmp A, B
1002  //     C = seteq
1003  //     cmp D, E
1004  //     F = setle
1005  //     or C, F
1006  //     jnz foo
1007  // Emit:
1008  //     cmp A, B
1009  //     je foo
1010  //     cmp D, E
1011  //     jle foo
1012  //
1013  if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1014    if (BOp->hasOneUse() &&
1015        (BOp->getOpcode() == Instruction::And ||
1016         BOp->getOpcode() == Instruction::Or)) {
1017      FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1018      // If the compares in later blocks need to use values not currently
1019      // exported from this block, export them now.  This block should always
1020      // be the first entry.
1021      assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1022
1023      // Allow some cases to be rejected.
1024      if (ShouldEmitAsBranches(SwitchCases)) {
1025        for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1026          ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1027          ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1028        }
1029
1030        // Emit the branch for this block.
1031        visitSwitchCase(SwitchCases[0]);
1032        SwitchCases.erase(SwitchCases.begin());
1033        return;
1034      }
1035
1036      // Okay, we decided not to do this, remove any inserted MBB's and clear
1037      // SwitchCases.
1038      for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1039        CurMBB->getParent()->getBasicBlockList().erase(SwitchCases[i].ThisBB);
1040
1041      SwitchCases.clear();
1042    }
1043  }
1044
1045  // Create a CaseBlock record representing this branch.
1046  SelectionDAGISel::CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1047                                 Succ0MBB, Succ1MBB, CurMBB);
1048  // Use visitSwitchCase to actually insert the fast branch sequence for this
1049  // cond branch.
1050  visitSwitchCase(CB);
1051}
1052
1053/// visitSwitchCase - Emits the necessary code to represent a single node in
1054/// the binary search tree resulting from lowering a switch instruction.
1055void SelectionDAGLowering::visitSwitchCase(SelectionDAGISel::CaseBlock &CB) {
1056  SDOperand Cond;
1057  SDOperand CondLHS = getValue(CB.CmpLHS);
1058
1059  // Build the setcc now, fold "(X == true)" to X and "(X == false)" to !X to
1060  // handle common cases produced by branch lowering.
1061  if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1062    Cond = CondLHS;
1063  else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1064    SDOperand True = DAG.getConstant(1, CondLHS.getValueType());
1065    Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1066  } else
1067    Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1068
1069  // Set NextBlock to be the MBB immediately after the current one, if any.
1070  // This is used to avoid emitting unnecessary branches to the next block.
1071  MachineBasicBlock *NextBlock = 0;
1072  MachineFunction::iterator BBI = CurMBB;
1073  if (++BBI != CurMBB->getParent()->end())
1074    NextBlock = BBI;
1075
1076  // If the lhs block is the next block, invert the condition so that we can
1077  // fall through to the lhs instead of the rhs block.
1078  if (CB.TrueBB == NextBlock) {
1079    std::swap(CB.TrueBB, CB.FalseBB);
1080    SDOperand True = DAG.getConstant(1, Cond.getValueType());
1081    Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1082  }
1083  SDOperand BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(), Cond,
1084                                 DAG.getBasicBlock(CB.TrueBB));
1085  if (CB.FalseBB == NextBlock)
1086    DAG.setRoot(BrCond);
1087  else
1088    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1089                            DAG.getBasicBlock(CB.FalseBB)));
1090  // Update successor info
1091  CurMBB->addSuccessor(CB.TrueBB);
1092  CurMBB->addSuccessor(CB.FalseBB);
1093}
1094
1095void SelectionDAGLowering::visitJumpTable(SelectionDAGISel::JumpTable &JT) {
1096  // Emit the code for the jump table
1097  MVT::ValueType PTy = TLI.getPointerTy();
1098  SDOperand Index = DAG.getCopyFromReg(getRoot(), JT.Reg, PTy);
1099  SDOperand Table = DAG.getJumpTable(JT.JTI, PTy);
1100  DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1101                          Table, Index));
1102  return;
1103}
1104
1105void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1106  assert(0 && "Should never be visited directly");
1107}
1108void SelectionDAGLowering::visitInvoke(InvokeInst &I, bool AsTerminator) {
1109  // Retrieve successors.
1110  MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1111  MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1112
1113  if (!AsTerminator) {
1114    // Mark landing pad so that it doesn't get deleted in branch folding.
1115    LandingPad->setIsLandingPad();
1116
1117    // Insert a label before the invoke call to mark the try range.
1118    // This can be used to detect deletion of the invoke via the
1119    // MachineModuleInfo.
1120    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
1121    unsigned BeginLabel = MMI->NextLabelID();
1122    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1123                            DAG.getConstant(BeginLabel, MVT::i32)));
1124
1125    LowerCallTo(I, I.getCalledValue()->getType(),
1126                   I.getCallingConv(),
1127                   false,
1128                   getValue(I.getOperand(0)),
1129                   3);
1130
1131    // Insert a label before the invoke call to mark the try range.
1132    // This can be used to detect deletion of the invoke via the
1133    // MachineModuleInfo.
1134    unsigned EndLabel = MMI->NextLabelID();
1135    DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
1136                            DAG.getConstant(EndLabel, MVT::i32)));
1137
1138    // Inform MachineModuleInfo of range.
1139    MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
1140
1141    // Update successor info
1142    CurMBB->addSuccessor(Return);
1143    CurMBB->addSuccessor(LandingPad);
1144  } else {
1145    // Drop into normal successor.
1146    DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1147                            DAG.getBasicBlock(Return)));
1148  }
1149}
1150
1151void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1152}
1153
1154void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
1155  // Figure out which block is immediately after the current one.
1156  MachineBasicBlock *NextBlock = 0;
1157  MachineFunction::iterator BBI = CurMBB;
1158
1159  if (++BBI != CurMBB->getParent()->end())
1160    NextBlock = BBI;
1161
1162  MachineBasicBlock *Default = FuncInfo.MBBMap[I.getDefaultDest()];
1163
1164  // If there is only the default destination, branch to it if it is not the
1165  // next basic block.  Otherwise, just fall through.
1166  if (I.getNumOperands() == 2) {
1167    // Update machine-CFG edges.
1168
1169    // If this is not a fall-through branch, emit the branch.
1170    if (Default != NextBlock)
1171      DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
1172                              DAG.getBasicBlock(Default)));
1173
1174    CurMBB->addSuccessor(Default);
1175    return;
1176  }
1177
1178  // If there are any non-default case statements, create a vector of Cases
1179  // representing each one, and sort the vector so that we can efficiently
1180  // create a binary search tree from them.
1181  std::vector<Case> Cases;
1182
1183  for (unsigned i = 1; i < I.getNumSuccessors(); ++i) {
1184    MachineBasicBlock *SMBB = FuncInfo.MBBMap[I.getSuccessor(i)];
1185    Cases.push_back(Case(I.getSuccessorValue(i), SMBB));
1186  }
1187
1188  std::sort(Cases.begin(), Cases.end(), CaseCmp());
1189
1190  // Get the Value to be switched on and default basic blocks, which will be
1191  // inserted into CaseBlock records, representing basic blocks in the binary
1192  // search tree.
1193  Value *SV = I.getOperand(0);
1194
1195  // Get the MachineFunction which holds the current MBB.  This is used during
1196  // emission of jump tables, and when inserting any additional MBBs necessary
1197  // to represent the switch.
1198  MachineFunction *CurMF = CurMBB->getParent();
1199  const BasicBlock *LLVMBB = CurMBB->getBasicBlock();
1200
1201  // If the switch has few cases (two or less) emit a series of specific
1202  // tests.
1203  if (Cases.size() < 3) {
1204    // TODO: If any two of the cases has the same destination, and if one value
1205    // is the same as the other, but has one bit unset that the other has set,
1206    // use bit manipulation to do two compares at once.  For example:
1207    // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1208
1209    // Rearrange the case blocks so that the last one falls through if possible.
1210    if (NextBlock && Default != NextBlock && Cases.back().second != NextBlock) {
1211      // The last case block won't fall through into 'NextBlock' if we emit the
1212      // branches in this order.  See if rearranging a case value would help.
1213      for (unsigned i = 0, e = Cases.size()-1; i != e; ++i) {
1214        if (Cases[i].second == NextBlock) {
1215          std::swap(Cases[i], Cases.back());
1216          break;
1217        }
1218      }
1219    }
1220
1221    // Create a CaseBlock record representing a conditional branch to
1222    // the Case's target mbb if the value being switched on SV is equal
1223    // to C.
1224    MachineBasicBlock *CurBlock = CurMBB;
1225    for (unsigned i = 0, e = Cases.size(); i != e; ++i) {
1226      MachineBasicBlock *FallThrough;
1227      if (i != e-1) {
1228        FallThrough = new MachineBasicBlock(CurMBB->getBasicBlock());
1229        CurMF->getBasicBlockList().insert(BBI, FallThrough);
1230      } else {
1231        // If the last case doesn't match, go to the default block.
1232        FallThrough = Default;
1233      }
1234
1235      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, Cases[i].first,
1236                                     Cases[i].second, FallThrough, CurBlock);
1237
1238      // If emitting the first comparison, just call visitSwitchCase to emit the
1239      // code into the current block.  Otherwise, push the CaseBlock onto the
1240      // vector to be later processed by SDISel, and insert the node's MBB
1241      // before the next MBB.
1242      if (CurBlock == CurMBB)
1243        visitSwitchCase(CB);
1244      else
1245        SwitchCases.push_back(CB);
1246
1247      CurBlock = FallThrough;
1248    }
1249    return;
1250  }
1251
1252  // If the switch has more than 5 blocks, and at least 31.25% dense, and the
1253  // target supports indirect branches, then emit a jump table rather than
1254  // lowering the switch to a binary tree of conditional branches.
1255  if ((TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1256       TLI.isOperationLegal(ISD::BRIND, MVT::Other)) &&
1257      Cases.size() > 5) {
1258    uint64_t First =cast<ConstantInt>(Cases.front().first)->getSExtValue();
1259    uint64_t Last  = cast<ConstantInt>(Cases.back().first)->getSExtValue();
1260    double Density = (double)Cases.size() / (double)((Last - First) + 1ULL);
1261
1262    if (Density >= 0.3125) {
1263      // Create a new basic block to hold the code for loading the address
1264      // of the jump table, and jumping to it.  Update successor information;
1265      // we will either branch to the default case for the switch, or the jump
1266      // table.
1267      MachineBasicBlock *JumpTableBB = new MachineBasicBlock(LLVMBB);
1268      CurMF->getBasicBlockList().insert(BBI, JumpTableBB);
1269      CurMBB->addSuccessor(Default);
1270      CurMBB->addSuccessor(JumpTableBB);
1271
1272      // Subtract the lowest switch case value from the value being switched on
1273      // and conditional branch to default mbb if the result is greater than the
1274      // difference between smallest and largest cases.
1275      SDOperand SwitchOp = getValue(SV);
1276      MVT::ValueType VT = SwitchOp.getValueType();
1277      SDOperand SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1278                                  DAG.getConstant(First, VT));
1279
1280      // The SDNode we just created, which holds the value being switched on
1281      // minus the the smallest case value, needs to be copied to a virtual
1282      // register so it can be used as an index into the jump table in a
1283      // subsequent basic block.  This value may be smaller or larger than the
1284      // target's pointer type, and therefore require extension or truncating.
1285      if (VT > TLI.getPointerTy())
1286        SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1287      else
1288        SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1289
1290      unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1291      SDOperand CopyTo = DAG.getCopyToReg(getRoot(), JumpTableReg, SwitchOp);
1292
1293      // Emit the range check for the jump table, and branch to the default
1294      // block for the switch statement if the value being switched on exceeds
1295      // the largest case in the switch.
1296      SDOperand CMP = DAG.getSetCC(TLI.getSetCCResultTy(), SUB,
1297                                   DAG.getConstant(Last-First,VT), ISD::SETUGT);
1298      DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1299                              DAG.getBasicBlock(Default)));
1300
1301      // Build a vector of destination BBs, corresponding to each target
1302      // of the jump table.  If the value of the jump table slot corresponds to
1303      // a case statement, push the case's BB onto the vector, otherwise, push
1304      // the default BB.
1305      std::vector<MachineBasicBlock*> DestBBs;
1306      int64_t TEI = First;
1307      for (CaseItr ii = Cases.begin(), ee = Cases.end(); ii != ee; ++TEI)
1308        if (cast<ConstantInt>(ii->first)->getSExtValue() == TEI) {
1309          DestBBs.push_back(ii->second);
1310          ++ii;
1311        } else {
1312          DestBBs.push_back(Default);
1313        }
1314
1315      // Update successor info.  Add one edge to each unique successor.
1316      // Vector bool would be better, but vector<bool> is really slow.
1317      std::vector<unsigned char> SuccsHandled;
1318      SuccsHandled.resize(CurMBB->getParent()->getNumBlockIDs());
1319
1320      for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1321           E = DestBBs.end(); I != E; ++I) {
1322        if (!SuccsHandled[(*I)->getNumber()]) {
1323          SuccsHandled[(*I)->getNumber()] = true;
1324          JumpTableBB->addSuccessor(*I);
1325        }
1326      }
1327
1328      // Create a jump table index for this jump table, or return an existing
1329      // one.
1330      unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1331
1332      // Set the jump table information so that we can codegen it as a second
1333      // MachineBasicBlock
1334      JT.Reg = JumpTableReg;
1335      JT.JTI = JTI;
1336      JT.MBB = JumpTableBB;
1337      JT.Default = Default;
1338      return;
1339    }
1340  }
1341
1342  // Push the initial CaseRec onto the worklist
1343  std::vector<CaseRec> CaseVec;
1344  CaseVec.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
1345
1346  while (!CaseVec.empty()) {
1347    // Grab a record representing a case range to process off the worklist
1348    CaseRec CR = CaseVec.back();
1349    CaseVec.pop_back();
1350
1351    // Size is the number of Cases represented by this range.  If Size is 1,
1352    // then we are processing a leaf of the binary search tree.  Otherwise,
1353    // we need to pick a pivot, and push left and right ranges onto the
1354    // worklist.
1355    unsigned Size = CR.Range.second - CR.Range.first;
1356
1357    if (Size == 1) {
1358      // Create a CaseBlock record representing a conditional branch to
1359      // the Case's target mbb if the value being switched on SV is equal
1360      // to C.  Otherwise, branch to default.
1361      Constant *C = CR.Range.first->first;
1362      MachineBasicBlock *Target = CR.Range.first->second;
1363      SelectionDAGISel::CaseBlock CB(ISD::SETEQ, SV, C, Target, Default,
1364                                     CR.CaseBB);
1365
1366      // If the MBB representing the leaf node is the current MBB, then just
1367      // call visitSwitchCase to emit the code into the current block.
1368      // Otherwise, push the CaseBlock onto the vector to be later processed
1369      // by SDISel, and insert the node's MBB before the next MBB.
1370      if (CR.CaseBB == CurMBB)
1371        visitSwitchCase(CB);
1372      else
1373        SwitchCases.push_back(CB);
1374    } else {
1375      // split case range at pivot
1376      CaseItr Pivot = CR.Range.first + (Size / 2);
1377      CaseRange LHSR(CR.Range.first, Pivot);
1378      CaseRange RHSR(Pivot, CR.Range.second);
1379      Constant *C = Pivot->first;
1380      MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1381
1382      // We know that we branch to the LHS if the Value being switched on is
1383      // less than the Pivot value, C.  We use this to optimize our binary
1384      // tree a bit, by recognizing that if SV is greater than or equal to the
1385      // LHS's Case Value, and that Case Value is exactly one less than the
1386      // Pivot's Value, then we can branch directly to the LHS's Target,
1387      // rather than creating a leaf node for it.
1388      if ((LHSR.second - LHSR.first) == 1 &&
1389          LHSR.first->first == CR.GE &&
1390          cast<ConstantInt>(C)->getZExtValue() ==
1391          (cast<ConstantInt>(CR.GE)->getZExtValue() + 1ULL)) {
1392        TrueBB = LHSR.first->second;
1393      } else {
1394        TrueBB = new MachineBasicBlock(LLVMBB);
1395        CurMF->getBasicBlockList().insert(BBI, TrueBB);
1396        CaseVec.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1397      }
1398
1399      // Similar to the optimization above, if the Value being switched on is
1400      // known to be less than the Constant CR.LT, and the current Case Value
1401      // is CR.LT - 1, then we can branch directly to the target block for
1402      // the current Case Value, rather than emitting a RHS leaf node for it.
1403      if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1404          cast<ConstantInt>(RHSR.first->first)->getZExtValue() ==
1405          (cast<ConstantInt>(CR.LT)->getZExtValue() - 1ULL)) {
1406        FalseBB = RHSR.first->second;
1407      } else {
1408        FalseBB = new MachineBasicBlock(LLVMBB);
1409        CurMF->getBasicBlockList().insert(BBI, FalseBB);
1410        CaseVec.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1411      }
1412
1413      // Create a CaseBlock record representing a conditional branch to
1414      // the LHS node if the value being switched on SV is less than C.
1415      // Otherwise, branch to LHS.
1416      SelectionDAGISel::CaseBlock CB(ISD::SETLT, SV, C, TrueBB, FalseBB,
1417                                     CR.CaseBB);
1418
1419      if (CR.CaseBB == CurMBB)
1420        visitSwitchCase(CB);
1421      else
1422        SwitchCases.push_back(CB);
1423    }
1424  }
1425}
1426
1427void SelectionDAGLowering::visitSub(User &I) {
1428  // -0.0 - X --> fneg
1429  const Type *Ty = I.getType();
1430  if (isa<VectorType>(Ty)) {
1431    visitVectorBinary(I, ISD::VSUB);
1432  } else if (Ty->isFloatingPoint()) {
1433    if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
1434      if (CFP->isExactlyValue(-0.0)) {
1435        SDOperand Op2 = getValue(I.getOperand(1));
1436        setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
1437        return;
1438      }
1439    visitScalarBinary(I, ISD::FSUB);
1440  } else
1441    visitScalarBinary(I, ISD::SUB);
1442}
1443
1444void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
1445  SDOperand Op1 = getValue(I.getOperand(0));
1446  SDOperand Op2 = getValue(I.getOperand(1));
1447
1448  setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
1449}
1450
1451void
1452SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
1453  assert(isa<VectorType>(I.getType()));
1454  const VectorType *Ty = cast<VectorType>(I.getType());
1455  SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
1456
1457  setValue(&I, DAG.getNode(OpCode, MVT::Vector,
1458                           getValue(I.getOperand(0)),
1459                           getValue(I.getOperand(1)),
1460                           DAG.getConstant(Ty->getNumElements(), MVT::i32),
1461                           Typ));
1462}
1463
1464void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
1465                                             unsigned VectorOp) {
1466  if (isa<VectorType>(I.getType()))
1467    visitVectorBinary(I, VectorOp);
1468  else
1469    visitScalarBinary(I, ScalarOp);
1470}
1471
1472void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
1473  SDOperand Op1 = getValue(I.getOperand(0));
1474  SDOperand Op2 = getValue(I.getOperand(1));
1475
1476  if (TLI.getShiftAmountTy() < Op2.getValueType())
1477    Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
1478  else if (TLI.getShiftAmountTy() > Op2.getValueType())
1479    Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
1480
1481  setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
1482}
1483
1484void SelectionDAGLowering::visitICmp(User &I) {
1485  ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
1486  if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
1487    predicate = IC->getPredicate();
1488  else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
1489    predicate = ICmpInst::Predicate(IC->getPredicate());
1490  SDOperand Op1 = getValue(I.getOperand(0));
1491  SDOperand Op2 = getValue(I.getOperand(1));
1492  ISD::CondCode Opcode;
1493  switch (predicate) {
1494    case ICmpInst::ICMP_EQ  : Opcode = ISD::SETEQ; break;
1495    case ICmpInst::ICMP_NE  : Opcode = ISD::SETNE; break;
1496    case ICmpInst::ICMP_UGT : Opcode = ISD::SETUGT; break;
1497    case ICmpInst::ICMP_UGE : Opcode = ISD::SETUGE; break;
1498    case ICmpInst::ICMP_ULT : Opcode = ISD::SETULT; break;
1499    case ICmpInst::ICMP_ULE : Opcode = ISD::SETULE; break;
1500    case ICmpInst::ICMP_SGT : Opcode = ISD::SETGT; break;
1501    case ICmpInst::ICMP_SGE : Opcode = ISD::SETGE; break;
1502    case ICmpInst::ICMP_SLT : Opcode = ISD::SETLT; break;
1503    case ICmpInst::ICMP_SLE : Opcode = ISD::SETLE; break;
1504    default:
1505      assert(!"Invalid ICmp predicate value");
1506      Opcode = ISD::SETEQ;
1507      break;
1508  }
1509  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
1510}
1511
1512void SelectionDAGLowering::visitFCmp(User &I) {
1513  FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
1514  if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
1515    predicate = FC->getPredicate();
1516  else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
1517    predicate = FCmpInst::Predicate(FC->getPredicate());
1518  SDOperand Op1 = getValue(I.getOperand(0));
1519  SDOperand Op2 = getValue(I.getOperand(1));
1520  ISD::CondCode Condition, FOC, FPC;
1521  switch (predicate) {
1522    case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1523    case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1524    case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1525    case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1526    case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1527    case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1528    case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1529    case FCmpInst::FCMP_ORD:   FOC = ISD::SETEQ; FPC = ISD::SETO;   break;
1530    case FCmpInst::FCMP_UNO:   FOC = ISD::SETNE; FPC = ISD::SETUO;  break;
1531    case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1532    case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1533    case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1534    case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1535    case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1536    case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1537    case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break;
1538    default:
1539      assert(!"Invalid FCmp predicate value");
1540      FOC = FPC = ISD::SETFALSE;
1541      break;
1542  }
1543  if (FiniteOnlyFPMath())
1544    Condition = FOC;
1545  else
1546    Condition = FPC;
1547  setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
1548}
1549
1550void SelectionDAGLowering::visitSelect(User &I) {
1551  SDOperand Cond     = getValue(I.getOperand(0));
1552  SDOperand TrueVal  = getValue(I.getOperand(1));
1553  SDOperand FalseVal = getValue(I.getOperand(2));
1554  if (!isa<VectorType>(I.getType())) {
1555    setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
1556                             TrueVal, FalseVal));
1557  } else {
1558    setValue(&I, DAG.getNode(ISD::VSELECT, MVT::Vector, Cond, TrueVal, FalseVal,
1559                             *(TrueVal.Val->op_end()-2),
1560                             *(TrueVal.Val->op_end()-1)));
1561  }
1562}
1563
1564
1565void SelectionDAGLowering::visitTrunc(User &I) {
1566  // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
1567  SDOperand N = getValue(I.getOperand(0));
1568  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1569  setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1570}
1571
1572void SelectionDAGLowering::visitZExt(User &I) {
1573  // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1574  // ZExt also can't be a cast to bool for same reason. So, nothing much to do
1575  SDOperand N = getValue(I.getOperand(0));
1576  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1577  setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1578}
1579
1580void SelectionDAGLowering::visitSExt(User &I) {
1581  // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
1582  // SExt also can't be a cast to bool for same reason. So, nothing much to do
1583  SDOperand N = getValue(I.getOperand(0));
1584  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1585  setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
1586}
1587
1588void SelectionDAGLowering::visitFPTrunc(User &I) {
1589  // FPTrunc is never a no-op cast, no need to check
1590  SDOperand N = getValue(I.getOperand(0));
1591  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1592  setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N));
1593}
1594
1595void SelectionDAGLowering::visitFPExt(User &I){
1596  // FPTrunc is never a no-op cast, no need to check
1597  SDOperand N = getValue(I.getOperand(0));
1598  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1599  setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
1600}
1601
1602void SelectionDAGLowering::visitFPToUI(User &I) {
1603  // FPToUI is never a no-op cast, no need to check
1604  SDOperand N = getValue(I.getOperand(0));
1605  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1606  setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
1607}
1608
1609void SelectionDAGLowering::visitFPToSI(User &I) {
1610  // FPToSI is never a no-op cast, no need to check
1611  SDOperand N = getValue(I.getOperand(0));
1612  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1613  setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
1614}
1615
1616void SelectionDAGLowering::visitUIToFP(User &I) {
1617  // UIToFP is never a no-op cast, no need to check
1618  SDOperand N = getValue(I.getOperand(0));
1619  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1620  setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
1621}
1622
1623void SelectionDAGLowering::visitSIToFP(User &I){
1624  // UIToFP is never a no-op cast, no need to check
1625  SDOperand N = getValue(I.getOperand(0));
1626  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1627  setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
1628}
1629
1630void SelectionDAGLowering::visitPtrToInt(User &I) {
1631  // What to do depends on the size of the integer and the size of the pointer.
1632  // We can either truncate, zero extend, or no-op, accordingly.
1633  SDOperand N = getValue(I.getOperand(0));
1634  MVT::ValueType SrcVT = N.getValueType();
1635  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1636  SDOperand Result;
1637  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1638    Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
1639  else
1640    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1641    Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
1642  setValue(&I, Result);
1643}
1644
1645void SelectionDAGLowering::visitIntToPtr(User &I) {
1646  // What to do depends on the size of the integer and the size of the pointer.
1647  // We can either truncate, zero extend, or no-op, accordingly.
1648  SDOperand N = getValue(I.getOperand(0));
1649  MVT::ValueType SrcVT = N.getValueType();
1650  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1651  if (MVT::getSizeInBits(DestVT) < MVT::getSizeInBits(SrcVT))
1652    setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
1653  else
1654    // Note: ZERO_EXTEND can handle cases where the sizes are equal too
1655    setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
1656}
1657
1658void SelectionDAGLowering::visitBitCast(User &I) {
1659  SDOperand N = getValue(I.getOperand(0));
1660  MVT::ValueType DestVT = TLI.getValueType(I.getType());
1661  if (DestVT == MVT::Vector) {
1662    // This is a cast to a vector from something else.
1663    // Get information about the output vector.
1664    const VectorType *DestTy = cast<VectorType>(I.getType());
1665    MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1666    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N,
1667                             DAG.getConstant(DestTy->getNumElements(),MVT::i32),
1668                             DAG.getValueType(EltVT)));
1669    return;
1670  }
1671  MVT::ValueType SrcVT = N.getValueType();
1672  if (SrcVT == MVT::Vector) {
1673    // This is a cast from a vctor to something else.
1674    // Get information about the input vector.
1675    setValue(&I, DAG.getNode(ISD::VBIT_CONVERT, DestVT, N));
1676    return;
1677  }
1678
1679  // BitCast assures us that source and destination are the same size so this
1680  // is either a BIT_CONVERT or a no-op.
1681  if (DestVT != N.getValueType())
1682    setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
1683  else
1684    setValue(&I, N); // noop cast.
1685}
1686
1687void SelectionDAGLowering::visitInsertElement(User &I) {
1688  SDOperand InVec = getValue(I.getOperand(0));
1689  SDOperand InVal = getValue(I.getOperand(1));
1690  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1691                                getValue(I.getOperand(2)));
1692
1693  SDOperand Num = *(InVec.Val->op_end()-2);
1694  SDOperand Typ = *(InVec.Val->op_end()-1);
1695  setValue(&I, DAG.getNode(ISD::VINSERT_VECTOR_ELT, MVT::Vector,
1696                           InVec, InVal, InIdx, Num, Typ));
1697}
1698
1699void SelectionDAGLowering::visitExtractElement(User &I) {
1700  SDOperand InVec = getValue(I.getOperand(0));
1701  SDOperand InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
1702                                getValue(I.getOperand(1)));
1703  SDOperand Typ = *(InVec.Val->op_end()-1);
1704  setValue(&I, DAG.getNode(ISD::VEXTRACT_VECTOR_ELT,
1705                           TLI.getValueType(I.getType()), InVec, InIdx));
1706}
1707
1708void SelectionDAGLowering::visitShuffleVector(User &I) {
1709  SDOperand V1   = getValue(I.getOperand(0));
1710  SDOperand V2   = getValue(I.getOperand(1));
1711  SDOperand Mask = getValue(I.getOperand(2));
1712
1713  SDOperand Num = *(V1.Val->op_end()-2);
1714  SDOperand Typ = *(V2.Val->op_end()-1);
1715  setValue(&I, DAG.getNode(ISD::VVECTOR_SHUFFLE, MVT::Vector,
1716                           V1, V2, Mask, Num, Typ));
1717}
1718
1719
1720void SelectionDAGLowering::visitGetElementPtr(User &I) {
1721  SDOperand N = getValue(I.getOperand(0));
1722  const Type *Ty = I.getOperand(0)->getType();
1723
1724  for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
1725       OI != E; ++OI) {
1726    Value *Idx = *OI;
1727    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
1728      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
1729      if (Field) {
1730        // N = N + Offset
1731        uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
1732        N = DAG.getNode(ISD::ADD, N.getValueType(), N,
1733                        getIntPtrConstant(Offset));
1734      }
1735      Ty = StTy->getElementType(Field);
1736    } else {
1737      Ty = cast<SequentialType>(Ty)->getElementType();
1738
1739      // If this is a constant subscript, handle it quickly.
1740      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
1741        if (CI->getZExtValue() == 0) continue;
1742        uint64_t Offs =
1743            TD->getTypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
1744        N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
1745        continue;
1746      }
1747
1748      // N = N + Idx * ElementSize;
1749      uint64_t ElementSize = TD->getTypeSize(Ty);
1750      SDOperand IdxN = getValue(Idx);
1751
1752      // If the index is smaller or larger than intptr_t, truncate or extend
1753      // it.
1754      if (IdxN.getValueType() < N.getValueType()) {
1755        IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
1756      } else if (IdxN.getValueType() > N.getValueType())
1757        IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
1758
1759      // If this is a multiply by a power of two, turn it into a shl
1760      // immediately.  This is a very common case.
1761      if (isPowerOf2_64(ElementSize)) {
1762        unsigned Amt = Log2_64(ElementSize);
1763        IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
1764                           DAG.getConstant(Amt, TLI.getShiftAmountTy()));
1765        N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1766        continue;
1767      }
1768
1769      SDOperand Scale = getIntPtrConstant(ElementSize);
1770      IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
1771      N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
1772    }
1773  }
1774  setValue(&I, N);
1775}
1776
1777void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
1778  // If this is a fixed sized alloca in the entry block of the function,
1779  // allocate it statically on the stack.
1780  if (FuncInfo.StaticAllocaMap.count(&I))
1781    return;   // getValue will auto-populate this.
1782
1783  const Type *Ty = I.getAllocatedType();
1784  uint64_t TySize = TLI.getTargetData()->getTypeSize(Ty);
1785  unsigned Align =
1786    std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
1787             I.getAlignment());
1788
1789  SDOperand AllocSize = getValue(I.getArraySize());
1790  MVT::ValueType IntPtr = TLI.getPointerTy();
1791  if (IntPtr < AllocSize.getValueType())
1792    AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
1793  else if (IntPtr > AllocSize.getValueType())
1794    AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
1795
1796  AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
1797                          getIntPtrConstant(TySize));
1798
1799  // Handle alignment.  If the requested alignment is less than or equal to the
1800  // stack alignment, ignore it and round the size of the allocation up to the
1801  // stack alignment size.  If the size is greater than the stack alignment, we
1802  // note this in the DYNAMIC_STACKALLOC node.
1803  unsigned StackAlign =
1804    TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
1805  if (Align <= StackAlign) {
1806    Align = 0;
1807    // Add SA-1 to the size.
1808    AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
1809                            getIntPtrConstant(StackAlign-1));
1810    // Mask out the low bits for alignment purposes.
1811    AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
1812                            getIntPtrConstant(~(uint64_t)(StackAlign-1)));
1813  }
1814
1815  SDOperand Ops[] = { getRoot(), AllocSize, getIntPtrConstant(Align) };
1816  const MVT::ValueType *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
1817                                                    MVT::Other);
1818  SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
1819  setValue(&I, DSA);
1820  DAG.setRoot(DSA.getValue(1));
1821
1822  // Inform the Frame Information that we have just allocated a variable-sized
1823  // object.
1824  CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
1825}
1826
1827void SelectionDAGLowering::visitLoad(LoadInst &I) {
1828  SDOperand Ptr = getValue(I.getOperand(0));
1829
1830  SDOperand Root;
1831  if (I.isVolatile())
1832    Root = getRoot();
1833  else {
1834    // Do not serialize non-volatile loads against each other.
1835    Root = DAG.getRoot();
1836  }
1837
1838  setValue(&I, getLoadFrom(I.getType(), Ptr, I.getOperand(0),
1839                           Root, I.isVolatile()));
1840}
1841
1842SDOperand SelectionDAGLowering::getLoadFrom(const Type *Ty, SDOperand Ptr,
1843                                            const Value *SV, SDOperand Root,
1844                                            bool isVolatile) {
1845  SDOperand L;
1846  if (const VectorType *PTy = dyn_cast<VectorType>(Ty)) {
1847    MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
1848    L = DAG.getVecLoad(PTy->getNumElements(), PVT, Root, Ptr,
1849                       DAG.getSrcValue(SV));
1850  } else {
1851    L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr, SV, 0, isVolatile);
1852  }
1853
1854  if (isVolatile)
1855    DAG.setRoot(L.getValue(1));
1856  else
1857    PendingLoads.push_back(L.getValue(1));
1858
1859  return L;
1860}
1861
1862
1863void SelectionDAGLowering::visitStore(StoreInst &I) {
1864  Value *SrcV = I.getOperand(0);
1865  SDOperand Src = getValue(SrcV);
1866  SDOperand Ptr = getValue(I.getOperand(1));
1867  DAG.setRoot(DAG.getStore(getRoot(), Src, Ptr, I.getOperand(1), 0,
1868                           I.isVolatile()));
1869}
1870
1871/// IntrinsicCannotAccessMemory - Return true if the specified intrinsic cannot
1872/// access memory and has no other side effects at all.
1873static bool IntrinsicCannotAccessMemory(unsigned IntrinsicID) {
1874#define GET_NO_MEMORY_INTRINSICS
1875#include "llvm/Intrinsics.gen"
1876#undef GET_NO_MEMORY_INTRINSICS
1877  return false;
1878}
1879
1880// IntrinsicOnlyReadsMemory - Return true if the specified intrinsic doesn't
1881// have any side-effects or if it only reads memory.
1882static bool IntrinsicOnlyReadsMemory(unsigned IntrinsicID) {
1883#define GET_SIDE_EFFECT_INFO
1884#include "llvm/Intrinsics.gen"
1885#undef GET_SIDE_EFFECT_INFO
1886  return false;
1887}
1888
1889/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
1890/// node.
1891void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
1892                                                unsigned Intrinsic) {
1893  bool HasChain = !IntrinsicCannotAccessMemory(Intrinsic);
1894  bool OnlyLoad = HasChain && IntrinsicOnlyReadsMemory(Intrinsic);
1895
1896  // Build the operand list.
1897  SmallVector<SDOperand, 8> Ops;
1898  if (HasChain) {  // If this intrinsic has side-effects, chainify it.
1899    if (OnlyLoad) {
1900      // We don't need to serialize loads against other loads.
1901      Ops.push_back(DAG.getRoot());
1902    } else {
1903      Ops.push_back(getRoot());
1904    }
1905  }
1906
1907  // Add the intrinsic ID as an integer operand.
1908  Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
1909
1910  // Add all operands of the call to the operand list.
1911  for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
1912    SDOperand Op = getValue(I.getOperand(i));
1913
1914    // If this is a vector type, force it to the right vector type.
1915    if (Op.getValueType() == MVT::Vector) {
1916      const VectorType *OpTy = cast<VectorType>(I.getOperand(i)->getType());
1917      MVT::ValueType EltVT = TLI.getValueType(OpTy->getElementType());
1918
1919      MVT::ValueType VVT = MVT::getVectorType(EltVT, OpTy->getNumElements());
1920      assert(VVT != MVT::Other && "Intrinsic uses a non-legal type?");
1921      Op = DAG.getNode(ISD::VBIT_CONVERT, VVT, Op);
1922    }
1923
1924    assert(TLI.isTypeLegal(Op.getValueType()) &&
1925           "Intrinsic uses a non-legal type?");
1926    Ops.push_back(Op);
1927  }
1928
1929  std::vector<MVT::ValueType> VTs;
1930  if (I.getType() != Type::VoidTy) {
1931    MVT::ValueType VT = TLI.getValueType(I.getType());
1932    if (VT == MVT::Vector) {
1933      const VectorType *DestTy = cast<VectorType>(I.getType());
1934      MVT::ValueType EltVT = TLI.getValueType(DestTy->getElementType());
1935
1936      VT = MVT::getVectorType(EltVT, DestTy->getNumElements());
1937      assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
1938    }
1939
1940    assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
1941    VTs.push_back(VT);
1942  }
1943  if (HasChain)
1944    VTs.push_back(MVT::Other);
1945
1946  const MVT::ValueType *VTList = DAG.getNodeValueTypes(VTs);
1947
1948  // Create the node.
1949  SDOperand Result;
1950  if (!HasChain)
1951    Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
1952                         &Ops[0], Ops.size());
1953  else if (I.getType() != Type::VoidTy)
1954    Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
1955                         &Ops[0], Ops.size());
1956  else
1957    Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
1958                         &Ops[0], Ops.size());
1959
1960  if (HasChain) {
1961    SDOperand Chain = Result.getValue(Result.Val->getNumValues()-1);
1962    if (OnlyLoad)
1963      PendingLoads.push_back(Chain);
1964    else
1965      DAG.setRoot(Chain);
1966  }
1967  if (I.getType() != Type::VoidTy) {
1968    if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
1969      MVT::ValueType EVT = TLI.getValueType(PTy->getElementType());
1970      Result = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Result,
1971                           DAG.getConstant(PTy->getNumElements(), MVT::i32),
1972                           DAG.getValueType(EVT));
1973    }
1974    setValue(&I, Result);
1975  }
1976}
1977
1978/// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
1979/// we want to emit this as a call to a named external function, return the name
1980/// otherwise lower it and return null.
1981const char *
1982SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
1983  switch (Intrinsic) {
1984  default:
1985    // By default, turn this into a target intrinsic node.
1986    visitTargetIntrinsic(I, Intrinsic);
1987    return 0;
1988  case Intrinsic::vastart:  visitVAStart(I); return 0;
1989  case Intrinsic::vaend:    visitVAEnd(I); return 0;
1990  case Intrinsic::vacopy:   visitVACopy(I); return 0;
1991  case Intrinsic::returnaddress:
1992    setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
1993                             getValue(I.getOperand(1))));
1994    return 0;
1995  case Intrinsic::frameaddress:
1996    setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
1997                             getValue(I.getOperand(1))));
1998    return 0;
1999  case Intrinsic::setjmp:
2000    return "_setjmp"+!TLI.usesUnderscoreSetJmp();
2001    break;
2002  case Intrinsic::longjmp:
2003    return "_longjmp"+!TLI.usesUnderscoreLongJmp();
2004    break;
2005  case Intrinsic::memcpy_i32:
2006  case Intrinsic::memcpy_i64:
2007    visitMemIntrinsic(I, ISD::MEMCPY);
2008    return 0;
2009  case Intrinsic::memset_i32:
2010  case Intrinsic::memset_i64:
2011    visitMemIntrinsic(I, ISD::MEMSET);
2012    return 0;
2013  case Intrinsic::memmove_i32:
2014  case Intrinsic::memmove_i64:
2015    visitMemIntrinsic(I, ISD::MEMMOVE);
2016    return 0;
2017
2018  case Intrinsic::dbg_stoppoint: {
2019    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2020    DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2021    if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
2022      SDOperand Ops[5];
2023
2024      Ops[0] = getRoot();
2025      Ops[1] = getValue(SPI.getLineValue());
2026      Ops[2] = getValue(SPI.getColumnValue());
2027
2028      DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
2029      assert(DD && "Not a debug information descriptor");
2030      CompileUnitDesc *CompileUnit = cast<CompileUnitDesc>(DD);
2031
2032      Ops[3] = DAG.getString(CompileUnit->getFileName());
2033      Ops[4] = DAG.getString(CompileUnit->getDirectory());
2034
2035      DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops, 5));
2036    }
2037
2038    return 0;
2039  }
2040  case Intrinsic::dbg_region_start: {
2041    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2042    DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
2043    if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
2044      unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
2045      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, getRoot(),
2046                              DAG.getConstant(LabelID, MVT::i32)));
2047    }
2048
2049    return 0;
2050  }
2051  case Intrinsic::dbg_region_end: {
2052    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2053    DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
2054    if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
2055      unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
2056      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2057                              getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2058    }
2059
2060    return 0;
2061  }
2062  case Intrinsic::dbg_func_start: {
2063    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2064    DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
2065    if (MMI && FSI.getSubprogram() &&
2066        MMI->Verify(FSI.getSubprogram())) {
2067      unsigned LabelID = MMI->RecordRegionStart(FSI.getSubprogram());
2068      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other,
2069                  getRoot(), DAG.getConstant(LabelID, MVT::i32)));
2070    }
2071
2072    return 0;
2073  }
2074  case Intrinsic::dbg_declare: {
2075    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2076    DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
2077    if (MMI && DI.getVariable() && MMI->Verify(DI.getVariable())) {
2078      SDOperand AddressOp  = getValue(DI.getAddress());
2079      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(AddressOp))
2080        MMI->RecordVariable(DI.getVariable(), FI->getIndex());
2081    }
2082
2083    return 0;
2084  }
2085
2086  case Intrinsic::eh_exception: {
2087    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2088
2089    if (MMI) {
2090      // Add a label to mark the beginning of the landing pad.  Deletion of the
2091      // landing pad can thus be detected via the MachineModuleInfo.
2092      unsigned LabelID = MMI->addLandingPad(CurMBB);
2093      DAG.setRoot(DAG.getNode(ISD::LABEL, MVT::Other, DAG.getEntryNode(),
2094                              DAG.getConstant(LabelID, MVT::i32)));
2095
2096      // Mark exception register as live in.
2097      unsigned Reg = TLI.getExceptionAddressRegister();
2098      if (Reg) CurMBB->addLiveIn(Reg);
2099
2100      // Insert the EXCEPTIONADDR instruction.
2101      SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
2102      SDOperand Ops[1];
2103      Ops[0] = DAG.getRoot();
2104      SDOperand Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
2105      setValue(&I, Op);
2106      DAG.setRoot(Op.getValue(1));
2107    } else {
2108      setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
2109    }
2110    return 0;
2111  }
2112
2113  case Intrinsic::eh_selector:
2114  case Intrinsic::eh_filter:{
2115    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2116
2117    if (MMI) {
2118      // Inform the MachineModuleInfo of the personality for this landing pad.
2119      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(2));
2120      assert(CE && CE->getOpcode() == Instruction::BitCast &&
2121             isa<Function>(CE->getOperand(0)) &&
2122             "Personality should be a function");
2123      MMI->addPersonality(CurMBB, cast<Function>(CE->getOperand(0)));
2124      if (Intrinsic == Intrinsic::eh_filter)
2125        MMI->setIsFilterLandingPad(CurMBB);
2126
2127      // Gather all the type infos for this landing pad and pass them along to
2128      // MachineModuleInfo.
2129      std::vector<GlobalVariable *> TyInfo;
2130      for (unsigned i = 3, N = I.getNumOperands(); i < N; ++i) {
2131        ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i));
2132        if (CE && CE->getOpcode() == Instruction::BitCast &&
2133            isa<GlobalVariable>(CE->getOperand(0))) {
2134          TyInfo.push_back(cast<GlobalVariable>(CE->getOperand(0)));
2135        } else {
2136          ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i));
2137          assert(CI && CI->getZExtValue() == 0 &&
2138            "TypeInfo must be a global variable typeinfo or NULL");
2139          TyInfo.push_back(NULL);
2140        }
2141      }
2142      MMI->addCatchTypeInfo(CurMBB, TyInfo);
2143
2144      // Mark exception selector register as live in.
2145      unsigned Reg = TLI.getExceptionSelectorRegister();
2146      if (Reg) CurMBB->addLiveIn(Reg);
2147
2148      // Insert the EHSELECTION instruction.
2149      SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2150      SDOperand Ops[2];
2151      Ops[0] = getValue(I.getOperand(1));
2152      Ops[1] = getRoot();
2153      SDOperand Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
2154      setValue(&I, Op);
2155      DAG.setRoot(Op.getValue(1));
2156    } else {
2157      setValue(&I, DAG.getConstant(0, MVT::i32));
2158    }
2159
2160    return 0;
2161  }
2162
2163  case Intrinsic::eh_typeid_for: {
2164    MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
2165
2166    if (MMI) {
2167      // Find the type id for the given typeinfo.
2168      GlobalVariable *GV = NULL;
2169      ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(1));
2170      if (CE && CE->getOpcode() == Instruction::BitCast &&
2171          isa<GlobalVariable>(CE->getOperand(0))) {
2172        GV = cast<GlobalVariable>(CE->getOperand(0));
2173      } else {
2174        ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
2175        assert(CI && CI->getZExtValue() == 0 &&
2176          "TypeInfo must be a global variable typeinfo or NULL");
2177        GV = NULL;
2178      }
2179
2180      unsigned TypeID = MMI->getTypeIDFor(GV);
2181      setValue(&I, DAG.getConstant(TypeID, MVT::i32));
2182    } else {
2183      setValue(&I, DAG.getConstant(0, MVT::i32));
2184    }
2185
2186    return 0;
2187  }
2188
2189  case Intrinsic::sqrt_f32:
2190  case Intrinsic::sqrt_f64:
2191    setValue(&I, DAG.getNode(ISD::FSQRT,
2192                             getValue(I.getOperand(1)).getValueType(),
2193                             getValue(I.getOperand(1))));
2194    return 0;
2195  case Intrinsic::powi_f32:
2196  case Intrinsic::powi_f64:
2197    setValue(&I, DAG.getNode(ISD::FPOWI,
2198                             getValue(I.getOperand(1)).getValueType(),
2199                             getValue(I.getOperand(1)),
2200                             getValue(I.getOperand(2))));
2201    return 0;
2202  case Intrinsic::pcmarker: {
2203    SDOperand Tmp = getValue(I.getOperand(1));
2204    DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
2205    return 0;
2206  }
2207  case Intrinsic::readcyclecounter: {
2208    SDOperand Op = getRoot();
2209    SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
2210                                DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
2211                                &Op, 1);
2212    setValue(&I, Tmp);
2213    DAG.setRoot(Tmp.getValue(1));
2214    return 0;
2215  }
2216  case Intrinsic::bswap_i16:
2217  case Intrinsic::bswap_i32:
2218  case Intrinsic::bswap_i64:
2219    setValue(&I, DAG.getNode(ISD::BSWAP,
2220                             getValue(I.getOperand(1)).getValueType(),
2221                             getValue(I.getOperand(1))));
2222    return 0;
2223  case Intrinsic::cttz_i8:
2224  case Intrinsic::cttz_i16:
2225  case Intrinsic::cttz_i32:
2226  case Intrinsic::cttz_i64:
2227    setValue(&I, DAG.getNode(ISD::CTTZ,
2228                             getValue(I.getOperand(1)).getValueType(),
2229                             getValue(I.getOperand(1))));
2230    return 0;
2231  case Intrinsic::ctlz_i8:
2232  case Intrinsic::ctlz_i16:
2233  case Intrinsic::ctlz_i32:
2234  case Intrinsic::ctlz_i64:
2235    setValue(&I, DAG.getNode(ISD::CTLZ,
2236                             getValue(I.getOperand(1)).getValueType(),
2237                             getValue(I.getOperand(1))));
2238    return 0;
2239  case Intrinsic::ctpop_i8:
2240  case Intrinsic::ctpop_i16:
2241  case Intrinsic::ctpop_i32:
2242  case Intrinsic::ctpop_i64:
2243    setValue(&I, DAG.getNode(ISD::CTPOP,
2244                             getValue(I.getOperand(1)).getValueType(),
2245                             getValue(I.getOperand(1))));
2246    return 0;
2247  case Intrinsic::stacksave: {
2248    SDOperand Op = getRoot();
2249    SDOperand Tmp = DAG.getNode(ISD::STACKSAVE,
2250              DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
2251    setValue(&I, Tmp);
2252    DAG.setRoot(Tmp.getValue(1));
2253    return 0;
2254  }
2255  case Intrinsic::stackrestore: {
2256    SDOperand Tmp = getValue(I.getOperand(1));
2257    DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
2258    return 0;
2259  }
2260  case Intrinsic::prefetch:
2261    // FIXME: Currently discarding prefetches.
2262    return 0;
2263  }
2264}
2265
2266
2267void SelectionDAGLowering::LowerCallTo(Instruction &I,
2268                                       const Type *CalledValueTy,
2269                                       unsigned CallingConv,
2270                                       bool IsTailCall,
2271                                       SDOperand Callee, unsigned OpIdx) {
2272  const PointerType *PT = cast<PointerType>(CalledValueTy);
2273  const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
2274
2275  TargetLowering::ArgListTy Args;
2276  TargetLowering::ArgListEntry Entry;
2277  Args.reserve(I.getNumOperands());
2278  for (unsigned i = OpIdx, e = I.getNumOperands(); i != e; ++i) {
2279    Value *Arg = I.getOperand(i);
2280    SDOperand ArgNode = getValue(Arg);
2281    Entry.Node = ArgNode; Entry.Ty = Arg->getType();
2282    Entry.isSigned = FTy->paramHasAttr(i, FunctionType::SExtAttribute);
2283    Entry.isInReg  = FTy->paramHasAttr(i, FunctionType::InRegAttribute);
2284    Entry.isSRet   = FTy->paramHasAttr(i, FunctionType::StructRetAttribute);
2285    Args.push_back(Entry);
2286  }
2287
2288  std::pair<SDOperand,SDOperand> Result =
2289    TLI.LowerCallTo(getRoot(), I.getType(),
2290                    FTy->paramHasAttr(0,FunctionType::SExtAttribute),
2291                    FTy->isVarArg(), CallingConv, IsTailCall,
2292                    Callee, Args, DAG);
2293  if (I.getType() != Type::VoidTy)
2294    setValue(&I, Result.first);
2295  DAG.setRoot(Result.second);
2296}
2297
2298
2299void SelectionDAGLowering::visitCall(CallInst &I) {
2300  const char *RenameFn = 0;
2301  if (Function *F = I.getCalledFunction()) {
2302    if (F->isDeclaration())
2303      if (unsigned IID = F->getIntrinsicID()) {
2304        RenameFn = visitIntrinsicCall(I, IID);
2305        if (!RenameFn)
2306          return;
2307      } else {    // Not an LLVM intrinsic.
2308        const std::string &Name = F->getName();
2309        if (Name[0] == 'c' && (Name == "copysign" || Name == "copysignf")) {
2310          if (I.getNumOperands() == 3 &&   // Basic sanity checks.
2311              I.getOperand(1)->getType()->isFloatingPoint() &&
2312              I.getType() == I.getOperand(1)->getType() &&
2313              I.getType() == I.getOperand(2)->getType()) {
2314            SDOperand LHS = getValue(I.getOperand(1));
2315            SDOperand RHS = getValue(I.getOperand(2));
2316            setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
2317                                     LHS, RHS));
2318            return;
2319          }
2320        } else if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
2321          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2322              I.getOperand(1)->getType()->isFloatingPoint() &&
2323              I.getType() == I.getOperand(1)->getType()) {
2324            SDOperand Tmp = getValue(I.getOperand(1));
2325            setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
2326            return;
2327          }
2328        } else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
2329          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2330              I.getOperand(1)->getType()->isFloatingPoint() &&
2331              I.getType() == I.getOperand(1)->getType()) {
2332            SDOperand Tmp = getValue(I.getOperand(1));
2333            setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
2334            return;
2335          }
2336        } else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
2337          if (I.getNumOperands() == 2 &&   // Basic sanity checks.
2338              I.getOperand(1)->getType()->isFloatingPoint() &&
2339              I.getType() == I.getOperand(1)->getType()) {
2340            SDOperand Tmp = getValue(I.getOperand(1));
2341            setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
2342            return;
2343          }
2344        }
2345      }
2346  } else if (isa<InlineAsm>(I.getOperand(0))) {
2347    visitInlineAsm(I);
2348    return;
2349  }
2350
2351  SDOperand Callee;
2352  if (!RenameFn)
2353    Callee = getValue(I.getOperand(0));
2354  else
2355    Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
2356
2357  LowerCallTo(I, I.getCalledValue()->getType(),
2358                 I.getCallingConv(),
2359                 I.isTailCall(),
2360                 Callee,
2361                 1);
2362}
2363
2364
2365SDOperand RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
2366                                        SDOperand &Chain, SDOperand &Flag)const{
2367  SDOperand Val = DAG.getCopyFromReg(Chain, Regs[0], RegVT, Flag);
2368  Chain = Val.getValue(1);
2369  Flag  = Val.getValue(2);
2370
2371  // If the result was expanded, copy from the top part.
2372  if (Regs.size() > 1) {
2373    assert(Regs.size() == 2 &&
2374           "Cannot expand to more than 2 elts yet!");
2375    SDOperand Hi = DAG.getCopyFromReg(Chain, Regs[1], RegVT, Flag);
2376    Chain = Hi.getValue(1);
2377    Flag  = Hi.getValue(2);
2378    if (DAG.getTargetLoweringInfo().isLittleEndian())
2379      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Val, Hi);
2380    else
2381      return DAG.getNode(ISD::BUILD_PAIR, ValueVT, Hi, Val);
2382  }
2383
2384  // Otherwise, if the return value was promoted or extended, truncate it to the
2385  // appropriate type.
2386  if (RegVT == ValueVT)
2387    return Val;
2388
2389  if (MVT::isInteger(RegVT)) {
2390    if (ValueVT < RegVT)
2391      return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
2392    else
2393      return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
2394  } else {
2395    return DAG.getNode(ISD::FP_ROUND, ValueVT, Val);
2396  }
2397}
2398
2399/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
2400/// specified value into the registers specified by this object.  This uses
2401/// Chain/Flag as the input and updates them for the output Chain/Flag.
2402void RegsForValue::getCopyToRegs(SDOperand Val, SelectionDAG &DAG,
2403                                 SDOperand &Chain, SDOperand &Flag,
2404                                 MVT::ValueType PtrVT) const {
2405  if (Regs.size() == 1) {
2406    // If there is a single register and the types differ, this must be
2407    // a promotion.
2408    if (RegVT != ValueVT) {
2409      if (MVT::isInteger(RegVT)) {
2410        if (RegVT < ValueVT)
2411          Val = DAG.getNode(ISD::TRUNCATE, RegVT, Val);
2412        else
2413          Val = DAG.getNode(ISD::ANY_EXTEND, RegVT, Val);
2414      } else
2415        Val = DAG.getNode(ISD::FP_EXTEND, RegVT, Val);
2416    }
2417    Chain = DAG.getCopyToReg(Chain, Regs[0], Val, Flag);
2418    Flag = Chain.getValue(1);
2419  } else {
2420    std::vector<unsigned> R(Regs);
2421    if (!DAG.getTargetLoweringInfo().isLittleEndian())
2422      std::reverse(R.begin(), R.end());
2423
2424    for (unsigned i = 0, e = R.size(); i != e; ++i) {
2425      SDOperand Part = DAG.getNode(ISD::EXTRACT_ELEMENT, RegVT, Val,
2426                                   DAG.getConstant(i, PtrVT));
2427      Chain = DAG.getCopyToReg(Chain, R[i], Part, Flag);
2428      Flag = Chain.getValue(1);
2429    }
2430  }
2431}
2432
2433/// AddInlineAsmOperands - Add this value to the specified inlineasm node
2434/// operand list.  This adds the code marker and includes the number of
2435/// values added into it.
2436void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
2437                                        std::vector<SDOperand> &Ops) const {
2438  Ops.push_back(DAG.getConstant(Code | (Regs.size() << 3), MVT::i32));
2439  for (unsigned i = 0, e = Regs.size(); i != e; ++i)
2440    Ops.push_back(DAG.getRegister(Regs[i], RegVT));
2441}
2442
2443/// isAllocatableRegister - If the specified register is safe to allocate,
2444/// i.e. it isn't a stack pointer or some other special register, return the
2445/// register class for the register.  Otherwise, return null.
2446static const TargetRegisterClass *
2447isAllocatableRegister(unsigned Reg, MachineFunction &MF,
2448                      const TargetLowering &TLI, const MRegisterInfo *MRI) {
2449  MVT::ValueType FoundVT = MVT::Other;
2450  const TargetRegisterClass *FoundRC = 0;
2451  for (MRegisterInfo::regclass_iterator RCI = MRI->regclass_begin(),
2452       E = MRI->regclass_end(); RCI != E; ++RCI) {
2453    MVT::ValueType ThisVT = MVT::Other;
2454
2455    const TargetRegisterClass *RC = *RCI;
2456    // If none of the the value types for this register class are valid, we
2457    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2458    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2459         I != E; ++I) {
2460      if (TLI.isTypeLegal(*I)) {
2461        // If we have already found this register in a different register class,
2462        // choose the one with the largest VT specified.  For example, on
2463        // PowerPC, we favor f64 register classes over f32.
2464        if (FoundVT == MVT::Other ||
2465            MVT::getSizeInBits(FoundVT) < MVT::getSizeInBits(*I)) {
2466          ThisVT = *I;
2467          break;
2468        }
2469      }
2470    }
2471
2472    if (ThisVT == MVT::Other) continue;
2473
2474    // NOTE: This isn't ideal.  In particular, this might allocate the
2475    // frame pointer in functions that need it (due to them not being taken
2476    // out of allocation, because a variable sized allocation hasn't been seen
2477    // yet).  This is a slight code pessimization, but should still work.
2478    for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
2479         E = RC->allocation_order_end(MF); I != E; ++I)
2480      if (*I == Reg) {
2481        // We found a matching register class.  Keep looking at others in case
2482        // we find one with larger registers that this physreg is also in.
2483        FoundRC = RC;
2484        FoundVT = ThisVT;
2485        break;
2486      }
2487  }
2488  return FoundRC;
2489}
2490
2491RegsForValue SelectionDAGLowering::
2492GetRegistersForValue(const std::string &ConstrCode,
2493                     MVT::ValueType VT, bool isOutReg, bool isInReg,
2494                     std::set<unsigned> &OutputRegs,
2495                     std::set<unsigned> &InputRegs) {
2496  std::pair<unsigned, const TargetRegisterClass*> PhysReg =
2497    TLI.getRegForInlineAsmConstraint(ConstrCode, VT);
2498  std::vector<unsigned> Regs;
2499
2500  unsigned NumRegs = VT != MVT::Other ? TLI.getNumElements(VT) : 1;
2501  MVT::ValueType RegVT;
2502  MVT::ValueType ValueVT = VT;
2503
2504  // If this is a constraint for a specific physical register, like {r17},
2505  // assign it now.
2506  if (PhysReg.first) {
2507    if (VT == MVT::Other)
2508      ValueVT = *PhysReg.second->vt_begin();
2509
2510    // Get the actual register value type.  This is important, because the user
2511    // may have asked for (e.g.) the AX register in i32 type.  We need to
2512    // remember that AX is actually i16 to get the right extension.
2513    RegVT = *PhysReg.second->vt_begin();
2514
2515    // This is a explicit reference to a physical register.
2516    Regs.push_back(PhysReg.first);
2517
2518    // If this is an expanded reference, add the rest of the regs to Regs.
2519    if (NumRegs != 1) {
2520      TargetRegisterClass::iterator I = PhysReg.second->begin();
2521      TargetRegisterClass::iterator E = PhysReg.second->end();
2522      for (; *I != PhysReg.first; ++I)
2523        assert(I != E && "Didn't find reg!");
2524
2525      // Already added the first reg.
2526      --NumRegs; ++I;
2527      for (; NumRegs; --NumRegs, ++I) {
2528        assert(I != E && "Ran out of registers to allocate!");
2529        Regs.push_back(*I);
2530      }
2531    }
2532    return RegsForValue(Regs, RegVT, ValueVT);
2533  }
2534
2535  // Otherwise, if this was a reference to an LLVM register class, create vregs
2536  // for this reference.
2537  std::vector<unsigned> RegClassRegs;
2538  if (PhysReg.second) {
2539    // If this is an early clobber or tied register, our regalloc doesn't know
2540    // how to maintain the constraint.  If it isn't, go ahead and create vreg
2541    // and let the regalloc do the right thing.
2542    if (!isOutReg || !isInReg) {
2543      if (VT == MVT::Other)
2544        ValueVT = *PhysReg.second->vt_begin();
2545      RegVT = *PhysReg.second->vt_begin();
2546
2547      // Create the appropriate number of virtual registers.
2548      SSARegMap *RegMap = DAG.getMachineFunction().getSSARegMap();
2549      for (; NumRegs; --NumRegs)
2550        Regs.push_back(RegMap->createVirtualRegister(PhysReg.second));
2551
2552      return RegsForValue(Regs, RegVT, ValueVT);
2553    }
2554
2555    // Otherwise, we can't allocate it.  Let the code below figure out how to
2556    // maintain these constraints.
2557    RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
2558
2559  } else {
2560    // This is a reference to a register class that doesn't directly correspond
2561    // to an LLVM register class.  Allocate NumRegs consecutive, available,
2562    // registers from the class.
2563    RegClassRegs = TLI.getRegClassForInlineAsmConstraint(ConstrCode, VT);
2564  }
2565
2566  const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
2567  MachineFunction &MF = *CurMBB->getParent();
2568  unsigned NumAllocated = 0;
2569  for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
2570    unsigned Reg = RegClassRegs[i];
2571    // See if this register is available.
2572    if ((isOutReg && OutputRegs.count(Reg)) ||   // Already used.
2573        (isInReg  && InputRegs.count(Reg))) {    // Already used.
2574      // Make sure we find consecutive registers.
2575      NumAllocated = 0;
2576      continue;
2577    }
2578
2579    // Check to see if this register is allocatable (i.e. don't give out the
2580    // stack pointer).
2581    const TargetRegisterClass *RC = isAllocatableRegister(Reg, MF, TLI, MRI);
2582    if (!RC) {
2583      // Make sure we find consecutive registers.
2584      NumAllocated = 0;
2585      continue;
2586    }
2587
2588    // Okay, this register is good, we can use it.
2589    ++NumAllocated;
2590
2591    // If we allocated enough consecutive
2592    if (NumAllocated == NumRegs) {
2593      unsigned RegStart = (i-NumAllocated)+1;
2594      unsigned RegEnd   = i+1;
2595      // Mark all of the allocated registers used.
2596      for (unsigned i = RegStart; i != RegEnd; ++i) {
2597        unsigned Reg = RegClassRegs[i];
2598        Regs.push_back(Reg);
2599        if (isOutReg) OutputRegs.insert(Reg);    // Mark reg used.
2600        if (isInReg)  InputRegs.insert(Reg);     // Mark reg used.
2601      }
2602
2603      return RegsForValue(Regs, *RC->vt_begin(), VT);
2604    }
2605  }
2606
2607  // Otherwise, we couldn't allocate enough registers for this.
2608  return RegsForValue();
2609}
2610
2611/// getConstraintGenerality - Return an integer indicating how general CT is.
2612static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2613  switch (CT) {
2614  default: assert(0 && "Unknown constraint type!");
2615  case TargetLowering::C_Other:
2616  case TargetLowering::C_Unknown:
2617    return 0;
2618  case TargetLowering::C_Register:
2619    return 1;
2620  case TargetLowering::C_RegisterClass:
2621    return 2;
2622  case TargetLowering::C_Memory:
2623    return 3;
2624  }
2625}
2626
2627static std::string GetMostGeneralConstraint(std::vector<std::string> &C,
2628                                            const TargetLowering &TLI) {
2629  assert(!C.empty() && "Must have at least one constraint");
2630  if (C.size() == 1) return C[0];
2631
2632  std::string *Current = &C[0];
2633  // If we have multiple constraints, try to pick the most general one ahead
2634  // of time.  This isn't a wonderful solution, but handles common cases.
2635  TargetLowering::ConstraintType Flavor = TLI.getConstraintType(Current[0][0]);
2636  for (unsigned j = 1, e = C.size(); j != e; ++j) {
2637    TargetLowering::ConstraintType ThisFlavor = TLI.getConstraintType(C[j][0]);
2638    if (getConstraintGenerality(ThisFlavor) >
2639        getConstraintGenerality(Flavor)) {
2640      // This constraint letter is more general than the previous one,
2641      // use it.
2642      Flavor = ThisFlavor;
2643      Current = &C[j];
2644    }
2645  }
2646  return *Current;
2647}
2648
2649
2650/// visitInlineAsm - Handle a call to an InlineAsm object.
2651///
2652void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
2653  InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
2654
2655  SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
2656                                                 MVT::Other);
2657
2658  std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
2659  std::vector<MVT::ValueType> ConstraintVTs;
2660
2661  /// AsmNodeOperands - A list of pairs.  The first element is a register, the
2662  /// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
2663  /// if it is a def of that register.
2664  std::vector<SDOperand> AsmNodeOperands;
2665  AsmNodeOperands.push_back(SDOperand());  // reserve space for input chain
2666  AsmNodeOperands.push_back(AsmStr);
2667
2668  SDOperand Chain = getRoot();
2669  SDOperand Flag;
2670
2671  // We fully assign registers here at isel time.  This is not optimal, but
2672  // should work.  For register classes that correspond to LLVM classes, we
2673  // could let the LLVM RA do its thing, but we currently don't.  Do a prepass
2674  // over the constraints, collecting fixed registers that we know we can't use.
2675  std::set<unsigned> OutputRegs, InputRegs;
2676  unsigned OpNum = 1;
2677  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2678    std::string ConstraintCode =
2679      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
2680
2681    MVT::ValueType OpVT;
2682
2683    // Compute the value type for each operand and add it to ConstraintVTs.
2684    switch (Constraints[i].Type) {
2685    case InlineAsm::isOutput:
2686      if (!Constraints[i].isIndirectOutput) {
2687        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2688        OpVT = TLI.getValueType(I.getType());
2689      } else {
2690        const Type *OpTy = I.getOperand(OpNum)->getType();
2691        OpVT = TLI.getValueType(cast<PointerType>(OpTy)->getElementType());
2692        OpNum++;  // Consumes a call operand.
2693      }
2694      break;
2695    case InlineAsm::isInput:
2696      OpVT = TLI.getValueType(I.getOperand(OpNum)->getType());
2697      OpNum++;  // Consumes a call operand.
2698      break;
2699    case InlineAsm::isClobber:
2700      OpVT = MVT::Other;
2701      break;
2702    }
2703
2704    ConstraintVTs.push_back(OpVT);
2705
2706    if (TLI.getRegForInlineAsmConstraint(ConstraintCode, OpVT).first == 0)
2707      continue;  // Not assigned a fixed reg.
2708
2709    // Build a list of regs that this operand uses.  This always has a single
2710    // element for promoted/expanded operands.
2711    RegsForValue Regs = GetRegistersForValue(ConstraintCode, OpVT,
2712                                             false, false,
2713                                             OutputRegs, InputRegs);
2714
2715    switch (Constraints[i].Type) {
2716    case InlineAsm::isOutput:
2717      // We can't assign any other output to this register.
2718      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2719      // If this is an early-clobber output, it cannot be assigned to the same
2720      // value as the input reg.
2721      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2722        InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2723      break;
2724    case InlineAsm::isInput:
2725      // We can't assign any other input to this register.
2726      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2727      break;
2728    case InlineAsm::isClobber:
2729      // Clobbered regs cannot be used as inputs or outputs.
2730      InputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2731      OutputRegs.insert(Regs.Regs.begin(), Regs.Regs.end());
2732      break;
2733    }
2734  }
2735
2736  // Loop over all of the inputs, copying the operand values into the
2737  // appropriate registers and processing the output regs.
2738  RegsForValue RetValRegs;
2739  std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
2740  OpNum = 1;
2741
2742  for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
2743    std::string ConstraintCode =
2744      GetMostGeneralConstraint(Constraints[i].Codes, TLI);
2745
2746    switch (Constraints[i].Type) {
2747    case InlineAsm::isOutput: {
2748      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2749      if (ConstraintCode.size() == 1)   // not a physreg name.
2750        CTy = TLI.getConstraintType(ConstraintCode[0]);
2751
2752      if (CTy == TargetLowering::C_Memory) {
2753        // Memory output.
2754        SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2755
2756        // Check that the operand (the address to store to) isn't a float.
2757        if (!MVT::isInteger(InOperandVal.getValueType()))
2758          assert(0 && "MATCH FAIL!");
2759
2760        if (!Constraints[i].isIndirectOutput)
2761          assert(0 && "MATCH FAIL!");
2762
2763        OpNum++;  // Consumes a call operand.
2764
2765        // Extend/truncate to the right pointer type if needed.
2766        MVT::ValueType PtrType = TLI.getPointerTy();
2767        if (InOperandVal.getValueType() < PtrType)
2768          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2769        else if (InOperandVal.getValueType() > PtrType)
2770          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2771
2772        // Add information to the INLINEASM node to know about this output.
2773        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2774        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2775        AsmNodeOperands.push_back(InOperandVal);
2776        break;
2777      }
2778
2779      // Otherwise, this is a register output.
2780      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2781
2782      // If this is an early-clobber output, or if there is an input
2783      // constraint that matches this, we need to reserve the input register
2784      // so no other inputs allocate to it.
2785      bool UsesInputRegister = false;
2786      if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
2787        UsesInputRegister = true;
2788
2789      // Copy the output from the appropriate register.  Find a register that
2790      // we can use.
2791      RegsForValue Regs =
2792        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2793                             true, UsesInputRegister,
2794                             OutputRegs, InputRegs);
2795      if (Regs.Regs.empty()) {
2796        cerr << "Couldn't allocate output reg for contraint '"
2797             << ConstraintCode << "'!\n";
2798        exit(1);
2799      }
2800
2801      if (!Constraints[i].isIndirectOutput) {
2802        assert(RetValRegs.Regs.empty() &&
2803               "Cannot have multiple output constraints yet!");
2804        assert(I.getType() != Type::VoidTy && "Bad inline asm!");
2805        RetValRegs = Regs;
2806      } else {
2807        IndirectStoresToEmit.push_back(std::make_pair(Regs,
2808                                                      I.getOperand(OpNum)));
2809        OpNum++;  // Consumes a call operand.
2810      }
2811
2812      // Add information to the INLINEASM node to know that this register is
2813      // set.
2814      Regs.AddInlineAsmOperands(2 /*REGDEF*/, DAG, AsmNodeOperands);
2815      break;
2816    }
2817    case InlineAsm::isInput: {
2818      SDOperand InOperandVal = getValue(I.getOperand(OpNum));
2819      OpNum++;  // Consumes a call operand.
2820
2821      if (isdigit(ConstraintCode[0])) {    // Matching constraint?
2822        // If this is required to match an output register we have already set,
2823        // just use its register.
2824        unsigned OperandNo = atoi(ConstraintCode.c_str());
2825
2826        // Scan until we find the definition we already emitted of this operand.
2827        // When we find it, create a RegsForValue operand.
2828        unsigned CurOp = 2;  // The first operand.
2829        for (; OperandNo; --OperandNo) {
2830          // Advance to the next operand.
2831          unsigned NumOps =
2832            cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2833          assert(((NumOps & 7) == 2 /*REGDEF*/ ||
2834                  (NumOps & 7) == 4 /*MEM*/) &&
2835                 "Skipped past definitions?");
2836          CurOp += (NumOps>>3)+1;
2837        }
2838
2839        unsigned NumOps =
2840          cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getValue();
2841        if ((NumOps & 7) == 2 /*REGDEF*/) {
2842          // Add NumOps>>3 registers to MatchedRegs.
2843          RegsForValue MatchedRegs;
2844          MatchedRegs.ValueVT = InOperandVal.getValueType();
2845          MatchedRegs.RegVT   = AsmNodeOperands[CurOp+1].getValueType();
2846          for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
2847            unsigned Reg =
2848              cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
2849            MatchedRegs.Regs.push_back(Reg);
2850          }
2851
2852          // Use the produced MatchedRegs object to
2853          MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag,
2854                                    TLI.getPointerTy());
2855          MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
2856          break;
2857        } else {
2858          assert((NumOps & 7) == 4/*MEM*/ && "Unknown matching constraint!");
2859          assert(0 && "matching constraints for memory operands unimp");
2860        }
2861      }
2862
2863      TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
2864      if (ConstraintCode.size() == 1)   // not a physreg name.
2865        CTy = TLI.getConstraintType(ConstraintCode[0]);
2866
2867      if (CTy == TargetLowering::C_Other) {
2868        InOperandVal = TLI.isOperandValidForConstraint(InOperandVal,
2869                                                       ConstraintCode[0], DAG);
2870        if (!InOperandVal.Val) {
2871          cerr << "Invalid operand for inline asm constraint '"
2872               << ConstraintCode << "'!\n";
2873          exit(1);
2874        }
2875
2876        // Add information to the INLINEASM node to know about this input.
2877        unsigned ResOpType = 3 /*IMM*/ | (1 << 3);
2878        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2879        AsmNodeOperands.push_back(InOperandVal);
2880        break;
2881      } else if (CTy == TargetLowering::C_Memory) {
2882        // Memory input.
2883
2884        // Check that the operand isn't a float.
2885        if (!MVT::isInteger(InOperandVal.getValueType()))
2886          assert(0 && "MATCH FAIL!");
2887
2888        // Extend/truncate to the right pointer type if needed.
2889        MVT::ValueType PtrType = TLI.getPointerTy();
2890        if (InOperandVal.getValueType() < PtrType)
2891          InOperandVal = DAG.getNode(ISD::ZERO_EXTEND, PtrType, InOperandVal);
2892        else if (InOperandVal.getValueType() > PtrType)
2893          InOperandVal = DAG.getNode(ISD::TRUNCATE, PtrType, InOperandVal);
2894
2895        // Add information to the INLINEASM node to know about this input.
2896        unsigned ResOpType = 4/*MEM*/ | (1 << 3);
2897        AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
2898        AsmNodeOperands.push_back(InOperandVal);
2899        break;
2900      }
2901
2902      assert(CTy == TargetLowering::C_RegisterClass && "Unknown op type!");
2903
2904      // Copy the input into the appropriate registers.
2905      RegsForValue InRegs =
2906        GetRegistersForValue(ConstraintCode, ConstraintVTs[i],
2907                             false, true, OutputRegs, InputRegs);
2908      // FIXME: should be match fail.
2909      assert(!InRegs.Regs.empty() && "Couldn't allocate input reg!");
2910
2911      InRegs.getCopyToRegs(InOperandVal, DAG, Chain, Flag, TLI.getPointerTy());
2912
2913      InRegs.AddInlineAsmOperands(1/*REGUSE*/, DAG, AsmNodeOperands);
2914      break;
2915    }
2916    case InlineAsm::isClobber: {
2917      RegsForValue ClobberedRegs =
2918        GetRegistersForValue(ConstraintCode, MVT::Other, false, false,
2919                             OutputRegs, InputRegs);
2920      // Add the clobbered value to the operand list, so that the register
2921      // allocator is aware that the physreg got clobbered.
2922      if (!ClobberedRegs.Regs.empty())
2923        ClobberedRegs.AddInlineAsmOperands(2/*REGDEF*/, DAG, AsmNodeOperands);
2924      break;
2925    }
2926    }
2927  }
2928
2929  // Finish up input operands.
2930  AsmNodeOperands[0] = Chain;
2931  if (Flag.Val) AsmNodeOperands.push_back(Flag);
2932
2933  Chain = DAG.getNode(ISD::INLINEASM,
2934                      DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
2935                      &AsmNodeOperands[0], AsmNodeOperands.size());
2936  Flag = Chain.getValue(1);
2937
2938  // If this asm returns a register value, copy the result from that register
2939  // and set it as the value of the call.
2940  if (!RetValRegs.Regs.empty())
2941    setValue(&I, RetValRegs.getCopyFromRegs(DAG, Chain, Flag));
2942
2943  std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
2944
2945  // Process indirect outputs, first output all of the flagged copies out of
2946  // physregs.
2947  for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
2948    RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
2949    Value *Ptr = IndirectStoresToEmit[i].second;
2950    SDOperand OutVal = OutRegs.getCopyFromRegs(DAG, Chain, Flag);
2951    StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
2952  }
2953
2954  // Emit the non-flagged stores from the physregs.
2955  SmallVector<SDOperand, 8> OutChains;
2956  for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
2957    OutChains.push_back(DAG.getStore(Chain,  StoresToEmit[i].first,
2958                                    getValue(StoresToEmit[i].second),
2959                                    StoresToEmit[i].second, 0));
2960  if (!OutChains.empty())
2961    Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2962                        &OutChains[0], OutChains.size());
2963  DAG.setRoot(Chain);
2964}
2965
2966
2967void SelectionDAGLowering::visitMalloc(MallocInst &I) {
2968  SDOperand Src = getValue(I.getOperand(0));
2969
2970  MVT::ValueType IntPtr = TLI.getPointerTy();
2971
2972  if (IntPtr < Src.getValueType())
2973    Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
2974  else if (IntPtr > Src.getValueType())
2975    Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
2976
2977  // Scale the source by the type size.
2978  uint64_t ElementSize = TD->getTypeSize(I.getType()->getElementType());
2979  Src = DAG.getNode(ISD::MUL, Src.getValueType(),
2980                    Src, getIntPtrConstant(ElementSize));
2981
2982  TargetLowering::ArgListTy Args;
2983  TargetLowering::ArgListEntry Entry;
2984  Entry.Node = Src;
2985  Entry.Ty = TLI.getTargetData()->getIntPtrType();
2986  Entry.isSigned = false;
2987  Entry.isInReg = false;
2988  Entry.isSRet = false;
2989  Args.push_back(Entry);
2990
2991  std::pair<SDOperand,SDOperand> Result =
2992    TLI.LowerCallTo(getRoot(), I.getType(), false, false, CallingConv::C, true,
2993                    DAG.getExternalSymbol("malloc", IntPtr),
2994                    Args, DAG);
2995  setValue(&I, Result.first);  // Pointers always fit in registers
2996  DAG.setRoot(Result.second);
2997}
2998
2999void SelectionDAGLowering::visitFree(FreeInst &I) {
3000  TargetLowering::ArgListTy Args;
3001  TargetLowering::ArgListEntry Entry;
3002  Entry.Node = getValue(I.getOperand(0));
3003  Entry.Ty = TLI.getTargetData()->getIntPtrType();
3004  Entry.isSigned = false;
3005  Entry.isInReg = false;
3006  Entry.isSRet = false;
3007  Args.push_back(Entry);
3008  MVT::ValueType IntPtr = TLI.getPointerTy();
3009  std::pair<SDOperand,SDOperand> Result =
3010    TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, CallingConv::C, true,
3011                    DAG.getExternalSymbol("free", IntPtr), Args, DAG);
3012  DAG.setRoot(Result.second);
3013}
3014
3015// InsertAtEndOfBasicBlock - This method should be implemented by targets that
3016// mark instructions with the 'usesCustomDAGSchedInserter' flag.  These
3017// instructions are special in various ways, which require special support to
3018// insert.  The specified MachineInstr is created but not inserted into any
3019// basic blocks, and the scheduler passes ownership of it to this method.
3020MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3021                                                       MachineBasicBlock *MBB) {
3022  cerr << "If a target marks an instruction with "
3023       << "'usesCustomDAGSchedInserter', it must implement "
3024       << "TargetLowering::InsertAtEndOfBasicBlock!\n";
3025  abort();
3026  return 0;
3027}
3028
3029void SelectionDAGLowering::visitVAStart(CallInst &I) {
3030  DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
3031                          getValue(I.getOperand(1)),
3032                          DAG.getSrcValue(I.getOperand(1))));
3033}
3034
3035void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
3036  SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
3037                             getValue(I.getOperand(0)),
3038                             DAG.getSrcValue(I.getOperand(0)));
3039  setValue(&I, V);
3040  DAG.setRoot(V.getValue(1));
3041}
3042
3043void SelectionDAGLowering::visitVAEnd(CallInst &I) {
3044  DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
3045                          getValue(I.getOperand(1)),
3046                          DAG.getSrcValue(I.getOperand(1))));
3047}
3048
3049void SelectionDAGLowering::visitVACopy(CallInst &I) {
3050  DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
3051                          getValue(I.getOperand(1)),
3052                          getValue(I.getOperand(2)),
3053                          DAG.getSrcValue(I.getOperand(1)),
3054                          DAG.getSrcValue(I.getOperand(2))));
3055}
3056
3057/// ExpandScalarFormalArgs - Recursively expand the formal_argument node, either
3058/// bit_convert it or join a pair of them with a BUILD_PAIR when appropriate.
3059static SDOperand ExpandScalarFormalArgs(MVT::ValueType VT, SDNode *Arg,
3060                                        unsigned &i, SelectionDAG &DAG,
3061                                        TargetLowering &TLI) {
3062  if (TLI.getTypeAction(VT) != TargetLowering::Expand)
3063    return SDOperand(Arg, i++);
3064
3065  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3066  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3067  if (NumVals == 1) {
3068    return DAG.getNode(ISD::BIT_CONVERT, VT,
3069                       ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI));
3070  } else if (NumVals == 2) {
3071    SDOperand Lo = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3072    SDOperand Hi = ExpandScalarFormalArgs(EVT, Arg, i, DAG, TLI);
3073    if (!TLI.isLittleEndian())
3074      std::swap(Lo, Hi);
3075    return DAG.getNode(ISD::BUILD_PAIR, VT, Lo, Hi);
3076  } else {
3077    // Value scalarized into many values.  Unimp for now.
3078    assert(0 && "Cannot expand i64 -> i16 yet!");
3079  }
3080  return SDOperand();
3081}
3082
3083/// TargetLowering::LowerArguments - This is the default LowerArguments
3084/// implementation, which just inserts a FORMAL_ARGUMENTS node.  FIXME: When all
3085/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
3086/// integrated into SDISel.
3087std::vector<SDOperand>
3088TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
3089  const FunctionType *FTy = F.getFunctionType();
3090  // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
3091  std::vector<SDOperand> Ops;
3092  Ops.push_back(DAG.getRoot());
3093  Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
3094  Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
3095
3096  // Add one result value for each formal argument.
3097  std::vector<MVT::ValueType> RetVals;
3098  unsigned j = 1;
3099  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
3100       I != E; ++I, ++j) {
3101    MVT::ValueType VT = getValueType(I->getType());
3102    unsigned Flags = SDISelParamFlags::NoFlagSet;
3103    unsigned OriginalAlignment =
3104      getTargetData()->getABITypeAlignment(I->getType());
3105
3106    // FIXME: Distinguish between a formal with no [sz]ext attribute from one
3107    // that is zero extended!
3108    if (FTy->paramHasAttr(j, FunctionType::ZExtAttribute))
3109      Flags &= ~(SDISelParamFlags::Signed);
3110    if (FTy->paramHasAttr(j, FunctionType::SExtAttribute))
3111      Flags |= SDISelParamFlags::Signed;
3112    if (FTy->paramHasAttr(j, FunctionType::InRegAttribute))
3113      Flags |= SDISelParamFlags::InReg;
3114    if (FTy->paramHasAttr(j, FunctionType::StructRetAttribute))
3115      Flags |= SDISelParamFlags::StructReturn;
3116    Flags |= (OriginalAlignment << SDISelParamFlags::OrigAlignmentOffs);
3117
3118    switch (getTypeAction(VT)) {
3119    default: assert(0 && "Unknown type action!");
3120    case Legal:
3121      RetVals.push_back(VT);
3122      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3123      break;
3124    case Promote:
3125      RetVals.push_back(getTypeToTransformTo(VT));
3126      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3127      break;
3128    case Expand:
3129      if (VT != MVT::Vector) {
3130        // If this is a large integer, it needs to be broken up into small
3131        // integers.  Figure out what the destination type is and how many small
3132        // integers it turns into.
3133        MVT::ValueType NVT = getTypeToExpandTo(VT);
3134        unsigned NumVals = getNumElements(VT);
3135        for (unsigned i = 0; i != NumVals; ++i) {
3136          RetVals.push_back(NVT);
3137          // if it isn't first piece, alignment must be 1
3138          if (i > 0)
3139            Flags = (Flags & (~SDISelParamFlags::OrigAlignment)) |
3140              (1 << SDISelParamFlags::OrigAlignmentOffs);
3141          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3142        }
3143      } else {
3144        // Otherwise, this is a vector type.  We only support legal vectors
3145        // right now.
3146        unsigned NumElems = cast<VectorType>(I->getType())->getNumElements();
3147        const Type *EltTy = cast<VectorType>(I->getType())->getElementType();
3148
3149        // Figure out if there is a Packed type corresponding to this Vector
3150        // type.  If so, convert to the vector type.
3151        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3152        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3153          RetVals.push_back(TVT);
3154          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3155        } else {
3156          assert(0 && "Don't support illegal by-val vector arguments yet!");
3157        }
3158      }
3159      break;
3160    }
3161  }
3162
3163  RetVals.push_back(MVT::Other);
3164
3165  // Create the node.
3166  SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
3167                               DAG.getNodeValueTypes(RetVals), RetVals.size(),
3168                               &Ops[0], Ops.size()).Val;
3169
3170  DAG.setRoot(SDOperand(Result, Result->getNumValues()-1));
3171
3172  // Set up the return result vector.
3173  Ops.clear();
3174  unsigned i = 0;
3175  unsigned Idx = 1;
3176  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
3177      ++I, ++Idx) {
3178    MVT::ValueType VT = getValueType(I->getType());
3179
3180    switch (getTypeAction(VT)) {
3181    default: assert(0 && "Unknown type action!");
3182    case Legal:
3183      Ops.push_back(SDOperand(Result, i++));
3184      break;
3185    case Promote: {
3186      SDOperand Op(Result, i++);
3187      if (MVT::isInteger(VT)) {
3188        if (FTy->paramHasAttr(Idx, FunctionType::SExtAttribute))
3189          Op = DAG.getNode(ISD::AssertSext, Op.getValueType(), Op,
3190                           DAG.getValueType(VT));
3191        else if (FTy->paramHasAttr(Idx, FunctionType::ZExtAttribute))
3192          Op = DAG.getNode(ISD::AssertZext, Op.getValueType(), Op,
3193                           DAG.getValueType(VT));
3194        Op = DAG.getNode(ISD::TRUNCATE, VT, Op);
3195      } else {
3196        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3197        Op = DAG.getNode(ISD::FP_ROUND, VT, Op);
3198      }
3199      Ops.push_back(Op);
3200      break;
3201    }
3202    case Expand:
3203      if (VT != MVT::Vector) {
3204        // If this is a large integer or a floating point node that needs to be
3205        // expanded, it needs to be reassembled from small integers.  Figure out
3206        // what the source elt type is and how many small integers it is.
3207        Ops.push_back(ExpandScalarFormalArgs(VT, Result, i, DAG, *this));
3208      } else {
3209        // Otherwise, this is a vector type.  We only support legal vectors
3210        // right now.
3211        const VectorType *PTy = cast<VectorType>(I->getType());
3212        unsigned NumElems = PTy->getNumElements();
3213        const Type *EltTy = PTy->getElementType();
3214
3215        // Figure out if there is a Packed type corresponding to this Vector
3216        // type.  If so, convert to the vector type.
3217        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3218        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3219          SDOperand N = SDOperand(Result, i++);
3220          // Handle copies from generic vectors to registers.
3221          N = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, N,
3222                          DAG.getConstant(NumElems, MVT::i32),
3223                          DAG.getValueType(getValueType(EltTy)));
3224          Ops.push_back(N);
3225        } else {
3226          assert(0 && "Don't support illegal by-val vector arguments yet!");
3227          abort();
3228        }
3229      }
3230      break;
3231    }
3232  }
3233  return Ops;
3234}
3235
3236
3237/// ExpandScalarCallArgs - Recursively expand call argument node by
3238/// bit_converting it or extract a pair of elements from the larger  node.
3239static void ExpandScalarCallArgs(MVT::ValueType VT, SDOperand Arg,
3240                                 unsigned Flags,
3241                                 SmallVector<SDOperand, 32> &Ops,
3242                                 SelectionDAG &DAG,
3243                                 TargetLowering &TLI,
3244                                 bool isFirst = true) {
3245
3246  if (TLI.getTypeAction(VT) != TargetLowering::Expand) {
3247    // if it isn't first piece, alignment must be 1
3248    if (!isFirst)
3249      Flags = (Flags & (~SDISelParamFlags::OrigAlignment)) |
3250        (1 << SDISelParamFlags::OrigAlignmentOffs);
3251    Ops.push_back(Arg);
3252    Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3253    return;
3254  }
3255
3256  MVT::ValueType EVT = TLI.getTypeToTransformTo(VT);
3257  unsigned NumVals = MVT::getSizeInBits(VT) / MVT::getSizeInBits(EVT);
3258  if (NumVals == 1) {
3259    Arg = DAG.getNode(ISD::BIT_CONVERT, EVT, Arg);
3260    ExpandScalarCallArgs(EVT, Arg, Flags, Ops, DAG, TLI, isFirst);
3261  } else if (NumVals == 2) {
3262    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3263                               DAG.getConstant(0, TLI.getPointerTy()));
3264    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, EVT, Arg,
3265                               DAG.getConstant(1, TLI.getPointerTy()));
3266    if (!TLI.isLittleEndian())
3267      std::swap(Lo, Hi);
3268    ExpandScalarCallArgs(EVT, Lo, Flags, Ops, DAG, TLI, isFirst);
3269    ExpandScalarCallArgs(EVT, Hi, Flags, Ops, DAG, TLI, false);
3270  } else {
3271    // Value scalarized into many values.  Unimp for now.
3272    assert(0 && "Cannot expand i64 -> i16 yet!");
3273  }
3274}
3275
3276/// TargetLowering::LowerCallTo - This is the default LowerCallTo
3277/// implementation, which just inserts an ISD::CALL node, which is later custom
3278/// lowered by the target to something concrete.  FIXME: When all targets are
3279/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
3280std::pair<SDOperand, SDOperand>
3281TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy,
3282                            bool RetTyIsSigned, bool isVarArg,
3283                            unsigned CallingConv, bool isTailCall,
3284                            SDOperand Callee,
3285                            ArgListTy &Args, SelectionDAG &DAG) {
3286  SmallVector<SDOperand, 32> Ops;
3287  Ops.push_back(Chain);   // Op#0 - Chain
3288  Ops.push_back(DAG.getConstant(CallingConv, getPointerTy())); // Op#1 - CC
3289  Ops.push_back(DAG.getConstant(isVarArg, getPointerTy()));    // Op#2 - VarArg
3290  Ops.push_back(DAG.getConstant(isTailCall, getPointerTy()));  // Op#3 - Tail
3291  Ops.push_back(Callee);
3292
3293  // Handle all of the outgoing arguments.
3294  for (unsigned i = 0, e = Args.size(); i != e; ++i) {
3295    MVT::ValueType VT = getValueType(Args[i].Ty);
3296    SDOperand Op = Args[i].Node;
3297    unsigned Flags = SDISelParamFlags::NoFlagSet;
3298    unsigned OriginalAlignment =
3299      getTargetData()->getABITypeAlignment(Args[i].Ty);
3300
3301    if (Args[i].isSigned)
3302      Flags |= SDISelParamFlags::Signed;
3303    if (Args[i].isInReg)
3304      Flags |= SDISelParamFlags::InReg;
3305    if (Args[i].isSRet)
3306      Flags |= SDISelParamFlags::StructReturn;
3307    Flags |= OriginalAlignment << SDISelParamFlags::OrigAlignmentOffs;
3308
3309    switch (getTypeAction(VT)) {
3310    default: assert(0 && "Unknown type action!");
3311    case Legal:
3312      Ops.push_back(Op);
3313      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3314      break;
3315    case Promote:
3316      if (MVT::isInteger(VT)) {
3317        unsigned ExtOp = Args[i].isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3318        Op = DAG.getNode(ExtOp, getTypeToTransformTo(VT), Op);
3319      } else {
3320        assert(MVT::isFloatingPoint(VT) && "Not int or FP?");
3321        Op = DAG.getNode(ISD::FP_EXTEND, getTypeToTransformTo(VT), Op);
3322      }
3323      Ops.push_back(Op);
3324      Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3325      break;
3326    case Expand:
3327      if (VT != MVT::Vector) {
3328        // If this is a large integer, it needs to be broken down into small
3329        // integers.  Figure out what the source elt type is and how many small
3330        // integers it is.
3331        ExpandScalarCallArgs(VT, Op, Flags, Ops, DAG, *this);
3332      } else {
3333        // Otherwise, this is a vector type.  We only support legal vectors
3334        // right now.
3335        const VectorType *PTy = cast<VectorType>(Args[i].Ty);
3336        unsigned NumElems = PTy->getNumElements();
3337        const Type *EltTy = PTy->getElementType();
3338
3339        // Figure out if there is a Packed type corresponding to this Vector
3340        // type.  If so, convert to the vector type.
3341        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3342        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3343          // Insert a VBIT_CONVERT of the MVT::Vector type to the vector type.
3344          Op = DAG.getNode(ISD::VBIT_CONVERT, TVT, Op);
3345          Ops.push_back(Op);
3346          Ops.push_back(DAG.getConstant(Flags, MVT::i32));
3347        } else {
3348          assert(0 && "Don't support illegal by-val vector call args yet!");
3349          abort();
3350        }
3351      }
3352      break;
3353    }
3354  }
3355
3356  // Figure out the result value types.
3357  SmallVector<MVT::ValueType, 4> RetTys;
3358
3359  if (RetTy != Type::VoidTy) {
3360    MVT::ValueType VT = getValueType(RetTy);
3361    switch (getTypeAction(VT)) {
3362    default: assert(0 && "Unknown type action!");
3363    case Legal:
3364      RetTys.push_back(VT);
3365      break;
3366    case Promote:
3367      RetTys.push_back(getTypeToTransformTo(VT));
3368      break;
3369    case Expand:
3370      if (VT != MVT::Vector) {
3371        // If this is a large integer, it needs to be reassembled from small
3372        // integers.  Figure out what the source elt type is and how many small
3373        // integers it is.
3374        MVT::ValueType NVT = getTypeToExpandTo(VT);
3375        unsigned NumVals = getNumElements(VT);
3376        for (unsigned i = 0; i != NumVals; ++i)
3377          RetTys.push_back(NVT);
3378      } else {
3379        // Otherwise, this is a vector type.  We only support legal vectors
3380        // right now.
3381        const VectorType *PTy = cast<VectorType>(RetTy);
3382        unsigned NumElems = PTy->getNumElements();
3383        const Type *EltTy = PTy->getElementType();
3384
3385        // Figure out if there is a Packed type corresponding to this Vector
3386        // type.  If so, convert to the vector type.
3387        MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy), NumElems);
3388        if (TVT != MVT::Other && isTypeLegal(TVT)) {
3389          RetTys.push_back(TVT);
3390        } else {
3391          assert(0 && "Don't support illegal by-val vector call results yet!");
3392          abort();
3393        }
3394      }
3395    }
3396  }
3397
3398  RetTys.push_back(MVT::Other);  // Always has a chain.
3399
3400  // Finally, create the CALL node.
3401  SDOperand Res = DAG.getNode(ISD::CALL,
3402                              DAG.getVTList(&RetTys[0], RetTys.size()),
3403                              &Ops[0], Ops.size());
3404
3405  // This returns a pair of operands.  The first element is the
3406  // return value for the function (if RetTy is not VoidTy).  The second
3407  // element is the outgoing token chain.
3408  SDOperand ResVal;
3409  if (RetTys.size() != 1) {
3410    MVT::ValueType VT = getValueType(RetTy);
3411    if (RetTys.size() == 2) {
3412      ResVal = Res;
3413
3414      // If this value was promoted, truncate it down.
3415      if (ResVal.getValueType() != VT) {
3416        if (VT == MVT::Vector) {
3417          // Insert a VBITCONVERT to convert from the packed result type to the
3418          // MVT::Vector type.
3419          unsigned NumElems = cast<VectorType>(RetTy)->getNumElements();
3420          const Type *EltTy = cast<VectorType>(RetTy)->getElementType();
3421
3422          // Figure out if there is a Packed type corresponding to this Vector
3423          // type.  If so, convert to the vector type.
3424          MVT::ValueType TVT = MVT::getVectorType(getValueType(EltTy),NumElems);
3425          if (TVT != MVT::Other && isTypeLegal(TVT)) {
3426            // Insert a VBIT_CONVERT of the FORMAL_ARGUMENTS to a
3427            // "N x PTyElementVT" MVT::Vector type.
3428            ResVal = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, ResVal,
3429                                 DAG.getConstant(NumElems, MVT::i32),
3430                                 DAG.getValueType(getValueType(EltTy)));
3431          } else {
3432            abort();
3433          }
3434        } else if (MVT::isInteger(VT)) {
3435          unsigned AssertOp = ISD::AssertSext;
3436          if (!RetTyIsSigned)
3437            AssertOp = ISD::AssertZext;
3438          ResVal = DAG.getNode(AssertOp, ResVal.getValueType(), ResVal,
3439                               DAG.getValueType(VT));
3440          ResVal = DAG.getNode(ISD::TRUNCATE, VT, ResVal);
3441        } else {
3442          assert(MVT::isFloatingPoint(VT));
3443          if (getTypeAction(VT) == Expand)
3444            ResVal = DAG.getNode(ISD::BIT_CONVERT, VT, ResVal);
3445          else
3446            ResVal = DAG.getNode(ISD::FP_ROUND, VT, ResVal);
3447        }
3448      }
3449    } else if (RetTys.size() == 3) {
3450      ResVal = DAG.getNode(ISD::BUILD_PAIR, VT,
3451                           Res.getValue(0), Res.getValue(1));
3452
3453    } else {
3454      assert(0 && "Case not handled yet!");
3455    }
3456  }
3457
3458  return std::make_pair(ResVal, Res.getValue(Res.Val->getNumValues()-1));
3459}
3460
3461SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
3462  assert(0 && "LowerOperation not implemented for this target!");
3463  abort();
3464  return SDOperand();
3465}
3466
3467SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
3468                                                 SelectionDAG &DAG) {
3469  assert(0 && "CustomPromoteOperation not implemented for this target!");
3470  abort();
3471  return SDOperand();
3472}
3473
3474/// getMemsetValue - Vectorized representation of the memset value
3475/// operand.
3476static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
3477                                SelectionDAG &DAG) {
3478  MVT::ValueType CurVT = VT;
3479  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
3480    uint64_t Val   = C->getValue() & 255;
3481    unsigned Shift = 8;
3482    while (CurVT != MVT::i8) {
3483      Val = (Val << Shift) | Val;
3484      Shift <<= 1;
3485      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3486    }
3487    return DAG.getConstant(Val, VT);
3488  } else {
3489    Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
3490    unsigned Shift = 8;
3491    while (CurVT != MVT::i8) {
3492      Value =
3493        DAG.getNode(ISD::OR, VT,
3494                    DAG.getNode(ISD::SHL, VT, Value,
3495                                DAG.getConstant(Shift, MVT::i8)), Value);
3496      Shift <<= 1;
3497      CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
3498    }
3499
3500    return Value;
3501  }
3502}
3503
3504/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
3505/// used when a memcpy is turned into a memset when the source is a constant
3506/// string ptr.
3507static SDOperand getMemsetStringVal(MVT::ValueType VT,
3508                                    SelectionDAG &DAG, TargetLowering &TLI,
3509                                    std::string &Str, unsigned Offset) {
3510  uint64_t Val = 0;
3511  unsigned MSB = getSizeInBits(VT) / 8;
3512  if (TLI.isLittleEndian())
3513    Offset = Offset + MSB - 1;
3514  for (unsigned i = 0; i != MSB; ++i) {
3515    Val = (Val << 8) | (unsigned char)Str[Offset];
3516    Offset += TLI.isLittleEndian() ? -1 : 1;
3517  }
3518  return DAG.getConstant(Val, VT);
3519}
3520
3521/// getMemBasePlusOffset - Returns base and offset node for the
3522static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
3523                                      SelectionDAG &DAG, TargetLowering &TLI) {
3524  MVT::ValueType VT = Base.getValueType();
3525  return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
3526}
3527
3528/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
3529/// to replace the memset / memcpy is below the threshold. It also returns the
3530/// types of the sequence of  memory ops to perform memset / memcpy.
3531static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
3532                                     unsigned Limit, uint64_t Size,
3533                                     unsigned Align, TargetLowering &TLI) {
3534  MVT::ValueType VT;
3535
3536  if (TLI.allowsUnalignedMemoryAccesses()) {
3537    VT = MVT::i64;
3538  } else {
3539    switch (Align & 7) {
3540    case 0:
3541      VT = MVT::i64;
3542      break;
3543    case 4:
3544      VT = MVT::i32;
3545      break;
3546    case 2:
3547      VT = MVT::i16;
3548      break;
3549    default:
3550      VT = MVT::i8;
3551      break;
3552    }
3553  }
3554
3555  MVT::ValueType LVT = MVT::i64;
3556  while (!TLI.isTypeLegal(LVT))
3557    LVT = (MVT::ValueType)((unsigned)LVT - 1);
3558  assert(MVT::isInteger(LVT));
3559
3560  if (VT > LVT)
3561    VT = LVT;
3562
3563  unsigned NumMemOps = 0;
3564  while (Size != 0) {
3565    unsigned VTSize = getSizeInBits(VT) / 8;
3566    while (VTSize > Size) {
3567      VT = (MVT::ValueType)((unsigned)VT - 1);
3568      VTSize >>= 1;
3569    }
3570    assert(MVT::isInteger(VT));
3571
3572    if (++NumMemOps > Limit)
3573      return false;
3574    MemOps.push_back(VT);
3575    Size -= VTSize;
3576  }
3577
3578  return true;
3579}
3580
3581void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
3582  SDOperand Op1 = getValue(I.getOperand(1));
3583  SDOperand Op2 = getValue(I.getOperand(2));
3584  SDOperand Op3 = getValue(I.getOperand(3));
3585  SDOperand Op4 = getValue(I.getOperand(4));
3586  unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
3587  if (Align == 0) Align = 1;
3588
3589  if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
3590    std::vector<MVT::ValueType> MemOps;
3591
3592    // Expand memset / memcpy to a series of load / store ops
3593    // if the size operand falls below a certain threshold.
3594    SmallVector<SDOperand, 8> OutChains;
3595    switch (Op) {
3596    default: break;  // Do nothing for now.
3597    case ISD::MEMSET: {
3598      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
3599                                   Size->getValue(), Align, TLI)) {
3600        unsigned NumMemOps = MemOps.size();
3601        unsigned Offset = 0;
3602        for (unsigned i = 0; i < NumMemOps; i++) {
3603          MVT::ValueType VT = MemOps[i];
3604          unsigned VTSize = getSizeInBits(VT) / 8;
3605          SDOperand Value = getMemsetValue(Op2, VT, DAG);
3606          SDOperand Store = DAG.getStore(getRoot(), Value,
3607                                    getMemBasePlusOffset(Op1, Offset, DAG, TLI),
3608                                         I.getOperand(1), Offset);
3609          OutChains.push_back(Store);
3610          Offset += VTSize;
3611        }
3612      }
3613      break;
3614    }
3615    case ISD::MEMCPY: {
3616      if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
3617                                   Size->getValue(), Align, TLI)) {
3618        unsigned NumMemOps = MemOps.size();
3619        unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
3620        GlobalAddressSDNode *G = NULL;
3621        std::string Str;
3622        bool CopyFromStr = false;
3623
3624        if (Op2.getOpcode() == ISD::GlobalAddress)
3625          G = cast<GlobalAddressSDNode>(Op2);
3626        else if (Op2.getOpcode() == ISD::ADD &&
3627                 Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
3628                 Op2.getOperand(1).getOpcode() == ISD::Constant) {
3629          G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
3630          SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
3631        }
3632        if (G) {
3633          GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
3634          if (GV && GV->isConstant()) {
3635            Str = GV->getStringValue(false);
3636            if (!Str.empty()) {
3637              CopyFromStr = true;
3638              SrcOff += SrcDelta;
3639            }
3640          }
3641        }
3642
3643        for (unsigned i = 0; i < NumMemOps; i++) {
3644          MVT::ValueType VT = MemOps[i];
3645          unsigned VTSize = getSizeInBits(VT) / 8;
3646          SDOperand Value, Chain, Store;
3647
3648          if (CopyFromStr) {
3649            Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
3650            Chain = getRoot();
3651            Store =
3652              DAG.getStore(Chain, Value,
3653                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3654                           I.getOperand(1), DstOff);
3655          } else {
3656            Value = DAG.getLoad(VT, getRoot(),
3657                        getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
3658                        I.getOperand(2), SrcOff);
3659            Chain = Value.getValue(1);
3660            Store =
3661              DAG.getStore(Chain, Value,
3662                           getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
3663                           I.getOperand(1), DstOff);
3664          }
3665          OutChains.push_back(Store);
3666          SrcOff += VTSize;
3667          DstOff += VTSize;
3668        }
3669      }
3670      break;
3671    }
3672    }
3673
3674    if (!OutChains.empty()) {
3675      DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
3676                  &OutChains[0], OutChains.size()));
3677      return;
3678    }
3679  }
3680
3681  DAG.setRoot(DAG.getNode(Op, MVT::Other, getRoot(), Op1, Op2, Op3, Op4));
3682}
3683
3684//===----------------------------------------------------------------------===//
3685// SelectionDAGISel code
3686//===----------------------------------------------------------------------===//
3687
3688unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
3689  return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
3690}
3691
3692void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
3693  // FIXME: we only modify the CFG to split critical edges.  This
3694  // updates dom and loop info.
3695  AU.addRequired<AliasAnalysis>();
3696}
3697
3698
3699/// OptimizeNoopCopyExpression - We have determined that the specified cast
3700/// instruction is a noop copy (e.g. it's casting from one pointer type to
3701/// another, int->uint, or int->sbyte on PPC.
3702///
3703/// Return true if any changes are made.
3704static bool OptimizeNoopCopyExpression(CastInst *CI) {
3705  BasicBlock *DefBB = CI->getParent();
3706
3707  /// InsertedCasts - Only insert a cast in each block once.
3708  std::map<BasicBlock*, CastInst*> InsertedCasts;
3709
3710  bool MadeChange = false;
3711  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
3712       UI != E; ) {
3713    Use &TheUse = UI.getUse();
3714    Instruction *User = cast<Instruction>(*UI);
3715
3716    // Figure out which BB this cast is used in.  For PHI's this is the
3717    // appropriate predecessor block.
3718    BasicBlock *UserBB = User->getParent();
3719    if (PHINode *PN = dyn_cast<PHINode>(User)) {
3720      unsigned OpVal = UI.getOperandNo()/2;
3721      UserBB = PN->getIncomingBlock(OpVal);
3722    }
3723
3724    // Preincrement use iterator so we don't invalidate it.
3725    ++UI;
3726
3727    // If this user is in the same block as the cast, don't change the cast.
3728    if (UserBB == DefBB) continue;
3729
3730    // If we have already inserted a cast into this block, use it.
3731    CastInst *&InsertedCast = InsertedCasts[UserBB];
3732
3733    if (!InsertedCast) {
3734      BasicBlock::iterator InsertPt = UserBB->begin();
3735      while (isa<PHINode>(InsertPt)) ++InsertPt;
3736
3737      InsertedCast =
3738        CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
3739                         InsertPt);
3740      MadeChange = true;
3741    }
3742
3743    // Replace a use of the cast with a use of the new casat.
3744    TheUse = InsertedCast;
3745  }
3746
3747  // If we removed all uses, nuke the cast.
3748  if (CI->use_empty())
3749    CI->eraseFromParent();
3750
3751  return MadeChange;
3752}
3753
3754/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
3755/// casting to the type of GEPI.
3756static Instruction *InsertGEPComputeCode(Instruction *&V, BasicBlock *BB,
3757                                         Instruction *GEPI, Value *Ptr,
3758                                         Value *PtrOffset) {
3759  if (V) return V;   // Already computed.
3760
3761  // Figure out the insertion point
3762  BasicBlock::iterator InsertPt;
3763  if (BB == GEPI->getParent()) {
3764    // If GEP is already inserted into BB, insert right after the GEP.
3765    InsertPt = GEPI;
3766    ++InsertPt;
3767  } else {
3768    // Otherwise, insert at the top of BB, after any PHI nodes
3769    InsertPt = BB->begin();
3770    while (isa<PHINode>(InsertPt)) ++InsertPt;
3771  }
3772
3773  // If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
3774  // BB so that there is only one value live across basic blocks (the cast
3775  // operand).
3776  if (CastInst *CI = dyn_cast<CastInst>(Ptr))
3777    if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
3778      Ptr = CastInst::create(CI->getOpcode(), CI->getOperand(0), CI->getType(),
3779                             "", InsertPt);
3780
3781  // Add the offset, cast it to the right type.
3782  Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
3783  // Ptr is an integer type, GEPI is pointer type ==> IntToPtr
3784  return V = CastInst::create(Instruction::IntToPtr, Ptr, GEPI->getType(),
3785                              "", InsertPt);
3786}
3787
3788/// ReplaceUsesOfGEPInst - Replace all uses of RepPtr with inserted code to
3789/// compute its value.  The RepPtr value can be computed with Ptr+PtrOffset. One
3790/// trivial way of doing this would be to evaluate Ptr+PtrOffset in RepPtr's
3791/// block, then ReplaceAllUsesWith'ing everything.  However, we would prefer to
3792/// sink PtrOffset into user blocks where doing so will likely allow us to fold
3793/// the constant add into a load or store instruction.  Additionally, if a user
3794/// is a pointer-pointer cast, we look through it to find its users.
3795static void ReplaceUsesOfGEPInst(Instruction *RepPtr, Value *Ptr,
3796                                 Constant *PtrOffset, BasicBlock *DefBB,
3797                                 GetElementPtrInst *GEPI,
3798                           std::map<BasicBlock*,Instruction*> &InsertedExprs) {
3799  while (!RepPtr->use_empty()) {
3800    Instruction *User = cast<Instruction>(RepPtr->use_back());
3801
3802    // If the user is a Pointer-Pointer cast, recurse. Only BitCast can be
3803    // used for a Pointer-Pointer cast.
3804    if (isa<BitCastInst>(User)) {
3805      ReplaceUsesOfGEPInst(User, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3806
3807      // Drop the use of RepPtr. The cast is dead.  Don't delete it now, else we
3808      // could invalidate an iterator.
3809      User->setOperand(0, UndefValue::get(RepPtr->getType()));
3810      continue;
3811    }
3812
3813    // If this is a load of the pointer, or a store through the pointer, emit
3814    // the increment into the load/store block.
3815    Instruction *NewVal;
3816    if (isa<LoadInst>(User) ||
3817        (isa<StoreInst>(User) && User->getOperand(0) != RepPtr)) {
3818      NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
3819                                    User->getParent(), GEPI,
3820                                    Ptr, PtrOffset);
3821    } else {
3822      // If this use is not foldable into the addressing mode, use a version
3823      // emitted in the GEP block.
3824      NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
3825                                    Ptr, PtrOffset);
3826    }
3827
3828    if (GEPI->getType() != RepPtr->getType()) {
3829      BasicBlock::iterator IP = NewVal;
3830      ++IP;
3831      // NewVal must be a GEP which must be pointer type, so BitCast
3832      NewVal = new BitCastInst(NewVal, RepPtr->getType(), "", IP);
3833    }
3834    User->replaceUsesOfWith(RepPtr, NewVal);
3835  }
3836}
3837
3838
3839/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
3840/// selection, we want to be a bit careful about some things.  In particular, if
3841/// we have a GEP instruction that is used in a different block than it is
3842/// defined, the addressing expression of the GEP cannot be folded into loads or
3843/// stores that use it.  In this case, decompose the GEP and move constant
3844/// indices into blocks that use it.
3845static bool OptimizeGEPExpression(GetElementPtrInst *GEPI,
3846                                  const TargetData *TD) {
3847  // If this GEP is only used inside the block it is defined in, there is no
3848  // need to rewrite it.
3849  bool isUsedOutsideDefBB = false;
3850  BasicBlock *DefBB = GEPI->getParent();
3851  for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
3852       UI != E; ++UI) {
3853    if (cast<Instruction>(*UI)->getParent() != DefBB) {
3854      isUsedOutsideDefBB = true;
3855      break;
3856    }
3857  }
3858  if (!isUsedOutsideDefBB) return false;
3859
3860  // If this GEP has no non-zero constant indices, there is nothing we can do,
3861  // ignore it.
3862  bool hasConstantIndex = false;
3863  bool hasVariableIndex = false;
3864  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3865       E = GEPI->op_end(); OI != E; ++OI) {
3866    if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI)) {
3867      if (CI->getZExtValue()) {
3868        hasConstantIndex = true;
3869        break;
3870      }
3871    } else {
3872      hasVariableIndex = true;
3873    }
3874  }
3875
3876  // If this is a "GEP X, 0, 0, 0", turn this into a cast.
3877  if (!hasConstantIndex && !hasVariableIndex) {
3878    /// The GEP operand must be a pointer, so must its result -> BitCast
3879    Value *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
3880                             GEPI->getName(), GEPI);
3881    GEPI->replaceAllUsesWith(NC);
3882    GEPI->eraseFromParent();
3883    return true;
3884  }
3885
3886  // If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
3887  if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0)))
3888    return false;
3889
3890  // Otherwise, decompose the GEP instruction into multiplies and adds.  Sum the
3891  // constant offset (which we now know is non-zero) and deal with it later.
3892  uint64_t ConstantOffset = 0;
3893  const Type *UIntPtrTy = TD->getIntPtrType();
3894  Value *Ptr = new PtrToIntInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
3895  const Type *Ty = GEPI->getOperand(0)->getType();
3896
3897  for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
3898       E = GEPI->op_end(); OI != E; ++OI) {
3899    Value *Idx = *OI;
3900    if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
3901      unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
3902      if (Field)
3903        ConstantOffset += TD->getStructLayout(StTy)->getElementOffset(Field);
3904      Ty = StTy->getElementType(Field);
3905    } else {
3906      Ty = cast<SequentialType>(Ty)->getElementType();
3907
3908      // Handle constant subscripts.
3909      if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3910        if (CI->getZExtValue() == 0) continue;
3911        ConstantOffset += (int64_t)TD->getTypeSize(Ty)*CI->getSExtValue();
3912        continue;
3913      }
3914
3915      // Ptr = Ptr + Idx * ElementSize;
3916
3917      // Cast Idx to UIntPtrTy if needed.
3918      Idx = CastInst::createIntegerCast(Idx, UIntPtrTy, true/*SExt*/, "", GEPI);
3919
3920      uint64_t ElementSize = TD->getTypeSize(Ty);
3921      // Mask off bits that should not be set.
3922      ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3923      Constant *SizeCst = ConstantInt::get(UIntPtrTy, ElementSize);
3924
3925      // Multiply by the element size and add to the base.
3926      Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
3927      Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
3928    }
3929  }
3930
3931  // Make sure that the offset fits in uintptr_t.
3932  ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
3933  Constant *PtrOffset = ConstantInt::get(UIntPtrTy, ConstantOffset);
3934
3935  // Okay, we have now emitted all of the variable index parts to the BB that
3936  // the GEP is defined in.  Loop over all of the using instructions, inserting
3937  // an "add Ptr, ConstantOffset" into each block that uses it and update the
3938  // instruction to use the newly computed value, making GEPI dead.  When the
3939  // user is a load or store instruction address, we emit the add into the user
3940  // block, otherwise we use a canonical version right next to the gep (these
3941  // won't be foldable as addresses, so we might as well share the computation).
3942
3943  std::map<BasicBlock*,Instruction*> InsertedExprs;
3944  ReplaceUsesOfGEPInst(GEPI, Ptr, PtrOffset, DefBB, GEPI, InsertedExprs);
3945
3946  // Finally, the GEP is dead, remove it.
3947  GEPI->eraseFromParent();
3948
3949  return true;
3950}
3951
3952
3953/// SplitEdgeNicely - Split the critical edge from TI to it's specified
3954/// successor if it will improve codegen.  We only do this if the successor has
3955/// phi nodes (otherwise critical edges are ok).  If there is already another
3956/// predecessor of the succ that is empty (and thus has no phi nodes), use it
3957/// instead of introducing a new block.
3958static void SplitEdgeNicely(TerminatorInst *TI, unsigned SuccNum, Pass *P) {
3959  BasicBlock *TIBB = TI->getParent();
3960  BasicBlock *Dest = TI->getSuccessor(SuccNum);
3961  assert(isa<PHINode>(Dest->begin()) &&
3962         "This should only be called if Dest has a PHI!");
3963
3964  /// TIPHIValues - This array is lazily computed to determine the values of
3965  /// PHIs in Dest that TI would provide.
3966  std::vector<Value*> TIPHIValues;
3967
3968  // Check to see if Dest has any blocks that can be used as a split edge for
3969  // this terminator.
3970  for (pred_iterator PI = pred_begin(Dest), E = pred_end(Dest); PI != E; ++PI) {
3971    BasicBlock *Pred = *PI;
3972    // To be usable, the pred has to end with an uncond branch to the dest.
3973    BranchInst *PredBr = dyn_cast<BranchInst>(Pred->getTerminator());
3974    if (!PredBr || !PredBr->isUnconditional() ||
3975        // Must be empty other than the branch.
3976        &Pred->front() != PredBr)
3977      continue;
3978
3979    // Finally, since we know that Dest has phi nodes in it, we have to make
3980    // sure that jumping to Pred will have the same affect as going to Dest in
3981    // terms of PHI values.
3982    PHINode *PN;
3983    unsigned PHINo = 0;
3984    bool FoundMatch = true;
3985    for (BasicBlock::iterator I = Dest->begin();
3986         (PN = dyn_cast<PHINode>(I)); ++I, ++PHINo) {
3987      if (PHINo == TIPHIValues.size())
3988        TIPHIValues.push_back(PN->getIncomingValueForBlock(TIBB));
3989
3990      // If the PHI entry doesn't work, we can't use this pred.
3991      if (TIPHIValues[PHINo] != PN->getIncomingValueForBlock(Pred)) {
3992        FoundMatch = false;
3993        break;
3994      }
3995    }
3996
3997    // If we found a workable predecessor, change TI to branch to Succ.
3998    if (FoundMatch) {
3999      Dest->removePredecessor(TIBB);
4000      TI->setSuccessor(SuccNum, Pred);
4001      return;
4002    }
4003  }
4004
4005  SplitCriticalEdge(TI, SuccNum, P, true);
4006}
4007
4008
4009bool SelectionDAGISel::runOnFunction(Function &Fn) {
4010  MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
4011  RegMap = MF.getSSARegMap();
4012  DOUT << "\n\n\n=== " << Fn.getName() << "\n";
4013
4014  // First, split all critical edges.
4015  //
4016  // In this pass we also look for GEP and cast instructions that are used
4017  // across basic blocks and rewrite them to improve basic-block-at-a-time
4018  // selection.
4019  //
4020  bool MadeChange = true;
4021  while (MadeChange) {
4022    MadeChange = false;
4023  for (Function::iterator FNI = Fn.begin(), E = Fn.end(); FNI != E; ++FNI) {
4024    // Split all critical edges where the dest block has a PHI.
4025    TerminatorInst *BBTI = FNI->getTerminator();
4026    if (BBTI->getNumSuccessors() > 1) {
4027      for (unsigned i = 0, e = BBTI->getNumSuccessors(); i != e; ++i)
4028        if (isa<PHINode>(BBTI->getSuccessor(i)->begin()) &&
4029            isCriticalEdge(BBTI, i, true))
4030          SplitEdgeNicely(BBTI, i, this);
4031    }
4032
4033
4034    for (BasicBlock::iterator BBI = FNI->begin(), E = FNI->end(); BBI != E; ) {
4035      Instruction *I = BBI++;
4036
4037      if (CallInst *CI = dyn_cast<CallInst>(I)) {
4038        // If we found an inline asm expession, and if the target knows how to
4039        // lower it to normal LLVM code, do so now.
4040        if (isa<InlineAsm>(CI->getCalledValue()))
4041          if (const TargetAsmInfo *TAI =
4042                TLI.getTargetMachine().getTargetAsmInfo()) {
4043            if (TAI->ExpandInlineAsm(CI))
4044              BBI = FNI->begin();
4045          }
4046      } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
4047        MadeChange |= OptimizeGEPExpression(GEPI, TLI.getTargetData());
4048      } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
4049        // If the source of the cast is a constant, then this should have
4050        // already been constant folded.  The only reason NOT to constant fold
4051        // it is if something (e.g. LSR) was careful to place the constant
4052        // evaluation in a block other than then one that uses it (e.g. to hoist
4053        // the address of globals out of a loop).  If this is the case, we don't
4054        // want to forward-subst the cast.
4055        if (isa<Constant>(CI->getOperand(0)))
4056          continue;
4057
4058        // If this is a noop copy, sink it into user blocks to reduce the number
4059        // of virtual registers that must be created and coallesced.
4060        MVT::ValueType SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
4061        MVT::ValueType DstVT = TLI.getValueType(CI->getType());
4062
4063        // This is an fp<->int conversion?
4064        if (MVT::isInteger(SrcVT) != MVT::isInteger(DstVT))
4065          continue;
4066
4067        // If this is an extension, it will be a zero or sign extension, which
4068        // isn't a noop.
4069        if (SrcVT < DstVT) continue;
4070
4071        // If these values will be promoted, find out what they will be promoted
4072        // to.  This helps us consider truncates on PPC as noop copies when they
4073        // are.
4074        if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote)
4075          SrcVT = TLI.getTypeToTransformTo(SrcVT);
4076        if (TLI.getTypeAction(DstVT) == TargetLowering::Promote)
4077          DstVT = TLI.getTypeToTransformTo(DstVT);
4078
4079        // If, after promotion, these are the same types, this is a noop copy.
4080        if (SrcVT == DstVT)
4081          MadeChange |= OptimizeNoopCopyExpression(CI);
4082      }
4083    }
4084  }
4085  }
4086
4087  FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
4088
4089  for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
4090    SelectBasicBlock(I, MF, FuncInfo);
4091
4092  // Add function live-ins to entry block live-in set.
4093  BasicBlock *EntryBB = &Fn.getEntryBlock();
4094  BB = FuncInfo.MBBMap[EntryBB];
4095  if (!MF.livein_empty())
4096    for (MachineFunction::livein_iterator I = MF.livein_begin(),
4097           E = MF.livein_end(); I != E; ++I)
4098      BB->addLiveIn(I->first);
4099
4100  return true;
4101}
4102
4103SDOperand SelectionDAGLowering::CopyValueToVirtualRegister(Value *V,
4104                                                           unsigned Reg) {
4105  SDOperand Op = getValue(V);
4106  assert((Op.getOpcode() != ISD::CopyFromReg ||
4107          cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
4108         "Copy from a reg to the same reg!");
4109
4110  // If this type is not legal, we must make sure to not create an invalid
4111  // register use.
4112  MVT::ValueType SrcVT = Op.getValueType();
4113  MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
4114  if (SrcVT == DestVT) {
4115    return DAG.getCopyToReg(getRoot(), Reg, Op);
4116  } else if (SrcVT == MVT::Vector) {
4117    // Handle copies from generic vectors to registers.
4118    MVT::ValueType PTyElementVT, PTyLegalElementVT;
4119    unsigned NE = TLI.getVectorTypeBreakdown(cast<VectorType>(V->getType()),
4120                                             PTyElementVT, PTyLegalElementVT);
4121
4122    // Insert a VBIT_CONVERT of the input vector to a "N x PTyElementVT"
4123    // MVT::Vector type.
4124    Op = DAG.getNode(ISD::VBIT_CONVERT, MVT::Vector, Op,
4125                     DAG.getConstant(NE, MVT::i32),
4126                     DAG.getValueType(PTyElementVT));
4127
4128    // Loop over all of the elements of the resultant vector,
4129    // VEXTRACT_VECTOR_ELT'ing them, converting them to PTyLegalElementVT, then
4130    // copying them into output registers.
4131    SmallVector<SDOperand, 8> OutChains;
4132    SDOperand Root = getRoot();
4133    for (unsigned i = 0; i != NE; ++i) {
4134      SDOperand Elt = DAG.getNode(ISD::VEXTRACT_VECTOR_ELT, PTyElementVT,
4135                                  Op, DAG.getConstant(i, TLI.getPointerTy()));
4136      if (PTyElementVT == PTyLegalElementVT) {
4137        // Elements are legal.
4138        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4139      } else if (PTyLegalElementVT > PTyElementVT) {
4140        // Elements are promoted.
4141        if (MVT::isFloatingPoint(PTyLegalElementVT))
4142          Elt = DAG.getNode(ISD::FP_EXTEND, PTyLegalElementVT, Elt);
4143        else
4144          Elt = DAG.getNode(ISD::ANY_EXTEND, PTyLegalElementVT, Elt);
4145        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Elt));
4146      } else {
4147        // Elements are expanded.
4148        // The src value is expanded into multiple registers.
4149        SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4150                                   Elt, DAG.getConstant(0, TLI.getPointerTy()));
4151        SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, PTyLegalElementVT,
4152                                   Elt, DAG.getConstant(1, TLI.getPointerTy()));
4153        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Lo));
4154        OutChains.push_back(DAG.getCopyToReg(Root, Reg++, Hi));
4155      }
4156    }
4157    return DAG.getNode(ISD::TokenFactor, MVT::Other,
4158                       &OutChains[0], OutChains.size());
4159  } else if (TLI.getTypeAction(SrcVT) == TargetLowering::Promote) {
4160    // The src value is promoted to the register.
4161    if (MVT::isFloatingPoint(SrcVT))
4162      Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
4163    else
4164      Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
4165    return DAG.getCopyToReg(getRoot(), Reg, Op);
4166  } else  {
4167    DestVT = TLI.getTypeToExpandTo(SrcVT);
4168    unsigned NumVals = TLI.getNumElements(SrcVT);
4169    if (NumVals == 1)
4170      return DAG.getCopyToReg(getRoot(), Reg,
4171                              DAG.getNode(ISD::BIT_CONVERT, DestVT, Op));
4172    assert(NumVals == 2 && "1 to 4 (and more) expansion not implemented!");
4173    // The src value is expanded into multiple registers.
4174    SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4175                               Op, DAG.getConstant(0, TLI.getPointerTy()));
4176    SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
4177                               Op, DAG.getConstant(1, TLI.getPointerTy()));
4178    Op = DAG.getCopyToReg(getRoot(), Reg, Lo);
4179    return DAG.getCopyToReg(Op, Reg+1, Hi);
4180  }
4181}
4182
4183void SelectionDAGISel::
4184LowerArguments(BasicBlock *LLVMBB, SelectionDAGLowering &SDL,
4185               std::vector<SDOperand> &UnorderedChains) {
4186  // If this is the entry block, emit arguments.
4187  Function &F = *LLVMBB->getParent();
4188  FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
4189  SDOperand OldRoot = SDL.DAG.getRoot();
4190  std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
4191
4192  unsigned a = 0;
4193  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
4194       AI != E; ++AI, ++a)
4195    if (!AI->use_empty()) {
4196      SDL.setValue(AI, Args[a]);
4197
4198      // If this argument is live outside of the entry block, insert a copy from
4199      // whereever we got it to the vreg that other BB's will reference it as.
4200      DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo.ValueMap.find(AI);
4201      if (VMI != FuncInfo.ValueMap.end()) {
4202        SDOperand Copy = SDL.CopyValueToVirtualRegister(AI, VMI->second);
4203        UnorderedChains.push_back(Copy);
4204      }
4205    }
4206
4207  // Finally, if the target has anything special to do, allow it to do so.
4208  // FIXME: this should insert code into the DAG!
4209  EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
4210}
4211
4212void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
4213       std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
4214                                         FunctionLoweringInfo &FuncInfo) {
4215  SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
4216
4217  std::vector<SDOperand> UnorderedChains;
4218
4219  // Lower any arguments needed in this block if this is the entry block.
4220  if (LLVMBB == &LLVMBB->getParent()->front())
4221    LowerArguments(LLVMBB, SDL, UnorderedChains);
4222
4223  BB = FuncInfo.MBBMap[LLVMBB];
4224  SDL.setCurrentBasicBlock(BB);
4225
4226  // Lower all of the non-terminator instructions.
4227  for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
4228       I != E; ++I)
4229    SDL.visit(*I);
4230
4231  // Lower call part of invoke.
4232  InvokeInst *Invoke = dyn_cast<InvokeInst>(LLVMBB->getTerminator());
4233  if (Invoke) SDL.visitInvoke(*Invoke, false);
4234
4235  // Ensure that all instructions which are used outside of their defining
4236  // blocks are available as virtual registers.
4237  for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
4238    if (!I->use_empty() && !isa<PHINode>(I)) {
4239      DenseMap<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
4240      if (VMI != FuncInfo.ValueMap.end())
4241        UnorderedChains.push_back(
4242                                SDL.CopyValueToVirtualRegister(I, VMI->second));
4243    }
4244
4245  // Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
4246  // ensure constants are generated when needed.  Remember the virtual registers
4247  // that need to be added to the Machine PHI nodes as input.  We cannot just
4248  // directly add them, because expansion might result in multiple MBB's for one
4249  // BB.  As such, the start of the BB might correspond to a different MBB than
4250  // the end.
4251  //
4252  TerminatorInst *TI = LLVMBB->getTerminator();
4253
4254  // Emit constants only once even if used by multiple PHI nodes.
4255  std::map<Constant*, unsigned> ConstantsOut;
4256
4257  // Vector bool would be better, but vector<bool> is really slow.
4258  std::vector<unsigned char> SuccsHandled;
4259  if (TI->getNumSuccessors())
4260    SuccsHandled.resize(BB->getParent()->getNumBlockIDs());
4261
4262  // Check successor nodes PHI nodes that expect a constant to be available from
4263  // this block.
4264  for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
4265    BasicBlock *SuccBB = TI->getSuccessor(succ);
4266    if (!isa<PHINode>(SuccBB->begin())) continue;
4267    MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
4268
4269    // If this terminator has multiple identical successors (common for
4270    // switches), only handle each succ once.
4271    unsigned SuccMBBNo = SuccMBB->getNumber();
4272    if (SuccsHandled[SuccMBBNo]) continue;
4273    SuccsHandled[SuccMBBNo] = true;
4274
4275    MachineBasicBlock::iterator MBBI = SuccMBB->begin();
4276    PHINode *PN;
4277
4278    // At this point we know that there is a 1-1 correspondence between LLVM PHI
4279    // nodes and Machine PHI nodes, but the incoming operands have not been
4280    // emitted yet.
4281    for (BasicBlock::iterator I = SuccBB->begin();
4282         (PN = dyn_cast<PHINode>(I)); ++I) {
4283      // Ignore dead phi's.
4284      if (PN->use_empty()) continue;
4285
4286      unsigned Reg;
4287      Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
4288
4289      if (Constant *C = dyn_cast<Constant>(PHIOp)) {
4290        unsigned &RegOut = ConstantsOut[C];
4291        if (RegOut == 0) {
4292          RegOut = FuncInfo.CreateRegForValue(C);
4293          UnorderedChains.push_back(
4294                           SDL.CopyValueToVirtualRegister(C, RegOut));
4295        }
4296        Reg = RegOut;
4297      } else {
4298        Reg = FuncInfo.ValueMap[PHIOp];
4299        if (Reg == 0) {
4300          assert(isa<AllocaInst>(PHIOp) &&
4301                 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
4302                 "Didn't codegen value into a register!??");
4303          Reg = FuncInfo.CreateRegForValue(PHIOp);
4304          UnorderedChains.push_back(
4305                           SDL.CopyValueToVirtualRegister(PHIOp, Reg));
4306        }
4307      }
4308
4309      // Remember that this register needs to added to the machine PHI node as
4310      // the input for this MBB.
4311      MVT::ValueType VT = TLI.getValueType(PN->getType());
4312      unsigned NumElements;
4313      if (VT != MVT::Vector)
4314        NumElements = TLI.getNumElements(VT);
4315      else {
4316        MVT::ValueType VT1,VT2;
4317        NumElements =
4318          TLI.getVectorTypeBreakdown(cast<VectorType>(PN->getType()),
4319                                     VT1, VT2);
4320      }
4321      for (unsigned i = 0, e = NumElements; i != e; ++i)
4322        PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
4323    }
4324  }
4325  ConstantsOut.clear();
4326
4327  // Turn all of the unordered chains into one factored node.
4328  if (!UnorderedChains.empty()) {
4329    SDOperand Root = SDL.getRoot();
4330    if (Root.getOpcode() != ISD::EntryToken) {
4331      unsigned i = 0, e = UnorderedChains.size();
4332      for (; i != e; ++i) {
4333        assert(UnorderedChains[i].Val->getNumOperands() > 1);
4334        if (UnorderedChains[i].Val->getOperand(0) == Root)
4335          break;  // Don't add the root if we already indirectly depend on it.
4336      }
4337
4338      if (i == e)
4339        UnorderedChains.push_back(Root);
4340    }
4341    DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other,
4342                            &UnorderedChains[0], UnorderedChains.size()));
4343  }
4344
4345  // Lower the terminator after the copies are emitted.
4346  if (Invoke) {
4347    // Just the branch part of invoke.
4348    SDL.visitInvoke(*Invoke, true);
4349  } else {
4350    SDL.visit(*LLVMBB->getTerminator());
4351  }
4352
4353  // Copy over any CaseBlock records that may now exist due to SwitchInst
4354  // lowering, as well as any jump table information.
4355  SwitchCases.clear();
4356  SwitchCases = SDL.SwitchCases;
4357  JT = SDL.JT;
4358
4359  // Make sure the root of the DAG is up-to-date.
4360  DAG.setRoot(SDL.getRoot());
4361}
4362
4363void SelectionDAGISel::CodeGenAndEmitDAG(SelectionDAG &DAG) {
4364  // Get alias analysis for load/store combining.
4365  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
4366
4367  // Run the DAG combiner in pre-legalize mode.
4368  DAG.Combine(false, AA);
4369
4370  DOUT << "Lowered selection DAG:\n";
4371  DEBUG(DAG.dump());
4372
4373  // Second step, hack on the DAG until it only uses operations and types that
4374  // the target supports.
4375  DAG.Legalize();
4376
4377  DOUT << "Legalized selection DAG:\n";
4378  DEBUG(DAG.dump());
4379
4380  // Run the DAG combiner in post-legalize mode.
4381  DAG.Combine(true, AA);
4382
4383  if (ViewISelDAGs) DAG.viewGraph();
4384
4385  // Third, instruction select all of the operations to machine code, adding the
4386  // code to the MachineBasicBlock.
4387  InstructionSelectBasicBlock(DAG);
4388
4389  DOUT << "Selected machine code:\n";
4390  DEBUG(BB->dump());
4391}
4392
4393void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
4394                                        FunctionLoweringInfo &FuncInfo) {
4395  std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
4396  {
4397    SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4398    CurDAG = &DAG;
4399
4400    // First step, lower LLVM code to some DAG.  This DAG may use operations and
4401    // types that are not supported by the target.
4402    BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
4403
4404    // Second step, emit the lowered DAG as machine code.
4405    CodeGenAndEmitDAG(DAG);
4406  }
4407
4408  // Next, now that we know what the last MBB the LLVM BB expanded is, update
4409  // PHI nodes in successors.
4410  if (SwitchCases.empty() && JT.Reg == 0) {
4411    for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4412      MachineInstr *PHI = PHINodesToUpdate[i].first;
4413      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4414             "This is not a machine PHI node that we are updating!");
4415      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4416      PHI->addMachineBasicBlockOperand(BB);
4417    }
4418    return;
4419  }
4420
4421  // If the JumpTable record is filled in, then we need to emit a jump table.
4422  // Updating the PHI nodes is tricky in this case, since we need to determine
4423  // whether the PHI is a successor of the range check MBB or the jump table MBB
4424  if (JT.Reg) {
4425    assert(SwitchCases.empty() && "Cannot have jump table and lowered switch");
4426    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4427    CurDAG = &SDAG;
4428    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4429    MachineBasicBlock *RangeBB = BB;
4430    // Set the current basic block to the mbb we wish to insert the code into
4431    BB = JT.MBB;
4432    SDL.setCurrentBasicBlock(BB);
4433    // Emit the code
4434    SDL.visitJumpTable(JT);
4435    SDAG.setRoot(SDL.getRoot());
4436    CodeGenAndEmitDAG(SDAG);
4437    // Update PHI Nodes
4438    for (unsigned pi = 0, pe = PHINodesToUpdate.size(); pi != pe; ++pi) {
4439      MachineInstr *PHI = PHINodesToUpdate[pi].first;
4440      MachineBasicBlock *PHIBB = PHI->getParent();
4441      assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4442             "This is not a machine PHI node that we are updating!");
4443      if (PHIBB == JT.Default) {
4444        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4445        PHI->addMachineBasicBlockOperand(RangeBB);
4446      }
4447      if (BB->succ_end() != std::find(BB->succ_begin(),BB->succ_end(), PHIBB)) {
4448        PHI->addRegOperand(PHINodesToUpdate[pi].second, false);
4449        PHI->addMachineBasicBlockOperand(BB);
4450      }
4451    }
4452    return;
4453  }
4454
4455  // If the switch block involved a branch to one of the actual successors, we
4456  // need to update PHI nodes in that block.
4457  for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
4458    MachineInstr *PHI = PHINodesToUpdate[i].first;
4459    assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
4460           "This is not a machine PHI node that we are updating!");
4461    if (BB->isSuccessor(PHI->getParent())) {
4462      PHI->addRegOperand(PHINodesToUpdate[i].second, false);
4463      PHI->addMachineBasicBlockOperand(BB);
4464    }
4465  }
4466
4467  // If we generated any switch lowering information, build and codegen any
4468  // additional DAGs necessary.
4469  for (unsigned i = 0, e = SwitchCases.size(); i != e; ++i) {
4470    SelectionDAG SDAG(TLI, MF, getAnalysisToUpdate<MachineModuleInfo>());
4471    CurDAG = &SDAG;
4472    SelectionDAGLowering SDL(SDAG, TLI, FuncInfo);
4473
4474    // Set the current basic block to the mbb we wish to insert the code into
4475    BB = SwitchCases[i].ThisBB;
4476    SDL.setCurrentBasicBlock(BB);
4477
4478    // Emit the code
4479    SDL.visitSwitchCase(SwitchCases[i]);
4480    SDAG.setRoot(SDL.getRoot());
4481    CodeGenAndEmitDAG(SDAG);
4482
4483    // Handle any PHI nodes in successors of this chunk, as if we were coming
4484    // from the original BB before switch expansion.  Note that PHI nodes can
4485    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
4486    // handle them the right number of times.
4487    while ((BB = SwitchCases[i].TrueBB)) {  // Handle LHS and RHS.
4488      for (MachineBasicBlock::iterator Phi = BB->begin();
4489           Phi != BB->end() && Phi->getOpcode() == TargetInstrInfo::PHI; ++Phi){
4490        // This value for this PHI node is recorded in PHINodesToUpdate, get it.
4491        for (unsigned pn = 0; ; ++pn) {
4492          assert(pn != PHINodesToUpdate.size() && "Didn't find PHI entry!");
4493          if (PHINodesToUpdate[pn].first == Phi) {
4494            Phi->addRegOperand(PHINodesToUpdate[pn].second, false);
4495            Phi->addMachineBasicBlockOperand(SwitchCases[i].ThisBB);
4496            break;
4497          }
4498        }
4499      }
4500
4501      // Don't process RHS if same block as LHS.
4502      if (BB == SwitchCases[i].FalseBB)
4503        SwitchCases[i].FalseBB = 0;
4504
4505      // If we haven't handled the RHS, do so now.  Otherwise, we're done.
4506      SwitchCases[i].TrueBB = SwitchCases[i].FalseBB;
4507      SwitchCases[i].FalseBB = 0;
4508    }
4509    assert(SwitchCases[i].TrueBB == 0 && SwitchCases[i].FalseBB == 0);
4510  }
4511}
4512
4513
4514//===----------------------------------------------------------------------===//
4515/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
4516/// target node in the graph.
4517void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
4518  if (ViewSchedDAGs) DAG.viewGraph();
4519
4520  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
4521
4522  if (!Ctor) {
4523    Ctor = ISHeuristic;
4524    RegisterScheduler::setDefault(Ctor);
4525  }
4526
4527  ScheduleDAG *SL = Ctor(this, &DAG, BB);
4528  BB = SL->Run();
4529  delete SL;
4530}
4531
4532
4533HazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
4534  return new HazardRecognizer();
4535}
4536
4537//===----------------------------------------------------------------------===//
4538// Helper functions used by the generated instruction selector.
4539//===----------------------------------------------------------------------===//
4540// Calls to these methods are generated by tblgen.
4541
4542/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
4543/// the dag combiner simplified the 255, we still want to match.  RHS is the
4544/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
4545/// specified in the .td file (e.g. 255).
4546bool SelectionDAGISel::CheckAndMask(SDOperand LHS, ConstantSDNode *RHS,
4547                                    int64_t DesiredMaskS) {
4548  uint64_t ActualMask = RHS->getValue();
4549  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4550
4551  // If the actual mask exactly matches, success!
4552  if (ActualMask == DesiredMask)
4553    return true;
4554
4555  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4556  if (ActualMask & ~DesiredMask)
4557    return false;
4558
4559  // Otherwise, the DAG Combiner may have proven that the value coming in is
4560  // either already zero or is not demanded.  Check for known zero input bits.
4561  uint64_t NeededMask = DesiredMask & ~ActualMask;
4562  if (getTargetLowering().MaskedValueIsZero(LHS, NeededMask))
4563    return true;
4564
4565  // TODO: check to see if missing bits are just not demanded.
4566
4567  // Otherwise, this pattern doesn't match.
4568  return false;
4569}
4570
4571/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
4572/// the dag combiner simplified the 255, we still want to match.  RHS is the
4573/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
4574/// specified in the .td file (e.g. 255).
4575bool SelectionDAGISel::CheckOrMask(SDOperand LHS, ConstantSDNode *RHS,
4576                                    int64_t DesiredMaskS) {
4577  uint64_t ActualMask = RHS->getValue();
4578  uint64_t DesiredMask =DesiredMaskS & MVT::getIntVTBitMask(LHS.getValueType());
4579
4580  // If the actual mask exactly matches, success!
4581  if (ActualMask == DesiredMask)
4582    return true;
4583
4584  // If the actual AND mask is allowing unallowed bits, this doesn't match.
4585  if (ActualMask & ~DesiredMask)
4586    return false;
4587
4588  // Otherwise, the DAG Combiner may have proven that the value coming in is
4589  // either already zero or is not demanded.  Check for known zero input bits.
4590  uint64_t NeededMask = DesiredMask & ~ActualMask;
4591
4592  uint64_t KnownZero, KnownOne;
4593  getTargetLowering().ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
4594
4595  // If all the missing bits in the or are already known to be set, match!
4596  if ((NeededMask & KnownOne) == NeededMask)
4597    return true;
4598
4599  // TODO: check to see if missing bits are just not demanded.
4600
4601  // Otherwise, this pattern doesn't match.
4602  return false;
4603}
4604
4605
4606/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
4607/// by tblgen.  Others should not call it.
4608void SelectionDAGISel::
4609SelectInlineAsmMemoryOperands(std::vector<SDOperand> &Ops, SelectionDAG &DAG) {
4610  std::vector<SDOperand> InOps;
4611  std::swap(InOps, Ops);
4612
4613  Ops.push_back(InOps[0]);  // input chain.
4614  Ops.push_back(InOps[1]);  // input asm string.
4615
4616  unsigned i = 2, e = InOps.size();
4617  if (InOps[e-1].getValueType() == MVT::Flag)
4618    --e;  // Don't process a flag operand if it is here.
4619
4620  while (i != e) {
4621    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getValue();
4622    if ((Flags & 7) != 4 /*MEM*/) {
4623      // Just skip over this operand, copying the operands verbatim.
4624      Ops.insert(Ops.end(), InOps.begin()+i, InOps.begin()+i+(Flags >> 3) + 1);
4625      i += (Flags >> 3) + 1;
4626    } else {
4627      assert((Flags >> 3) == 1 && "Memory operand with multiple values?");
4628      // Otherwise, this is a memory operand.  Ask the target to select it.
4629      std::vector<SDOperand> SelOps;
4630      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps, DAG)) {
4631        cerr << "Could not match memory address.  Inline asm failure!\n";
4632        exit(1);
4633      }
4634
4635      // Add this to the output node.
4636      Ops.push_back(DAG.getTargetConstant(4/*MEM*/ | (SelOps.size() << 3),
4637                                          MVT::i32));
4638      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
4639      i += 2;
4640    }
4641  }
4642
4643  // Add the flag input back if present.
4644  if (e != InOps.size())
4645    Ops.push_back(InOps.back());
4646}
4647