SelectionDAGISel.cpp revision 9c4dae6b0bd1b4667b7a6ce5d804f60615bac639
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Transforms/Utils/BasicBlockUtils.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/Timer.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/ADT/PostOrderIterator.h"
53#include "llvm/ADT/Statistic.h"
54#include <algorithm>
55using namespace llvm;
56
57STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
58STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
59STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
60STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
61STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
62
63#ifndef NDEBUG
64STATISTIC(NumBBWithOutOfOrderLineInfo,
65          "Number of blocks with out of order line number info");
66STATISTIC(NumMBBWithOutOfOrderLineInfo,
67          "Number of machine blocks with out of order line number info");
68#endif
69
70static cl::opt<bool>
71EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
72          cl::desc("Enable verbose messages in the \"fast\" "
73                   "instruction selector"));
74static cl::opt<bool>
75EnableFastISelAbort("fast-isel-abort", cl::Hidden,
76          cl::desc("Enable abort calls when \"fast\" instruction fails"));
77
78#ifndef NDEBUG
79static cl::opt<bool>
80ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
81          cl::desc("Pop up a window to show dags before the first "
82                   "dag combine pass"));
83static cl::opt<bool>
84ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
85          cl::desc("Pop up a window to show dags before legalize types"));
86static cl::opt<bool>
87ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
88          cl::desc("Pop up a window to show dags before legalize"));
89static cl::opt<bool>
90ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
91          cl::desc("Pop up a window to show dags before the second "
92                   "dag combine pass"));
93static cl::opt<bool>
94ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
95          cl::desc("Pop up a window to show dags before the post legalize types"
96                   " dag combine pass"));
97static cl::opt<bool>
98ViewISelDAGs("view-isel-dags", cl::Hidden,
99          cl::desc("Pop up a window to show isel dags as they are selected"));
100static cl::opt<bool>
101ViewSchedDAGs("view-sched-dags", cl::Hidden,
102          cl::desc("Pop up a window to show sched dags as they are processed"));
103static cl::opt<bool>
104ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
105      cl::desc("Pop up a window to show SUnit dags after they are processed"));
106#else
107static const bool ViewDAGCombine1 = false,
108                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
109                  ViewDAGCombine2 = false,
110                  ViewDAGCombineLT = false,
111                  ViewISelDAGs = false, ViewSchedDAGs = false,
112                  ViewSUnitDAGs = false;
113#endif
114
115//===---------------------------------------------------------------------===//
116///
117/// RegisterScheduler class - Track the registration of instruction schedulers.
118///
119//===---------------------------------------------------------------------===//
120MachinePassRegistry RegisterScheduler::Registry;
121
122//===---------------------------------------------------------------------===//
123///
124/// ISHeuristic command line option for instruction schedulers.
125///
126//===---------------------------------------------------------------------===//
127static cl::opt<RegisterScheduler::FunctionPassCtor, false,
128               RegisterPassParser<RegisterScheduler> >
129ISHeuristic("pre-RA-sched",
130            cl::init(&createDefaultScheduler),
131            cl::desc("Instruction schedulers available (before register"
132                     " allocation):"));
133
134static RegisterScheduler
135defaultListDAGScheduler("default", "Best scheduler for the target",
136                        createDefaultScheduler);
137
138namespace llvm {
139  //===--------------------------------------------------------------------===//
140  /// createDefaultScheduler - This creates an instruction scheduler appropriate
141  /// for the target.
142  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
143                                             CodeGenOpt::Level OptLevel) {
144    const TargetLowering &TLI = IS->getTargetLowering();
145
146    if (OptLevel == CodeGenOpt::None)
147      return createSourceListDAGScheduler(IS, OptLevel);
148    if (TLI.getSchedulingPreference() == Sched::Latency)
149      return createTDListDAGScheduler(IS, OptLevel);
150    if (TLI.getSchedulingPreference() == Sched::RegPressure)
151      return createBURRListDAGScheduler(IS, OptLevel);
152    if (TLI.getSchedulingPreference() == Sched::Hybrid)
153      return createHybridListDAGScheduler(IS, OptLevel);
154    assert(TLI.getSchedulingPreference() == Sched::ILP &&
155           "Unknown sched type!");
156    return createILPListDAGScheduler(IS, OptLevel);
157  }
158}
159
160// EmitInstrWithCustomInserter - This method should be implemented by targets
161// that mark instructions with the 'usesCustomInserter' flag.  These
162// instructions are special in various ways, which require special support to
163// insert.  The specified MachineInstr is created but not inserted into any
164// basic blocks, and this method is called to expand it into a sequence of
165// instructions, potentially also creating new basic blocks and control flow.
166// When new basic blocks are inserted and the edges from MBB to its successors
167// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
168// DenseMap.
169MachineBasicBlock *
170TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
171                                            MachineBasicBlock *MBB) const {
172#ifndef NDEBUG
173  dbgs() << "If a target marks an instruction with "
174          "'usesCustomInserter', it must implement "
175          "TargetLowering::EmitInstrWithCustomInserter!";
176#endif
177  llvm_unreachable(0);
178  return 0;
179}
180
181//===----------------------------------------------------------------------===//
182// SelectionDAGISel code
183//===----------------------------------------------------------------------===//
184
185SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
186                                   CodeGenOpt::Level OL) :
187  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
188  FuncInfo(new FunctionLoweringInfo(TLI)),
189  CurDAG(new SelectionDAG(tm)),
190  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
191  GFI(),
192  OptLevel(OL),
193  DAGSize(0) {
194    initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
195    initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
196  }
197
198SelectionDAGISel::~SelectionDAGISel() {
199  delete SDB;
200  delete CurDAG;
201  delete FuncInfo;
202}
203
204void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
205  AU.addRequired<AliasAnalysis>();
206  AU.addPreserved<AliasAnalysis>();
207  AU.addRequired<GCModuleInfo>();
208  AU.addPreserved<GCModuleInfo>();
209  MachineFunctionPass::getAnalysisUsage(AU);
210}
211
212/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
213/// may trap on it.  In this case we have to split the edge so that the path
214/// through the predecessor block that doesn't go to the phi block doesn't
215/// execute the possibly trapping instruction.
216///
217/// This is required for correctness, so it must be done at -O0.
218///
219static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
220  // Loop for blocks with phi nodes.
221  for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
222    PHINode *PN = dyn_cast<PHINode>(BB->begin());
223    if (PN == 0) continue;
224
225  ReprocessBlock:
226    // For each block with a PHI node, check to see if any of the input values
227    // are potentially trapping constant expressions.  Constant expressions are
228    // the only potentially trapping value that can occur as the argument to a
229    // PHI.
230    for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
231      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
232        ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
233        if (CE == 0 || !CE->canTrap()) continue;
234
235        // The only case we have to worry about is when the edge is critical.
236        // Since this block has a PHI Node, we assume it has multiple input
237        // edges: check to see if the pred has multiple successors.
238        BasicBlock *Pred = PN->getIncomingBlock(i);
239        if (Pred->getTerminator()->getNumSuccessors() == 1)
240          continue;
241
242        // Okay, we have to split this edge.
243        SplitCriticalEdge(Pred->getTerminator(),
244                          GetSuccessorNumber(Pred, BB), SDISel, true);
245        goto ReprocessBlock;
246      }
247  }
248}
249
250bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
251  // Do some sanity-checking on the command-line options.
252  assert((!EnableFastISelVerbose || EnableFastISel) &&
253         "-fast-isel-verbose requires -fast-isel");
254  assert((!EnableFastISelAbort || EnableFastISel) &&
255         "-fast-isel-abort requires -fast-isel");
256
257  const Function &Fn = *mf.getFunction();
258  const TargetInstrInfo &TII = *TM.getInstrInfo();
259  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
260
261  MF = &mf;
262  RegInfo = &MF->getRegInfo();
263  AA = &getAnalysis<AliasAnalysis>();
264  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
265
266  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
267
268  SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
269
270  CurDAG->init(*MF);
271  FuncInfo->set(Fn, *MF);
272  SDB->init(GFI, *AA);
273
274  SelectAllBasicBlocks(Fn);
275
276  // If the first basic block in the function has live ins that need to be
277  // copied into vregs, emit the copies into the top of the block before
278  // emitting the code for the block.
279  MachineBasicBlock *EntryMBB = MF->begin();
280  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
281
282  DenseMap<unsigned, unsigned> LiveInMap;
283  if (!FuncInfo->ArgDbgValues.empty())
284    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
285           E = RegInfo->livein_end(); LI != E; ++LI)
286      if (LI->second)
287        LiveInMap.insert(std::make_pair(LI->first, LI->second));
288
289  // Insert DBG_VALUE instructions for function arguments to the entry block.
290  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
291    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
292    unsigned Reg = MI->getOperand(0).getReg();
293    if (TargetRegisterInfo::isPhysicalRegister(Reg))
294      EntryMBB->insert(EntryMBB->begin(), MI);
295    else {
296      MachineInstr *Def = RegInfo->getVRegDef(Reg);
297      MachineBasicBlock::iterator InsertPos = Def;
298      // FIXME: VR def may not be in entry block.
299      Def->getParent()->insert(llvm::next(InsertPos), MI);
300    }
301
302    // If Reg is live-in then update debug info to track its copy in a vreg.
303    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
304    if (LDI != LiveInMap.end()) {
305      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
306      MachineBasicBlock::iterator InsertPos = Def;
307      const MDNode *Variable =
308        MI->getOperand(MI->getNumOperands()-1).getMetadata();
309      unsigned Offset = MI->getOperand(1).getImm();
310      // Def is never a terminator here, so it is ok to increment InsertPos.
311      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
312              TII.get(TargetOpcode::DBG_VALUE))
313        .addReg(LDI->second, RegState::Debug)
314        .addImm(Offset).addMetadata(Variable);
315
316      // If this vreg is directly copied into an exported register then
317      // that COPY instructions also need DBG_VALUE, if it is the only
318      // user of LDI->second.
319      MachineInstr *CopyUseMI = NULL;
320      for (MachineRegisterInfo::use_iterator
321             UI = RegInfo->use_begin(LDI->second);
322           MachineInstr *UseMI = UI.skipInstruction();) {
323        if (UseMI->isDebugValue()) continue;
324        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
325          CopyUseMI = UseMI; continue;
326        }
327        // Otherwise this is another use or second copy use.
328        CopyUseMI = NULL; break;
329      }
330      if (CopyUseMI) {
331        MachineInstr *NewMI =
332          BuildMI(*MF, CopyUseMI->getDebugLoc(),
333                  TII.get(TargetOpcode::DBG_VALUE))
334          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
335          .addImm(Offset).addMetadata(Variable);
336        EntryMBB->insertAfter(CopyUseMI, NewMI);
337      }
338    }
339  }
340
341  // Determine if there are any calls in this machine function.
342  MachineFrameInfo *MFI = MF->getFrameInfo();
343  if (!MFI->hasCalls()) {
344    for (MachineFunction::const_iterator
345           I = MF->begin(), E = MF->end(); I != E; ++I) {
346      const MachineBasicBlock *MBB = I;
347      for (MachineBasicBlock::const_iterator
348             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
349        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
350
351        if ((TID.isCall() && !TID.isReturn()) ||
352            II->isStackAligningInlineAsm()) {
353          MFI->setHasCalls(true);
354          goto done;
355        }
356      }
357    }
358  done:;
359  }
360
361  // Determine if there is a call to setjmp in the machine function.
362  MF->setCallsSetJmp(Fn.callsFunctionThatReturnsTwice());
363
364  // Replace forward-declared registers with the registers containing
365  // the desired value.
366  MachineRegisterInfo &MRI = MF->getRegInfo();
367  for (DenseMap<unsigned, unsigned>::iterator
368       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
369       I != E; ++I) {
370    unsigned From = I->first;
371    unsigned To = I->second;
372    // If To is also scheduled to be replaced, find what its ultimate
373    // replacement is.
374    for (;;) {
375      DenseMap<unsigned, unsigned>::iterator J =
376        FuncInfo->RegFixups.find(To);
377      if (J == E) break;
378      To = J->second;
379    }
380    // Replace it.
381    MRI.replaceRegWith(From, To);
382  }
383
384  // Release function-specific state. SDB and CurDAG are already cleared
385  // at this point.
386  FuncInfo->clear();
387
388  return true;
389}
390
391void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
392                                        BasicBlock::const_iterator End,
393                                        bool &HadTailCall) {
394  // Lower all of the non-terminator instructions. If a call is emitted
395  // as a tail call, cease emitting nodes for this block. Terminators
396  // are handled below.
397  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
398    SDB->visit(*I);
399
400  // Make sure the root of the DAG is up-to-date.
401  CurDAG->setRoot(SDB->getControlRoot());
402  HadTailCall = SDB->HasTailCall;
403  SDB->clear();
404
405  // Final step, emit the lowered DAG as machine code.
406  CodeGenAndEmitDAG();
407}
408
409void SelectionDAGISel::ComputeLiveOutVRegInfo() {
410  SmallPtrSet<SDNode*, 128> VisitedNodes;
411  SmallVector<SDNode*, 128> Worklist;
412
413  Worklist.push_back(CurDAG->getRoot().getNode());
414
415  APInt Mask;
416  APInt KnownZero;
417  APInt KnownOne;
418
419  do {
420    SDNode *N = Worklist.pop_back_val();
421
422    // If we've already seen this node, ignore it.
423    if (!VisitedNodes.insert(N))
424      continue;
425
426    // Otherwise, add all chain operands to the worklist.
427    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
428      if (N->getOperand(i).getValueType() == MVT::Other)
429        Worklist.push_back(N->getOperand(i).getNode());
430
431    // If this is a CopyToReg with a vreg dest, process it.
432    if (N->getOpcode() != ISD::CopyToReg)
433      continue;
434
435    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
436    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
437      continue;
438
439    // Ignore non-scalar or non-integer values.
440    SDValue Src = N->getOperand(2);
441    EVT SrcVT = Src.getValueType();
442    if (!SrcVT.isInteger() || SrcVT.isVector())
443      continue;
444
445    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
446    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
447    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
448    FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
449  } while (!Worklist.empty());
450}
451
452void SelectionDAGISel::CodeGenAndEmitDAG() {
453  std::string GroupName;
454  if (TimePassesIsEnabled)
455    GroupName = "Instruction Selection and Scheduling";
456  std::string BlockName;
457  int BlockNumber = -1;
458#ifdef NDEBUG
459  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
460      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
461      ViewSUnitDAGs)
462#endif
463  {
464    BlockNumber = FuncInfo->MBB->getNumber();
465    BlockName = MF->getFunction()->getNameStr() + ":" +
466                FuncInfo->MBB->getBasicBlock()->getNameStr();
467  }
468  DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
469        << " '" << BlockName << "'\n"; CurDAG->dump());
470
471  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
472
473  // Run the DAG combiner in pre-legalize mode.
474  {
475    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
476    CurDAG->Combine(Unrestricted, *AA, OptLevel);
477  }
478
479  DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
480        << " '" << BlockName << "'\n"; CurDAG->dump());
481
482  // Second step, hack on the DAG until it only uses operations and types that
483  // the target supports.
484  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
485                                               BlockName);
486
487  bool Changed;
488  {
489    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
490    Changed = CurDAG->LegalizeTypes();
491  }
492
493  DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
494        << " '" << BlockName << "'\n"; CurDAG->dump());
495
496  if (Changed) {
497    if (ViewDAGCombineLT)
498      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
499
500    // Run the DAG combiner in post-type-legalize mode.
501    {
502      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
503                         TimePassesIsEnabled);
504      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
505    }
506
507    DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
508          << " '" << BlockName << "'\n"; CurDAG->dump());
509  }
510
511  {
512    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
513    Changed = CurDAG->LegalizeVectors();
514  }
515
516  if (Changed) {
517    {
518      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
519      CurDAG->LegalizeTypes();
520    }
521
522    if (ViewDAGCombineLT)
523      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
524
525    // Run the DAG combiner in post-type-legalize mode.
526    {
527      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
528                         TimePassesIsEnabled);
529      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
530    }
531
532    DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
533          << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
534  }
535
536  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
537
538  {
539    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
540    CurDAG->Legalize();
541  }
542
543  DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
544        << " '" << BlockName << "'\n"; CurDAG->dump());
545
546  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
547
548  // Run the DAG combiner in post-legalize mode.
549  {
550    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
551    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
552  }
553
554  DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
555        << " '" << BlockName << "'\n"; CurDAG->dump());
556
557  if (OptLevel != CodeGenOpt::None)
558    ComputeLiveOutVRegInfo();
559
560  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
561
562  // Third, instruction select all of the operations to machine code, adding the
563  // code to the MachineBasicBlock.
564  {
565    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
566    DoInstructionSelection();
567  }
568
569  DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
570        << " '" << BlockName << "'\n"; CurDAG->dump());
571
572  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
573
574  // Schedule machine code.
575  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
576  {
577    NamedRegionTimer T("Instruction Scheduling", GroupName,
578                       TimePassesIsEnabled);
579    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
580  }
581
582  if (ViewSUnitDAGs) Scheduler->viewGraph();
583
584  // Emit machine code to BB.  This can change 'BB' to the last block being
585  // inserted into.
586  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
587  {
588    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
589
590    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
591    FuncInfo->InsertPt = Scheduler->InsertPos;
592  }
593
594  // If the block was split, make sure we update any references that are used to
595  // update PHI nodes later on.
596  if (FirstMBB != LastMBB)
597    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
598
599  // Free the scheduler state.
600  {
601    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
602                       TimePassesIsEnabled);
603    delete Scheduler;
604  }
605
606  // Free the SelectionDAG state, now that we're finished with it.
607  CurDAG->clear();
608}
609
610void SelectionDAGISel::DoInstructionSelection() {
611  DEBUG(errs() << "===== Instruction selection begins: BB#"
612        << FuncInfo->MBB->getNumber()
613        << " '" << FuncInfo->MBB->getName() << "'\n");
614
615  PreprocessISelDAG();
616
617  // Select target instructions for the DAG.
618  {
619    // Number all nodes with a topological order and set DAGSize.
620    DAGSize = CurDAG->AssignTopologicalOrder();
621
622    // Create a dummy node (which is not added to allnodes), that adds
623    // a reference to the root node, preventing it from being deleted,
624    // and tracking any changes of the root.
625    HandleSDNode Dummy(CurDAG->getRoot());
626    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
627    ++ISelPosition;
628
629    // The AllNodes list is now topological-sorted. Visit the
630    // nodes by starting at the end of the list (the root of the
631    // graph) and preceding back toward the beginning (the entry
632    // node).
633    while (ISelPosition != CurDAG->allnodes_begin()) {
634      SDNode *Node = --ISelPosition;
635      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
636      // but there are currently some corner cases that it misses. Also, this
637      // makes it theoretically possible to disable the DAGCombiner.
638      if (Node->use_empty())
639        continue;
640
641      SDNode *ResNode = Select(Node);
642
643      // FIXME: This is pretty gross.  'Select' should be changed to not return
644      // anything at all and this code should be nuked with a tactical strike.
645
646      // If node should not be replaced, continue with the next one.
647      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
648        continue;
649      // Replace node.
650      if (ResNode)
651        ReplaceUses(Node, ResNode);
652
653      // If after the replacement this node is not used any more,
654      // remove this dead node.
655      if (Node->use_empty()) { // Don't delete EntryToken, etc.
656        ISelUpdater ISU(ISelPosition);
657        CurDAG->RemoveDeadNode(Node, &ISU);
658      }
659    }
660
661    CurDAG->setRoot(Dummy.getValue());
662  }
663
664  DEBUG(errs() << "===== Instruction selection ends:\n");
665
666  PostprocessISelDAG();
667}
668
669/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
670/// do other setup for EH landing-pad blocks.
671void SelectionDAGISel::PrepareEHLandingPad() {
672  // Add a label to mark the beginning of the landing pad.  Deletion of the
673  // landing pad can thus be detected via the MachineModuleInfo.
674  MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
675
676  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
677  BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
678    .addSym(Label);
679
680  // Mark exception register as live in.
681  unsigned Reg = TLI.getExceptionAddressRegister();
682  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
683
684  // Mark exception selector register as live in.
685  Reg = TLI.getExceptionSelectorRegister();
686  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
687
688  // FIXME: Hack around an exception handling flaw (PR1508): the personality
689  // function and list of typeids logically belong to the invoke (or, if you
690  // like, the basic block containing the invoke), and need to be associated
691  // with it in the dwarf exception handling tables.  Currently however the
692  // information is provided by an intrinsic (eh.selector) that can be moved
693  // to unexpected places by the optimizers: if the unwind edge is critical,
694  // then breaking it can result in the intrinsics being in the successor of
695  // the landing pad, not the landing pad itself.  This results
696  // in exceptions not being caught because no typeids are associated with
697  // the invoke.  This may not be the only way things can go wrong, but it
698  // is the only way we try to work around for the moment.
699  const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
700  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
701
702  if (Br && Br->isUnconditional()) { // Critical edge?
703    BasicBlock::const_iterator I, E;
704    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
705      if (isa<EHSelectorInst>(I))
706        break;
707
708    if (I == E)
709      // No catch info found - try to extract some from the successor.
710      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
711  }
712}
713
714
715
716/// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
717/// load into the specified FoldInst.  Note that we could have a sequence where
718/// multiple LLVM IR instructions are folded into the same machineinstr.  For
719/// example we could have:
720///   A: x = load i32 *P
721///   B: y = icmp A, 42
722///   C: br y, ...
723///
724/// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
725/// any other folded instructions) because it is between A and C.
726///
727/// If we succeed in folding the load into the operation, return true.
728///
729bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
730                                             const Instruction *FoldInst,
731                                             FastISel *FastIS) {
732  // We know that the load has a single use, but don't know what it is.  If it
733  // isn't one of the folded instructions, then we can't succeed here.  Handle
734  // this by scanning the single-use users of the load until we get to FoldInst.
735  unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
736
737  const Instruction *TheUser = LI->use_back();
738  while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
739         // Stay in the right block.
740         TheUser->getParent() == FoldInst->getParent() &&
741         --MaxUsers) {  // Don't scan too far.
742    // If there are multiple or no uses of this instruction, then bail out.
743    if (!TheUser->hasOneUse())
744      return false;
745
746    TheUser = TheUser->use_back();
747  }
748
749  // Don't try to fold volatile loads.  Target has to deal with alignment
750  // constraints.
751  if (LI->isVolatile()) return false;
752
753  // Figure out which vreg this is going into.  If there is no assigned vreg yet
754  // then there actually was no reference to it.  Perhaps the load is referenced
755  // by a dead instruction.
756  unsigned LoadReg = FastIS->getRegForValue(LI);
757  if (LoadReg == 0)
758    return false;
759
760  // Check to see what the uses of this vreg are.  If it has no uses, or more
761  // than one use (at the machine instr level) then we can't fold it.
762  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
763  if (RI == RegInfo->reg_end())
764    return false;
765
766  // See if there is exactly one use of the vreg.  If there are multiple uses,
767  // then the instruction got lowered to multiple machine instructions or the
768  // use of the loaded value ended up being multiple operands of the result, in
769  // either case, we can't fold this.
770  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
771  if (PostRI != RegInfo->reg_end())
772    return false;
773
774  assert(RI.getOperand().isUse() &&
775         "The only use of the vreg must be a use, we haven't emitted the def!");
776
777  MachineInstr *User = &*RI;
778
779  // Set the insertion point properly.  Folding the load can cause generation of
780  // other random instructions (like sign extends) for addressing modes, make
781  // sure they get inserted in a logical place before the new instruction.
782  FuncInfo->InsertPt = User;
783  FuncInfo->MBB = User->getParent();
784
785  // Ask the target to try folding the load.
786  return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
787}
788
789#ifndef NDEBUG
790/// CheckLineNumbers - Check if basic block instructions follow source order
791/// or not.
792static void CheckLineNumbers(const BasicBlock *BB) {
793  unsigned Line = 0;
794  unsigned Col = 0;
795  for (BasicBlock::const_iterator BI = BB->begin(),
796         BE = BB->end(); BI != BE; ++BI) {
797    const DebugLoc DL = BI->getDebugLoc();
798    if (DL.isUnknown()) continue;
799    unsigned L = DL.getLine();
800    unsigned C = DL.getCol();
801    if (L < Line || (L == Line && C < Col)) {
802      ++NumBBWithOutOfOrderLineInfo;
803      return;
804    }
805    Line = L;
806    Col = C;
807  }
808}
809
810/// CheckLineNumbers - Check if machine basic block instructions follow source
811/// order or not.
812static void CheckLineNumbers(const MachineBasicBlock *MBB) {
813  unsigned Line = 0;
814  unsigned Col = 0;
815  for (MachineBasicBlock::const_iterator MBI = MBB->begin(),
816         MBE = MBB->end(); MBI != MBE; ++MBI) {
817    const DebugLoc DL = MBI->getDebugLoc();
818    if (DL.isUnknown()) continue;
819    unsigned L = DL.getLine();
820    unsigned C = DL.getCol();
821    if (L < Line || (L == Line && C < Col)) {
822      ++NumMBBWithOutOfOrderLineInfo;
823      return;
824    }
825    Line = L;
826    Col = C;
827  }
828}
829#endif
830
831/// isFoldedOrDeadInstruction - Return true if the specified instruction is
832/// side-effect free and is either dead or folded into a generated instruction.
833/// Return false if it needs to be emitted.
834static bool isFoldedOrDeadInstruction(const Instruction *I,
835                                      FunctionLoweringInfo *FuncInfo) {
836  return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
837         !isa<TerminatorInst>(I) && // Terminators aren't folded.
838         !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
839         !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
840}
841
842void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
843  // Initialize the Fast-ISel state, if needed.
844  FastISel *FastIS = 0;
845  if (EnableFastISel)
846    FastIS = TLI.createFastISel(*FuncInfo);
847
848  // Iterate over all basic blocks in the function.
849  ReversePostOrderTraversal<const Function*> RPOT(&Fn);
850  for (ReversePostOrderTraversal<const Function*>::rpo_iterator
851       I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
852    const BasicBlock *LLVMBB = *I;
853#ifndef NDEBUG
854    CheckLineNumbers(LLVMBB);
855#endif
856
857    if (OptLevel != CodeGenOpt::None) {
858      bool AllPredsVisited = true;
859      for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
860           PI != PE; ++PI) {
861        if (!FuncInfo->VisitedBBs.count(*PI)) {
862          AllPredsVisited = false;
863          break;
864        }
865      }
866
867      if (AllPredsVisited) {
868        for (BasicBlock::const_iterator I = LLVMBB->begin();
869             isa<PHINode>(I); ++I)
870          FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
871      } else {
872        for (BasicBlock::const_iterator I = LLVMBB->begin();
873             isa<PHINode>(I); ++I)
874          FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
875      }
876
877      FuncInfo->VisitedBBs.insert(LLVMBB);
878    }
879
880    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
881    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
882
883    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
884    BasicBlock::const_iterator const End = LLVMBB->end();
885    BasicBlock::const_iterator BI = End;
886
887    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
888
889    // Setup an EH landing-pad block.
890    if (FuncInfo->MBB->isLandingPad())
891      PrepareEHLandingPad();
892
893    // Lower any arguments needed in this block if this is the entry block.
894    if (LLVMBB == &Fn.getEntryBlock())
895      LowerArguments(LLVMBB);
896
897    // Before doing SelectionDAG ISel, see if FastISel has been requested.
898    if (FastIS) {
899      FastIS->startNewBlock();
900
901      // Emit code for any incoming arguments. This must happen before
902      // beginning FastISel on the entry block.
903      if (LLVMBB == &Fn.getEntryBlock()) {
904        CurDAG->setRoot(SDB->getControlRoot());
905        SDB->clear();
906        CodeGenAndEmitDAG();
907
908        // If we inserted any instructions at the beginning, make a note of
909        // where they are, so we can be sure to emit subsequent instructions
910        // after them.
911        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
912          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
913        else
914          FastIS->setLastLocalValue(0);
915      }
916
917      // Do FastISel on as many instructions as possible.
918      for (; BI != Begin; --BI) {
919        const Instruction *Inst = llvm::prior(BI);
920
921        // If we no longer require this instruction, skip it.
922        if (isFoldedOrDeadInstruction(Inst, FuncInfo))
923          continue;
924
925        // Bottom-up: reset the insert pos at the top, after any local-value
926        // instructions.
927        FastIS->recomputeInsertPt();
928
929        // Try to select the instruction with FastISel.
930        if (FastIS->SelectInstruction(Inst)) {
931          ++NumFastIselSuccess;
932          // If fast isel succeeded, skip over all the folded instructions, and
933          // then see if there is a load right before the selected instructions.
934          // Try to fold the load if so.
935          const Instruction *BeforeInst = Inst;
936          while (BeforeInst != Begin) {
937            BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
938            if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
939              break;
940          }
941          if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
942              BeforeInst->hasOneUse() &&
943              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS))
944            // If we succeeded, don't re-select the load.
945            BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
946          continue;
947        }
948
949        // Then handle certain instructions as single-LLVM-Instruction blocks.
950        if (isa<CallInst>(Inst)) {
951          ++NumFastIselFailures;
952          if (EnableFastISelVerbose || EnableFastISelAbort) {
953            dbgs() << "FastISel missed call: ";
954            Inst->dump();
955          }
956
957          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
958            unsigned &R = FuncInfo->ValueMap[Inst];
959            if (!R)
960              R = FuncInfo->CreateRegs(Inst->getType());
961          }
962
963          bool HadTailCall = false;
964          SelectBasicBlock(Inst, BI, HadTailCall);
965
966          // If the call was emitted as a tail call, we're done with the block.
967          if (HadTailCall) {
968            --BI;
969            break;
970          }
971
972          continue;
973        }
974
975        if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
976          // Don't abort, and use a different message for terminator misses.
977          ++NumFastIselFailures;
978          if (EnableFastISelVerbose || EnableFastISelAbort) {
979            dbgs() << "FastISel missed terminator: ";
980            Inst->dump();
981          }
982        } else {
983          ++NumFastIselFailures;
984          if (EnableFastISelVerbose || EnableFastISelAbort) {
985            dbgs() << "FastISel miss: ";
986            Inst->dump();
987          }
988          if (EnableFastISelAbort)
989            // The "fast" selector couldn't handle something and bailed.
990            // For the purpose of debugging, just abort.
991            llvm_unreachable("FastISel didn't select the entire block");
992        }
993        break;
994      }
995
996      FastIS->recomputeInsertPt();
997    }
998
999    if (Begin != BI)
1000      ++NumDAGBlocks;
1001    else
1002      ++NumFastIselBlocks;
1003
1004    if (Begin != BI) {
1005      // Run SelectionDAG instruction selection on the remainder of the block
1006      // not handled by FastISel. If FastISel is not run, this is the entire
1007      // block.
1008      bool HadTailCall;
1009      SelectBasicBlock(Begin, BI, HadTailCall);
1010    }
1011
1012    FinishBasicBlock();
1013    FuncInfo->PHINodesToUpdate.clear();
1014  }
1015
1016  delete FastIS;
1017#ifndef NDEBUG
1018  for (MachineFunction::const_iterator MBI = MF->begin(), MBE = MF->end();
1019       MBI != MBE; ++MBI)
1020    CheckLineNumbers(MBI);
1021#endif
1022}
1023
1024void
1025SelectionDAGISel::FinishBasicBlock() {
1026
1027  DEBUG(dbgs() << "Total amount of phi nodes to update: "
1028               << FuncInfo->PHINodesToUpdate.size() << "\n";
1029        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
1030          dbgs() << "Node " << i << " : ("
1031                 << FuncInfo->PHINodesToUpdate[i].first
1032                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
1033
1034  // Next, now that we know what the last MBB the LLVM BB expanded is, update
1035  // PHI nodes in successors.
1036  if (SDB->SwitchCases.empty() &&
1037      SDB->JTCases.empty() &&
1038      SDB->BitTestCases.empty()) {
1039    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1040      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1041      assert(PHI->isPHI() &&
1042             "This is not a machine PHI node that we are updating!");
1043      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
1044        continue;
1045      PHI->addOperand(
1046        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1047      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1048    }
1049    return;
1050  }
1051
1052  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
1053    // Lower header first, if it wasn't already lowered
1054    if (!SDB->BitTestCases[i].Emitted) {
1055      // Set the current basic block to the mbb we wish to insert the code into
1056      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
1057      FuncInfo->InsertPt = FuncInfo->MBB->end();
1058      // Emit the code
1059      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
1060      CurDAG->setRoot(SDB->getRoot());
1061      SDB->clear();
1062      CodeGenAndEmitDAG();
1063    }
1064
1065    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
1066      // Set the current basic block to the mbb we wish to insert the code into
1067      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1068      FuncInfo->InsertPt = FuncInfo->MBB->end();
1069      // Emit the code
1070      if (j+1 != ej)
1071        SDB->visitBitTestCase(SDB->BitTestCases[i],
1072                              SDB->BitTestCases[i].Cases[j+1].ThisBB,
1073                              SDB->BitTestCases[i].Reg,
1074                              SDB->BitTestCases[i].Cases[j],
1075                              FuncInfo->MBB);
1076      else
1077        SDB->visitBitTestCase(SDB->BitTestCases[i],
1078                              SDB->BitTestCases[i].Default,
1079                              SDB->BitTestCases[i].Reg,
1080                              SDB->BitTestCases[i].Cases[j],
1081                              FuncInfo->MBB);
1082
1083
1084      CurDAG->setRoot(SDB->getRoot());
1085      SDB->clear();
1086      CodeGenAndEmitDAG();
1087    }
1088
1089    // Update PHI Nodes
1090    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1091         pi != pe; ++pi) {
1092      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1093      MachineBasicBlock *PHIBB = PHI->getParent();
1094      assert(PHI->isPHI() &&
1095             "This is not a machine PHI node that we are updating!");
1096      // This is "default" BB. We have two jumps to it. From "header" BB and
1097      // from last "case" BB.
1098      if (PHIBB == SDB->BitTestCases[i].Default) {
1099        PHI->addOperand(MachineOperand::
1100                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1101                                  false));
1102        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
1103        PHI->addOperand(MachineOperand::
1104                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1105                                  false));
1106        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
1107                                                  back().ThisBB));
1108      }
1109      // One of "cases" BB.
1110      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
1111           j != ej; ++j) {
1112        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
1113        if (cBB->isSuccessor(PHIBB)) {
1114          PHI->addOperand(MachineOperand::
1115                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1116                                    false));
1117          PHI->addOperand(MachineOperand::CreateMBB(cBB));
1118        }
1119      }
1120    }
1121  }
1122  SDB->BitTestCases.clear();
1123
1124  // If the JumpTable record is filled in, then we need to emit a jump table.
1125  // Updating the PHI nodes is tricky in this case, since we need to determine
1126  // whether the PHI is a successor of the range check MBB or the jump table MBB
1127  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
1128    // Lower header first, if it wasn't already lowered
1129    if (!SDB->JTCases[i].first.Emitted) {
1130      // Set the current basic block to the mbb we wish to insert the code into
1131      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
1132      FuncInfo->InsertPt = FuncInfo->MBB->end();
1133      // Emit the code
1134      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
1135                                FuncInfo->MBB);
1136      CurDAG->setRoot(SDB->getRoot());
1137      SDB->clear();
1138      CodeGenAndEmitDAG();
1139    }
1140
1141    // Set the current basic block to the mbb we wish to insert the code into
1142    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
1143    FuncInfo->InsertPt = FuncInfo->MBB->end();
1144    // Emit the code
1145    SDB->visitJumpTable(SDB->JTCases[i].second);
1146    CurDAG->setRoot(SDB->getRoot());
1147    SDB->clear();
1148    CodeGenAndEmitDAG();
1149
1150    // Update PHI Nodes
1151    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
1152         pi != pe; ++pi) {
1153      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
1154      MachineBasicBlock *PHIBB = PHI->getParent();
1155      assert(PHI->isPHI() &&
1156             "This is not a machine PHI node that we are updating!");
1157      // "default" BB. We can go there only from header BB.
1158      if (PHIBB == SDB->JTCases[i].second.Default) {
1159        PHI->addOperand
1160          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1161                                     false));
1162        PHI->addOperand
1163          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1164      }
1165      // JT BB. Just iterate over successors here
1166      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1167        PHI->addOperand
1168          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1169                                     false));
1170        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1171      }
1172    }
1173  }
1174  SDB->JTCases.clear();
1175
1176  // If the switch block involved a branch to one of the actual successors, we
1177  // need to update PHI nodes in that block.
1178  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1179    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1180    assert(PHI->isPHI() &&
1181           "This is not a machine PHI node that we are updating!");
1182    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1183      PHI->addOperand(
1184        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1185      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1186    }
1187  }
1188
1189  // If we generated any switch lowering information, build and codegen any
1190  // additional DAGs necessary.
1191  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1192    // Set the current basic block to the mbb we wish to insert the code into
1193    FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1194    FuncInfo->InsertPt = FuncInfo->MBB->end();
1195
1196    // Determine the unique successors.
1197    SmallVector<MachineBasicBlock *, 2> Succs;
1198    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1199    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1200      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1201
1202    // Emit the code. Note that this could result in FuncInfo->MBB being split.
1203    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1204    CurDAG->setRoot(SDB->getRoot());
1205    SDB->clear();
1206    CodeGenAndEmitDAG();
1207
1208    // Remember the last block, now that any splitting is done, for use in
1209    // populating PHI nodes in successors.
1210    MachineBasicBlock *ThisBB = FuncInfo->MBB;
1211
1212    // Handle any PHI nodes in successors of this chunk, as if we were coming
1213    // from the original BB before switch expansion.  Note that PHI nodes can
1214    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1215    // handle them the right number of times.
1216    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1217      FuncInfo->MBB = Succs[i];
1218      FuncInfo->InsertPt = FuncInfo->MBB->end();
1219      // FuncInfo->MBB may have been removed from the CFG if a branch was
1220      // constant folded.
1221      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1222        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1223             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1224             ++Phi) {
1225          // This value for this PHI node is recorded in PHINodesToUpdate.
1226          for (unsigned pn = 0; ; ++pn) {
1227            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1228                   "Didn't find PHI entry!");
1229            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1230              Phi->addOperand(MachineOperand::
1231                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1232                                        false));
1233              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1234              break;
1235            }
1236          }
1237        }
1238      }
1239    }
1240  }
1241  SDB->SwitchCases.clear();
1242}
1243
1244
1245/// Create the scheduler. If a specific scheduler was specified
1246/// via the SchedulerRegistry, use it, otherwise select the
1247/// one preferred by the target.
1248///
1249ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1250  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1251
1252  if (!Ctor) {
1253    Ctor = ISHeuristic;
1254    RegisterScheduler::setDefault(Ctor);
1255  }
1256
1257  return Ctor(this, OptLevel);
1258}
1259
1260//===----------------------------------------------------------------------===//
1261// Helper functions used by the generated instruction selector.
1262//===----------------------------------------------------------------------===//
1263// Calls to these methods are generated by tblgen.
1264
1265/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1266/// the dag combiner simplified the 255, we still want to match.  RHS is the
1267/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1268/// specified in the .td file (e.g. 255).
1269bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1270                                    int64_t DesiredMaskS) const {
1271  const APInt &ActualMask = RHS->getAPIntValue();
1272  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1273
1274  // If the actual mask exactly matches, success!
1275  if (ActualMask == DesiredMask)
1276    return true;
1277
1278  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1279  if (ActualMask.intersects(~DesiredMask))
1280    return false;
1281
1282  // Otherwise, the DAG Combiner may have proven that the value coming in is
1283  // either already zero or is not demanded.  Check for known zero input bits.
1284  APInt NeededMask = DesiredMask & ~ActualMask;
1285  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1286    return true;
1287
1288  // TODO: check to see if missing bits are just not demanded.
1289
1290  // Otherwise, this pattern doesn't match.
1291  return false;
1292}
1293
1294/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1295/// the dag combiner simplified the 255, we still want to match.  RHS is the
1296/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1297/// specified in the .td file (e.g. 255).
1298bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1299                                   int64_t DesiredMaskS) const {
1300  const APInt &ActualMask = RHS->getAPIntValue();
1301  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1302
1303  // If the actual mask exactly matches, success!
1304  if (ActualMask == DesiredMask)
1305    return true;
1306
1307  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1308  if (ActualMask.intersects(~DesiredMask))
1309    return false;
1310
1311  // Otherwise, the DAG Combiner may have proven that the value coming in is
1312  // either already zero or is not demanded.  Check for known zero input bits.
1313  APInt NeededMask = DesiredMask & ~ActualMask;
1314
1315  APInt KnownZero, KnownOne;
1316  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1317
1318  // If all the missing bits in the or are already known to be set, match!
1319  if ((NeededMask & KnownOne) == NeededMask)
1320    return true;
1321
1322  // TODO: check to see if missing bits are just not demanded.
1323
1324  // Otherwise, this pattern doesn't match.
1325  return false;
1326}
1327
1328
1329/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1330/// by tblgen.  Others should not call it.
1331void SelectionDAGISel::
1332SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1333  std::vector<SDValue> InOps;
1334  std::swap(InOps, Ops);
1335
1336  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1337  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1338  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1339  Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
1340
1341  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1342  if (InOps[e-1].getValueType() == MVT::Glue)
1343    --e;  // Don't process a glue operand if it is here.
1344
1345  while (i != e) {
1346    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1347    if (!InlineAsm::isMemKind(Flags)) {
1348      // Just skip over this operand, copying the operands verbatim.
1349      Ops.insert(Ops.end(), InOps.begin()+i,
1350                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1351      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1352    } else {
1353      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1354             "Memory operand with multiple values?");
1355      // Otherwise, this is a memory operand.  Ask the target to select it.
1356      std::vector<SDValue> SelOps;
1357      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1358        report_fatal_error("Could not match memory address.  Inline asm"
1359                           " failure!");
1360
1361      // Add this to the output node.
1362      unsigned NewFlags =
1363        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1364      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1365      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1366      i += 2;
1367    }
1368  }
1369
1370  // Add the glue input back if present.
1371  if (e != InOps.size())
1372    Ops.push_back(InOps.back());
1373}
1374
1375/// findGlueUse - Return use of MVT::Glue value produced by the specified
1376/// SDNode.
1377///
1378static SDNode *findGlueUse(SDNode *N) {
1379  unsigned FlagResNo = N->getNumValues()-1;
1380  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1381    SDUse &Use = I.getUse();
1382    if (Use.getResNo() == FlagResNo)
1383      return Use.getUser();
1384  }
1385  return NULL;
1386}
1387
1388/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1389/// This function recursively traverses up the operand chain, ignoring
1390/// certain nodes.
1391static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1392                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1393                          bool IgnoreChains) {
1394  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1395  // greater than all of its (recursive) operands.  If we scan to a point where
1396  // 'use' is smaller than the node we're scanning for, then we know we will
1397  // never find it.
1398  //
1399  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1400  // happen because we scan down to newly selected nodes in the case of glue
1401  // uses.
1402  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1403    return false;
1404
1405  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1406  // won't fail if we scan it again.
1407  if (!Visited.insert(Use))
1408    return false;
1409
1410  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1411    // Ignore chain uses, they are validated by HandleMergeInputChains.
1412    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1413      continue;
1414
1415    SDNode *N = Use->getOperand(i).getNode();
1416    if (N == Def) {
1417      if (Use == ImmedUse || Use == Root)
1418        continue;  // We are not looking for immediate use.
1419      assert(N != Root);
1420      return true;
1421    }
1422
1423    // Traverse up the operand chain.
1424    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1425      return true;
1426  }
1427  return false;
1428}
1429
1430/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1431/// operand node N of U during instruction selection that starts at Root.
1432bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1433                                          SDNode *Root) const {
1434  if (OptLevel == CodeGenOpt::None) return false;
1435  return N.hasOneUse();
1436}
1437
1438/// IsLegalToFold - Returns true if the specific operand node N of
1439/// U can be folded during instruction selection that starts at Root.
1440bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1441                                     CodeGenOpt::Level OptLevel,
1442                                     bool IgnoreChains) {
1443  if (OptLevel == CodeGenOpt::None) return false;
1444
1445  // If Root use can somehow reach N through a path that that doesn't contain
1446  // U then folding N would create a cycle. e.g. In the following
1447  // diagram, Root can reach N through X. If N is folded into into Root, then
1448  // X is both a predecessor and a successor of U.
1449  //
1450  //          [N*]           //
1451  //         ^   ^           //
1452  //        /     \          //
1453  //      [U*]    [X]?       //
1454  //        ^     ^          //
1455  //         \   /           //
1456  //          \ /            //
1457  //         [Root*]         //
1458  //
1459  // * indicates nodes to be folded together.
1460  //
1461  // If Root produces glue, then it gets (even more) interesting. Since it
1462  // will be "glued" together with its glue use in the scheduler, we need to
1463  // check if it might reach N.
1464  //
1465  //          [N*]           //
1466  //         ^   ^           //
1467  //        /     \          //
1468  //      [U*]    [X]?       //
1469  //        ^       ^        //
1470  //         \       \       //
1471  //          \      |       //
1472  //         [Root*] |       //
1473  //          ^      |       //
1474  //          f      |       //
1475  //          |      /       //
1476  //         [Y]    /        //
1477  //           ^   /         //
1478  //           f  /          //
1479  //           | /           //
1480  //          [GU]           //
1481  //
1482  // If GU (glue use) indirectly reaches N (the load), and Root folds N
1483  // (call it Fold), then X is a predecessor of GU and a successor of
1484  // Fold. But since Fold and GU are glued together, this will create
1485  // a cycle in the scheduling graph.
1486
1487  // If the node has glue, walk down the graph to the "lowest" node in the
1488  // glueged set.
1489  EVT VT = Root->getValueType(Root->getNumValues()-1);
1490  while (VT == MVT::Glue) {
1491    SDNode *GU = findGlueUse(Root);
1492    if (GU == NULL)
1493      break;
1494    Root = GU;
1495    VT = Root->getValueType(Root->getNumValues()-1);
1496
1497    // If our query node has a glue result with a use, we've walked up it.  If
1498    // the user (which has already been selected) has a chain or indirectly uses
1499    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1500    // this, we cannot ignore chains in this predicate.
1501    IgnoreChains = false;
1502  }
1503
1504
1505  SmallPtrSet<SDNode*, 16> Visited;
1506  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1507}
1508
1509SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1510  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1511  SelectInlineAsmMemoryOperands(Ops);
1512
1513  std::vector<EVT> VTs;
1514  VTs.push_back(MVT::Other);
1515  VTs.push_back(MVT::Glue);
1516  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1517                                VTs, &Ops[0], Ops.size());
1518  New->setNodeId(-1);
1519  return New.getNode();
1520}
1521
1522SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1523  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1524}
1525
1526/// GetVBR - decode a vbr encoding whose top bit is set.
1527LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
1528GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1529  assert(Val >= 128 && "Not a VBR");
1530  Val &= 127;  // Remove first vbr bit.
1531
1532  unsigned Shift = 7;
1533  uint64_t NextBits;
1534  do {
1535    NextBits = MatcherTable[Idx++];
1536    Val |= (NextBits&127) << Shift;
1537    Shift += 7;
1538  } while (NextBits & 128);
1539
1540  return Val;
1541}
1542
1543
1544/// UpdateChainsAndGlue - When a match is complete, this method updates uses of
1545/// interior glue and chain results to use the new glue and chain results.
1546void SelectionDAGISel::
1547UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
1548                    const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1549                    SDValue InputGlue,
1550                    const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
1551                    bool isMorphNodeTo) {
1552  SmallVector<SDNode*, 4> NowDeadNodes;
1553
1554  ISelUpdater ISU(ISelPosition);
1555
1556  // Now that all the normal results are replaced, we replace the chain and
1557  // glue results if present.
1558  if (!ChainNodesMatched.empty()) {
1559    assert(InputChain.getNode() != 0 &&
1560           "Matched input chains but didn't produce a chain");
1561    // Loop over all of the nodes we matched that produced a chain result.
1562    // Replace all the chain results with the final chain we ended up with.
1563    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1564      SDNode *ChainNode = ChainNodesMatched[i];
1565
1566      // If this node was already deleted, don't look at it.
1567      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1568        continue;
1569
1570      // Don't replace the results of the root node if we're doing a
1571      // MorphNodeTo.
1572      if (ChainNode == NodeToMatch && isMorphNodeTo)
1573        continue;
1574
1575      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1576      if (ChainVal.getValueType() == MVT::Glue)
1577        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1578      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1579      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1580
1581      // If the node became dead and we haven't already seen it, delete it.
1582      if (ChainNode->use_empty() &&
1583          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1584        NowDeadNodes.push_back(ChainNode);
1585    }
1586  }
1587
1588  // If the result produces glue, update any glue results in the matched
1589  // pattern with the glue result.
1590  if (InputGlue.getNode() != 0) {
1591    // Handle any interior nodes explicitly marked.
1592    for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
1593      SDNode *FRN = GlueResultNodesMatched[i];
1594
1595      // If this node was already deleted, don't look at it.
1596      if (FRN->getOpcode() == ISD::DELETED_NODE)
1597        continue;
1598
1599      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
1600             "Doesn't have a glue result");
1601      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1602                                        InputGlue, &ISU);
1603
1604      // If the node became dead and we haven't already seen it, delete it.
1605      if (FRN->use_empty() &&
1606          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1607        NowDeadNodes.push_back(FRN);
1608    }
1609  }
1610
1611  if (!NowDeadNodes.empty())
1612    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1613
1614  DEBUG(errs() << "ISEL: Match complete!\n");
1615}
1616
1617enum ChainResult {
1618  CR_Simple,
1619  CR_InducesCycle,
1620  CR_LeadsToInteriorNode
1621};
1622
1623/// WalkChainUsers - Walk down the users of the specified chained node that is
1624/// part of the pattern we're matching, looking at all of the users we find.
1625/// This determines whether something is an interior node, whether we have a
1626/// non-pattern node in between two pattern nodes (which prevent folding because
1627/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1628/// between pattern nodes (in which case the TF becomes part of the pattern).
1629///
1630/// The walk we do here is guaranteed to be small because we quickly get down to
1631/// already selected nodes "below" us.
1632static ChainResult
1633WalkChainUsers(SDNode *ChainedNode,
1634               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1635               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1636  ChainResult Result = CR_Simple;
1637
1638  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1639         E = ChainedNode->use_end(); UI != E; ++UI) {
1640    // Make sure the use is of the chain, not some other value we produce.
1641    if (UI.getUse().getValueType() != MVT::Other) continue;
1642
1643    SDNode *User = *UI;
1644
1645    // If we see an already-selected machine node, then we've gone beyond the
1646    // pattern that we're selecting down into the already selected chunk of the
1647    // DAG.
1648    if (User->isMachineOpcode() ||
1649        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1650      continue;
1651
1652    if (User->getOpcode() == ISD::CopyToReg ||
1653        User->getOpcode() == ISD::CopyFromReg ||
1654        User->getOpcode() == ISD::INLINEASM ||
1655        User->getOpcode() == ISD::EH_LABEL) {
1656      // If their node ID got reset to -1 then they've already been selected.
1657      // Treat them like a MachineOpcode.
1658      if (User->getNodeId() == -1)
1659        continue;
1660    }
1661
1662    // If we have a TokenFactor, we handle it specially.
1663    if (User->getOpcode() != ISD::TokenFactor) {
1664      // If the node isn't a token factor and isn't part of our pattern, then it
1665      // must be a random chained node in between two nodes we're selecting.
1666      // This happens when we have something like:
1667      //   x = load ptr
1668      //   call
1669      //   y = x+4
1670      //   store y -> ptr
1671      // Because we structurally match the load/store as a read/modify/write,
1672      // but the call is chained between them.  We cannot fold in this case
1673      // because it would induce a cycle in the graph.
1674      if (!std::count(ChainedNodesInPattern.begin(),
1675                      ChainedNodesInPattern.end(), User))
1676        return CR_InducesCycle;
1677
1678      // Otherwise we found a node that is part of our pattern.  For example in:
1679      //   x = load ptr
1680      //   y = x+4
1681      //   store y -> ptr
1682      // This would happen when we're scanning down from the load and see the
1683      // store as a user.  Record that there is a use of ChainedNode that is
1684      // part of the pattern and keep scanning uses.
1685      Result = CR_LeadsToInteriorNode;
1686      InteriorChainedNodes.push_back(User);
1687      continue;
1688    }
1689
1690    // If we found a TokenFactor, there are two cases to consider: first if the
1691    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1692    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1693    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1694    //     [Load chain]
1695    //         ^
1696    //         |
1697    //       [Load]
1698    //       ^    ^
1699    //       |    \                    DAG's like cheese
1700    //      /       \                       do you?
1701    //     /         |
1702    // [TokenFactor] [Op]
1703    //     ^          ^
1704    //     |          |
1705    //      \        /
1706    //       \      /
1707    //       [Store]
1708    //
1709    // In this case, the TokenFactor becomes part of our match and we rewrite it
1710    // as a new TokenFactor.
1711    //
1712    // To distinguish these two cases, do a recursive walk down the uses.
1713    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1714    case CR_Simple:
1715      // If the uses of the TokenFactor are just already-selected nodes, ignore
1716      // it, it is "below" our pattern.
1717      continue;
1718    case CR_InducesCycle:
1719      // If the uses of the TokenFactor lead to nodes that are not part of our
1720      // pattern that are not selected, folding would turn this into a cycle,
1721      // bail out now.
1722      return CR_InducesCycle;
1723    case CR_LeadsToInteriorNode:
1724      break;  // Otherwise, keep processing.
1725    }
1726
1727    // Okay, we know we're in the interesting interior case.  The TokenFactor
1728    // is now going to be considered part of the pattern so that we rewrite its
1729    // uses (it may have uses that are not part of the pattern) with the
1730    // ultimate chain result of the generated code.  We will also add its chain
1731    // inputs as inputs to the ultimate TokenFactor we create.
1732    Result = CR_LeadsToInteriorNode;
1733    ChainedNodesInPattern.push_back(User);
1734    InteriorChainedNodes.push_back(User);
1735    continue;
1736  }
1737
1738  return Result;
1739}
1740
1741/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1742/// operation for when the pattern matched at least one node with a chains.  The
1743/// input vector contains a list of all of the chained nodes that we match.  We
1744/// must determine if this is a valid thing to cover (i.e. matching it won't
1745/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1746/// be used as the input node chain for the generated nodes.
1747static SDValue
1748HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1749                       SelectionDAG *CurDAG) {
1750  // Walk all of the chained nodes we've matched, recursively scanning down the
1751  // users of the chain result. This adds any TokenFactor nodes that are caught
1752  // in between chained nodes to the chained and interior nodes list.
1753  SmallVector<SDNode*, 3> InteriorChainedNodes;
1754  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1755    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1756                       InteriorChainedNodes) == CR_InducesCycle)
1757      return SDValue(); // Would induce a cycle.
1758  }
1759
1760  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1761  // that we are interested in.  Form our input TokenFactor node.
1762  SmallVector<SDValue, 3> InputChains;
1763  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1764    // Add the input chain of this node to the InputChains list (which will be
1765    // the operands of the generated TokenFactor) if it's not an interior node.
1766    SDNode *N = ChainNodesMatched[i];
1767    if (N->getOpcode() != ISD::TokenFactor) {
1768      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1769        continue;
1770
1771      // Otherwise, add the input chain.
1772      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1773      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1774      InputChains.push_back(InChain);
1775      continue;
1776    }
1777
1778    // If we have a token factor, we want to add all inputs of the token factor
1779    // that are not part of the pattern we're matching.
1780    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1781      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1782                      N->getOperand(op).getNode()))
1783        InputChains.push_back(N->getOperand(op));
1784    }
1785  }
1786
1787  SDValue Res;
1788  if (InputChains.size() == 1)
1789    return InputChains[0];
1790  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1791                         MVT::Other, &InputChains[0], InputChains.size());
1792}
1793
1794/// MorphNode - Handle morphing a node in place for the selector.
1795SDNode *SelectionDAGISel::
1796MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1797          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1798  // It is possible we're using MorphNodeTo to replace a node with no
1799  // normal results with one that has a normal result (or we could be
1800  // adding a chain) and the input could have glue and chains as well.
1801  // In this case we need to shift the operands down.
1802  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1803  // than the old isel though.
1804  int OldGlueResultNo = -1, OldChainResultNo = -1;
1805
1806  unsigned NTMNumResults = Node->getNumValues();
1807  if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
1808    OldGlueResultNo = NTMNumResults-1;
1809    if (NTMNumResults != 1 &&
1810        Node->getValueType(NTMNumResults-2) == MVT::Other)
1811      OldChainResultNo = NTMNumResults-2;
1812  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1813    OldChainResultNo = NTMNumResults-1;
1814
1815  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1816  // that this deletes operands of the old node that become dead.
1817  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1818
1819  // MorphNodeTo can operate in two ways: if an existing node with the
1820  // specified operands exists, it can just return it.  Otherwise, it
1821  // updates the node in place to have the requested operands.
1822  if (Res == Node) {
1823    // If we updated the node in place, reset the node ID.  To the isel,
1824    // this should be just like a newly allocated machine node.
1825    Res->setNodeId(-1);
1826  }
1827
1828  unsigned ResNumResults = Res->getNumValues();
1829  // Move the glue if needed.
1830  if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
1831      (unsigned)OldGlueResultNo != ResNumResults-1)
1832    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
1833                                      SDValue(Res, ResNumResults-1));
1834
1835  if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
1836    --ResNumResults;
1837
1838  // Move the chain reference if needed.
1839  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1840      (unsigned)OldChainResultNo != ResNumResults-1)
1841    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1842                                      SDValue(Res, ResNumResults-1));
1843
1844  // Otherwise, no replacement happened because the node already exists. Replace
1845  // Uses of the old node with the new one.
1846  if (Res != Node)
1847    CurDAG->ReplaceAllUsesWith(Node, Res);
1848
1849  return Res;
1850}
1851
1852/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1853LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1854CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1855          SDValue N,
1856          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1857  // Accept if it is exactly the same as a previously recorded node.
1858  unsigned RecNo = MatcherTable[MatcherIndex++];
1859  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1860  return N == RecordedNodes[RecNo].first;
1861}
1862
1863/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1864LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1865CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1866                      SelectionDAGISel &SDISel) {
1867  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1868}
1869
1870/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1871LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1872CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1873                   SelectionDAGISel &SDISel, SDNode *N) {
1874  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1875}
1876
1877LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1878CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1879            SDNode *N) {
1880  uint16_t Opc = MatcherTable[MatcherIndex++];
1881  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1882  return N->getOpcode() == Opc;
1883}
1884
1885LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1886CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1887          SDValue N, const TargetLowering &TLI) {
1888  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1889  if (N.getValueType() == VT) return true;
1890
1891  // Handle the case when VT is iPTR.
1892  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1893}
1894
1895LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1896CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1897               SDValue N, const TargetLowering &TLI,
1898               unsigned ChildNo) {
1899  if (ChildNo >= N.getNumOperands())
1900    return false;  // Match fails if out of range child #.
1901  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1902}
1903
1904
1905LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1906CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1907              SDValue N) {
1908  return cast<CondCodeSDNode>(N)->get() ==
1909      (ISD::CondCode)MatcherTable[MatcherIndex++];
1910}
1911
1912LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1913CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1914               SDValue N, const TargetLowering &TLI) {
1915  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1916  if (cast<VTSDNode>(N)->getVT() == VT)
1917    return true;
1918
1919  // Handle the case when VT is iPTR.
1920  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1921}
1922
1923LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1924CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1925             SDValue N) {
1926  int64_t Val = MatcherTable[MatcherIndex++];
1927  if (Val & 128)
1928    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1929
1930  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1931  return C != 0 && C->getSExtValue() == Val;
1932}
1933
1934LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1935CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1936            SDValue N, SelectionDAGISel &SDISel) {
1937  int64_t Val = MatcherTable[MatcherIndex++];
1938  if (Val & 128)
1939    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1940
1941  if (N->getOpcode() != ISD::AND) return false;
1942
1943  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1944  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1945}
1946
1947LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
1948CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1949           SDValue N, SelectionDAGISel &SDISel) {
1950  int64_t Val = MatcherTable[MatcherIndex++];
1951  if (Val & 128)
1952    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1953
1954  if (N->getOpcode() != ISD::OR) return false;
1955
1956  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1957  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1958}
1959
1960/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1961/// scope, evaluate the current node.  If the current predicate is known to
1962/// fail, set Result=true and return anything.  If the current predicate is
1963/// known to pass, set Result=false and return the MatcherIndex to continue
1964/// with.  If the current predicate is unknown, set Result=false and return the
1965/// MatcherIndex to continue with.
1966static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1967                                       unsigned Index, SDValue N,
1968                                       bool &Result, SelectionDAGISel &SDISel,
1969                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1970  switch (Table[Index++]) {
1971  default:
1972    Result = false;
1973    return Index-1;  // Could not evaluate this predicate.
1974  case SelectionDAGISel::OPC_CheckSame:
1975    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1976    return Index;
1977  case SelectionDAGISel::OPC_CheckPatternPredicate:
1978    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1979    return Index;
1980  case SelectionDAGISel::OPC_CheckPredicate:
1981    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1982    return Index;
1983  case SelectionDAGISel::OPC_CheckOpcode:
1984    Result = !::CheckOpcode(Table, Index, N.getNode());
1985    return Index;
1986  case SelectionDAGISel::OPC_CheckType:
1987    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1988    return Index;
1989  case SelectionDAGISel::OPC_CheckChild0Type:
1990  case SelectionDAGISel::OPC_CheckChild1Type:
1991  case SelectionDAGISel::OPC_CheckChild2Type:
1992  case SelectionDAGISel::OPC_CheckChild3Type:
1993  case SelectionDAGISel::OPC_CheckChild4Type:
1994  case SelectionDAGISel::OPC_CheckChild5Type:
1995  case SelectionDAGISel::OPC_CheckChild6Type:
1996  case SelectionDAGISel::OPC_CheckChild7Type:
1997    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1998                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1999    return Index;
2000  case SelectionDAGISel::OPC_CheckCondCode:
2001    Result = !::CheckCondCode(Table, Index, N);
2002    return Index;
2003  case SelectionDAGISel::OPC_CheckValueType:
2004    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
2005    return Index;
2006  case SelectionDAGISel::OPC_CheckInteger:
2007    Result = !::CheckInteger(Table, Index, N);
2008    return Index;
2009  case SelectionDAGISel::OPC_CheckAndImm:
2010    Result = !::CheckAndImm(Table, Index, N, SDISel);
2011    return Index;
2012  case SelectionDAGISel::OPC_CheckOrImm:
2013    Result = !::CheckOrImm(Table, Index, N, SDISel);
2014    return Index;
2015  }
2016}
2017
2018namespace {
2019
2020struct MatchScope {
2021  /// FailIndex - If this match fails, this is the index to continue with.
2022  unsigned FailIndex;
2023
2024  /// NodeStack - The node stack when the scope was formed.
2025  SmallVector<SDValue, 4> NodeStack;
2026
2027  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
2028  unsigned NumRecordedNodes;
2029
2030  /// NumMatchedMemRefs - The number of matched memref entries.
2031  unsigned NumMatchedMemRefs;
2032
2033  /// InputChain/InputGlue - The current chain/glue
2034  SDValue InputChain, InputGlue;
2035
2036  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
2037  bool HasChainNodesMatched, HasGlueResultNodesMatched;
2038};
2039
2040}
2041
2042SDNode *SelectionDAGISel::
2043SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
2044                 unsigned TableSize) {
2045  // FIXME: Should these even be selected?  Handle these cases in the caller?
2046  switch (NodeToMatch->getOpcode()) {
2047  default:
2048    break;
2049  case ISD::EntryToken:       // These nodes remain the same.
2050  case ISD::BasicBlock:
2051  case ISD::Register:
2052  //case ISD::VALUETYPE:
2053  //case ISD::CONDCODE:
2054  case ISD::HANDLENODE:
2055  case ISD::MDNODE_SDNODE:
2056  case ISD::TargetConstant:
2057  case ISD::TargetConstantFP:
2058  case ISD::TargetConstantPool:
2059  case ISD::TargetFrameIndex:
2060  case ISD::TargetExternalSymbol:
2061  case ISD::TargetBlockAddress:
2062  case ISD::TargetJumpTable:
2063  case ISD::TargetGlobalTLSAddress:
2064  case ISD::TargetGlobalAddress:
2065  case ISD::TokenFactor:
2066  case ISD::CopyFromReg:
2067  case ISD::CopyToReg:
2068  case ISD::EH_LABEL:
2069    NodeToMatch->setNodeId(-1); // Mark selected.
2070    return 0;
2071  case ISD::AssertSext:
2072  case ISD::AssertZext:
2073    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
2074                                      NodeToMatch->getOperand(0));
2075    return 0;
2076  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
2077  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
2078  }
2079
2080  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
2081
2082  // Set up the node stack with NodeToMatch as the only node on the stack.
2083  SmallVector<SDValue, 8> NodeStack;
2084  SDValue N = SDValue(NodeToMatch, 0);
2085  NodeStack.push_back(N);
2086
2087  // MatchScopes - Scopes used when matching, if a match failure happens, this
2088  // indicates where to continue checking.
2089  SmallVector<MatchScope, 8> MatchScopes;
2090
2091  // RecordedNodes - This is the set of nodes that have been recorded by the
2092  // state machine.  The second value is the parent of the node, or null if the
2093  // root is recorded.
2094  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
2095
2096  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
2097  // pattern.
2098  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
2099
2100  // These are the current input chain and glue for use when generating nodes.
2101  // Various Emit operations change these.  For example, emitting a copytoreg
2102  // uses and updates these.
2103  SDValue InputChain, InputGlue;
2104
2105  // ChainNodesMatched - If a pattern matches nodes that have input/output
2106  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
2107  // which ones they are.  The result is captured into this list so that we can
2108  // update the chain results when the pattern is complete.
2109  SmallVector<SDNode*, 3> ChainNodesMatched;
2110  SmallVector<SDNode*, 3> GlueResultNodesMatched;
2111
2112  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
2113        NodeToMatch->dump(CurDAG);
2114        errs() << '\n');
2115
2116  // Determine where to start the interpreter.  Normally we start at opcode #0,
2117  // but if the state machine starts with an OPC_SwitchOpcode, then we
2118  // accelerate the first lookup (which is guaranteed to be hot) with the
2119  // OpcodeOffset table.
2120  unsigned MatcherIndex = 0;
2121
2122  if (!OpcodeOffset.empty()) {
2123    // Already computed the OpcodeOffset table, just index into it.
2124    if (N.getOpcode() < OpcodeOffset.size())
2125      MatcherIndex = OpcodeOffset[N.getOpcode()];
2126    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
2127
2128  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
2129    // Otherwise, the table isn't computed, but the state machine does start
2130    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
2131    // is the first time we're selecting an instruction.
2132    unsigned Idx = 1;
2133    while (1) {
2134      // Get the size of this case.
2135      unsigned CaseSize = MatcherTable[Idx++];
2136      if (CaseSize & 128)
2137        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
2138      if (CaseSize == 0) break;
2139
2140      // Get the opcode, add the index to the table.
2141      uint16_t Opc = MatcherTable[Idx++];
2142      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
2143      if (Opc >= OpcodeOffset.size())
2144        OpcodeOffset.resize((Opc+1)*2);
2145      OpcodeOffset[Opc] = Idx;
2146      Idx += CaseSize;
2147    }
2148
2149    // Okay, do the lookup for the first opcode.
2150    if (N.getOpcode() < OpcodeOffset.size())
2151      MatcherIndex = OpcodeOffset[N.getOpcode()];
2152  }
2153
2154  while (1) {
2155    assert(MatcherIndex < TableSize && "Invalid index");
2156#ifndef NDEBUG
2157    unsigned CurrentOpcodeIndex = MatcherIndex;
2158#endif
2159    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2160    switch (Opcode) {
2161    case OPC_Scope: {
2162      // Okay, the semantics of this operation are that we should push a scope
2163      // then evaluate the first child.  However, pushing a scope only to have
2164      // the first check fail (which then pops it) is inefficient.  If we can
2165      // determine immediately that the first check (or first several) will
2166      // immediately fail, don't even bother pushing a scope for them.
2167      unsigned FailIndex;
2168
2169      while (1) {
2170        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2171        if (NumToSkip & 128)
2172          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2173        // Found the end of the scope with no match.
2174        if (NumToSkip == 0) {
2175          FailIndex = 0;
2176          break;
2177        }
2178
2179        FailIndex = MatcherIndex+NumToSkip;
2180
2181        unsigned MatcherIndexOfPredicate = MatcherIndex;
2182        (void)MatcherIndexOfPredicate; // silence warning.
2183
2184        // If we can't evaluate this predicate without pushing a scope (e.g. if
2185        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2186        // push the scope and evaluate the full predicate chain.
2187        bool Result;
2188        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2189                                              Result, *this, RecordedNodes);
2190        if (!Result)
2191          break;
2192
2193        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2194                     << "index " << MatcherIndexOfPredicate
2195                     << ", continuing at " << FailIndex << "\n");
2196        ++NumDAGIselRetries;
2197
2198        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2199        // move to the next case.
2200        MatcherIndex = FailIndex;
2201      }
2202
2203      // If the whole scope failed to match, bail.
2204      if (FailIndex == 0) break;
2205
2206      // Push a MatchScope which indicates where to go if the first child fails
2207      // to match.
2208      MatchScope NewEntry;
2209      NewEntry.FailIndex = FailIndex;
2210      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2211      NewEntry.NumRecordedNodes = RecordedNodes.size();
2212      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2213      NewEntry.InputChain = InputChain;
2214      NewEntry.InputGlue = InputGlue;
2215      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2216      NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
2217      MatchScopes.push_back(NewEntry);
2218      continue;
2219    }
2220    case OPC_RecordNode: {
2221      // Remember this node, it may end up being an operand in the pattern.
2222      SDNode *Parent = 0;
2223      if (NodeStack.size() > 1)
2224        Parent = NodeStack[NodeStack.size()-2].getNode();
2225      RecordedNodes.push_back(std::make_pair(N, Parent));
2226      continue;
2227    }
2228
2229    case OPC_RecordChild0: case OPC_RecordChild1:
2230    case OPC_RecordChild2: case OPC_RecordChild3:
2231    case OPC_RecordChild4: case OPC_RecordChild5:
2232    case OPC_RecordChild6: case OPC_RecordChild7: {
2233      unsigned ChildNo = Opcode-OPC_RecordChild0;
2234      if (ChildNo >= N.getNumOperands())
2235        break;  // Match fails if out of range child #.
2236
2237      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2238                                             N.getNode()));
2239      continue;
2240    }
2241    case OPC_RecordMemRef:
2242      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2243      continue;
2244
2245    case OPC_CaptureGlueInput:
2246      // If the current node has an input glue, capture it in InputGlue.
2247      if (N->getNumOperands() != 0 &&
2248          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
2249        InputGlue = N->getOperand(N->getNumOperands()-1);
2250      continue;
2251
2252    case OPC_MoveChild: {
2253      unsigned ChildNo = MatcherTable[MatcherIndex++];
2254      if (ChildNo >= N.getNumOperands())
2255        break;  // Match fails if out of range child #.
2256      N = N.getOperand(ChildNo);
2257      NodeStack.push_back(N);
2258      continue;
2259    }
2260
2261    case OPC_MoveParent:
2262      // Pop the current node off the NodeStack.
2263      NodeStack.pop_back();
2264      assert(!NodeStack.empty() && "Node stack imbalance!");
2265      N = NodeStack.back();
2266      continue;
2267
2268    case OPC_CheckSame:
2269      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2270      continue;
2271    case OPC_CheckPatternPredicate:
2272      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2273      continue;
2274    case OPC_CheckPredicate:
2275      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2276                                N.getNode()))
2277        break;
2278      continue;
2279    case OPC_CheckComplexPat: {
2280      unsigned CPNum = MatcherTable[MatcherIndex++];
2281      unsigned RecNo = MatcherTable[MatcherIndex++];
2282      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2283      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2284                               RecordedNodes[RecNo].first, CPNum,
2285                               RecordedNodes))
2286        break;
2287      continue;
2288    }
2289    case OPC_CheckOpcode:
2290      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2291      continue;
2292
2293    case OPC_CheckType:
2294      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2295      continue;
2296
2297    case OPC_SwitchOpcode: {
2298      unsigned CurNodeOpcode = N.getOpcode();
2299      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2300      unsigned CaseSize;
2301      while (1) {
2302        // Get the size of this case.
2303        CaseSize = MatcherTable[MatcherIndex++];
2304        if (CaseSize & 128)
2305          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2306        if (CaseSize == 0) break;
2307
2308        uint16_t Opc = MatcherTable[MatcherIndex++];
2309        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2310
2311        // If the opcode matches, then we will execute this case.
2312        if (CurNodeOpcode == Opc)
2313          break;
2314
2315        // Otherwise, skip over this case.
2316        MatcherIndex += CaseSize;
2317      }
2318
2319      // If no cases matched, bail out.
2320      if (CaseSize == 0) break;
2321
2322      // Otherwise, execute the case we found.
2323      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2324                   << " to " << MatcherIndex << "\n");
2325      continue;
2326    }
2327
2328    case OPC_SwitchType: {
2329      MVT CurNodeVT = N.getValueType().getSimpleVT();
2330      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2331      unsigned CaseSize;
2332      while (1) {
2333        // Get the size of this case.
2334        CaseSize = MatcherTable[MatcherIndex++];
2335        if (CaseSize & 128)
2336          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2337        if (CaseSize == 0) break;
2338
2339        MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2340        if (CaseVT == MVT::iPTR)
2341          CaseVT = TLI.getPointerTy();
2342
2343        // If the VT matches, then we will execute this case.
2344        if (CurNodeVT == CaseVT)
2345          break;
2346
2347        // Otherwise, skip over this case.
2348        MatcherIndex += CaseSize;
2349      }
2350
2351      // If no cases matched, bail out.
2352      if (CaseSize == 0) break;
2353
2354      // Otherwise, execute the case we found.
2355      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2356                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2357      continue;
2358    }
2359    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2360    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2361    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2362    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2363      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2364                            Opcode-OPC_CheckChild0Type))
2365        break;
2366      continue;
2367    case OPC_CheckCondCode:
2368      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2369      continue;
2370    case OPC_CheckValueType:
2371      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2372      continue;
2373    case OPC_CheckInteger:
2374      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2375      continue;
2376    case OPC_CheckAndImm:
2377      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2378      continue;
2379    case OPC_CheckOrImm:
2380      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2381      continue;
2382
2383    case OPC_CheckFoldableChainNode: {
2384      assert(NodeStack.size() != 1 && "No parent node");
2385      // Verify that all intermediate nodes between the root and this one have
2386      // a single use.
2387      bool HasMultipleUses = false;
2388      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2389        if (!NodeStack[i].hasOneUse()) {
2390          HasMultipleUses = true;
2391          break;
2392        }
2393      if (HasMultipleUses) break;
2394
2395      // Check to see that the target thinks this is profitable to fold and that
2396      // we can fold it without inducing cycles in the graph.
2397      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2398                              NodeToMatch) ||
2399          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2400                         NodeToMatch, OptLevel,
2401                         true/*We validate our own chains*/))
2402        break;
2403
2404      continue;
2405    }
2406    case OPC_EmitInteger: {
2407      MVT::SimpleValueType VT =
2408        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2409      int64_t Val = MatcherTable[MatcherIndex++];
2410      if (Val & 128)
2411        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2412      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2413                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2414      continue;
2415    }
2416    case OPC_EmitRegister: {
2417      MVT::SimpleValueType VT =
2418        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2419      unsigned RegNo = MatcherTable[MatcherIndex++];
2420      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2421                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2422      continue;
2423    }
2424    case OPC_EmitRegister2: {
2425      // For targets w/ more than 256 register names, the register enum
2426      // values are stored in two bytes in the matcher table (just like
2427      // opcodes).
2428      MVT::SimpleValueType VT =
2429        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2430      unsigned RegNo = MatcherTable[MatcherIndex++];
2431      RegNo |= MatcherTable[MatcherIndex++] << 8;
2432      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2433                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2434      continue;
2435    }
2436
2437    case OPC_EmitConvertToTarget:  {
2438      // Convert from IMM/FPIMM to target version.
2439      unsigned RecNo = MatcherTable[MatcherIndex++];
2440      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2441      SDValue Imm = RecordedNodes[RecNo].first;
2442
2443      if (Imm->getOpcode() == ISD::Constant) {
2444        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2445        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2446      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2447        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2448        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2449      }
2450
2451      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2452      continue;
2453    }
2454
2455    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2456    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2457      // These are space-optimized forms of OPC_EmitMergeInputChains.
2458      assert(InputChain.getNode() == 0 &&
2459             "EmitMergeInputChains should be the first chain producing node");
2460      assert(ChainNodesMatched.empty() &&
2461             "Should only have one EmitMergeInputChains per match");
2462
2463      // Read all of the chained nodes.
2464      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2465      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2466      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2467
2468      // FIXME: What if other value results of the node have uses not matched
2469      // by this pattern?
2470      if (ChainNodesMatched.back() != NodeToMatch &&
2471          !RecordedNodes[RecNo].first.hasOneUse()) {
2472        ChainNodesMatched.clear();
2473        break;
2474      }
2475
2476      // Merge the input chains if they are not intra-pattern references.
2477      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2478
2479      if (InputChain.getNode() == 0)
2480        break;  // Failed to merge.
2481      continue;
2482    }
2483
2484    case OPC_EmitMergeInputChains: {
2485      assert(InputChain.getNode() == 0 &&
2486             "EmitMergeInputChains should be the first chain producing node");
2487      // This node gets a list of nodes we matched in the input that have
2488      // chains.  We want to token factor all of the input chains to these nodes
2489      // together.  However, if any of the input chains is actually one of the
2490      // nodes matched in this pattern, then we have an intra-match reference.
2491      // Ignore these because the newly token factored chain should not refer to
2492      // the old nodes.
2493      unsigned NumChains = MatcherTable[MatcherIndex++];
2494      assert(NumChains != 0 && "Can't TF zero chains");
2495
2496      assert(ChainNodesMatched.empty() &&
2497             "Should only have one EmitMergeInputChains per match");
2498
2499      // Read all of the chained nodes.
2500      for (unsigned i = 0; i != NumChains; ++i) {
2501        unsigned RecNo = MatcherTable[MatcherIndex++];
2502        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2503        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2504
2505        // FIXME: What if other value results of the node have uses not matched
2506        // by this pattern?
2507        if (ChainNodesMatched.back() != NodeToMatch &&
2508            !RecordedNodes[RecNo].first.hasOneUse()) {
2509          ChainNodesMatched.clear();
2510          break;
2511        }
2512      }
2513
2514      // If the inner loop broke out, the match fails.
2515      if (ChainNodesMatched.empty())
2516        break;
2517
2518      // Merge the input chains if they are not intra-pattern references.
2519      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2520
2521      if (InputChain.getNode() == 0)
2522        break;  // Failed to merge.
2523
2524      continue;
2525    }
2526
2527    case OPC_EmitCopyToReg: {
2528      unsigned RecNo = MatcherTable[MatcherIndex++];
2529      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2530      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2531
2532      if (InputChain.getNode() == 0)
2533        InputChain = CurDAG->getEntryNode();
2534
2535      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2536                                        DestPhysReg, RecordedNodes[RecNo].first,
2537                                        InputGlue);
2538
2539      InputGlue = InputChain.getValue(1);
2540      continue;
2541    }
2542
2543    case OPC_EmitNodeXForm: {
2544      unsigned XFormNo = MatcherTable[MatcherIndex++];
2545      unsigned RecNo = MatcherTable[MatcherIndex++];
2546      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2547      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2548      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2549      continue;
2550    }
2551
2552    case OPC_EmitNode:
2553    case OPC_MorphNodeTo: {
2554      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2555      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2556      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2557      // Get the result VT list.
2558      unsigned NumVTs = MatcherTable[MatcherIndex++];
2559      SmallVector<EVT, 4> VTs;
2560      for (unsigned i = 0; i != NumVTs; ++i) {
2561        MVT::SimpleValueType VT =
2562          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2563        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2564        VTs.push_back(VT);
2565      }
2566
2567      if (EmitNodeInfo & OPFL_Chain)
2568        VTs.push_back(MVT::Other);
2569      if (EmitNodeInfo & OPFL_GlueOutput)
2570        VTs.push_back(MVT::Glue);
2571
2572      // This is hot code, so optimize the two most common cases of 1 and 2
2573      // results.
2574      SDVTList VTList;
2575      if (VTs.size() == 1)
2576        VTList = CurDAG->getVTList(VTs[0]);
2577      else if (VTs.size() == 2)
2578        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2579      else
2580        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2581
2582      // Get the operand list.
2583      unsigned NumOps = MatcherTable[MatcherIndex++];
2584      SmallVector<SDValue, 8> Ops;
2585      for (unsigned i = 0; i != NumOps; ++i) {
2586        unsigned RecNo = MatcherTable[MatcherIndex++];
2587        if (RecNo & 128)
2588          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2589
2590        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2591        Ops.push_back(RecordedNodes[RecNo].first);
2592      }
2593
2594      // If there are variadic operands to add, handle them now.
2595      if (EmitNodeInfo & OPFL_VariadicInfo) {
2596        // Determine the start index to copy from.
2597        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2598        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2599        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2600               "Invalid variadic node");
2601        // Copy all of the variadic operands, not including a potential glue
2602        // input.
2603        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2604             i != e; ++i) {
2605          SDValue V = NodeToMatch->getOperand(i);
2606          if (V.getValueType() == MVT::Glue) break;
2607          Ops.push_back(V);
2608        }
2609      }
2610
2611      // If this has chain/glue inputs, add them.
2612      if (EmitNodeInfo & OPFL_Chain)
2613        Ops.push_back(InputChain);
2614      if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
2615        Ops.push_back(InputGlue);
2616
2617      // Create the node.
2618      SDNode *Res = 0;
2619      if (Opcode != OPC_MorphNodeTo) {
2620        // If this is a normal EmitNode command, just create the new node and
2621        // add the results to the RecordedNodes list.
2622        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2623                                     VTList, Ops.data(), Ops.size());
2624
2625        // Add all the non-glue/non-chain results to the RecordedNodes list.
2626        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2627          if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
2628          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2629                                                             (SDNode*) 0));
2630        }
2631
2632      } else {
2633        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2634                        EmitNodeInfo);
2635      }
2636
2637      // If the node had chain/glue results, update our notion of the current
2638      // chain and glue.
2639      if (EmitNodeInfo & OPFL_GlueOutput) {
2640        InputGlue = SDValue(Res, VTs.size()-1);
2641        if (EmitNodeInfo & OPFL_Chain)
2642          InputChain = SDValue(Res, VTs.size()-2);
2643      } else if (EmitNodeInfo & OPFL_Chain)
2644        InputChain = SDValue(Res, VTs.size()-1);
2645
2646      // If the OPFL_MemRefs glue is set on this node, slap all of the
2647      // accumulated memrefs onto it.
2648      //
2649      // FIXME: This is vastly incorrect for patterns with multiple outputs
2650      // instructions that access memory and for ComplexPatterns that match
2651      // loads.
2652      if (EmitNodeInfo & OPFL_MemRefs) {
2653        MachineSDNode::mmo_iterator MemRefs =
2654          MF->allocateMemRefsArray(MatchedMemRefs.size());
2655        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2656        cast<MachineSDNode>(Res)
2657          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2658      }
2659
2660      DEBUG(errs() << "  "
2661                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2662                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2663
2664      // If this was a MorphNodeTo then we're completely done!
2665      if (Opcode == OPC_MorphNodeTo) {
2666        // Update chain and glue uses.
2667        UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2668                            InputGlue, GlueResultNodesMatched, true);
2669        return Res;
2670      }
2671
2672      continue;
2673    }
2674
2675    case OPC_MarkGlueResults: {
2676      unsigned NumNodes = MatcherTable[MatcherIndex++];
2677
2678      // Read and remember all the glue-result nodes.
2679      for (unsigned i = 0; i != NumNodes; ++i) {
2680        unsigned RecNo = MatcherTable[MatcherIndex++];
2681        if (RecNo & 128)
2682          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2683
2684        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2685        GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2686      }
2687      continue;
2688    }
2689
2690    case OPC_CompleteMatch: {
2691      // The match has been completed, and any new nodes (if any) have been
2692      // created.  Patch up references to the matched dag to use the newly
2693      // created nodes.
2694      unsigned NumResults = MatcherTable[MatcherIndex++];
2695
2696      for (unsigned i = 0; i != NumResults; ++i) {
2697        unsigned ResSlot = MatcherTable[MatcherIndex++];
2698        if (ResSlot & 128)
2699          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2700
2701        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2702        SDValue Res = RecordedNodes[ResSlot].first;
2703
2704        assert(i < NodeToMatch->getNumValues() &&
2705               NodeToMatch->getValueType(i) != MVT::Other &&
2706               NodeToMatch->getValueType(i) != MVT::Glue &&
2707               "Invalid number of results to complete!");
2708        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2709                NodeToMatch->getValueType(i) == MVT::iPTR ||
2710                Res.getValueType() == MVT::iPTR ||
2711                NodeToMatch->getValueType(i).getSizeInBits() ==
2712                    Res.getValueType().getSizeInBits()) &&
2713               "invalid replacement");
2714        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2715      }
2716
2717      // If the root node defines glue, add it to the glue nodes to update list.
2718      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
2719        GlueResultNodesMatched.push_back(NodeToMatch);
2720
2721      // Update chain and glue uses.
2722      UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
2723                          InputGlue, GlueResultNodesMatched, false);
2724
2725      assert(NodeToMatch->use_empty() &&
2726             "Didn't replace all uses of the node?");
2727
2728      // FIXME: We just return here, which interacts correctly with SelectRoot
2729      // above.  We should fix this to not return an SDNode* anymore.
2730      return 0;
2731    }
2732    }
2733
2734    // If the code reached this point, then the match failed.  See if there is
2735    // another child to try in the current 'Scope', otherwise pop it until we
2736    // find a case to check.
2737    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2738    ++NumDAGIselRetries;
2739    while (1) {
2740      if (MatchScopes.empty()) {
2741        CannotYetSelect(NodeToMatch);
2742        return 0;
2743      }
2744
2745      // Restore the interpreter state back to the point where the scope was
2746      // formed.
2747      MatchScope &LastScope = MatchScopes.back();
2748      RecordedNodes.resize(LastScope.NumRecordedNodes);
2749      NodeStack.clear();
2750      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2751      N = NodeStack.back();
2752
2753      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2754        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2755      MatcherIndex = LastScope.FailIndex;
2756
2757      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2758
2759      InputChain = LastScope.InputChain;
2760      InputGlue = LastScope.InputGlue;
2761      if (!LastScope.HasChainNodesMatched)
2762        ChainNodesMatched.clear();
2763      if (!LastScope.HasGlueResultNodesMatched)
2764        GlueResultNodesMatched.clear();
2765
2766      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2767      // we have reached the end of this scope, otherwise we have another child
2768      // in the current scope to try.
2769      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2770      if (NumToSkip & 128)
2771        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2772
2773      // If we have another child in this scope to match, update FailIndex and
2774      // try it.
2775      if (NumToSkip != 0) {
2776        LastScope.FailIndex = MatcherIndex+NumToSkip;
2777        break;
2778      }
2779
2780      // End of this scope, pop it and try the next child in the containing
2781      // scope.
2782      MatchScopes.pop_back();
2783    }
2784  }
2785}
2786
2787
2788
2789void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2790  std::string msg;
2791  raw_string_ostream Msg(msg);
2792  Msg << "Cannot select: ";
2793
2794  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2795      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2796      N->getOpcode() != ISD::INTRINSIC_VOID) {
2797    N->printrFull(Msg, CurDAG);
2798  } else {
2799    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2800    unsigned iid =
2801      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2802    if (iid < Intrinsic::num_intrinsics)
2803      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2804    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2805      Msg << "target intrinsic %" << TII->getName(iid);
2806    else
2807      Msg << "unknown intrinsic #" << iid;
2808  }
2809  report_fatal_error(Msg.str());
2810}
2811
2812char SelectionDAGISel::ID = 0;
2813