SelectionDAGISel.cpp revision d61fc38e3dd74f01134d21747d8003b3ea64d459
1//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAGISel class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "ScheduleDAGSDNodes.h"
16#include "SelectionDAGBuilder.h"
17#include "llvm/CodeGen/FunctionLoweringInfo.h"
18#include "llvm/CodeGen/SelectionDAGISel.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/Analysis/DebugInfo.h"
21#include "llvm/Constants.h"
22#include "llvm/Function.h"
23#include "llvm/InlineAsm.h"
24#include "llvm/Instructions.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/LLVMContext.h"
28#include "llvm/Module.h"
29#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFrameInfo.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineModuleInfo.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
38#include "llvm/CodeGen/SchedulerRegistry.h"
39#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetIntrinsicInfo.h"
42#include "llvm/Target/TargetInstrInfo.h"
43#include "llvm/Target/TargetLowering.h"
44#include "llvm/Target/TargetMachine.h"
45#include "llvm/Target/TargetOptions.h"
46#include "llvm/Support/Compiler.h"
47#include "llvm/Support/Debug.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/Timer.h"
50#include "llvm/Support/raw_ostream.h"
51#include "llvm/ADT/Statistic.h"
52#include <algorithm>
53using namespace llvm;
54
55STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
56STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
57
58static cl::opt<bool>
59EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
60          cl::desc("Enable verbose messages in the \"fast\" "
61                   "instruction selector"));
62static cl::opt<bool>
63EnableFastISelAbort("fast-isel-abort", cl::Hidden,
64          cl::desc("Enable abort calls when \"fast\" instruction fails"));
65
66#ifndef NDEBUG
67static cl::opt<bool>
68ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
69          cl::desc("Pop up a window to show dags before the first "
70                   "dag combine pass"));
71static cl::opt<bool>
72ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
73          cl::desc("Pop up a window to show dags before legalize types"));
74static cl::opt<bool>
75ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
76          cl::desc("Pop up a window to show dags before legalize"));
77static cl::opt<bool>
78ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
79          cl::desc("Pop up a window to show dags before the second "
80                   "dag combine pass"));
81static cl::opt<bool>
82ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
83          cl::desc("Pop up a window to show dags before the post legalize types"
84                   " dag combine pass"));
85static cl::opt<bool>
86ViewISelDAGs("view-isel-dags", cl::Hidden,
87          cl::desc("Pop up a window to show isel dags as they are selected"));
88static cl::opt<bool>
89ViewSchedDAGs("view-sched-dags", cl::Hidden,
90          cl::desc("Pop up a window to show sched dags as they are processed"));
91static cl::opt<bool>
92ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
93      cl::desc("Pop up a window to show SUnit dags after they are processed"));
94#else
95static const bool ViewDAGCombine1 = false,
96                  ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
97                  ViewDAGCombine2 = false,
98                  ViewDAGCombineLT = false,
99                  ViewISelDAGs = false, ViewSchedDAGs = false,
100                  ViewSUnitDAGs = false;
101#endif
102
103//===---------------------------------------------------------------------===//
104///
105/// RegisterScheduler class - Track the registration of instruction schedulers.
106///
107//===---------------------------------------------------------------------===//
108MachinePassRegistry RegisterScheduler::Registry;
109
110//===---------------------------------------------------------------------===//
111///
112/// ISHeuristic command line option for instruction schedulers.
113///
114//===---------------------------------------------------------------------===//
115static cl::opt<RegisterScheduler::FunctionPassCtor, false,
116               RegisterPassParser<RegisterScheduler> >
117ISHeuristic("pre-RA-sched",
118            cl::init(&createDefaultScheduler),
119            cl::desc("Instruction schedulers available (before register"
120                     " allocation):"));
121
122static RegisterScheduler
123defaultListDAGScheduler("default", "Best scheduler for the target",
124                        createDefaultScheduler);
125
126namespace llvm {
127  //===--------------------------------------------------------------------===//
128  /// createDefaultScheduler - This creates an instruction scheduler appropriate
129  /// for the target.
130  ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
131                                             CodeGenOpt::Level OptLevel) {
132    const TargetLowering &TLI = IS->getTargetLowering();
133
134    if (OptLevel == CodeGenOpt::None)
135      return createSourceListDAGScheduler(IS, OptLevel);
136    if (TLI.getSchedulingPreference() == Sched::Latency)
137      return createTDListDAGScheduler(IS, OptLevel);
138    if (TLI.getSchedulingPreference() == Sched::RegPressure)
139      return createBURRListDAGScheduler(IS, OptLevel);
140    if (TLI.getSchedulingPreference() == Sched::Hybrid)
141      return createHybridListDAGScheduler(IS, OptLevel);
142    assert(TLI.getSchedulingPreference() == Sched::ILP &&
143           "Unknown sched type!");
144    return createILPListDAGScheduler(IS, OptLevel);
145  }
146}
147
148// EmitInstrWithCustomInserter - This method should be implemented by targets
149// that mark instructions with the 'usesCustomInserter' flag.  These
150// instructions are special in various ways, which require special support to
151// insert.  The specified MachineInstr is created but not inserted into any
152// basic blocks, and this method is called to expand it into a sequence of
153// instructions, potentially also creating new basic blocks and control flow.
154// When new basic blocks are inserted and the edges from MBB to its successors
155// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
156// DenseMap.
157MachineBasicBlock *
158TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
159                                            MachineBasicBlock *MBB) const {
160#ifndef NDEBUG
161  dbgs() << "If a target marks an instruction with "
162          "'usesCustomInserter', it must implement "
163          "TargetLowering::EmitInstrWithCustomInserter!";
164#endif
165  llvm_unreachable(0);
166  return 0;
167}
168
169//===----------------------------------------------------------------------===//
170// SelectionDAGISel code
171//===----------------------------------------------------------------------===//
172
173SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
174  MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
175  FuncInfo(new FunctionLoweringInfo(TLI)),
176  CurDAG(new SelectionDAG(tm)),
177  SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
178  GFI(),
179  OptLevel(OL),
180  DAGSize(0)
181{}
182
183SelectionDAGISel::~SelectionDAGISel() {
184  delete SDB;
185  delete CurDAG;
186  delete FuncInfo;
187}
188
189void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
190  AU.addRequired<AliasAnalysis>();
191  AU.addPreserved<AliasAnalysis>();
192  AU.addRequired<GCModuleInfo>();
193  AU.addPreserved<GCModuleInfo>();
194  MachineFunctionPass::getAnalysisUsage(AU);
195}
196
197/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
198/// other function that gcc recognizes as "returning twice". This is used to
199/// limit code-gen optimizations on the machine function.
200///
201/// FIXME: Remove after <rdar://problem/8031714> is fixed.
202static bool FunctionCallsSetJmp(const Function *F) {
203  const Module *M = F->getParent();
204  static const char *ReturnsTwiceFns[] = {
205    "setjmp",
206    "sigsetjmp",
207    "setjmp_syscall",
208    "savectx",
209    "qsetjmp",
210    "vfork",
211    "getcontext"
212  };
213#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
214
215  for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
216    if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
217      if (!Callee->use_empty())
218        for (Value::const_use_iterator
219               I = Callee->use_begin(), E = Callee->use_end();
220             I != E; ++I)
221          if (const CallInst *CI = dyn_cast<CallInst>(*I))
222            if (CI->getParent()->getParent() == F)
223              return true;
224    }
225
226  return false;
227#undef NUM_RETURNS_TWICE_FNS
228}
229
230bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
231  // Do some sanity-checking on the command-line options.
232  assert((!EnableFastISelVerbose || EnableFastISel) &&
233         "-fast-isel-verbose requires -fast-isel");
234  assert((!EnableFastISelAbort || EnableFastISel) &&
235         "-fast-isel-abort requires -fast-isel");
236
237  const Function &Fn = *mf.getFunction();
238  const TargetInstrInfo &TII = *TM.getInstrInfo();
239  const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
240
241  MF = &mf;
242  RegInfo = &MF->getRegInfo();
243  AA = &getAnalysis<AliasAnalysis>();
244  GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
245
246  DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
247
248  CurDAG->init(*MF);
249  FuncInfo->set(Fn, *MF);
250  SDB->init(GFI, *AA);
251
252  SelectAllBasicBlocks(Fn);
253
254  // If the first basic block in the function has live ins that need to be
255  // copied into vregs, emit the copies into the top of the block before
256  // emitting the code for the block.
257  MachineBasicBlock *EntryMBB = MF->begin();
258  RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
259
260  DenseMap<unsigned, unsigned> LiveInMap;
261  if (!FuncInfo->ArgDbgValues.empty())
262    for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
263           E = RegInfo->livein_end(); LI != E; ++LI)
264      if (LI->second)
265        LiveInMap.insert(std::make_pair(LI->first, LI->second));
266
267  // Insert DBG_VALUE instructions for function arguments to the entry block.
268  for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
269    MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
270    unsigned Reg = MI->getOperand(0).getReg();
271    if (TargetRegisterInfo::isPhysicalRegister(Reg))
272      EntryMBB->insert(EntryMBB->begin(), MI);
273    else {
274      MachineInstr *Def = RegInfo->getVRegDef(Reg);
275      MachineBasicBlock::iterator InsertPos = Def;
276      // FIXME: VR def may not be in entry block.
277      Def->getParent()->insert(llvm::next(InsertPos), MI);
278    }
279
280    // If Reg is live-in then update debug info to track its copy in a vreg.
281    DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
282    if (LDI != LiveInMap.end()) {
283      MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
284      MachineBasicBlock::iterator InsertPos = Def;
285      const MDNode *Variable =
286        MI->getOperand(MI->getNumOperands()-1).getMetadata();
287      unsigned Offset = MI->getOperand(1).getImm();
288      // Def is never a terminator here, so it is ok to increment InsertPos.
289      BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
290              TII.get(TargetOpcode::DBG_VALUE))
291        .addReg(LDI->second, RegState::Debug)
292        .addImm(Offset).addMetadata(Variable);
293
294      // If this vreg is directly copied into an exported register then
295      // that COPY instructions also need DBG_VALUE, if it is the only
296      // user of LDI->second.
297      MachineInstr *CopyUseMI = NULL;
298      for (MachineRegisterInfo::use_iterator
299             UI = RegInfo->use_begin(LDI->second);
300           MachineInstr *UseMI = UI.skipInstruction();) {
301        if (UseMI->isDebugValue()) continue;
302        if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
303          CopyUseMI = UseMI; continue;
304        }
305        // Otherwise this is another use or second copy use.
306        CopyUseMI = NULL; break;
307      }
308      if (CopyUseMI) {
309        MachineInstr *NewMI =
310          BuildMI(*MF, CopyUseMI->getDebugLoc(),
311                  TII.get(TargetOpcode::DBG_VALUE))
312          .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
313          .addImm(Offset).addMetadata(Variable);
314        EntryMBB->insertAfter(CopyUseMI, NewMI);
315      }
316    }
317  }
318
319  // Determine if there are any calls in this machine function.
320  MachineFrameInfo *MFI = MF->getFrameInfo();
321  if (!MFI->hasCalls()) {
322    for (MachineFunction::const_iterator
323           I = MF->begin(), E = MF->end(); I != E; ++I) {
324      const MachineBasicBlock *MBB = I;
325      for (MachineBasicBlock::const_iterator
326             II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
327        const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
328
329        // Operand 1 of an inline asm instruction indicates whether the asm
330        // needs stack or not.
331        if ((II->isInlineAsm() && II->getOperand(1).getImm()) ||
332            (TID.isCall() && !TID.isReturn())) {
333          MFI->setHasCalls(true);
334          goto done;
335        }
336      }
337    }
338  done:;
339  }
340
341  // Determine if there is a call to setjmp in the machine function.
342  MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
343
344  // Replace forward-declared registers with the registers containing
345  // the desired value.
346  MachineRegisterInfo &MRI = MF->getRegInfo();
347  for (DenseMap<unsigned, unsigned>::iterator
348       I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
349       I != E; ++I) {
350    unsigned From = I->first;
351    unsigned To = I->second;
352    // If To is also scheduled to be replaced, find what its ultimate
353    // replacement is.
354    for (;;) {
355      DenseMap<unsigned, unsigned>::iterator J =
356        FuncInfo->RegFixups.find(To);
357      if (J == E) break;
358      To = J->second;
359    }
360    // Replace it.
361    MRI.replaceRegWith(From, To);
362  }
363
364  // Release function-specific state. SDB and CurDAG are already cleared
365  // at this point.
366  FuncInfo->clear();
367
368  return true;
369}
370
371void
372SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
373                                   BasicBlock::const_iterator End,
374                                   bool &HadTailCall) {
375  // Lower all of the non-terminator instructions. If a call is emitted
376  // as a tail call, cease emitting nodes for this block. Terminators
377  // are handled below.
378  for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
379    SDB->visit(*I);
380
381  // Make sure the root of the DAG is up-to-date.
382  CurDAG->setRoot(SDB->getControlRoot());
383  HadTailCall = SDB->HasTailCall;
384  SDB->clear();
385
386  // Final step, emit the lowered DAG as machine code.
387  CodeGenAndEmitDAG();
388}
389
390void SelectionDAGISel::ComputeLiveOutVRegInfo() {
391  SmallPtrSet<SDNode*, 128> VisitedNodes;
392  SmallVector<SDNode*, 128> Worklist;
393
394  Worklist.push_back(CurDAG->getRoot().getNode());
395
396  APInt Mask;
397  APInt KnownZero;
398  APInt KnownOne;
399
400  do {
401    SDNode *N = Worklist.pop_back_val();
402
403    // If we've already seen this node, ignore it.
404    if (!VisitedNodes.insert(N))
405      continue;
406
407    // Otherwise, add all chain operands to the worklist.
408    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
409      if (N->getOperand(i).getValueType() == MVT::Other)
410        Worklist.push_back(N->getOperand(i).getNode());
411
412    // If this is a CopyToReg with a vreg dest, process it.
413    if (N->getOpcode() != ISD::CopyToReg)
414      continue;
415
416    unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
417    if (!TargetRegisterInfo::isVirtualRegister(DestReg))
418      continue;
419
420    // Ignore non-scalar or non-integer values.
421    SDValue Src = N->getOperand(2);
422    EVT SrcVT = Src.getValueType();
423    if (!SrcVT.isInteger() || SrcVT.isVector())
424      continue;
425
426    unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
427    Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
428    CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
429
430    // Only install this information if it tells us something.
431    if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
432      DestReg -= TargetRegisterInfo::FirstVirtualRegister;
433      if (DestReg >= FuncInfo->LiveOutRegInfo.size())
434        FuncInfo->LiveOutRegInfo.resize(DestReg+1);
435      FunctionLoweringInfo::LiveOutInfo &LOI =
436        FuncInfo->LiveOutRegInfo[DestReg];
437      LOI.NumSignBits = NumSignBits;
438      LOI.KnownOne = KnownOne;
439      LOI.KnownZero = KnownZero;
440    }
441  } while (!Worklist.empty());
442}
443
444void SelectionDAGISel::CodeGenAndEmitDAG() {
445  std::string GroupName;
446  if (TimePassesIsEnabled)
447    GroupName = "Instruction Selection and Scheduling";
448  std::string BlockName;
449  if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
450      ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
451      ViewSUnitDAGs)
452    BlockName = MF->getFunction()->getNameStr() + ":" +
453                FuncInfo->MBB->getBasicBlock()->getNameStr();
454
455  DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
456
457  if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
458
459  // Run the DAG combiner in pre-legalize mode.
460  {
461    NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
462    CurDAG->Combine(Unrestricted, *AA, OptLevel);
463  }
464
465  DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
466
467  // Second step, hack on the DAG until it only uses operations and types that
468  // the target supports.
469  if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
470                                               BlockName);
471
472  bool Changed;
473  {
474    NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
475    Changed = CurDAG->LegalizeTypes();
476  }
477
478  DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
479
480  if (Changed) {
481    if (ViewDAGCombineLT)
482      CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
483
484    // Run the DAG combiner in post-type-legalize mode.
485    {
486      NamedRegionTimer T("DAG Combining after legalize types", GroupName,
487                         TimePassesIsEnabled);
488      CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
489    }
490
491    DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
492          CurDAG->dump());
493  }
494
495  {
496    NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
497    Changed = CurDAG->LegalizeVectors();
498  }
499
500  if (Changed) {
501    {
502      NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
503      CurDAG->LegalizeTypes();
504    }
505
506    if (ViewDAGCombineLT)
507      CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
508
509    // Run the DAG combiner in post-type-legalize mode.
510    {
511      NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
512                         TimePassesIsEnabled);
513      CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
514    }
515
516    DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
517          CurDAG->dump());
518  }
519
520  if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
521
522  {
523    NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
524    CurDAG->Legalize(OptLevel);
525  }
526
527  DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
528
529  if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
530
531  // Run the DAG combiner in post-legalize mode.
532  {
533    NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
534    CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
535  }
536
537  DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
538
539  if (OptLevel != CodeGenOpt::None)
540    ComputeLiveOutVRegInfo();
541
542  if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
543
544  // Third, instruction select all of the operations to machine code, adding the
545  // code to the MachineBasicBlock.
546  {
547    NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
548    DoInstructionSelection();
549  }
550
551  DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
552
553  if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
554
555  // Schedule machine code.
556  ScheduleDAGSDNodes *Scheduler = CreateScheduler();
557  {
558    NamedRegionTimer T("Instruction Scheduling", GroupName,
559                       TimePassesIsEnabled);
560    Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
561  }
562
563  if (ViewSUnitDAGs) Scheduler->viewGraph();
564
565  // Emit machine code to BB.  This can change 'BB' to the last block being
566  // inserted into.
567  MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
568  {
569    NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
570
571    LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
572    FuncInfo->InsertPt = Scheduler->InsertPos;
573  }
574
575  // If the block was split, make sure we update any references that are used to
576  // update PHI nodes later on.
577  if (FirstMBB != LastMBB)
578    SDB->UpdateSplitBlock(FirstMBB, LastMBB);
579
580  // Free the scheduler state.
581  {
582    NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
583                       TimePassesIsEnabled);
584    delete Scheduler;
585  }
586
587  // Free the SelectionDAG state, now that we're finished with it.
588  CurDAG->clear();
589}
590
591void SelectionDAGISel::DoInstructionSelection() {
592  DEBUG(errs() << "===== Instruction selection begins:\n");
593
594  PreprocessISelDAG();
595
596  // Select target instructions for the DAG.
597  {
598    // Number all nodes with a topological order and set DAGSize.
599    DAGSize = CurDAG->AssignTopologicalOrder();
600
601    // Create a dummy node (which is not added to allnodes), that adds
602    // a reference to the root node, preventing it from being deleted,
603    // and tracking any changes of the root.
604    HandleSDNode Dummy(CurDAG->getRoot());
605    ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
606    ++ISelPosition;
607
608    // The AllNodes list is now topological-sorted. Visit the
609    // nodes by starting at the end of the list (the root of the
610    // graph) and preceding back toward the beginning (the entry
611    // node).
612    while (ISelPosition != CurDAG->allnodes_begin()) {
613      SDNode *Node = --ISelPosition;
614      // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
615      // but there are currently some corner cases that it misses. Also, this
616      // makes it theoretically possible to disable the DAGCombiner.
617      if (Node->use_empty())
618        continue;
619
620      SDNode *ResNode = Select(Node);
621
622      // FIXME: This is pretty gross.  'Select' should be changed to not return
623      // anything at all and this code should be nuked with a tactical strike.
624
625      // If node should not be replaced, continue with the next one.
626      if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
627        continue;
628      // Replace node.
629      if (ResNode)
630        ReplaceUses(Node, ResNode);
631
632      // If after the replacement this node is not used any more,
633      // remove this dead node.
634      if (Node->use_empty()) { // Don't delete EntryToken, etc.
635        ISelUpdater ISU(ISelPosition);
636        CurDAG->RemoveDeadNode(Node, &ISU);
637      }
638    }
639
640    CurDAG->setRoot(Dummy.getValue());
641  }
642
643  DEBUG(errs() << "===== Instruction selection ends:\n");
644
645  PostprocessISelDAG();
646}
647
648/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
649/// do other setup for EH landing-pad blocks.
650void SelectionDAGISel::PrepareEHLandingPad() {
651  // Add a label to mark the beginning of the landing pad.  Deletion of the
652  // landing pad can thus be detected via the MachineModuleInfo.
653  MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
654
655  const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
656  BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
657    .addSym(Label);
658
659  // Mark exception register as live in.
660  unsigned Reg = TLI.getExceptionAddressRegister();
661  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
662
663  // Mark exception selector register as live in.
664  Reg = TLI.getExceptionSelectorRegister();
665  if (Reg) FuncInfo->MBB->addLiveIn(Reg);
666
667  // FIXME: Hack around an exception handling flaw (PR1508): the personality
668  // function and list of typeids logically belong to the invoke (or, if you
669  // like, the basic block containing the invoke), and need to be associated
670  // with it in the dwarf exception handling tables.  Currently however the
671  // information is provided by an intrinsic (eh.selector) that can be moved
672  // to unexpected places by the optimizers: if the unwind edge is critical,
673  // then breaking it can result in the intrinsics being in the successor of
674  // the landing pad, not the landing pad itself.  This results
675  // in exceptions not being caught because no typeids are associated with
676  // the invoke.  This may not be the only way things can go wrong, but it
677  // is the only way we try to work around for the moment.
678  const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
679  const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
680
681  if (Br && Br->isUnconditional()) { // Critical edge?
682    BasicBlock::const_iterator I, E;
683    for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
684      if (isa<EHSelectorInst>(I))
685        break;
686
687    if (I == E)
688      // No catch info found - try to extract some from the successor.
689      CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
690  }
691}
692
693
694
695
696bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
697                                             FastISel *FastIS) {
698  // Don't try to fold volatile loads.  Target has to deal with alignment
699  // constraints.
700  if (LI->isVolatile()) return false;
701
702  // Figure out which vreg this is going into.
703  unsigned LoadReg = FastIS->getRegForValue(LI);
704  assert(LoadReg && "Load isn't already assigned a vreg? ");
705
706  // Check to see what the uses of this vreg are.  If it has no uses, or more
707  // than one use (at the machine instr level) then we can't fold it.
708  MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
709  if (RI == RegInfo->reg_end())
710    return false;
711
712  // See if there is exactly one use of the vreg.  If there are multiple uses,
713  // then the instruction got lowered to multiple machine instructions or the
714  // use of the loaded value ended up being multiple operands of the result, in
715  // either case, we can't fold this.
716  MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
717  if (PostRI != RegInfo->reg_end())
718    return false;
719
720  assert(RI.getOperand().isUse() &&
721         "The only use of the vreg must be a use, we haven't emitted the def!");
722
723  // Ask the target to try folding the load.
724  return FastIS->TryToFoldLoad(&*RI, RI.getOperandNo(), LI);
725}
726
727
728
729
730void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
731  // Initialize the Fast-ISel state, if needed.
732  FastISel *FastIS = 0;
733  if (EnableFastISel)
734    FastIS = TLI.createFastISel(*FuncInfo);
735
736  // Iterate over all basic blocks in the function.
737  for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
738    const BasicBlock *LLVMBB = &*I;
739    FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
740    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
741
742    BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
743    BasicBlock::const_iterator const End = LLVMBB->end();
744    BasicBlock::const_iterator BI = End;
745
746    FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
747
748    // Setup an EH landing-pad block.
749    if (FuncInfo->MBB->isLandingPad())
750      PrepareEHLandingPad();
751
752    // Lower any arguments needed in this block if this is the entry block.
753    if (LLVMBB == &Fn.getEntryBlock())
754      LowerArguments(LLVMBB);
755
756    // Before doing SelectionDAG ISel, see if FastISel has been requested.
757    if (FastIS) {
758      FastIS->startNewBlock();
759
760      // Emit code for any incoming arguments. This must happen before
761      // beginning FastISel on the entry block.
762      if (LLVMBB == &Fn.getEntryBlock()) {
763        CurDAG->setRoot(SDB->getControlRoot());
764        SDB->clear();
765        CodeGenAndEmitDAG();
766
767        // If we inserted any instructions at the beginning, make a note of
768        // where they are, so we can be sure to emit subsequent instructions
769        // after them.
770        if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
771          FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
772        else
773          FastIS->setLastLocalValue(0);
774      }
775
776      // Do FastISel on as many instructions as possible.
777      for (; BI != Begin; --BI) {
778        const Instruction *Inst = llvm::prior(BI);
779
780        // If we no longer require this instruction, skip it.
781        if (!Inst->mayWriteToMemory() &&
782            !isa<TerminatorInst>(Inst) &&
783            !isa<DbgInfoIntrinsic>(Inst) &&
784            !FuncInfo->isExportedInst(Inst))
785          continue;
786
787        // Bottom-up: reset the insert pos at the top, after any local-value
788        // instructions.
789        FastIS->recomputeInsertPt();
790
791        // Try to select the instruction with FastISel.
792        if (FastIS->SelectInstruction(Inst)) {
793          // If fast isel succeeded, check to see if there is a single-use
794          // non-volatile load right before the selected instruction, and see if
795          // the load is used by the instruction.  If so, try to fold it.
796          const Instruction *BeforeInst = 0;
797          if (Inst != Begin)
798            BeforeInst = llvm::prior(llvm::prior(BI));
799          if (BeforeInst && isa<LoadInst>(BeforeInst) &&
800              BeforeInst->hasOneUse() && *BeforeInst->use_begin() == Inst &&
801              TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), FastIS)) {
802            // If we succeeded, don't re-select the load.
803            --BI;
804          }
805          continue;
806        }
807
808        // Then handle certain instructions as single-LLVM-Instruction blocks.
809        if (isa<CallInst>(Inst)) {
810          ++NumFastIselFailures;
811          if (EnableFastISelVerbose || EnableFastISelAbort) {
812            dbgs() << "FastISel missed call: ";
813            Inst->dump();
814          }
815
816          if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
817            unsigned &R = FuncInfo->ValueMap[Inst];
818            if (!R)
819              R = FuncInfo->CreateRegs(Inst->getType());
820          }
821
822          bool HadTailCall = false;
823          SelectBasicBlock(Inst, BI, HadTailCall);
824
825          // If the call was emitted as a tail call, we're done with the block.
826          if (HadTailCall) {
827            --BI;
828            break;
829          }
830
831          continue;
832        }
833
834        // Otherwise, give up on FastISel for the rest of the block.
835        // For now, be a little lenient about non-branch terminators.
836        if (!isa<TerminatorInst>(Inst) || isa<BranchInst>(Inst)) {
837          ++NumFastIselFailures;
838          if (EnableFastISelVerbose || EnableFastISelAbort) {
839            dbgs() << "FastISel miss: ";
840            Inst->dump();
841          }
842          if (EnableFastISelAbort)
843            // The "fast" selector couldn't handle something and bailed.
844            // For the purpose of debugging, just abort.
845            llvm_unreachable("FastISel didn't select the entire block");
846        }
847        break;
848      }
849
850      FastIS->recomputeInsertPt();
851    }
852
853    // Run SelectionDAG instruction selection on the remainder of the block
854    // not handled by FastISel. If FastISel is not run, this is the entire
855    // block.
856    bool HadTailCall;
857    SelectBasicBlock(Begin, BI, HadTailCall);
858
859    FinishBasicBlock();
860    FuncInfo->PHINodesToUpdate.clear();
861  }
862
863  delete FastIS;
864}
865
866void
867SelectionDAGISel::FinishBasicBlock() {
868
869  DEBUG(dbgs() << "Total amount of phi nodes to update: "
870               << FuncInfo->PHINodesToUpdate.size() << "\n";
871        for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
872          dbgs() << "Node " << i << " : ("
873                 << FuncInfo->PHINodesToUpdate[i].first
874                 << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
875
876  // Next, now that we know what the last MBB the LLVM BB expanded is, update
877  // PHI nodes in successors.
878  if (SDB->SwitchCases.empty() &&
879      SDB->JTCases.empty() &&
880      SDB->BitTestCases.empty()) {
881    for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
882      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
883      assert(PHI->isPHI() &&
884             "This is not a machine PHI node that we are updating!");
885      if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
886        continue;
887      PHI->addOperand(
888        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
889      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
890    }
891    return;
892  }
893
894  for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
895    // Lower header first, if it wasn't already lowered
896    if (!SDB->BitTestCases[i].Emitted) {
897      // Set the current basic block to the mbb we wish to insert the code into
898      FuncInfo->MBB = SDB->BitTestCases[i].Parent;
899      FuncInfo->InsertPt = FuncInfo->MBB->end();
900      // Emit the code
901      SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
902      CurDAG->setRoot(SDB->getRoot());
903      SDB->clear();
904      CodeGenAndEmitDAG();
905    }
906
907    for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
908      // Set the current basic block to the mbb we wish to insert the code into
909      FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
910      FuncInfo->InsertPt = FuncInfo->MBB->end();
911      // Emit the code
912      if (j+1 != ej)
913        SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
914                              SDB->BitTestCases[i].Reg,
915                              SDB->BitTestCases[i].Cases[j],
916                              FuncInfo->MBB);
917      else
918        SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
919                              SDB->BitTestCases[i].Reg,
920                              SDB->BitTestCases[i].Cases[j],
921                              FuncInfo->MBB);
922
923
924      CurDAG->setRoot(SDB->getRoot());
925      SDB->clear();
926      CodeGenAndEmitDAG();
927    }
928
929    // Update PHI Nodes
930    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
931         pi != pe; ++pi) {
932      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
933      MachineBasicBlock *PHIBB = PHI->getParent();
934      assert(PHI->isPHI() &&
935             "This is not a machine PHI node that we are updating!");
936      // This is "default" BB. We have two jumps to it. From "header" BB and
937      // from last "case" BB.
938      if (PHIBB == SDB->BitTestCases[i].Default) {
939        PHI->addOperand(MachineOperand::
940                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
941                                  false));
942        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
943        PHI->addOperand(MachineOperand::
944                        CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
945                                  false));
946        PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
947                                                  back().ThisBB));
948      }
949      // One of "cases" BB.
950      for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
951           j != ej; ++j) {
952        MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
953        if (cBB->isSuccessor(PHIBB)) {
954          PHI->addOperand(MachineOperand::
955                          CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
956                                    false));
957          PHI->addOperand(MachineOperand::CreateMBB(cBB));
958        }
959      }
960    }
961  }
962  SDB->BitTestCases.clear();
963
964  // If the JumpTable record is filled in, then we need to emit a jump table.
965  // Updating the PHI nodes is tricky in this case, since we need to determine
966  // whether the PHI is a successor of the range check MBB or the jump table MBB
967  for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
968    // Lower header first, if it wasn't already lowered
969    if (!SDB->JTCases[i].first.Emitted) {
970      // Set the current basic block to the mbb we wish to insert the code into
971      FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
972      FuncInfo->InsertPt = FuncInfo->MBB->end();
973      // Emit the code
974      SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
975                                FuncInfo->MBB);
976      CurDAG->setRoot(SDB->getRoot());
977      SDB->clear();
978      CodeGenAndEmitDAG();
979    }
980
981    // Set the current basic block to the mbb we wish to insert the code into
982    FuncInfo->MBB = SDB->JTCases[i].second.MBB;
983    FuncInfo->InsertPt = FuncInfo->MBB->end();
984    // Emit the code
985    SDB->visitJumpTable(SDB->JTCases[i].second);
986    CurDAG->setRoot(SDB->getRoot());
987    SDB->clear();
988    CodeGenAndEmitDAG();
989
990    // Update PHI Nodes
991    for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
992         pi != pe; ++pi) {
993      MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
994      MachineBasicBlock *PHIBB = PHI->getParent();
995      assert(PHI->isPHI() &&
996             "This is not a machine PHI node that we are updating!");
997      // "default" BB. We can go there only from header BB.
998      if (PHIBB == SDB->JTCases[i].second.Default) {
999        PHI->addOperand
1000          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1001                                     false));
1002        PHI->addOperand
1003          (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
1004      }
1005      // JT BB. Just iterate over successors here
1006      if (FuncInfo->MBB->isSuccessor(PHIBB)) {
1007        PHI->addOperand
1008          (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
1009                                     false));
1010        PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1011      }
1012    }
1013  }
1014  SDB->JTCases.clear();
1015
1016  // If the switch block involved a branch to one of the actual successors, we
1017  // need to update PHI nodes in that block.
1018  for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
1019    MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
1020    assert(PHI->isPHI() &&
1021           "This is not a machine PHI node that we are updating!");
1022    if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
1023      PHI->addOperand(
1024        MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
1025      PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
1026    }
1027  }
1028
1029  // If we generated any switch lowering information, build and codegen any
1030  // additional DAGs necessary.
1031  for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
1032    // Set the current basic block to the mbb we wish to insert the code into
1033    MachineBasicBlock *ThisBB = FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
1034    FuncInfo->InsertPt = FuncInfo->MBB->end();
1035
1036    // Determine the unique successors.
1037    SmallVector<MachineBasicBlock *, 2> Succs;
1038    Succs.push_back(SDB->SwitchCases[i].TrueBB);
1039    if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
1040      Succs.push_back(SDB->SwitchCases[i].FalseBB);
1041
1042    // Emit the code. Note that this could result in ThisBB being split, so
1043    // we need to check for updates.
1044    SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
1045    CurDAG->setRoot(SDB->getRoot());
1046    SDB->clear();
1047    CodeGenAndEmitDAG();
1048    ThisBB = FuncInfo->MBB;
1049
1050    // Handle any PHI nodes in successors of this chunk, as if we were coming
1051    // from the original BB before switch expansion.  Note that PHI nodes can
1052    // occur multiple times in PHINodesToUpdate.  We have to be very careful to
1053    // handle them the right number of times.
1054    for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
1055      FuncInfo->MBB = Succs[i];
1056      FuncInfo->InsertPt = FuncInfo->MBB->end();
1057      // FuncInfo->MBB may have been removed from the CFG if a branch was
1058      // constant folded.
1059      if (ThisBB->isSuccessor(FuncInfo->MBB)) {
1060        for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
1061             Phi != FuncInfo->MBB->end() && Phi->isPHI();
1062             ++Phi) {
1063          // This value for this PHI node is recorded in PHINodesToUpdate.
1064          for (unsigned pn = 0; ; ++pn) {
1065            assert(pn != FuncInfo->PHINodesToUpdate.size() &&
1066                   "Didn't find PHI entry!");
1067            if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
1068              Phi->addOperand(MachineOperand::
1069                              CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
1070                                        false));
1071              Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
1072              break;
1073            }
1074          }
1075        }
1076      }
1077    }
1078  }
1079  SDB->SwitchCases.clear();
1080}
1081
1082
1083/// Create the scheduler. If a specific scheduler was specified
1084/// via the SchedulerRegistry, use it, otherwise select the
1085/// one preferred by the target.
1086///
1087ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
1088  RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
1089
1090  if (!Ctor) {
1091    Ctor = ISHeuristic;
1092    RegisterScheduler::setDefault(Ctor);
1093  }
1094
1095  return Ctor(this, OptLevel);
1096}
1097
1098ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
1099  return new ScheduleHazardRecognizer();
1100}
1101
1102//===----------------------------------------------------------------------===//
1103// Helper functions used by the generated instruction selector.
1104//===----------------------------------------------------------------------===//
1105// Calls to these methods are generated by tblgen.
1106
1107/// CheckAndMask - The isel is trying to match something like (and X, 255).  If
1108/// the dag combiner simplified the 255, we still want to match.  RHS is the
1109/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
1110/// specified in the .td file (e.g. 255).
1111bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
1112                                    int64_t DesiredMaskS) const {
1113  const APInt &ActualMask = RHS->getAPIntValue();
1114  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1115
1116  // If the actual mask exactly matches, success!
1117  if (ActualMask == DesiredMask)
1118    return true;
1119
1120  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1121  if (ActualMask.intersects(~DesiredMask))
1122    return false;
1123
1124  // Otherwise, the DAG Combiner may have proven that the value coming in is
1125  // either already zero or is not demanded.  Check for known zero input bits.
1126  APInt NeededMask = DesiredMask & ~ActualMask;
1127  if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
1128    return true;
1129
1130  // TODO: check to see if missing bits are just not demanded.
1131
1132  // Otherwise, this pattern doesn't match.
1133  return false;
1134}
1135
1136/// CheckOrMask - The isel is trying to match something like (or X, 255).  If
1137/// the dag combiner simplified the 255, we still want to match.  RHS is the
1138/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
1139/// specified in the .td file (e.g. 255).
1140bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
1141                                   int64_t DesiredMaskS) const {
1142  const APInt &ActualMask = RHS->getAPIntValue();
1143  const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
1144
1145  // If the actual mask exactly matches, success!
1146  if (ActualMask == DesiredMask)
1147    return true;
1148
1149  // If the actual AND mask is allowing unallowed bits, this doesn't match.
1150  if (ActualMask.intersects(~DesiredMask))
1151    return false;
1152
1153  // Otherwise, the DAG Combiner may have proven that the value coming in is
1154  // either already zero or is not demanded.  Check for known zero input bits.
1155  APInt NeededMask = DesiredMask & ~ActualMask;
1156
1157  APInt KnownZero, KnownOne;
1158  CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
1159
1160  // If all the missing bits in the or are already known to be set, match!
1161  if ((NeededMask & KnownOne) == NeededMask)
1162    return true;
1163
1164  // TODO: check to see if missing bits are just not demanded.
1165
1166  // Otherwise, this pattern doesn't match.
1167  return false;
1168}
1169
1170
1171/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
1172/// by tblgen.  Others should not call it.
1173void SelectionDAGISel::
1174SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
1175  std::vector<SDValue> InOps;
1176  std::swap(InOps, Ops);
1177
1178  Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
1179  Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
1180  Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
1181  Ops.push_back(InOps[InlineAsm::Op_IsAlignStack]);  // 3
1182
1183  unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
1184  if (InOps[e-1].getValueType() == MVT::Flag)
1185    --e;  // Don't process a flag operand if it is here.
1186
1187  while (i != e) {
1188    unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
1189    if (!InlineAsm::isMemKind(Flags)) {
1190      // Just skip over this operand, copying the operands verbatim.
1191      Ops.insert(Ops.end(), InOps.begin()+i,
1192                 InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
1193      i += InlineAsm::getNumOperandRegisters(Flags) + 1;
1194    } else {
1195      assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
1196             "Memory operand with multiple values?");
1197      // Otherwise, this is a memory operand.  Ask the target to select it.
1198      std::vector<SDValue> SelOps;
1199      if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
1200        report_fatal_error("Could not match memory address.  Inline asm"
1201                           " failure!");
1202
1203      // Add this to the output node.
1204      unsigned NewFlags =
1205        InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
1206      Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
1207      Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
1208      i += 2;
1209    }
1210  }
1211
1212  // Add the flag input back if present.
1213  if (e != InOps.size())
1214    Ops.push_back(InOps.back());
1215}
1216
1217/// findFlagUse - Return use of EVT::Flag value produced by the specified
1218/// SDNode.
1219///
1220static SDNode *findFlagUse(SDNode *N) {
1221  unsigned FlagResNo = N->getNumValues()-1;
1222  for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
1223    SDUse &Use = I.getUse();
1224    if (Use.getResNo() == FlagResNo)
1225      return Use.getUser();
1226  }
1227  return NULL;
1228}
1229
1230/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
1231/// This function recursively traverses up the operand chain, ignoring
1232/// certain nodes.
1233static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
1234                          SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
1235                          bool IgnoreChains) {
1236  // The NodeID's are given uniques ID's where a node ID is guaranteed to be
1237  // greater than all of its (recursive) operands.  If we scan to a point where
1238  // 'use' is smaller than the node we're scanning for, then we know we will
1239  // never find it.
1240  //
1241  // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
1242  // happen because we scan down to newly selected nodes in the case of flag
1243  // uses.
1244  if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
1245    return false;
1246
1247  // Don't revisit nodes if we already scanned it and didn't fail, we know we
1248  // won't fail if we scan it again.
1249  if (!Visited.insert(Use))
1250    return false;
1251
1252  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
1253    // Ignore chain uses, they are validated by HandleMergeInputChains.
1254    if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
1255      continue;
1256
1257    SDNode *N = Use->getOperand(i).getNode();
1258    if (N == Def) {
1259      if (Use == ImmedUse || Use == Root)
1260        continue;  // We are not looking for immediate use.
1261      assert(N != Root);
1262      return true;
1263    }
1264
1265    // Traverse up the operand chain.
1266    if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
1267      return true;
1268  }
1269  return false;
1270}
1271
1272/// IsProfitableToFold - Returns true if it's profitable to fold the specific
1273/// operand node N of U during instruction selection that starts at Root.
1274bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
1275                                          SDNode *Root) const {
1276  if (OptLevel == CodeGenOpt::None) return false;
1277  return N.hasOneUse();
1278}
1279
1280/// IsLegalToFold - Returns true if the specific operand node N of
1281/// U can be folded during instruction selection that starts at Root.
1282bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
1283                                     CodeGenOpt::Level OptLevel,
1284                                     bool IgnoreChains) {
1285  if (OptLevel == CodeGenOpt::None) return false;
1286
1287  // If Root use can somehow reach N through a path that that doesn't contain
1288  // U then folding N would create a cycle. e.g. In the following
1289  // diagram, Root can reach N through X. If N is folded into into Root, then
1290  // X is both a predecessor and a successor of U.
1291  //
1292  //          [N*]           //
1293  //         ^   ^           //
1294  //        /     \          //
1295  //      [U*]    [X]?       //
1296  //        ^     ^          //
1297  //         \   /           //
1298  //          \ /            //
1299  //         [Root*]         //
1300  //
1301  // * indicates nodes to be folded together.
1302  //
1303  // If Root produces a flag, then it gets (even more) interesting. Since it
1304  // will be "glued" together with its flag use in the scheduler, we need to
1305  // check if it might reach N.
1306  //
1307  //          [N*]           //
1308  //         ^   ^           //
1309  //        /     \          //
1310  //      [U*]    [X]?       //
1311  //        ^       ^        //
1312  //         \       \       //
1313  //          \      |       //
1314  //         [Root*] |       //
1315  //          ^      |       //
1316  //          f      |       //
1317  //          |      /       //
1318  //         [Y]    /        //
1319  //           ^   /         //
1320  //           f  /          //
1321  //           | /           //
1322  //          [FU]           //
1323  //
1324  // If FU (flag use) indirectly reaches N (the load), and Root folds N
1325  // (call it Fold), then X is a predecessor of FU and a successor of
1326  // Fold. But since Fold and FU are flagged together, this will create
1327  // a cycle in the scheduling graph.
1328
1329  // If the node has flags, walk down the graph to the "lowest" node in the
1330  // flagged set.
1331  EVT VT = Root->getValueType(Root->getNumValues()-1);
1332  while (VT == MVT::Flag) {
1333    SDNode *FU = findFlagUse(Root);
1334    if (FU == NULL)
1335      break;
1336    Root = FU;
1337    VT = Root->getValueType(Root->getNumValues()-1);
1338
1339    // If our query node has a flag result with a use, we've walked up it.  If
1340    // the user (which has already been selected) has a chain or indirectly uses
1341    // the chain, our WalkChainUsers predicate will not consider it.  Because of
1342    // this, we cannot ignore chains in this predicate.
1343    IgnoreChains = false;
1344  }
1345
1346
1347  SmallPtrSet<SDNode*, 16> Visited;
1348  return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
1349}
1350
1351SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
1352  std::vector<SDValue> Ops(N->op_begin(), N->op_end());
1353  SelectInlineAsmMemoryOperands(Ops);
1354
1355  std::vector<EVT> VTs;
1356  VTs.push_back(MVT::Other);
1357  VTs.push_back(MVT::Flag);
1358  SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
1359                                VTs, &Ops[0], Ops.size());
1360  New->setNodeId(-1);
1361  return New.getNode();
1362}
1363
1364SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
1365  return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
1366}
1367
1368/// GetVBR - decode a vbr encoding whose top bit is set.
1369ALWAYS_INLINE static uint64_t
1370GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
1371  assert(Val >= 128 && "Not a VBR");
1372  Val &= 127;  // Remove first vbr bit.
1373
1374  unsigned Shift = 7;
1375  uint64_t NextBits;
1376  do {
1377    NextBits = MatcherTable[Idx++];
1378    Val |= (NextBits&127) << Shift;
1379    Shift += 7;
1380  } while (NextBits & 128);
1381
1382  return Val;
1383}
1384
1385
1386/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
1387/// interior flag and chain results to use the new flag and chain results.
1388void SelectionDAGISel::
1389UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
1390                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
1391                     SDValue InputFlag,
1392                     const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
1393                     bool isMorphNodeTo) {
1394  SmallVector<SDNode*, 4> NowDeadNodes;
1395
1396  ISelUpdater ISU(ISelPosition);
1397
1398  // Now that all the normal results are replaced, we replace the chain and
1399  // flag results if present.
1400  if (!ChainNodesMatched.empty()) {
1401    assert(InputChain.getNode() != 0 &&
1402           "Matched input chains but didn't produce a chain");
1403    // Loop over all of the nodes we matched that produced a chain result.
1404    // Replace all the chain results with the final chain we ended up with.
1405    for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1406      SDNode *ChainNode = ChainNodesMatched[i];
1407
1408      // If this node was already deleted, don't look at it.
1409      if (ChainNode->getOpcode() == ISD::DELETED_NODE)
1410        continue;
1411
1412      // Don't replace the results of the root node if we're doing a
1413      // MorphNodeTo.
1414      if (ChainNode == NodeToMatch && isMorphNodeTo)
1415        continue;
1416
1417      SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
1418      if (ChainVal.getValueType() == MVT::Flag)
1419        ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
1420      assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
1421      CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
1422
1423      // If the node became dead and we haven't already seen it, delete it.
1424      if (ChainNode->use_empty() &&
1425          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
1426        NowDeadNodes.push_back(ChainNode);
1427    }
1428  }
1429
1430  // If the result produces a flag, update any flag results in the matched
1431  // pattern with the flag result.
1432  if (InputFlag.getNode() != 0) {
1433    // Handle any interior nodes explicitly marked.
1434    for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
1435      SDNode *FRN = FlagResultNodesMatched[i];
1436
1437      // If this node was already deleted, don't look at it.
1438      if (FRN->getOpcode() == ISD::DELETED_NODE)
1439        continue;
1440
1441      assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
1442             "Doesn't have a flag result");
1443      CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
1444                                        InputFlag, &ISU);
1445
1446      // If the node became dead and we haven't already seen it, delete it.
1447      if (FRN->use_empty() &&
1448          !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
1449        NowDeadNodes.push_back(FRN);
1450    }
1451  }
1452
1453  if (!NowDeadNodes.empty())
1454    CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
1455
1456  DEBUG(errs() << "ISEL: Match complete!\n");
1457}
1458
1459enum ChainResult {
1460  CR_Simple,
1461  CR_InducesCycle,
1462  CR_LeadsToInteriorNode
1463};
1464
1465/// WalkChainUsers - Walk down the users of the specified chained node that is
1466/// part of the pattern we're matching, looking at all of the users we find.
1467/// This determines whether something is an interior node, whether we have a
1468/// non-pattern node in between two pattern nodes (which prevent folding because
1469/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
1470/// between pattern nodes (in which case the TF becomes part of the pattern).
1471///
1472/// The walk we do here is guaranteed to be small because we quickly get down to
1473/// already selected nodes "below" us.
1474static ChainResult
1475WalkChainUsers(SDNode *ChainedNode,
1476               SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
1477               SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
1478  ChainResult Result = CR_Simple;
1479
1480  for (SDNode::use_iterator UI = ChainedNode->use_begin(),
1481         E = ChainedNode->use_end(); UI != E; ++UI) {
1482    // Make sure the use is of the chain, not some other value we produce.
1483    if (UI.getUse().getValueType() != MVT::Other) continue;
1484
1485    SDNode *User = *UI;
1486
1487    // If we see an already-selected machine node, then we've gone beyond the
1488    // pattern that we're selecting down into the already selected chunk of the
1489    // DAG.
1490    if (User->isMachineOpcode() ||
1491        User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
1492      continue;
1493
1494    if (User->getOpcode() == ISD::CopyToReg ||
1495        User->getOpcode() == ISD::CopyFromReg ||
1496        User->getOpcode() == ISD::INLINEASM ||
1497        User->getOpcode() == ISD::EH_LABEL) {
1498      // If their node ID got reset to -1 then they've already been selected.
1499      // Treat them like a MachineOpcode.
1500      if (User->getNodeId() == -1)
1501        continue;
1502    }
1503
1504    // If we have a TokenFactor, we handle it specially.
1505    if (User->getOpcode() != ISD::TokenFactor) {
1506      // If the node isn't a token factor and isn't part of our pattern, then it
1507      // must be a random chained node in between two nodes we're selecting.
1508      // This happens when we have something like:
1509      //   x = load ptr
1510      //   call
1511      //   y = x+4
1512      //   store y -> ptr
1513      // Because we structurally match the load/store as a read/modify/write,
1514      // but the call is chained between them.  We cannot fold in this case
1515      // because it would induce a cycle in the graph.
1516      if (!std::count(ChainedNodesInPattern.begin(),
1517                      ChainedNodesInPattern.end(), User))
1518        return CR_InducesCycle;
1519
1520      // Otherwise we found a node that is part of our pattern.  For example in:
1521      //   x = load ptr
1522      //   y = x+4
1523      //   store y -> ptr
1524      // This would happen when we're scanning down from the load and see the
1525      // store as a user.  Record that there is a use of ChainedNode that is
1526      // part of the pattern and keep scanning uses.
1527      Result = CR_LeadsToInteriorNode;
1528      InteriorChainedNodes.push_back(User);
1529      continue;
1530    }
1531
1532    // If we found a TokenFactor, there are two cases to consider: first if the
1533    // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
1534    // uses of the TF are in our pattern) we just want to ignore it.  Second,
1535    // the TokenFactor can be sandwiched in between two chained nodes, like so:
1536    //     [Load chain]
1537    //         ^
1538    //         |
1539    //       [Load]
1540    //       ^    ^
1541    //       |    \                    DAG's like cheese
1542    //      /       \                       do you?
1543    //     /         |
1544    // [TokenFactor] [Op]
1545    //     ^          ^
1546    //     |          |
1547    //      \        /
1548    //       \      /
1549    //       [Store]
1550    //
1551    // In this case, the TokenFactor becomes part of our match and we rewrite it
1552    // as a new TokenFactor.
1553    //
1554    // To distinguish these two cases, do a recursive walk down the uses.
1555    switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
1556    case CR_Simple:
1557      // If the uses of the TokenFactor are just already-selected nodes, ignore
1558      // it, it is "below" our pattern.
1559      continue;
1560    case CR_InducesCycle:
1561      // If the uses of the TokenFactor lead to nodes that are not part of our
1562      // pattern that are not selected, folding would turn this into a cycle,
1563      // bail out now.
1564      return CR_InducesCycle;
1565    case CR_LeadsToInteriorNode:
1566      break;  // Otherwise, keep processing.
1567    }
1568
1569    // Okay, we know we're in the interesting interior case.  The TokenFactor
1570    // is now going to be considered part of the pattern so that we rewrite its
1571    // uses (it may have uses that are not part of the pattern) with the
1572    // ultimate chain result of the generated code.  We will also add its chain
1573    // inputs as inputs to the ultimate TokenFactor we create.
1574    Result = CR_LeadsToInteriorNode;
1575    ChainedNodesInPattern.push_back(User);
1576    InteriorChainedNodes.push_back(User);
1577    continue;
1578  }
1579
1580  return Result;
1581}
1582
1583/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
1584/// operation for when the pattern matched at least one node with a chains.  The
1585/// input vector contains a list of all of the chained nodes that we match.  We
1586/// must determine if this is a valid thing to cover (i.e. matching it won't
1587/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
1588/// be used as the input node chain for the generated nodes.
1589static SDValue
1590HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
1591                       SelectionDAG *CurDAG) {
1592  // Walk all of the chained nodes we've matched, recursively scanning down the
1593  // users of the chain result. This adds any TokenFactor nodes that are caught
1594  // in between chained nodes to the chained and interior nodes list.
1595  SmallVector<SDNode*, 3> InteriorChainedNodes;
1596  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1597    if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
1598                       InteriorChainedNodes) == CR_InducesCycle)
1599      return SDValue(); // Would induce a cycle.
1600  }
1601
1602  // Okay, we have walked all the matched nodes and collected TokenFactor nodes
1603  // that we are interested in.  Form our input TokenFactor node.
1604  SmallVector<SDValue, 3> InputChains;
1605  for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
1606    // Add the input chain of this node to the InputChains list (which will be
1607    // the operands of the generated TokenFactor) if it's not an interior node.
1608    SDNode *N = ChainNodesMatched[i];
1609    if (N->getOpcode() != ISD::TokenFactor) {
1610      if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
1611        continue;
1612
1613      // Otherwise, add the input chain.
1614      SDValue InChain = ChainNodesMatched[i]->getOperand(0);
1615      assert(InChain.getValueType() == MVT::Other && "Not a chain");
1616      InputChains.push_back(InChain);
1617      continue;
1618    }
1619
1620    // If we have a token factor, we want to add all inputs of the token factor
1621    // that are not part of the pattern we're matching.
1622    for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
1623      if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
1624                      N->getOperand(op).getNode()))
1625        InputChains.push_back(N->getOperand(op));
1626    }
1627  }
1628
1629  SDValue Res;
1630  if (InputChains.size() == 1)
1631    return InputChains[0];
1632  return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
1633                         MVT::Other, &InputChains[0], InputChains.size());
1634}
1635
1636/// MorphNode - Handle morphing a node in place for the selector.
1637SDNode *SelectionDAGISel::
1638MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
1639          const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
1640  // It is possible we're using MorphNodeTo to replace a node with no
1641  // normal results with one that has a normal result (or we could be
1642  // adding a chain) and the input could have flags and chains as well.
1643  // In this case we need to shift the operands down.
1644  // FIXME: This is a horrible hack and broken in obscure cases, no worse
1645  // than the old isel though.
1646  int OldFlagResultNo = -1, OldChainResultNo = -1;
1647
1648  unsigned NTMNumResults = Node->getNumValues();
1649  if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
1650    OldFlagResultNo = NTMNumResults-1;
1651    if (NTMNumResults != 1 &&
1652        Node->getValueType(NTMNumResults-2) == MVT::Other)
1653      OldChainResultNo = NTMNumResults-2;
1654  } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
1655    OldChainResultNo = NTMNumResults-1;
1656
1657  // Call the underlying SelectionDAG routine to do the transmogrification. Note
1658  // that this deletes operands of the old node that become dead.
1659  SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
1660
1661  // MorphNodeTo can operate in two ways: if an existing node with the
1662  // specified operands exists, it can just return it.  Otherwise, it
1663  // updates the node in place to have the requested operands.
1664  if (Res == Node) {
1665    // If we updated the node in place, reset the node ID.  To the isel,
1666    // this should be just like a newly allocated machine node.
1667    Res->setNodeId(-1);
1668  }
1669
1670  unsigned ResNumResults = Res->getNumValues();
1671  // Move the flag if needed.
1672  if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
1673      (unsigned)OldFlagResultNo != ResNumResults-1)
1674    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
1675                                      SDValue(Res, ResNumResults-1));
1676
1677  if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
1678    --ResNumResults;
1679
1680  // Move the chain reference if needed.
1681  if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
1682      (unsigned)OldChainResultNo != ResNumResults-1)
1683    CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
1684                                      SDValue(Res, ResNumResults-1));
1685
1686  // Otherwise, no replacement happened because the node already exists. Replace
1687  // Uses of the old node with the new one.
1688  if (Res != Node)
1689    CurDAG->ReplaceAllUsesWith(Node, Res);
1690
1691  return Res;
1692}
1693
1694/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1695ALWAYS_INLINE static bool
1696CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1697          SDValue N,
1698          const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1699  // Accept if it is exactly the same as a previously recorded node.
1700  unsigned RecNo = MatcherTable[MatcherIndex++];
1701  assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
1702  return N == RecordedNodes[RecNo].first;
1703}
1704
1705/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
1706ALWAYS_INLINE static bool
1707CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1708                      SelectionDAGISel &SDISel) {
1709  return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
1710}
1711
1712/// CheckNodePredicate - Implements OP_CheckNodePredicate.
1713ALWAYS_INLINE static bool
1714CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1715                   SelectionDAGISel &SDISel, SDNode *N) {
1716  return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
1717}
1718
1719ALWAYS_INLINE static bool
1720CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1721            SDNode *N) {
1722  uint16_t Opc = MatcherTable[MatcherIndex++];
1723  Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
1724  return N->getOpcode() == Opc;
1725}
1726
1727ALWAYS_INLINE static bool
1728CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1729          SDValue N, const TargetLowering &TLI) {
1730  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1731  if (N.getValueType() == VT) return true;
1732
1733  // Handle the case when VT is iPTR.
1734  return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
1735}
1736
1737ALWAYS_INLINE static bool
1738CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1739               SDValue N, const TargetLowering &TLI,
1740               unsigned ChildNo) {
1741  if (ChildNo >= N.getNumOperands())
1742    return false;  // Match fails if out of range child #.
1743  return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
1744}
1745
1746
1747ALWAYS_INLINE static bool
1748CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1749              SDValue N) {
1750  return cast<CondCodeSDNode>(N)->get() ==
1751      (ISD::CondCode)MatcherTable[MatcherIndex++];
1752}
1753
1754ALWAYS_INLINE static bool
1755CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1756               SDValue N, const TargetLowering &TLI) {
1757  MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
1758  if (cast<VTSDNode>(N)->getVT() == VT)
1759    return true;
1760
1761  // Handle the case when VT is iPTR.
1762  return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
1763}
1764
1765ALWAYS_INLINE static bool
1766CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1767             SDValue N) {
1768  int64_t Val = MatcherTable[MatcherIndex++];
1769  if (Val & 128)
1770    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1771
1772  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
1773  return C != 0 && C->getSExtValue() == Val;
1774}
1775
1776ALWAYS_INLINE static bool
1777CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1778            SDValue N, SelectionDAGISel &SDISel) {
1779  int64_t Val = MatcherTable[MatcherIndex++];
1780  if (Val & 128)
1781    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1782
1783  if (N->getOpcode() != ISD::AND) return false;
1784
1785  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1786  return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
1787}
1788
1789ALWAYS_INLINE static bool
1790CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
1791           SDValue N, SelectionDAGISel &SDISel) {
1792  int64_t Val = MatcherTable[MatcherIndex++];
1793  if (Val & 128)
1794    Val = GetVBR(Val, MatcherTable, MatcherIndex);
1795
1796  if (N->getOpcode() != ISD::OR) return false;
1797
1798  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
1799  return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
1800}
1801
1802/// IsPredicateKnownToFail - If we know how and can do so without pushing a
1803/// scope, evaluate the current node.  If the current predicate is known to
1804/// fail, set Result=true and return anything.  If the current predicate is
1805/// known to pass, set Result=false and return the MatcherIndex to continue
1806/// with.  If the current predicate is unknown, set Result=false and return the
1807/// MatcherIndex to continue with.
1808static unsigned IsPredicateKnownToFail(const unsigned char *Table,
1809                                       unsigned Index, SDValue N,
1810                                       bool &Result, SelectionDAGISel &SDISel,
1811                 SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
1812  switch (Table[Index++]) {
1813  default:
1814    Result = false;
1815    return Index-1;  // Could not evaluate this predicate.
1816  case SelectionDAGISel::OPC_CheckSame:
1817    Result = !::CheckSame(Table, Index, N, RecordedNodes);
1818    return Index;
1819  case SelectionDAGISel::OPC_CheckPatternPredicate:
1820    Result = !::CheckPatternPredicate(Table, Index, SDISel);
1821    return Index;
1822  case SelectionDAGISel::OPC_CheckPredicate:
1823    Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
1824    return Index;
1825  case SelectionDAGISel::OPC_CheckOpcode:
1826    Result = !::CheckOpcode(Table, Index, N.getNode());
1827    return Index;
1828  case SelectionDAGISel::OPC_CheckType:
1829    Result = !::CheckType(Table, Index, N, SDISel.TLI);
1830    return Index;
1831  case SelectionDAGISel::OPC_CheckChild0Type:
1832  case SelectionDAGISel::OPC_CheckChild1Type:
1833  case SelectionDAGISel::OPC_CheckChild2Type:
1834  case SelectionDAGISel::OPC_CheckChild3Type:
1835  case SelectionDAGISel::OPC_CheckChild4Type:
1836  case SelectionDAGISel::OPC_CheckChild5Type:
1837  case SelectionDAGISel::OPC_CheckChild6Type:
1838  case SelectionDAGISel::OPC_CheckChild7Type:
1839    Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
1840                        Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
1841    return Index;
1842  case SelectionDAGISel::OPC_CheckCondCode:
1843    Result = !::CheckCondCode(Table, Index, N);
1844    return Index;
1845  case SelectionDAGISel::OPC_CheckValueType:
1846    Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
1847    return Index;
1848  case SelectionDAGISel::OPC_CheckInteger:
1849    Result = !::CheckInteger(Table, Index, N);
1850    return Index;
1851  case SelectionDAGISel::OPC_CheckAndImm:
1852    Result = !::CheckAndImm(Table, Index, N, SDISel);
1853    return Index;
1854  case SelectionDAGISel::OPC_CheckOrImm:
1855    Result = !::CheckOrImm(Table, Index, N, SDISel);
1856    return Index;
1857  }
1858}
1859
1860namespace {
1861
1862struct MatchScope {
1863  /// FailIndex - If this match fails, this is the index to continue with.
1864  unsigned FailIndex;
1865
1866  /// NodeStack - The node stack when the scope was formed.
1867  SmallVector<SDValue, 4> NodeStack;
1868
1869  /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
1870  unsigned NumRecordedNodes;
1871
1872  /// NumMatchedMemRefs - The number of matched memref entries.
1873  unsigned NumMatchedMemRefs;
1874
1875  /// InputChain/InputFlag - The current chain/flag
1876  SDValue InputChain, InputFlag;
1877
1878  /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
1879  bool HasChainNodesMatched, HasFlagResultNodesMatched;
1880};
1881
1882}
1883
1884SDNode *SelectionDAGISel::
1885SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
1886                 unsigned TableSize) {
1887  // FIXME: Should these even be selected?  Handle these cases in the caller?
1888  switch (NodeToMatch->getOpcode()) {
1889  default:
1890    break;
1891  case ISD::EntryToken:       // These nodes remain the same.
1892  case ISD::BasicBlock:
1893  case ISD::Register:
1894  //case ISD::VALUETYPE:
1895  //case ISD::CONDCODE:
1896  case ISD::HANDLENODE:
1897  case ISD::MDNODE_SDNODE:
1898  case ISD::TargetConstant:
1899  case ISD::TargetConstantFP:
1900  case ISD::TargetConstantPool:
1901  case ISD::TargetFrameIndex:
1902  case ISD::TargetExternalSymbol:
1903  case ISD::TargetBlockAddress:
1904  case ISD::TargetJumpTable:
1905  case ISD::TargetGlobalTLSAddress:
1906  case ISD::TargetGlobalAddress:
1907  case ISD::TokenFactor:
1908  case ISD::CopyFromReg:
1909  case ISD::CopyToReg:
1910  case ISD::EH_LABEL:
1911    NodeToMatch->setNodeId(-1); // Mark selected.
1912    return 0;
1913  case ISD::AssertSext:
1914  case ISD::AssertZext:
1915    CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
1916                                      NodeToMatch->getOperand(0));
1917    return 0;
1918  case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
1919  case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
1920  }
1921
1922  assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
1923
1924  // Set up the node stack with NodeToMatch as the only node on the stack.
1925  SmallVector<SDValue, 8> NodeStack;
1926  SDValue N = SDValue(NodeToMatch, 0);
1927  NodeStack.push_back(N);
1928
1929  // MatchScopes - Scopes used when matching, if a match failure happens, this
1930  // indicates where to continue checking.
1931  SmallVector<MatchScope, 8> MatchScopes;
1932
1933  // RecordedNodes - This is the set of nodes that have been recorded by the
1934  // state machine.  The second value is the parent of the node, or null if the
1935  // root is recorded.
1936  SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
1937
1938  // MatchedMemRefs - This is the set of MemRef's we've seen in the input
1939  // pattern.
1940  SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
1941
1942  // These are the current input chain and flag for use when generating nodes.
1943  // Various Emit operations change these.  For example, emitting a copytoreg
1944  // uses and updates these.
1945  SDValue InputChain, InputFlag;
1946
1947  // ChainNodesMatched - If a pattern matches nodes that have input/output
1948  // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
1949  // which ones they are.  The result is captured into this list so that we can
1950  // update the chain results when the pattern is complete.
1951  SmallVector<SDNode*, 3> ChainNodesMatched;
1952  SmallVector<SDNode*, 3> FlagResultNodesMatched;
1953
1954  DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
1955        NodeToMatch->dump(CurDAG);
1956        errs() << '\n');
1957
1958  // Determine where to start the interpreter.  Normally we start at opcode #0,
1959  // but if the state machine starts with an OPC_SwitchOpcode, then we
1960  // accelerate the first lookup (which is guaranteed to be hot) with the
1961  // OpcodeOffset table.
1962  unsigned MatcherIndex = 0;
1963
1964  if (!OpcodeOffset.empty()) {
1965    // Already computed the OpcodeOffset table, just index into it.
1966    if (N.getOpcode() < OpcodeOffset.size())
1967      MatcherIndex = OpcodeOffset[N.getOpcode()];
1968    DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
1969
1970  } else if (MatcherTable[0] == OPC_SwitchOpcode) {
1971    // Otherwise, the table isn't computed, but the state machine does start
1972    // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
1973    // is the first time we're selecting an instruction.
1974    unsigned Idx = 1;
1975    while (1) {
1976      // Get the size of this case.
1977      unsigned CaseSize = MatcherTable[Idx++];
1978      if (CaseSize & 128)
1979        CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
1980      if (CaseSize == 0) break;
1981
1982      // Get the opcode, add the index to the table.
1983      uint16_t Opc = MatcherTable[Idx++];
1984      Opc |= (unsigned short)MatcherTable[Idx++] << 8;
1985      if (Opc >= OpcodeOffset.size())
1986        OpcodeOffset.resize((Opc+1)*2);
1987      OpcodeOffset[Opc] = Idx;
1988      Idx += CaseSize;
1989    }
1990
1991    // Okay, do the lookup for the first opcode.
1992    if (N.getOpcode() < OpcodeOffset.size())
1993      MatcherIndex = OpcodeOffset[N.getOpcode()];
1994  }
1995
1996  while (1) {
1997    assert(MatcherIndex < TableSize && "Invalid index");
1998#ifndef NDEBUG
1999    unsigned CurrentOpcodeIndex = MatcherIndex;
2000#endif
2001    BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
2002    switch (Opcode) {
2003    case OPC_Scope: {
2004      // Okay, the semantics of this operation are that we should push a scope
2005      // then evaluate the first child.  However, pushing a scope only to have
2006      // the first check fail (which then pops it) is inefficient.  If we can
2007      // determine immediately that the first check (or first several) will
2008      // immediately fail, don't even bother pushing a scope for them.
2009      unsigned FailIndex;
2010
2011      while (1) {
2012        unsigned NumToSkip = MatcherTable[MatcherIndex++];
2013        if (NumToSkip & 128)
2014          NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2015        // Found the end of the scope with no match.
2016        if (NumToSkip == 0) {
2017          FailIndex = 0;
2018          break;
2019        }
2020
2021        FailIndex = MatcherIndex+NumToSkip;
2022
2023        unsigned MatcherIndexOfPredicate = MatcherIndex;
2024        (void)MatcherIndexOfPredicate; // silence warning.
2025
2026        // If we can't evaluate this predicate without pushing a scope (e.g. if
2027        // it is a 'MoveParent') or if the predicate succeeds on this node, we
2028        // push the scope and evaluate the full predicate chain.
2029        bool Result;
2030        MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
2031                                              Result, *this, RecordedNodes);
2032        if (!Result)
2033          break;
2034
2035        DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
2036                     << "index " << MatcherIndexOfPredicate
2037                     << ", continuing at " << FailIndex << "\n");
2038        ++NumDAGIselRetries;
2039
2040        // Otherwise, we know that this case of the Scope is guaranteed to fail,
2041        // move to the next case.
2042        MatcherIndex = FailIndex;
2043      }
2044
2045      // If the whole scope failed to match, bail.
2046      if (FailIndex == 0) break;
2047
2048      // Push a MatchScope which indicates where to go if the first child fails
2049      // to match.
2050      MatchScope NewEntry;
2051      NewEntry.FailIndex = FailIndex;
2052      NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
2053      NewEntry.NumRecordedNodes = RecordedNodes.size();
2054      NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
2055      NewEntry.InputChain = InputChain;
2056      NewEntry.InputFlag = InputFlag;
2057      NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
2058      NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
2059      MatchScopes.push_back(NewEntry);
2060      continue;
2061    }
2062    case OPC_RecordNode: {
2063      // Remember this node, it may end up being an operand in the pattern.
2064      SDNode *Parent = 0;
2065      if (NodeStack.size() > 1)
2066        Parent = NodeStack[NodeStack.size()-2].getNode();
2067      RecordedNodes.push_back(std::make_pair(N, Parent));
2068      continue;
2069    }
2070
2071    case OPC_RecordChild0: case OPC_RecordChild1:
2072    case OPC_RecordChild2: case OPC_RecordChild3:
2073    case OPC_RecordChild4: case OPC_RecordChild5:
2074    case OPC_RecordChild6: case OPC_RecordChild7: {
2075      unsigned ChildNo = Opcode-OPC_RecordChild0;
2076      if (ChildNo >= N.getNumOperands())
2077        break;  // Match fails if out of range child #.
2078
2079      RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
2080                                             N.getNode()));
2081      continue;
2082    }
2083    case OPC_RecordMemRef:
2084      MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
2085      continue;
2086
2087    case OPC_CaptureFlagInput:
2088      // If the current node has an input flag, capture it in InputFlag.
2089      if (N->getNumOperands() != 0 &&
2090          N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
2091        InputFlag = N->getOperand(N->getNumOperands()-1);
2092      continue;
2093
2094    case OPC_MoveChild: {
2095      unsigned ChildNo = MatcherTable[MatcherIndex++];
2096      if (ChildNo >= N.getNumOperands())
2097        break;  // Match fails if out of range child #.
2098      N = N.getOperand(ChildNo);
2099      NodeStack.push_back(N);
2100      continue;
2101    }
2102
2103    case OPC_MoveParent:
2104      // Pop the current node off the NodeStack.
2105      NodeStack.pop_back();
2106      assert(!NodeStack.empty() && "Node stack imbalance!");
2107      N = NodeStack.back();
2108      continue;
2109
2110    case OPC_CheckSame:
2111      if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
2112      continue;
2113    case OPC_CheckPatternPredicate:
2114      if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
2115      continue;
2116    case OPC_CheckPredicate:
2117      if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
2118                                N.getNode()))
2119        break;
2120      continue;
2121    case OPC_CheckComplexPat: {
2122      unsigned CPNum = MatcherTable[MatcherIndex++];
2123      unsigned RecNo = MatcherTable[MatcherIndex++];
2124      assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
2125      if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
2126                               RecordedNodes[RecNo].first, CPNum,
2127                               RecordedNodes))
2128        break;
2129      continue;
2130    }
2131    case OPC_CheckOpcode:
2132      if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
2133      continue;
2134
2135    case OPC_CheckType:
2136      if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
2137      continue;
2138
2139    case OPC_SwitchOpcode: {
2140      unsigned CurNodeOpcode = N.getOpcode();
2141      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2142      unsigned CaseSize;
2143      while (1) {
2144        // Get the size of this case.
2145        CaseSize = MatcherTable[MatcherIndex++];
2146        if (CaseSize & 128)
2147          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2148        if (CaseSize == 0) break;
2149
2150        uint16_t Opc = MatcherTable[MatcherIndex++];
2151        Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2152
2153        // If the opcode matches, then we will execute this case.
2154        if (CurNodeOpcode == Opc)
2155          break;
2156
2157        // Otherwise, skip over this case.
2158        MatcherIndex += CaseSize;
2159      }
2160
2161      // If no cases matched, bail out.
2162      if (CaseSize == 0) break;
2163
2164      // Otherwise, execute the case we found.
2165      DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
2166                   << " to " << MatcherIndex << "\n");
2167      continue;
2168    }
2169
2170    case OPC_SwitchType: {
2171      MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy;
2172      unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
2173      unsigned CaseSize;
2174      while (1) {
2175        // Get the size of this case.
2176        CaseSize = MatcherTable[MatcherIndex++];
2177        if (CaseSize & 128)
2178          CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
2179        if (CaseSize == 0) break;
2180
2181        MVT::SimpleValueType CaseVT =
2182          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2183        if (CaseVT == MVT::iPTR)
2184          CaseVT = TLI.getPointerTy().SimpleTy;
2185
2186        // If the VT matches, then we will execute this case.
2187        if (CurNodeVT == CaseVT)
2188          break;
2189
2190        // Otherwise, skip over this case.
2191        MatcherIndex += CaseSize;
2192      }
2193
2194      // If no cases matched, bail out.
2195      if (CaseSize == 0) break;
2196
2197      // Otherwise, execute the case we found.
2198      DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
2199                   << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
2200      continue;
2201    }
2202    case OPC_CheckChild0Type: case OPC_CheckChild1Type:
2203    case OPC_CheckChild2Type: case OPC_CheckChild3Type:
2204    case OPC_CheckChild4Type: case OPC_CheckChild5Type:
2205    case OPC_CheckChild6Type: case OPC_CheckChild7Type:
2206      if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
2207                            Opcode-OPC_CheckChild0Type))
2208        break;
2209      continue;
2210    case OPC_CheckCondCode:
2211      if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
2212      continue;
2213    case OPC_CheckValueType:
2214      if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
2215      continue;
2216    case OPC_CheckInteger:
2217      if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
2218      continue;
2219    case OPC_CheckAndImm:
2220      if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
2221      continue;
2222    case OPC_CheckOrImm:
2223      if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
2224      continue;
2225
2226    case OPC_CheckFoldableChainNode: {
2227      assert(NodeStack.size() != 1 && "No parent node");
2228      // Verify that all intermediate nodes between the root and this one have
2229      // a single use.
2230      bool HasMultipleUses = false;
2231      for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
2232        if (!NodeStack[i].hasOneUse()) {
2233          HasMultipleUses = true;
2234          break;
2235        }
2236      if (HasMultipleUses) break;
2237
2238      // Check to see that the target thinks this is profitable to fold and that
2239      // we can fold it without inducing cycles in the graph.
2240      if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2241                              NodeToMatch) ||
2242          !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
2243                         NodeToMatch, OptLevel,
2244                         true/*We validate our own chains*/))
2245        break;
2246
2247      continue;
2248    }
2249    case OPC_EmitInteger: {
2250      MVT::SimpleValueType VT =
2251        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2252      int64_t Val = MatcherTable[MatcherIndex++];
2253      if (Val & 128)
2254        Val = GetVBR(Val, MatcherTable, MatcherIndex);
2255      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2256                              CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
2257      continue;
2258    }
2259    case OPC_EmitRegister: {
2260      MVT::SimpleValueType VT =
2261        (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2262      unsigned RegNo = MatcherTable[MatcherIndex++];
2263      RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
2264                              CurDAG->getRegister(RegNo, VT), (SDNode*)0));
2265      continue;
2266    }
2267
2268    case OPC_EmitConvertToTarget:  {
2269      // Convert from IMM/FPIMM to target version.
2270      unsigned RecNo = MatcherTable[MatcherIndex++];
2271      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2272      SDValue Imm = RecordedNodes[RecNo].first;
2273
2274      if (Imm->getOpcode() == ISD::Constant) {
2275        int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
2276        Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
2277      } else if (Imm->getOpcode() == ISD::ConstantFP) {
2278        const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
2279        Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
2280      }
2281
2282      RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
2283      continue;
2284    }
2285
2286    case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
2287    case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
2288      // These are space-optimized forms of OPC_EmitMergeInputChains.
2289      assert(InputChain.getNode() == 0 &&
2290             "EmitMergeInputChains should be the first chain producing node");
2291      assert(ChainNodesMatched.empty() &&
2292             "Should only have one EmitMergeInputChains per match");
2293
2294      // Read all of the chained nodes.
2295      unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
2296      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2297      ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2298
2299      // FIXME: What if other value results of the node have uses not matched
2300      // by this pattern?
2301      if (ChainNodesMatched.back() != NodeToMatch &&
2302          !RecordedNodes[RecNo].first.hasOneUse()) {
2303        ChainNodesMatched.clear();
2304        break;
2305      }
2306
2307      // Merge the input chains if they are not intra-pattern references.
2308      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2309
2310      if (InputChain.getNode() == 0)
2311        break;  // Failed to merge.
2312      continue;
2313    }
2314
2315    case OPC_EmitMergeInputChains: {
2316      assert(InputChain.getNode() == 0 &&
2317             "EmitMergeInputChains should be the first chain producing node");
2318      // This node gets a list of nodes we matched in the input that have
2319      // chains.  We want to token factor all of the input chains to these nodes
2320      // together.  However, if any of the input chains is actually one of the
2321      // nodes matched in this pattern, then we have an intra-match reference.
2322      // Ignore these because the newly token factored chain should not refer to
2323      // the old nodes.
2324      unsigned NumChains = MatcherTable[MatcherIndex++];
2325      assert(NumChains != 0 && "Can't TF zero chains");
2326
2327      assert(ChainNodesMatched.empty() &&
2328             "Should only have one EmitMergeInputChains per match");
2329
2330      // Read all of the chained nodes.
2331      for (unsigned i = 0; i != NumChains; ++i) {
2332        unsigned RecNo = MatcherTable[MatcherIndex++];
2333        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2334        ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2335
2336        // FIXME: What if other value results of the node have uses not matched
2337        // by this pattern?
2338        if (ChainNodesMatched.back() != NodeToMatch &&
2339            !RecordedNodes[RecNo].first.hasOneUse()) {
2340          ChainNodesMatched.clear();
2341          break;
2342        }
2343      }
2344
2345      // If the inner loop broke out, the match fails.
2346      if (ChainNodesMatched.empty())
2347        break;
2348
2349      // Merge the input chains if they are not intra-pattern references.
2350      InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
2351
2352      if (InputChain.getNode() == 0)
2353        break;  // Failed to merge.
2354
2355      continue;
2356    }
2357
2358    case OPC_EmitCopyToReg: {
2359      unsigned RecNo = MatcherTable[MatcherIndex++];
2360      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2361      unsigned DestPhysReg = MatcherTable[MatcherIndex++];
2362
2363      if (InputChain.getNode() == 0)
2364        InputChain = CurDAG->getEntryNode();
2365
2366      InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
2367                                        DestPhysReg, RecordedNodes[RecNo].first,
2368                                        InputFlag);
2369
2370      InputFlag = InputChain.getValue(1);
2371      continue;
2372    }
2373
2374    case OPC_EmitNodeXForm: {
2375      unsigned XFormNo = MatcherTable[MatcherIndex++];
2376      unsigned RecNo = MatcherTable[MatcherIndex++];
2377      assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2378      SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
2379      RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
2380      continue;
2381    }
2382
2383    case OPC_EmitNode:
2384    case OPC_MorphNodeTo: {
2385      uint16_t TargetOpc = MatcherTable[MatcherIndex++];
2386      TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
2387      unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
2388      // Get the result VT list.
2389      unsigned NumVTs = MatcherTable[MatcherIndex++];
2390      SmallVector<EVT, 4> VTs;
2391      for (unsigned i = 0; i != NumVTs; ++i) {
2392        MVT::SimpleValueType VT =
2393          (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
2394        if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
2395        VTs.push_back(VT);
2396      }
2397
2398      if (EmitNodeInfo & OPFL_Chain)
2399        VTs.push_back(MVT::Other);
2400      if (EmitNodeInfo & OPFL_FlagOutput)
2401        VTs.push_back(MVT::Flag);
2402
2403      // This is hot code, so optimize the two most common cases of 1 and 2
2404      // results.
2405      SDVTList VTList;
2406      if (VTs.size() == 1)
2407        VTList = CurDAG->getVTList(VTs[0]);
2408      else if (VTs.size() == 2)
2409        VTList = CurDAG->getVTList(VTs[0], VTs[1]);
2410      else
2411        VTList = CurDAG->getVTList(VTs.data(), VTs.size());
2412
2413      // Get the operand list.
2414      unsigned NumOps = MatcherTable[MatcherIndex++];
2415      SmallVector<SDValue, 8> Ops;
2416      for (unsigned i = 0; i != NumOps; ++i) {
2417        unsigned RecNo = MatcherTable[MatcherIndex++];
2418        if (RecNo & 128)
2419          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2420
2421        assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
2422        Ops.push_back(RecordedNodes[RecNo].first);
2423      }
2424
2425      // If there are variadic operands to add, handle them now.
2426      if (EmitNodeInfo & OPFL_VariadicInfo) {
2427        // Determine the start index to copy from.
2428        unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
2429        FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
2430        assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
2431               "Invalid variadic node");
2432        // Copy all of the variadic operands, not including a potential flag
2433        // input.
2434        for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
2435             i != e; ++i) {
2436          SDValue V = NodeToMatch->getOperand(i);
2437          if (V.getValueType() == MVT::Flag) break;
2438          Ops.push_back(V);
2439        }
2440      }
2441
2442      // If this has chain/flag inputs, add them.
2443      if (EmitNodeInfo & OPFL_Chain)
2444        Ops.push_back(InputChain);
2445      if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
2446        Ops.push_back(InputFlag);
2447
2448      // Create the node.
2449      SDNode *Res = 0;
2450      if (Opcode != OPC_MorphNodeTo) {
2451        // If this is a normal EmitNode command, just create the new node and
2452        // add the results to the RecordedNodes list.
2453        Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
2454                                     VTList, Ops.data(), Ops.size());
2455
2456        // Add all the non-flag/non-chain results to the RecordedNodes list.
2457        for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
2458          if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
2459          RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
2460                                                             (SDNode*) 0));
2461        }
2462
2463      } else {
2464        Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
2465                        EmitNodeInfo);
2466      }
2467
2468      // If the node had chain/flag results, update our notion of the current
2469      // chain and flag.
2470      if (EmitNodeInfo & OPFL_FlagOutput) {
2471        InputFlag = SDValue(Res, VTs.size()-1);
2472        if (EmitNodeInfo & OPFL_Chain)
2473          InputChain = SDValue(Res, VTs.size()-2);
2474      } else if (EmitNodeInfo & OPFL_Chain)
2475        InputChain = SDValue(Res, VTs.size()-1);
2476
2477      // If the OPFL_MemRefs flag is set on this node, slap all of the
2478      // accumulated memrefs onto it.
2479      //
2480      // FIXME: This is vastly incorrect for patterns with multiple outputs
2481      // instructions that access memory and for ComplexPatterns that match
2482      // loads.
2483      if (EmitNodeInfo & OPFL_MemRefs) {
2484        MachineSDNode::mmo_iterator MemRefs =
2485          MF->allocateMemRefsArray(MatchedMemRefs.size());
2486        std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
2487        cast<MachineSDNode>(Res)
2488          ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
2489      }
2490
2491      DEBUG(errs() << "  "
2492                   << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
2493                   << " node: "; Res->dump(CurDAG); errs() << "\n");
2494
2495      // If this was a MorphNodeTo then we're completely done!
2496      if (Opcode == OPC_MorphNodeTo) {
2497        // Update chain and flag uses.
2498        UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2499                             InputFlag, FlagResultNodesMatched, true);
2500        return Res;
2501      }
2502
2503      continue;
2504    }
2505
2506    case OPC_MarkFlagResults: {
2507      unsigned NumNodes = MatcherTable[MatcherIndex++];
2508
2509      // Read and remember all the flag-result nodes.
2510      for (unsigned i = 0; i != NumNodes; ++i) {
2511        unsigned RecNo = MatcherTable[MatcherIndex++];
2512        if (RecNo & 128)
2513          RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
2514
2515        assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
2516        FlagResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
2517      }
2518      continue;
2519    }
2520
2521    case OPC_CompleteMatch: {
2522      // The match has been completed, and any new nodes (if any) have been
2523      // created.  Patch up references to the matched dag to use the newly
2524      // created nodes.
2525      unsigned NumResults = MatcherTable[MatcherIndex++];
2526
2527      for (unsigned i = 0; i != NumResults; ++i) {
2528        unsigned ResSlot = MatcherTable[MatcherIndex++];
2529        if (ResSlot & 128)
2530          ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
2531
2532        assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
2533        SDValue Res = RecordedNodes[ResSlot].first;
2534
2535        assert(i < NodeToMatch->getNumValues() &&
2536               NodeToMatch->getValueType(i) != MVT::Other &&
2537               NodeToMatch->getValueType(i) != MVT::Flag &&
2538               "Invalid number of results to complete!");
2539        assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
2540                NodeToMatch->getValueType(i) == MVT::iPTR ||
2541                Res.getValueType() == MVT::iPTR ||
2542                NodeToMatch->getValueType(i).getSizeInBits() ==
2543                    Res.getValueType().getSizeInBits()) &&
2544               "invalid replacement");
2545        CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
2546      }
2547
2548      // If the root node defines a flag, add it to the flag nodes to update
2549      // list.
2550      if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
2551        FlagResultNodesMatched.push_back(NodeToMatch);
2552
2553      // Update chain and flag uses.
2554      UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
2555                           InputFlag, FlagResultNodesMatched, false);
2556
2557      assert(NodeToMatch->use_empty() &&
2558             "Didn't replace all uses of the node?");
2559
2560      // FIXME: We just return here, which interacts correctly with SelectRoot
2561      // above.  We should fix this to not return an SDNode* anymore.
2562      return 0;
2563    }
2564    }
2565
2566    // If the code reached this point, then the match failed.  See if there is
2567    // another child to try in the current 'Scope', otherwise pop it until we
2568    // find a case to check.
2569    DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
2570    ++NumDAGIselRetries;
2571    while (1) {
2572      if (MatchScopes.empty()) {
2573        CannotYetSelect(NodeToMatch);
2574        return 0;
2575      }
2576
2577      // Restore the interpreter state back to the point where the scope was
2578      // formed.
2579      MatchScope &LastScope = MatchScopes.back();
2580      RecordedNodes.resize(LastScope.NumRecordedNodes);
2581      NodeStack.clear();
2582      NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
2583      N = NodeStack.back();
2584
2585      if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
2586        MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
2587      MatcherIndex = LastScope.FailIndex;
2588
2589      DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
2590
2591      InputChain = LastScope.InputChain;
2592      InputFlag = LastScope.InputFlag;
2593      if (!LastScope.HasChainNodesMatched)
2594        ChainNodesMatched.clear();
2595      if (!LastScope.HasFlagResultNodesMatched)
2596        FlagResultNodesMatched.clear();
2597
2598      // Check to see what the offset is at the new MatcherIndex.  If it is zero
2599      // we have reached the end of this scope, otherwise we have another child
2600      // in the current scope to try.
2601      unsigned NumToSkip = MatcherTable[MatcherIndex++];
2602      if (NumToSkip & 128)
2603        NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
2604
2605      // If we have another child in this scope to match, update FailIndex and
2606      // try it.
2607      if (NumToSkip != 0) {
2608        LastScope.FailIndex = MatcherIndex+NumToSkip;
2609        break;
2610      }
2611
2612      // End of this scope, pop it and try the next child in the containing
2613      // scope.
2614      MatchScopes.pop_back();
2615    }
2616  }
2617}
2618
2619
2620
2621void SelectionDAGISel::CannotYetSelect(SDNode *N) {
2622  std::string msg;
2623  raw_string_ostream Msg(msg);
2624  Msg << "Cannot yet select: ";
2625
2626  if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
2627      N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
2628      N->getOpcode() != ISD::INTRINSIC_VOID) {
2629    N->printrFull(Msg, CurDAG);
2630  } else {
2631    bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
2632    unsigned iid =
2633      cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
2634    if (iid < Intrinsic::num_intrinsics)
2635      Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
2636    else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
2637      Msg << "target intrinsic %" << TII->getName(iid);
2638    else
2639      Msg << "unknown intrinsic #" << iid;
2640  }
2641  report_fatal_error(Msg.str());
2642}
2643
2644char SelectionDAGISel::ID = 0;
2645