TargetLowering.cpp revision 8d51ab3e4bb3f45ab8818519c5d27154cecf8b72
1//===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the TargetLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Target/TargetAsmInfo.h"
15#include "llvm/Target/TargetLowering.h"
16#include "llvm/Target/TargetSubtarget.h"
17#include "llvm/Target/TargetData.h"
18#include "llvm/Target/TargetMachine.h"
19#include "llvm/Target/TargetRegisterInfo.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/MathExtras.h"
26using namespace llvm;
27
28/// InitLibcallNames - Set default libcall names.
29///
30static void InitLibcallNames(const char **Names) {
31  Names[RTLIB::SHL_I32] = "__ashlsi3";
32  Names[RTLIB::SHL_I64] = "__ashldi3";
33  Names[RTLIB::SRL_I32] = "__lshrsi3";
34  Names[RTLIB::SRL_I64] = "__lshrdi3";
35  Names[RTLIB::SRA_I32] = "__ashrsi3";
36  Names[RTLIB::SRA_I64] = "__ashrdi3";
37  Names[RTLIB::MUL_I32] = "__mulsi3";
38  Names[RTLIB::MUL_I64] = "__muldi3";
39  Names[RTLIB::SDIV_I32] = "__divsi3";
40  Names[RTLIB::SDIV_I64] = "__divdi3";
41  Names[RTLIB::UDIV_I32] = "__udivsi3";
42  Names[RTLIB::UDIV_I64] = "__udivdi3";
43  Names[RTLIB::SREM_I32] = "__modsi3";
44  Names[RTLIB::SREM_I64] = "__moddi3";
45  Names[RTLIB::UREM_I32] = "__umodsi3";
46  Names[RTLIB::UREM_I64] = "__umoddi3";
47  Names[RTLIB::NEG_I32] = "__negsi2";
48  Names[RTLIB::NEG_I64] = "__negdi2";
49  Names[RTLIB::ADD_F32] = "__addsf3";
50  Names[RTLIB::ADD_F64] = "__adddf3";
51  Names[RTLIB::ADD_F80] = "__addxf3";
52  Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
53  Names[RTLIB::SUB_F32] = "__subsf3";
54  Names[RTLIB::SUB_F64] = "__subdf3";
55  Names[RTLIB::SUB_F80] = "__subxf3";
56  Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
57  Names[RTLIB::MUL_F32] = "__mulsf3";
58  Names[RTLIB::MUL_F64] = "__muldf3";
59  Names[RTLIB::MUL_F80] = "__mulxf3";
60  Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
61  Names[RTLIB::DIV_F32] = "__divsf3";
62  Names[RTLIB::DIV_F64] = "__divdf3";
63  Names[RTLIB::DIV_F80] = "__divxf3";
64  Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
65  Names[RTLIB::REM_F32] = "fmodf";
66  Names[RTLIB::REM_F64] = "fmod";
67  Names[RTLIB::REM_F80] = "fmodl";
68  Names[RTLIB::REM_PPCF128] = "fmodl";
69  Names[RTLIB::POWI_F32] = "__powisf2";
70  Names[RTLIB::POWI_F64] = "__powidf2";
71  Names[RTLIB::POWI_F80] = "__powixf2";
72  Names[RTLIB::POWI_PPCF128] = "__powitf2";
73  Names[RTLIB::SQRT_F32] = "sqrtf";
74  Names[RTLIB::SQRT_F64] = "sqrt";
75  Names[RTLIB::SQRT_F80] = "sqrtl";
76  Names[RTLIB::SQRT_PPCF128] = "sqrtl";
77  Names[RTLIB::SIN_F32] = "sinf";
78  Names[RTLIB::SIN_F64] = "sin";
79  Names[RTLIB::SIN_F80] = "sinl";
80  Names[RTLIB::SIN_PPCF128] = "sinl";
81  Names[RTLIB::COS_F32] = "cosf";
82  Names[RTLIB::COS_F64] = "cos";
83  Names[RTLIB::COS_F80] = "cosl";
84  Names[RTLIB::COS_PPCF128] = "cosl";
85  Names[RTLIB::POW_F32] = "powf";
86  Names[RTLIB::POW_F64] = "pow";
87  Names[RTLIB::POW_F80] = "powl";
88  Names[RTLIB::POW_PPCF128] = "powl";
89  Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
90  Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
91  Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
92  Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
93  Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
94  Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
95  Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
96  Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
97  Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
98  Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
99  Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
100  Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
101  Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
102  Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
103  Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
104  Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
105  Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
106  Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
107  Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
108  Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
109  Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
110  Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
111  Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
112  Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
113  Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
114  Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
115  Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
116  Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
117  Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
118  Names[RTLIB::OEQ_F32] = "__eqsf2";
119  Names[RTLIB::OEQ_F64] = "__eqdf2";
120  Names[RTLIB::UNE_F32] = "__nesf2";
121  Names[RTLIB::UNE_F64] = "__nedf2";
122  Names[RTLIB::OGE_F32] = "__gesf2";
123  Names[RTLIB::OGE_F64] = "__gedf2";
124  Names[RTLIB::OLT_F32] = "__ltsf2";
125  Names[RTLIB::OLT_F64] = "__ltdf2";
126  Names[RTLIB::OLE_F32] = "__lesf2";
127  Names[RTLIB::OLE_F64] = "__ledf2";
128  Names[RTLIB::OGT_F32] = "__gtsf2";
129  Names[RTLIB::OGT_F64] = "__gtdf2";
130  Names[RTLIB::UO_F32] = "__unordsf2";
131  Names[RTLIB::UO_F64] = "__unorddf2";
132  Names[RTLIB::O_F32] = "__unordsf2";
133  Names[RTLIB::O_F64] = "__unorddf2";
134}
135
136/// InitCmpLibcallCCs - Set default comparison libcall CC.
137///
138static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
139  memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
140  CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
141  CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
142  CCs[RTLIB::UNE_F32] = ISD::SETNE;
143  CCs[RTLIB::UNE_F64] = ISD::SETNE;
144  CCs[RTLIB::OGE_F32] = ISD::SETGE;
145  CCs[RTLIB::OGE_F64] = ISD::SETGE;
146  CCs[RTLIB::OLT_F32] = ISD::SETLT;
147  CCs[RTLIB::OLT_F64] = ISD::SETLT;
148  CCs[RTLIB::OLE_F32] = ISD::SETLE;
149  CCs[RTLIB::OLE_F64] = ISD::SETLE;
150  CCs[RTLIB::OGT_F32] = ISD::SETGT;
151  CCs[RTLIB::OGT_F64] = ISD::SETGT;
152  CCs[RTLIB::UO_F32] = ISD::SETNE;
153  CCs[RTLIB::UO_F64] = ISD::SETNE;
154  CCs[RTLIB::O_F32] = ISD::SETEQ;
155  CCs[RTLIB::O_F64] = ISD::SETEQ;
156}
157
158TargetLowering::TargetLowering(TargetMachine &tm)
159  : TM(tm), TD(TM.getTargetData()) {
160  assert(ISD::BUILTIN_OP_END <= 156 &&
161         "Fixed size array in TargetLowering is not large enough!");
162  // All operations default to being supported.
163  memset(OpActions, 0, sizeof(OpActions));
164  memset(LoadXActions, 0, sizeof(LoadXActions));
165  memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
166  memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
167  memset(ConvertActions, 0, sizeof(ConvertActions));
168
169  // Set default actions for various operations.
170  for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
171    // Default all indexed load / store to expand.
172    for (unsigned IM = (unsigned)ISD::PRE_INC;
173         IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
174      setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand);
175      setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand);
176    }
177
178    // These operations default to expand.
179    setOperationAction(ISD::FGETSIGN, (MVT::ValueType)VT, Expand);
180  }
181
182  // Most targets ignore the @llvm.prefetch intrinsic.
183  setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
184
185  // ConstantFP nodes default to expand.  Targets can either change this to
186  // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
187  // to optimize expansions for certain constants.
188  setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
189  setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
190  setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
191
192  // Default ISD::TRAP to expand (which turns it into abort).
193  setOperationAction(ISD::TRAP, MVT::Other, Expand);
194
195  IsLittleEndian = TD->isLittleEndian();
196  UsesGlobalOffsetTable = false;
197  ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
198  ShiftAmtHandling = Undefined;
199  memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
200  memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
201  maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
202  allowUnalignedMemoryAccesses = false;
203  UseUnderscoreSetJmp = false;
204  UseUnderscoreLongJmp = false;
205  SelectIsExpensive = false;
206  IntDivIsCheap = false;
207  Pow2DivIsCheap = false;
208  StackPointerRegisterToSaveRestore = 0;
209  ExceptionPointerRegister = 0;
210  ExceptionSelectorRegister = 0;
211  SetCCResultContents = UndefinedSetCCResult;
212  SchedPreferenceInfo = SchedulingForLatency;
213  JumpBufSize = 0;
214  JumpBufAlignment = 0;
215  IfCvtBlockSizeLimit = 2;
216  IfCvtDupBlockSizeLimit = 0;
217  PrefLoopAlignment = 0;
218
219  InitLibcallNames(LibcallRoutineNames);
220  InitCmpLibcallCCs(CmpLibcallCCs);
221
222  // Tell Legalize whether the assembler supports DEBUG_LOC.
223  if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
224    setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
225}
226
227TargetLowering::~TargetLowering() {}
228
229
230SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
231  assert(getSubtarget() && "Subtarget not defined");
232  SDOperand ChainOp = Op.getOperand(0);
233  SDOperand DestOp = Op.getOperand(1);
234  SDOperand SourceOp = Op.getOperand(2);
235  SDOperand CountOp = Op.getOperand(3);
236  SDOperand AlignOp = Op.getOperand(4);
237  SDOperand AlwaysInlineOp = Op.getOperand(5);
238
239  bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
240  unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
241  if (Align == 0) Align = 1;
242
243  // If size is unknown, call memcpy.
244  ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
245  if (!I) {
246    assert(!AlwaysInline && "Cannot inline copy of unknown size");
247    return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
248  }
249
250  // If not DWORD aligned or if size is more than threshold, then call memcpy.
251  // The libc version is likely to be faster for the following cases. It can
252  // use the address value and run time information about the CPU.
253  // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
254  unsigned Size = I->getValue();
255  if (AlwaysInline ||
256      (Size <= getSubtarget()->getMaxInlineSizeThreshold() &&
257       (Align & 3) == 0))
258    return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
259  return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
260}
261
262
263SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain,
264                                          SDOperand Dest,
265                                          SDOperand Source,
266                                          SDOperand Count,
267                                          SelectionDAG &DAG) {
268  MVT::ValueType IntPtr = getPointerTy();
269  TargetLowering::ArgListTy Args;
270  TargetLowering::ArgListEntry Entry;
271  Entry.Ty = getTargetData()->getIntPtrType();
272  Entry.Node = Dest; Args.push_back(Entry);
273  Entry.Node = Source; Args.push_back(Entry);
274  Entry.Node = Count; Args.push_back(Entry);
275  std::pair<SDOperand,SDOperand> CallResult =
276      LowerCallTo(Chain, Type::VoidTy, false, false, false, CallingConv::C,
277                  false, DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
278  return CallResult.second;
279}
280
281
282/// computeRegisterProperties - Once all of the register classes are added,
283/// this allows us to compute derived properties we expose.
284void TargetLowering::computeRegisterProperties() {
285  assert(MVT::LAST_VALUETYPE <= 32 &&
286         "Too many value types for ValueTypeActions to hold!");
287
288  // Everything defaults to needing one register.
289  for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
290    NumRegistersForVT[i] = 1;
291    RegisterTypeForVT[i] = TransformToType[i] = i;
292  }
293  // ...except isVoid, which doesn't need any registers.
294  NumRegistersForVT[MVT::isVoid] = 0;
295
296  // Find the largest integer register class.
297  unsigned LargestIntReg = MVT::i128;
298  for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
299    assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
300
301  // Every integer value type larger than this largest register takes twice as
302  // many registers to represent as the previous ValueType.
303  for (MVT::ValueType ExpandedReg = LargestIntReg + 1;
304       MVT::isInteger(ExpandedReg); ++ExpandedReg) {
305    NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
306    RegisterTypeForVT[ExpandedReg] = LargestIntReg;
307    TransformToType[ExpandedReg] = ExpandedReg - 1;
308    ValueTypeActions.setTypeAction(ExpandedReg, Expand);
309  }
310
311  // Inspect all of the ValueType's smaller than the largest integer
312  // register to see which ones need promotion.
313  MVT::ValueType LegalIntReg = LargestIntReg;
314  for (MVT::ValueType IntReg = LargestIntReg - 1;
315       IntReg >= MVT::i1; --IntReg) {
316    if (isTypeLegal(IntReg)) {
317      LegalIntReg = IntReg;
318    } else {
319      RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg;
320      ValueTypeActions.setTypeAction(IntReg, Promote);
321    }
322  }
323
324  // ppcf128 type is really two f64's.
325  if (!isTypeLegal(MVT::ppcf128)) {
326    NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
327    RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
328    TransformToType[MVT::ppcf128] = MVT::f64;
329    ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
330  }
331
332  // Decide how to handle f64. If the target does not have native f64 support,
333  // expand it to i64 and we will be generating soft float library calls.
334  if (!isTypeLegal(MVT::f64)) {
335    NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
336    RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
337    TransformToType[MVT::f64] = MVT::i64;
338    ValueTypeActions.setTypeAction(MVT::f64, Expand);
339  }
340
341  // Decide how to handle f32. If the target does not have native support for
342  // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
343  if (!isTypeLegal(MVT::f32)) {
344    if (isTypeLegal(MVT::f64)) {
345      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
346      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
347      TransformToType[MVT::f32] = MVT::f64;
348      ValueTypeActions.setTypeAction(MVT::f32, Promote);
349    } else {
350      NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
351      RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
352      TransformToType[MVT::f32] = MVT::i32;
353      ValueTypeActions.setTypeAction(MVT::f32, Expand);
354    }
355  }
356
357  // Loop over all of the vector value types to see which need transformations.
358  for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE;
359       i <= MVT::LAST_VECTOR_VALUETYPE; ++i) {
360    if (!isTypeLegal(i)) {
361      MVT::ValueType IntermediateVT, RegisterVT;
362      unsigned NumIntermediates;
363      NumRegistersForVT[i] =
364        getVectorTypeBreakdown(i,
365                               IntermediateVT, NumIntermediates,
366                               RegisterVT);
367      RegisterTypeForVT[i] = RegisterVT;
368      TransformToType[i] = MVT::Other; // this isn't actually used
369      ValueTypeActions.setTypeAction(i, Expand);
370    }
371  }
372}
373
374const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
375  return NULL;
376}
377
378
379MVT::ValueType
380TargetLowering::getSetCCResultType(const SDOperand &) const {
381  return getValueType(TD->getIntPtrType());
382}
383
384
385/// getVectorTypeBreakdown - Vector types are broken down into some number of
386/// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
387/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
388/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
389///
390/// This method returns the number of registers needed, and the VT for each
391/// register.  It also returns the VT and quantity of the intermediate values
392/// before they are promoted/expanded.
393///
394unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,
395                                                MVT::ValueType &IntermediateVT,
396                                                unsigned &NumIntermediates,
397                                      MVT::ValueType &RegisterVT) const {
398  // Figure out the right, legal destination reg to copy into.
399  unsigned NumElts = MVT::getVectorNumElements(VT);
400  MVT::ValueType EltTy = MVT::getVectorElementType(VT);
401
402  unsigned NumVectorRegs = 1;
403
404  // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
405  // could break down into LHS/RHS like LegalizeDAG does.
406  if (!isPowerOf2_32(NumElts)) {
407    NumVectorRegs = NumElts;
408    NumElts = 1;
409  }
410
411  // Divide the input until we get to a supported size.  This will always
412  // end with a scalar if the target doesn't support vectors.
413  while (NumElts > 1 &&
414         !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) {
415    NumElts >>= 1;
416    NumVectorRegs <<= 1;
417  }
418
419  NumIntermediates = NumVectorRegs;
420
421  MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts);
422  if (!isTypeLegal(NewVT))
423    NewVT = EltTy;
424  IntermediateVT = NewVT;
425
426  MVT::ValueType DestVT = getTypeToTransformTo(NewVT);
427  RegisterVT = DestVT;
428  if (DestVT < NewVT) {
429    // Value is expanded, e.g. i64 -> i16.
430    return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT));
431  } else {
432    // Otherwise, promotion or legal types use the same number of registers as
433    // the vector decimated to the appropriate level.
434    return NumVectorRegs;
435  }
436
437  return 1;
438}
439
440/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
441/// function arguments in the caller parameter area.  This is the actual
442/// alignment, not its logarithm.
443unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
444  return TD->getCallFrameTypeAlignment(Ty);
445}
446
447SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
448                                                   SelectionDAG &DAG) const {
449  if (usesGlobalOffsetTable())
450    return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
451  return Table;
452}
453
454//===----------------------------------------------------------------------===//
455//  Optimization Methods
456//===----------------------------------------------------------------------===//
457
458/// ShrinkDemandedConstant - Check to see if the specified operand of the
459/// specified instruction is a constant integer.  If so, check to see if there
460/// are any bits set in the constant that are not demanded.  If so, shrink the
461/// constant and return true.
462bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
463                                                        const APInt &Demanded) {
464  // FIXME: ISD::SELECT, ISD::SELECT_CC
465  switch(Op.getOpcode()) {
466  default: break;
467  case ISD::AND:
468  case ISD::OR:
469  case ISD::XOR:
470    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
471      if (C->getAPIntValue().intersects(~Demanded)) {
472        MVT::ValueType VT = Op.getValueType();
473        SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
474                                    DAG.getConstant(Demanded &
475                                                      C->getAPIntValue(),
476                                                    VT));
477        return CombineTo(Op, New);
478      }
479    break;
480  }
481  return false;
482}
483
484/// SimplifyDemandedBits - Look at Op.  At this point, we know that only the
485/// DemandedMask bits of the result of Op are ever used downstream.  If we can
486/// use this information to simplify Op, create a new simplified DAG node and
487/// return true, returning the original and new nodes in Old and New. Otherwise,
488/// analyze the expression and return a mask of KnownOne and KnownZero bits for
489/// the expression (used to simplify the caller).  The KnownZero/One bits may
490/// only be accurate for those bits in the DemandedMask.
491bool TargetLowering::SimplifyDemandedBits(SDOperand Op,
492                                          const APInt &DemandedMask,
493                                          APInt &KnownZero,
494                                          APInt &KnownOne,
495                                          TargetLoweringOpt &TLO,
496                                          unsigned Depth) const {
497  unsigned BitWidth = DemandedMask.getBitWidth();
498  assert(Op.getValueSizeInBits() == BitWidth &&
499         "Mask size mismatches value type size!");
500  APInt NewMask = DemandedMask;
501
502  // Don't know anything.
503  KnownZero = KnownOne = APInt(BitWidth, 0);
504
505  // Other users may use these bits.
506  if (!Op.Val->hasOneUse()) {
507    if (Depth != 0) {
508      // If not at the root, Just compute the KnownZero/KnownOne bits to
509      // simplify things downstream.
510      TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
511      return false;
512    }
513    // If this is the root being simplified, allow it to have multiple uses,
514    // just set the NewMask to all bits.
515    NewMask = APInt::getAllOnesValue(BitWidth);
516  } else if (DemandedMask == 0) {
517    // Not demanding any bits from Op.
518    if (Op.getOpcode() != ISD::UNDEF)
519      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
520    return false;
521  } else if (Depth == 6) {        // Limit search depth.
522    return false;
523  }
524
525  APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
526  switch (Op.getOpcode()) {
527  case ISD::Constant:
528    // We know all of the bits for a constant!
529    KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
530    KnownZero = ~KnownOne & NewMask;
531    return false;   // Don't fall through, will infinitely loop.
532  case ISD::AND:
533    // If the RHS is a constant, check to see if the LHS would be zero without
534    // using the bits from the RHS.  Below, we use knowledge about the RHS to
535    // simplify the LHS, here we're using information from the LHS to simplify
536    // the RHS.
537    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
538      APInt LHSZero, LHSOne;
539      TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
540                                LHSZero, LHSOne, Depth+1);
541      // If the LHS already has zeros where RHSC does, this and is dead.
542      if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
543        return TLO.CombineTo(Op, Op.getOperand(0));
544      // If any of the set bits in the RHS are known zero on the LHS, shrink
545      // the constant.
546      if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
547        return true;
548    }
549
550    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
551                             KnownOne, TLO, Depth+1))
552      return true;
553    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
554    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
555                             KnownZero2, KnownOne2, TLO, Depth+1))
556      return true;
557    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
558
559    // If all of the demanded bits are known one on one side, return the other.
560    // These bits cannot contribute to the result of the 'and'.
561    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
562      return TLO.CombineTo(Op, Op.getOperand(0));
563    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
564      return TLO.CombineTo(Op, Op.getOperand(1));
565    // If all of the demanded bits in the inputs are known zeros, return zero.
566    if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
567      return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
568    // If the RHS is a constant, see if we can simplify it.
569    if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
570      return true;
571
572    // Output known-1 bits are only known if set in both the LHS & RHS.
573    KnownOne &= KnownOne2;
574    // Output known-0 are known to be clear if zero in either the LHS | RHS.
575    KnownZero |= KnownZero2;
576    break;
577  case ISD::OR:
578    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
579                             KnownOne, TLO, Depth+1))
580      return true;
581    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
582    if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
583                             KnownZero2, KnownOne2, TLO, Depth+1))
584      return true;
585    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
586
587    // If all of the demanded bits are known zero on one side, return the other.
588    // These bits cannot contribute to the result of the 'or'.
589    if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
590      return TLO.CombineTo(Op, Op.getOperand(0));
591    if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
592      return TLO.CombineTo(Op, Op.getOperand(1));
593    // If all of the potentially set bits on one side are known to be set on
594    // the other side, just use the 'other' side.
595    if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
596      return TLO.CombineTo(Op, Op.getOperand(0));
597    if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
598      return TLO.CombineTo(Op, Op.getOperand(1));
599    // If the RHS is a constant, see if we can simplify it.
600    if (TLO.ShrinkDemandedConstant(Op, NewMask))
601      return true;
602
603    // Output known-0 bits are only known if clear in both the LHS & RHS.
604    KnownZero &= KnownZero2;
605    // Output known-1 are known to be set if set in either the LHS | RHS.
606    KnownOne |= KnownOne2;
607    break;
608  case ISD::XOR:
609    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
610                             KnownOne, TLO, Depth+1))
611      return true;
612    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
613    if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
614                             KnownOne2, TLO, Depth+1))
615      return true;
616    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
617
618    // If all of the demanded bits are known zero on one side, return the other.
619    // These bits cannot contribute to the result of the 'xor'.
620    if ((KnownZero & NewMask) == NewMask)
621      return TLO.CombineTo(Op, Op.getOperand(0));
622    if ((KnownZero2 & NewMask) == NewMask)
623      return TLO.CombineTo(Op, Op.getOperand(1));
624
625    // If all of the unknown bits are known to be zero on one side or the other
626    // (but not both) turn this into an *inclusive* or.
627    //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
628    if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
629      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
630                                               Op.getOperand(0),
631                                               Op.getOperand(1)));
632
633    // Output known-0 bits are known if clear or set in both the LHS & RHS.
634    KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
635    // Output known-1 are known to be set if set in only one of the LHS, RHS.
636    KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
637
638    // If all of the demanded bits on one side are known, and all of the set
639    // bits on that side are also known to be set on the other side, turn this
640    // into an AND, as we know the bits will be cleared.
641    //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
642    if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
643      if ((KnownOne & KnownOne2) == KnownOne) {
644        MVT::ValueType VT = Op.getValueType();
645        SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
646        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
647                                                 ANDC));
648      }
649    }
650
651    // If the RHS is a constant, see if we can simplify it.
652    // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
653    if (TLO.ShrinkDemandedConstant(Op, NewMask))
654      return true;
655
656    KnownZero = KnownZeroOut;
657    KnownOne  = KnownOneOut;
658    break;
659  case ISD::SELECT:
660    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
661                             KnownOne, TLO, Depth+1))
662      return true;
663    if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
664                             KnownOne2, TLO, Depth+1))
665      return true;
666    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
667    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
668
669    // If the operands are constants, see if we can simplify them.
670    if (TLO.ShrinkDemandedConstant(Op, NewMask))
671      return true;
672
673    // Only known if known in both the LHS and RHS.
674    KnownOne &= KnownOne2;
675    KnownZero &= KnownZero2;
676    break;
677  case ISD::SELECT_CC:
678    if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
679                             KnownOne, TLO, Depth+1))
680      return true;
681    if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
682                             KnownOne2, TLO, Depth+1))
683      return true;
684    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
685    assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
686
687    // If the operands are constants, see if we can simplify them.
688    if (TLO.ShrinkDemandedConstant(Op, NewMask))
689      return true;
690
691    // Only known if known in both the LHS and RHS.
692    KnownOne &= KnownOne2;
693    KnownZero &= KnownZero2;
694    break;
695  case ISD::SHL:
696    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
697      unsigned ShAmt = SA->getValue();
698      SDOperand InOp = Op.getOperand(0);
699
700      // If the shift count is an invalid immediate, don't do anything.
701      if (ShAmt >= BitWidth)
702        break;
703
704      // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
705      // single shift.  We can do this if the bottom bits (which are shifted
706      // out) are never demanded.
707      if (InOp.getOpcode() == ISD::SRL &&
708          isa<ConstantSDNode>(InOp.getOperand(1))) {
709        if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
710          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
711          unsigned Opc = ISD::SHL;
712          int Diff = ShAmt-C1;
713          if (Diff < 0) {
714            Diff = -Diff;
715            Opc = ISD::SRL;
716          }
717
718          SDOperand NewSA =
719            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
720          MVT::ValueType VT = Op.getValueType();
721          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
722                                                   InOp.getOperand(0), NewSA));
723        }
724      }
725
726      if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
727                               KnownZero, KnownOne, TLO, Depth+1))
728        return true;
729      KnownZero <<= SA->getValue();
730      KnownOne  <<= SA->getValue();
731      // low bits known zero.
732      KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
733    }
734    break;
735  case ISD::SRL:
736    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
737      MVT::ValueType VT = Op.getValueType();
738      unsigned ShAmt = SA->getValue();
739      unsigned VTSize = MVT::getSizeInBits(VT);
740      SDOperand InOp = Op.getOperand(0);
741
742      // If the shift count is an invalid immediate, don't do anything.
743      if (ShAmt >= BitWidth)
744        break;
745
746      // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
747      // single shift.  We can do this if the top bits (which are shifted out)
748      // are never demanded.
749      if (InOp.getOpcode() == ISD::SHL &&
750          isa<ConstantSDNode>(InOp.getOperand(1))) {
751        if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
752          unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
753          unsigned Opc = ISD::SRL;
754          int Diff = ShAmt-C1;
755          if (Diff < 0) {
756            Diff = -Diff;
757            Opc = ISD::SHL;
758          }
759
760          SDOperand NewSA =
761            TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
762          return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
763                                                   InOp.getOperand(0), NewSA));
764        }
765      }
766
767      // Compute the new bits that are at the top now.
768      if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
769                               KnownZero, KnownOne, TLO, Depth+1))
770        return true;
771      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
772      KnownZero = KnownZero.lshr(ShAmt);
773      KnownOne  = KnownOne.lshr(ShAmt);
774
775      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
776      KnownZero |= HighBits;  // High bits known zero.
777    }
778    break;
779  case ISD::SRA:
780    if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
781      MVT::ValueType VT = Op.getValueType();
782      unsigned ShAmt = SA->getValue();
783
784      // If the shift count is an invalid immediate, don't do anything.
785      if (ShAmt >= BitWidth)
786        break;
787
788      APInt InDemandedMask = (NewMask << ShAmt);
789
790      // If any of the demanded bits are produced by the sign extension, we also
791      // demand the input sign bit.
792      APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
793      if (HighBits.intersects(NewMask))
794        InDemandedMask |= APInt::getSignBit(MVT::getSizeInBits(VT));
795
796      if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
797                               KnownZero, KnownOne, TLO, Depth+1))
798        return true;
799      assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
800      KnownZero = KnownZero.lshr(ShAmt);
801      KnownOne  = KnownOne.lshr(ShAmt);
802
803      // Handle the sign bit, adjusted to where it is now in the mask.
804      APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
805
806      // If the input sign bit is known to be zero, or if none of the top bits
807      // are demanded, turn this into an unsigned shift right.
808      if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
809        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
810                                                 Op.getOperand(1)));
811      } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
812        KnownOne |= HighBits;
813      }
814    }
815    break;
816  case ISD::SIGN_EXTEND_INREG: {
817    MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
818
819    // Sign extension.  Compute the demanded bits in the result that are not
820    // present in the input.
821    APInt NewBits = APInt::getHighBitsSet(BitWidth,
822                                          BitWidth - MVT::getSizeInBits(EVT)) &
823                    NewMask;
824
825    // If none of the extended bits are demanded, eliminate the sextinreg.
826    if (NewBits == 0)
827      return TLO.CombineTo(Op, Op.getOperand(0));
828
829    APInt InSignBit = APInt::getSignBit(MVT::getSizeInBits(EVT));
830    InSignBit.zext(BitWidth);
831    APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
832                                                   MVT::getSizeInBits(EVT)) &
833                              NewMask;
834
835    // Since the sign extended bits are demanded, we know that the sign
836    // bit is demanded.
837    InputDemandedBits |= InSignBit;
838
839    if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
840                             KnownZero, KnownOne, TLO, Depth+1))
841      return true;
842    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
843
844    // If the sign bit of the input is known set or clear, then we know the
845    // top bits of the result.
846
847    // If the input sign bit is known zero, convert this into a zero extension.
848    if (KnownZero.intersects(InSignBit))
849      return TLO.CombineTo(Op,
850                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
851
852    if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
853      KnownOne |= NewBits;
854      KnownZero &= ~NewBits;
855    } else {                       // Input sign bit unknown
856      KnownZero &= ~NewBits;
857      KnownOne &= ~NewBits;
858    }
859    break;
860  }
861  case ISD::ZERO_EXTEND: {
862    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
863    APInt InMask = NewMask;
864    InMask.trunc(OperandBitWidth);
865
866    // If none of the top bits are demanded, convert this into an any_extend.
867    APInt NewBits =
868      APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
869    if (!NewBits.intersects(NewMask))
870      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
871                                               Op.getValueType(),
872                                               Op.getOperand(0)));
873
874    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
875                             KnownZero, KnownOne, TLO, Depth+1))
876      return true;
877    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
878    KnownZero.zext(BitWidth);
879    KnownOne.zext(BitWidth);
880    KnownZero |= NewBits;
881    break;
882  }
883  case ISD::SIGN_EXTEND: {
884    MVT::ValueType InVT = Op.getOperand(0).getValueType();
885    unsigned InBits = MVT::getSizeInBits(InVT);
886    APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
887    APInt InSignBit = APInt::getLowBitsSet(BitWidth, InBits);
888    APInt NewBits   = ~InMask & NewMask;
889
890    // If none of the top bits are demanded, convert this into an any_extend.
891    if (NewBits == 0)
892      return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
893                                           Op.getOperand(0)));
894
895    // Since some of the sign extended bits are demanded, we know that the sign
896    // bit is demanded.
897    APInt InDemandedBits = InMask & NewMask;
898    InDemandedBits |= InSignBit;
899    InDemandedBits.trunc(InBits);
900
901    if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
902                             KnownOne, TLO, Depth+1))
903      return true;
904    KnownZero.zext(BitWidth);
905    KnownOne.zext(BitWidth);
906
907    // If the sign bit is known zero, convert this to a zero extend.
908    if (KnownZero.intersects(InSignBit))
909      return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
910                                               Op.getValueType(),
911                                               Op.getOperand(0)));
912
913    // If the sign bit is known one, the top bits match.
914    if (KnownOne.intersects(InSignBit)) {
915      KnownOne  |= NewBits;
916      KnownZero &= ~NewBits;
917    } else {   // Otherwise, top bits aren't known.
918      KnownOne  &= ~NewBits;
919      KnownZero &= ~NewBits;
920    }
921    break;
922  }
923  case ISD::ANY_EXTEND: {
924    unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
925    APInt InMask = NewMask;
926    InMask.trunc(OperandBitWidth);
927    if (SimplifyDemandedBits(Op.getOperand(0), InMask,
928                             KnownZero, KnownOne, TLO, Depth+1))
929      return true;
930    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
931    KnownZero.zext(BitWidth);
932    KnownOne.zext(BitWidth);
933    break;
934  }
935  case ISD::TRUNCATE: {
936    // Simplify the input, using demanded bit information, and compute the known
937    // zero/one bits live out.
938    APInt TruncMask = NewMask;
939    TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
940    if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
941                             KnownZero, KnownOne, TLO, Depth+1))
942      return true;
943    KnownZero.trunc(BitWidth);
944    KnownOne.trunc(BitWidth);
945
946    // If the input is only used by this truncate, see if we can shrink it based
947    // on the known demanded bits.
948    if (Op.getOperand(0).Val->hasOneUse()) {
949      SDOperand In = Op.getOperand(0);
950      unsigned InBitWidth = In.getValueSizeInBits();
951      switch (In.getOpcode()) {
952      default: break;
953      case ISD::SRL:
954        // Shrink SRL by a constant if none of the high bits shifted in are
955        // demanded.
956        if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
957          APInt HighBits = APInt::getHighBitsSet(InBitWidth,
958                                                 InBitWidth - BitWidth);
959          HighBits = HighBits.lshr(ShAmt->getValue());
960          HighBits.trunc(BitWidth);
961
962          if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
963            // None of the shifted in bits are needed.  Add a truncate of the
964            // shift input, then shift it.
965            SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
966                                                 Op.getValueType(),
967                                                 In.getOperand(0));
968            return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
969                                                   NewTrunc, In.getOperand(1)));
970          }
971        }
972        break;
973      }
974    }
975
976    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
977    break;
978  }
979  case ISD::AssertZext: {
980    MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
981    APInt InMask = APInt::getLowBitsSet(BitWidth,
982                                        MVT::getSizeInBits(VT));
983    if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
984                             KnownZero, KnownOne, TLO, Depth+1))
985      return true;
986    assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
987    KnownZero |= ~InMask & NewMask;
988    break;
989  }
990  case ISD::BIT_CONVERT:
991#if 0
992    // If this is an FP->Int bitcast and if the sign bit is the only thing that
993    // is demanded, turn this into a FGETSIGN.
994    if (NewMask == MVT::getIntVTSignBit(Op.getValueType()) &&
995        MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
996        !MVT::isVector(Op.getOperand(0).getValueType())) {
997      // Only do this xform if FGETSIGN is valid or if before legalize.
998      if (!TLO.AfterLegalize ||
999          isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1000        // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1001        // place.  We expect the SHL to be eliminated by other optimizations.
1002        SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1003                                         Op.getOperand(0));
1004        unsigned ShVal = MVT::getSizeInBits(Op.getValueType())-1;
1005        SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1006        return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1007                                                 Sign, ShAmt));
1008      }
1009    }
1010#endif
1011    break;
1012  case ISD::ADD:
1013  case ISD::SUB:
1014  case ISD::INTRINSIC_WO_CHAIN:
1015  case ISD::INTRINSIC_W_CHAIN:
1016  case ISD::INTRINSIC_VOID:
1017  case ISD::CTTZ:
1018  case ISD::CTLZ:
1019  case ISD::CTPOP:
1020  case ISD::LOAD:
1021  case ISD::SETCC:
1022  case ISD::FGETSIGN:
1023    // Just use ComputeMaskedBits to compute output bits.
1024    TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1025    break;
1026  }
1027
1028  // If we know the value of all of the demanded bits, return this as a
1029  // constant.
1030  if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1031    return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1032
1033  return false;
1034}
1035
1036/// computeMaskedBitsForTargetNode - Determine which of the bits specified
1037/// in Mask are known to be either zero or one and return them in the
1038/// KnownZero/KnownOne bitsets.
1039void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1040                                                    const APInt &Mask,
1041                                                    APInt &KnownZero,
1042                                                    APInt &KnownOne,
1043                                                    const SelectionDAG &DAG,
1044                                                    unsigned Depth) const {
1045  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1046          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1047          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1048          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1049         "Should use MaskedValueIsZero if you don't know whether Op"
1050         " is a target node!");
1051  KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1052}
1053
1054/// ComputeNumSignBitsForTargetNode - This method can be implemented by
1055/// targets that want to expose additional information about sign bits to the
1056/// DAG Combiner.
1057unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1058                                                         unsigned Depth) const {
1059  assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1060          Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1061          Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1062          Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1063         "Should use ComputeNumSignBits if you don't know whether Op"
1064         " is a target node!");
1065  return 1;
1066}
1067
1068
1069/// SimplifySetCC - Try to simplify a setcc built with the specified operands
1070/// and cc. If it is unable to simplify it, return a null SDOperand.
1071SDOperand
1072TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
1073                              ISD::CondCode Cond, bool foldBooleans,
1074                              DAGCombinerInfo &DCI) const {
1075  SelectionDAG &DAG = DCI.DAG;
1076
1077  // These setcc operations always fold.
1078  switch (Cond) {
1079  default: break;
1080  case ISD::SETFALSE:
1081  case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1082  case ISD::SETTRUE:
1083  case ISD::SETTRUE2:  return DAG.getConstant(1, VT);
1084  }
1085
1086  if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1087    const APInt &C1 = N1C->getAPIntValue();
1088    if (isa<ConstantSDNode>(N0.Val)) {
1089      return DAG.FoldSetCC(VT, N0, N1, Cond);
1090    } else {
1091      // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1092      // equality comparison, then we're just comparing whether X itself is
1093      // zero.
1094      if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1095          N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1096          N0.getOperand(1).getOpcode() == ISD::Constant) {
1097        unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1098        if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1099            ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) {
1100          if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1101            // (srl (ctlz x), 5) == 0  -> X != 0
1102            // (srl (ctlz x), 5) != 1  -> X != 0
1103            Cond = ISD::SETNE;
1104          } else {
1105            // (srl (ctlz x), 5) != 0  -> X == 0
1106            // (srl (ctlz x), 5) == 1  -> X == 0
1107            Cond = ISD::SETEQ;
1108          }
1109          SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1110          return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1111                              Zero, Cond);
1112        }
1113      }
1114
1115      // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1116      if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1117        unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType());
1118
1119        // If the comparison constant has bits in the upper part, the
1120        // zero-extended value could never match.
1121        if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1122                                                C1.getBitWidth() - InSize))) {
1123          switch (Cond) {
1124          case ISD::SETUGT:
1125          case ISD::SETUGE:
1126          case ISD::SETEQ: return DAG.getConstant(0, VT);
1127          case ISD::SETULT:
1128          case ISD::SETULE:
1129          case ISD::SETNE: return DAG.getConstant(1, VT);
1130          case ISD::SETGT:
1131          case ISD::SETGE:
1132            // True if the sign bit of C1 is set.
1133            return DAG.getConstant(C1.isNegative(), VT);
1134          case ISD::SETLT:
1135          case ISD::SETLE:
1136            // True if the sign bit of C1 isn't set.
1137            return DAG.getConstant(C1.isNonNegative(), VT);
1138          default:
1139            break;
1140          }
1141        }
1142
1143        // Otherwise, we can perform the comparison with the low bits.
1144        switch (Cond) {
1145        case ISD::SETEQ:
1146        case ISD::SETNE:
1147        case ISD::SETUGT:
1148        case ISD::SETUGE:
1149        case ISD::SETULT:
1150        case ISD::SETULE:
1151          return DAG.getSetCC(VT, N0.getOperand(0),
1152                          DAG.getConstant(APInt(C1).trunc(InSize),
1153                                          N0.getOperand(0).getValueType()),
1154                          Cond);
1155        default:
1156          break;   // todo, be more careful with signed comparisons
1157        }
1158      } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1159                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1160        MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1161        unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy);
1162        MVT::ValueType ExtDstTy = N0.getValueType();
1163        unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy);
1164
1165        // If the extended part has any inconsistent bits, it cannot ever
1166        // compare equal.  In other words, they have to be all ones or all
1167        // zeros.
1168        APInt ExtBits =
1169          APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1170        if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1171          return DAG.getConstant(Cond == ISD::SETNE, VT);
1172
1173        SDOperand ZextOp;
1174        MVT::ValueType Op0Ty = N0.getOperand(0).getValueType();
1175        if (Op0Ty == ExtSrcTy) {
1176          ZextOp = N0.getOperand(0);
1177        } else {
1178          APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1179          ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1180                               DAG.getConstant(Imm, Op0Ty));
1181        }
1182        if (!DCI.isCalledByLegalizer())
1183          DCI.AddToWorklist(ZextOp.Val);
1184        // Otherwise, make this a use of a zext.
1185        return DAG.getSetCC(VT, ZextOp,
1186                            DAG.getConstant(C1 & APInt::getLowBitsSet(
1187                                                               ExtDstTyBits,
1188                                                               ExtSrcTyBits),
1189                                            ExtDstTy),
1190                            Cond);
1191      } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1192                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1193
1194        // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1195        if (N0.getOpcode() == ISD::SETCC) {
1196          bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1197          if (TrueWhenTrue)
1198            return N0;
1199
1200          // Invert the condition.
1201          ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1202          CC = ISD::getSetCCInverse(CC,
1203                               MVT::isInteger(N0.getOperand(0).getValueType()));
1204          return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1205        }
1206
1207        if ((N0.getOpcode() == ISD::XOR ||
1208             (N0.getOpcode() == ISD::AND &&
1209              N0.getOperand(0).getOpcode() == ISD::XOR &&
1210              N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1211            isa<ConstantSDNode>(N0.getOperand(1)) &&
1212            cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) {
1213          // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1214          // can only do this if the top bits are known zero.
1215          unsigned BitWidth = N0.getValueSizeInBits();
1216          if (DAG.MaskedValueIsZero(N0,
1217                                    APInt::getHighBitsSet(BitWidth,
1218                                                          BitWidth-1))) {
1219            // Okay, get the un-inverted input value.
1220            SDOperand Val;
1221            if (N0.getOpcode() == ISD::XOR)
1222              Val = N0.getOperand(0);
1223            else {
1224              assert(N0.getOpcode() == ISD::AND &&
1225                     N0.getOperand(0).getOpcode() == ISD::XOR);
1226              // ((X^1)&1)^1 -> X & 1
1227              Val = DAG.getNode(ISD::AND, N0.getValueType(),
1228                                N0.getOperand(0).getOperand(0),
1229                                N0.getOperand(1));
1230            }
1231            return DAG.getSetCC(VT, Val, N1,
1232                                Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1233          }
1234        }
1235      }
1236
1237      APInt MinVal, MaxVal;
1238      unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0));
1239      if (ISD::isSignedIntSetCC(Cond)) {
1240        MinVal = APInt::getSignedMinValue(OperandBitSize);
1241        MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1242      } else {
1243        MinVal = APInt::getMinValue(OperandBitSize);
1244        MaxVal = APInt::getMaxValue(OperandBitSize);
1245      }
1246
1247      // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1248      if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1249        if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true
1250        // X >= C0 --> X > (C0-1)
1251        return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1252                        (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1253      }
1254
1255      if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1256        if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true
1257        // X <= C0 --> X < (C0+1)
1258        return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1259                        (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1260      }
1261
1262      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1263        return DAG.getConstant(0, VT);      // X < MIN --> false
1264      if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1265        return DAG.getConstant(1, VT);      // X >= MIN --> true
1266      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1267        return DAG.getConstant(0, VT);      // X > MAX --> false
1268      if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1269        return DAG.getConstant(1, VT);      // X <= MAX --> true
1270
1271      // Canonicalize setgt X, Min --> setne X, Min
1272      if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1273        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1274      // Canonicalize setlt X, Max --> setne X, Max
1275      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1276        return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1277
1278      // If we have setult X, 1, turn it into seteq X, 0
1279      if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1280        return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1281                        ISD::SETEQ);
1282      // If we have setugt X, Max-1, turn it into seteq X, Max
1283      else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1284        return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1285                        ISD::SETEQ);
1286
1287      // If we have "setcc X, C0", check to see if we can shrink the immediate
1288      // by changing cc.
1289
1290      // SETUGT X, SINTMAX  -> SETLT X, 0
1291      if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1292          C1 == (~0ULL >> (65-OperandBitSize)))
1293        return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1294                            ISD::SETLT);
1295
1296      // FIXME: Implement the rest of these.
1297
1298      // Fold bit comparisons when we can.
1299      if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1300          VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1301        if (ConstantSDNode *AndRHS =
1302                    dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1303          if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1304            // Perform the xform if the AND RHS is a single bit.
1305            if (isPowerOf2_64(AndRHS->getValue())) {
1306              return DAG.getNode(ISD::SRL, VT, N0,
1307                             DAG.getConstant(Log2_64(AndRHS->getValue()),
1308                                             getShiftAmountTy()));
1309            }
1310          } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1311            // (X & 8) == 8  -->  (X & 8) >> 3
1312            // Perform the xform if C1 is a single bit.
1313            if (C1.isPowerOf2()) {
1314              return DAG.getNode(ISD::SRL, VT, N0,
1315                          DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1316            }
1317          }
1318        }
1319    }
1320  } else if (isa<ConstantSDNode>(N0.Val)) {
1321      // Ensure that the constant occurs on the RHS.
1322    return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1323  }
1324
1325  if (isa<ConstantFPSDNode>(N0.Val)) {
1326    // Constant fold or commute setcc.
1327    SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1328    if (O.Val) return O;
1329  } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1330    // If the RHS of an FP comparison is a constant, simplify it away in
1331    // some cases.
1332    if (CFP->getValueAPF().isNaN()) {
1333      // If an operand is known to be a nan, we can fold it.
1334      switch (ISD::getUnorderedFlavor(Cond)) {
1335      default: assert(0 && "Unknown flavor!");
1336      case 0:  // Known false.
1337        return DAG.getConstant(0, VT);
1338      case 1:  // Known true.
1339        return DAG.getConstant(1, VT);
1340      case 2:  // Undefined.
1341        return DAG.getNode(ISD::UNDEF, VT);
1342      }
1343    }
1344
1345    // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1346    // constant if knowing that the operand is non-nan is enough.  We prefer to
1347    // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1348    // materialize 0.0.
1349    if (Cond == ISD::SETO || Cond == ISD::SETUO)
1350      return DAG.getSetCC(VT, N0, N0, Cond);
1351  }
1352
1353  if (N0 == N1) {
1354    // We can always fold X == X for integer setcc's.
1355    if (MVT::isInteger(N0.getValueType()))
1356      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1357    unsigned UOF = ISD::getUnorderedFlavor(Cond);
1358    if (UOF == 2)   // FP operators that are undefined on NaNs.
1359      return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1360    if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1361      return DAG.getConstant(UOF, VT);
1362    // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1363    // if it is not already.
1364    ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1365    if (NewCond != Cond)
1366      return DAG.getSetCC(VT, N0, N1, NewCond);
1367  }
1368
1369  if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1370      MVT::isInteger(N0.getValueType())) {
1371    if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1372        N0.getOpcode() == ISD::XOR) {
1373      // Simplify (X+Y) == (X+Z) -->  Y == Z
1374      if (N0.getOpcode() == N1.getOpcode()) {
1375        if (N0.getOperand(0) == N1.getOperand(0))
1376          return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1377        if (N0.getOperand(1) == N1.getOperand(1))
1378          return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1379        if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1380          // If X op Y == Y op X, try other combinations.
1381          if (N0.getOperand(0) == N1.getOperand(1))
1382            return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1383          if (N0.getOperand(1) == N1.getOperand(0))
1384            return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1385        }
1386      }
1387
1388      if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1389        if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1390          // Turn (X+C1) == C2 --> X == C2-C1
1391          if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1392            return DAG.getSetCC(VT, N0.getOperand(0),
1393                              DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1394                                N0.getValueType()), Cond);
1395          }
1396
1397          // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1398          if (N0.getOpcode() == ISD::XOR)
1399            // If we know that all of the inverted bits are zero, don't bother
1400            // performing the inversion.
1401            if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1402              return
1403                DAG.getSetCC(VT, N0.getOperand(0),
1404                             DAG.getConstant(LHSR->getAPIntValue() ^
1405                                               RHSC->getAPIntValue(),
1406                                             N0.getValueType()),
1407                             Cond);
1408        }
1409
1410        // Turn (C1-X) == C2 --> X == C1-C2
1411        if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1412          if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1413            return
1414              DAG.getSetCC(VT, N0.getOperand(1),
1415                           DAG.getConstant(SUBC->getAPIntValue() -
1416                                             RHSC->getAPIntValue(),
1417                                           N0.getValueType()),
1418                           Cond);
1419          }
1420        }
1421      }
1422
1423      // Simplify (X+Z) == X -->  Z == 0
1424      if (N0.getOperand(0) == N1)
1425        return DAG.getSetCC(VT, N0.getOperand(1),
1426                        DAG.getConstant(0, N0.getValueType()), Cond);
1427      if (N0.getOperand(1) == N1) {
1428        if (DAG.isCommutativeBinOp(N0.getOpcode()))
1429          return DAG.getSetCC(VT, N0.getOperand(0),
1430                          DAG.getConstant(0, N0.getValueType()), Cond);
1431        else if (N0.Val->hasOneUse()) {
1432          assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1433          // (Z-X) == X  --> Z == X<<1
1434          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1435                                     N1,
1436                                     DAG.getConstant(1, getShiftAmountTy()));
1437          if (!DCI.isCalledByLegalizer())
1438            DCI.AddToWorklist(SH.Val);
1439          return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1440        }
1441      }
1442    }
1443
1444    if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1445        N1.getOpcode() == ISD::XOR) {
1446      // Simplify  X == (X+Z) -->  Z == 0
1447      if (N1.getOperand(0) == N0) {
1448        return DAG.getSetCC(VT, N1.getOperand(1),
1449                        DAG.getConstant(0, N1.getValueType()), Cond);
1450      } else if (N1.getOperand(1) == N0) {
1451        if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1452          return DAG.getSetCC(VT, N1.getOperand(0),
1453                          DAG.getConstant(0, N1.getValueType()), Cond);
1454        } else if (N1.Val->hasOneUse()) {
1455          assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1456          // X == (Z-X)  --> X<<1 == Z
1457          SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1458                                     DAG.getConstant(1, getShiftAmountTy()));
1459          if (!DCI.isCalledByLegalizer())
1460            DCI.AddToWorklist(SH.Val);
1461          return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1462        }
1463      }
1464    }
1465  }
1466
1467  // Fold away ALL boolean setcc's.
1468  SDOperand Temp;
1469  if (N0.getValueType() == MVT::i1 && foldBooleans) {
1470    switch (Cond) {
1471    default: assert(0 && "Unknown integer setcc!");
1472    case ISD::SETEQ:  // X == Y  -> (X^Y)^1
1473      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1474      N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1475      if (!DCI.isCalledByLegalizer())
1476        DCI.AddToWorklist(Temp.Val);
1477      break;
1478    case ISD::SETNE:  // X != Y   -->  (X^Y)
1479      N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1480      break;
1481    case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1482    case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y
1483      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1484      N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1485      if (!DCI.isCalledByLegalizer())
1486        DCI.AddToWorklist(Temp.Val);
1487      break;
1488    case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X
1489    case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X
1490      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1491      N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1492      if (!DCI.isCalledByLegalizer())
1493        DCI.AddToWorklist(Temp.Val);
1494      break;
1495    case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y
1496    case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y
1497      Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1498      N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1499      if (!DCI.isCalledByLegalizer())
1500        DCI.AddToWorklist(Temp.Val);
1501      break;
1502    case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X
1503    case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X
1504      Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1505      N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1506      break;
1507    }
1508    if (VT != MVT::i1) {
1509      if (!DCI.isCalledByLegalizer())
1510        DCI.AddToWorklist(N0.Val);
1511      // FIXME: If running after legalize, we probably can't do this.
1512      N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1513    }
1514    return N0;
1515  }
1516
1517  // Could not fold it.
1518  return SDOperand();
1519}
1520
1521SDOperand TargetLowering::
1522PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1523  // Default implementation: no optimization.
1524  return SDOperand();
1525}
1526
1527//===----------------------------------------------------------------------===//
1528//  Inline Assembler Implementation Methods
1529//===----------------------------------------------------------------------===//
1530
1531TargetLowering::ConstraintType
1532TargetLowering::getConstraintType(const std::string &Constraint) const {
1533  // FIXME: lots more standard ones to handle.
1534  if (Constraint.size() == 1) {
1535    switch (Constraint[0]) {
1536    default: break;
1537    case 'r': return C_RegisterClass;
1538    case 'm':    // memory
1539    case 'o':    // offsetable
1540    case 'V':    // not offsetable
1541      return C_Memory;
1542    case 'i':    // Simple Integer or Relocatable Constant
1543    case 'n':    // Simple Integer
1544    case 's':    // Relocatable Constant
1545    case 'X':    // Allow ANY value.
1546    case 'I':    // Target registers.
1547    case 'J':
1548    case 'K':
1549    case 'L':
1550    case 'M':
1551    case 'N':
1552    case 'O':
1553    case 'P':
1554      return C_Other;
1555    }
1556  }
1557
1558  if (Constraint.size() > 1 && Constraint[0] == '{' &&
1559      Constraint[Constraint.size()-1] == '}')
1560    return C_Register;
1561  return C_Unknown;
1562}
1563
1564/// LowerXConstraint - try to replace an X constraint, which matches anything,
1565/// with another that has more specific requirements based on the type of the
1566/// corresponding operand.
1567void TargetLowering::lowerXConstraint(MVT::ValueType ConstraintVT,
1568                                      std::string& s) const {
1569  if (MVT::isInteger(ConstraintVT))
1570    s = "r";
1571  else if (MVT::isFloatingPoint(ConstraintVT))
1572    s = "f";      // works for many targets
1573  else
1574    s = "";
1575}
1576
1577/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1578/// vector.  If it is invalid, don't add anything to Ops.
1579void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1580                                                  char ConstraintLetter,
1581                                                  std::vector<SDOperand> &Ops,
1582                                                  SelectionDAG &DAG) {
1583  switch (ConstraintLetter) {
1584  default: break;
1585  case 'X':     // Allows any operand; labels (basic block) use this.
1586    if (Op.getOpcode() == ISD::BasicBlock) {
1587      Ops.push_back(Op);
1588      return;
1589    }
1590    // fall through
1591  case 'i':    // Simple Integer or Relocatable Constant
1592  case 'n':    // Simple Integer
1593  case 's': {  // Relocatable Constant
1594    // These operands are interested in values of the form (GV+C), where C may
1595    // be folded in as an offset of GV, or it may be explicitly added.  Also, it
1596    // is possible and fine if either GV or C are missing.
1597    ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1598    GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1599
1600    // If we have "(add GV, C)", pull out GV/C
1601    if (Op.getOpcode() == ISD::ADD) {
1602      C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1603      GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1604      if (C == 0 || GA == 0) {
1605        C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1606        GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1607      }
1608      if (C == 0 || GA == 0)
1609        C = 0, GA = 0;
1610    }
1611
1612    // If we find a valid operand, map to the TargetXXX version so that the
1613    // value itself doesn't get selected.
1614    if (GA) {   // Either &GV   or   &GV+C
1615      if (ConstraintLetter != 'n') {
1616        int64_t Offs = GA->getOffset();
1617        if (C) Offs += C->getValue();
1618        Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1619                                                 Op.getValueType(), Offs));
1620        return;
1621      }
1622    }
1623    if (C) {   // just C, no GV.
1624      // Simple constants are not allowed for 's'.
1625      if (ConstraintLetter != 's') {
1626        Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1627        return;
1628      }
1629    }
1630    break;
1631  }
1632  }
1633}
1634
1635std::vector<unsigned> TargetLowering::
1636getRegClassForInlineAsmConstraint(const std::string &Constraint,
1637                                  MVT::ValueType VT) const {
1638  return std::vector<unsigned>();
1639}
1640
1641
1642std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1643getRegForInlineAsmConstraint(const std::string &Constraint,
1644                             MVT::ValueType VT) const {
1645  if (Constraint[0] != '{')
1646    return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1647  assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1648
1649  // Remove the braces from around the name.
1650  std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1651
1652  // Figure out which register class contains this reg.
1653  const TargetRegisterInfo *RI = TM.getRegisterInfo();
1654  for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1655       E = RI->regclass_end(); RCI != E; ++RCI) {
1656    const TargetRegisterClass *RC = *RCI;
1657
1658    // If none of the the value types for this register class are valid, we
1659    // can't use it.  For example, 64-bit reg classes on 32-bit targets.
1660    bool isLegal = false;
1661    for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1662         I != E; ++I) {
1663      if (isTypeLegal(*I)) {
1664        isLegal = true;
1665        break;
1666      }
1667    }
1668
1669    if (!isLegal) continue;
1670
1671    for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1672         I != E; ++I) {
1673      if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1674        return std::make_pair(*I, RC);
1675    }
1676  }
1677
1678  return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1679}
1680
1681//===----------------------------------------------------------------------===//
1682//  Loop Strength Reduction hooks
1683//===----------------------------------------------------------------------===//
1684
1685/// isLegalAddressingMode - Return true if the addressing mode represented
1686/// by AM is legal for this target, for a load/store of the specified type.
1687bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1688                                           const Type *Ty) const {
1689  // The default implementation of this implements a conservative RISCy, r+r and
1690  // r+i addr mode.
1691
1692  // Allows a sign-extended 16-bit immediate field.
1693  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1694    return false;
1695
1696  // No global is ever allowed as a base.
1697  if (AM.BaseGV)
1698    return false;
1699
1700  // Only support r+r,
1701  switch (AM.Scale) {
1702  case 0:  // "r+i" or just "i", depending on HasBaseReg.
1703    break;
1704  case 1:
1705    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1706      return false;
1707    // Otherwise we have r+r or r+i.
1708    break;
1709  case 2:
1710    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1711      return false;
1712    // Allow 2*r as r+r.
1713    break;
1714  }
1715
1716  return true;
1717}
1718
1719// Magic for divide replacement
1720
1721struct ms {
1722  int64_t m;  // magic number
1723  int64_t s;  // shift amount
1724};
1725
1726struct mu {
1727  uint64_t m; // magic number
1728  int64_t a;  // add indicator
1729  int64_t s;  // shift amount
1730};
1731
1732/// magic - calculate the magic numbers required to codegen an integer sdiv as
1733/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1734/// or -1.
1735static ms magic32(int32_t d) {
1736  int32_t p;
1737  uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1738  const uint32_t two31 = 0x80000000U;
1739  struct ms mag;
1740
1741  ad = abs(d);
1742  t = two31 + ((uint32_t)d >> 31);
1743  anc = t - 1 - t%ad;   // absolute value of nc
1744  p = 31;               // initialize p
1745  q1 = two31/anc;       // initialize q1 = 2p/abs(nc)
1746  r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1747  q2 = two31/ad;        // initialize q2 = 2p/abs(d)
1748  r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1749  do {
1750    p = p + 1;
1751    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1752    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1753    if (r1 >= anc) {  // must be unsigned comparison
1754      q1 = q1 + 1;
1755      r1 = r1 - anc;
1756    }
1757    q2 = 2*q2;        // update q2 = 2p/abs(d)
1758    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1759    if (r2 >= ad) {   // must be unsigned comparison
1760      q2 = q2 + 1;
1761      r2 = r2 - ad;
1762    }
1763    delta = ad - r2;
1764  } while (q1 < delta || (q1 == delta && r1 == 0));
1765
1766  mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1767  if (d < 0) mag.m = -mag.m; // resulting magic number
1768  mag.s = p - 32;            // resulting shift
1769  return mag;
1770}
1771
1772/// magicu - calculate the magic numbers required to codegen an integer udiv as
1773/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1774static mu magicu32(uint32_t d) {
1775  int32_t p;
1776  uint32_t nc, delta, q1, r1, q2, r2;
1777  struct mu magu;
1778  magu.a = 0;               // initialize "add" indicator
1779  nc = - 1 - (-d)%d;
1780  p = 31;                   // initialize p
1781  q1 = 0x80000000/nc;       // initialize q1 = 2p/nc
1782  r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc)
1783  q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d
1784  r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d)
1785  do {
1786    p = p + 1;
1787    if (r1 >= nc - r1 ) {
1788      q1 = 2*q1 + 1;  // update q1
1789      r1 = 2*r1 - nc; // update r1
1790    }
1791    else {
1792      q1 = 2*q1; // update q1
1793      r1 = 2*r1; // update r1
1794    }
1795    if (r2 + 1 >= d - r2) {
1796      if (q2 >= 0x7FFFFFFF) magu.a = 1;
1797      q2 = 2*q2 + 1;     // update q2
1798      r2 = 2*r2 + 1 - d; // update r2
1799    }
1800    else {
1801      if (q2 >= 0x80000000) magu.a = 1;
1802      q2 = 2*q2;     // update q2
1803      r2 = 2*r2 + 1; // update r2
1804    }
1805    delta = d - 1 - r2;
1806  } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1807  magu.m = q2 + 1; // resulting magic number
1808  magu.s = p - 32;  // resulting shift
1809  return magu;
1810}
1811
1812/// magic - calculate the magic numbers required to codegen an integer sdiv as
1813/// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1,
1814/// or -1.
1815static ms magic64(int64_t d) {
1816  int64_t p;
1817  uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1818  const uint64_t two63 = 9223372036854775808ULL; // 2^63
1819  struct ms mag;
1820
1821  ad = d >= 0 ? d : -d;
1822  t = two63 + ((uint64_t)d >> 63);
1823  anc = t - 1 - t%ad;   // absolute value of nc
1824  p = 63;               // initialize p
1825  q1 = two63/anc;       // initialize q1 = 2p/abs(nc)
1826  r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc))
1827  q2 = two63/ad;        // initialize q2 = 2p/abs(d)
1828  r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d))
1829  do {
1830    p = p + 1;
1831    q1 = 2*q1;        // update q1 = 2p/abs(nc)
1832    r1 = 2*r1;        // update r1 = rem(2p/abs(nc))
1833    if (r1 >= anc) {  // must be unsigned comparison
1834      q1 = q1 + 1;
1835      r1 = r1 - anc;
1836    }
1837    q2 = 2*q2;        // update q2 = 2p/abs(d)
1838    r2 = 2*r2;        // update r2 = rem(2p/abs(d))
1839    if (r2 >= ad) {   // must be unsigned comparison
1840      q2 = q2 + 1;
1841      r2 = r2 - ad;
1842    }
1843    delta = ad - r2;
1844  } while (q1 < delta || (q1 == delta && r1 == 0));
1845
1846  mag.m = q2 + 1;
1847  if (d < 0) mag.m = -mag.m; // resulting magic number
1848  mag.s = p - 64;            // resulting shift
1849  return mag;
1850}
1851
1852/// magicu - calculate the magic numbers required to codegen an integer udiv as
1853/// a sequence of multiply, add and shifts.  Requires that the divisor not be 0.
1854static mu magicu64(uint64_t d)
1855{
1856  int64_t p;
1857  uint64_t nc, delta, q1, r1, q2, r2;
1858  struct mu magu;
1859  magu.a = 0;               // initialize "add" indicator
1860  nc = - 1 - (-d)%d;
1861  p = 63;                   // initialize p
1862  q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc
1863  r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc)
1864  q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d
1865  r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d)
1866  do {
1867    p = p + 1;
1868    if (r1 >= nc - r1 ) {
1869      q1 = 2*q1 + 1;  // update q1
1870      r1 = 2*r1 - nc; // update r1
1871    }
1872    else {
1873      q1 = 2*q1; // update q1
1874      r1 = 2*r1; // update r1
1875    }
1876    if (r2 + 1 >= d - r2) {
1877      if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
1878      q2 = 2*q2 + 1;     // update q2
1879      r2 = 2*r2 + 1 - d; // update r2
1880    }
1881    else {
1882      if (q2 >= 0x8000000000000000ull) magu.a = 1;
1883      q2 = 2*q2;     // update q2
1884      r2 = 2*r2 + 1; // update r2
1885    }
1886    delta = d - 1 - r2;
1887  } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
1888  magu.m = q2 + 1; // resulting magic number
1889  magu.s = p - 64;  // resulting shift
1890  return magu;
1891}
1892
1893/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
1894/// return a DAG expression to select that will generate the same value by
1895/// multiplying by a magic number.  See:
1896/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1897SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
1898                                    std::vector<SDNode*>* Created) const {
1899  MVT::ValueType VT = N->getValueType(0);
1900
1901  // Check to see if we can do this.
1902  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1903    return SDOperand();       // BuildSDIV only operates on i32 or i64
1904
1905  int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
1906  ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
1907
1908  // Multiply the numerator (operand 0) by the magic value
1909  SDOperand Q;
1910  if (isOperationLegal(ISD::MULHS, VT))
1911    Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
1912                    DAG.getConstant(magics.m, VT));
1913  else if (isOperationLegal(ISD::SMUL_LOHI, VT))
1914    Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
1915                              N->getOperand(0),
1916                              DAG.getConstant(magics.m, VT)).Val, 1);
1917  else
1918    return SDOperand();       // No mulhs or equvialent
1919  // If d > 0 and m < 0, add the numerator
1920  if (d > 0 && magics.m < 0) {
1921    Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
1922    if (Created)
1923      Created->push_back(Q.Val);
1924  }
1925  // If d < 0 and m > 0, subtract the numerator.
1926  if (d < 0 && magics.m > 0) {
1927    Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
1928    if (Created)
1929      Created->push_back(Q.Val);
1930  }
1931  // Shift right algebraic if shift value is nonzero
1932  if (magics.s > 0) {
1933    Q = DAG.getNode(ISD::SRA, VT, Q,
1934                    DAG.getConstant(magics.s, getShiftAmountTy()));
1935    if (Created)
1936      Created->push_back(Q.Val);
1937  }
1938  // Extract the sign bit and add it to the quotient
1939  SDOperand T =
1940    DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1,
1941                                                 getShiftAmountTy()));
1942  if (Created)
1943    Created->push_back(T.Val);
1944  return DAG.getNode(ISD::ADD, VT, Q, T);
1945}
1946
1947/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
1948/// return a DAG expression to select that will generate the same value by
1949/// multiplying by a magic number.  See:
1950/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
1951SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
1952                                    std::vector<SDNode*>* Created) const {
1953  MVT::ValueType VT = N->getValueType(0);
1954
1955  // Check to see if we can do this.
1956  if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
1957    return SDOperand();       // BuildUDIV only operates on i32 or i64
1958
1959  uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
1960  mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
1961
1962  // Multiply the numerator (operand 0) by the magic value
1963  SDOperand Q;
1964  if (isOperationLegal(ISD::MULHU, VT))
1965    Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
1966                    DAG.getConstant(magics.m, VT));
1967  else if (isOperationLegal(ISD::UMUL_LOHI, VT))
1968    Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
1969                              N->getOperand(0),
1970                              DAG.getConstant(magics.m, VT)).Val, 1);
1971  else
1972    return SDOperand();       // No mulhu or equvialent
1973  if (Created)
1974    Created->push_back(Q.Val);
1975
1976  if (magics.a == 0) {
1977    return DAG.getNode(ISD::SRL, VT, Q,
1978                       DAG.getConstant(magics.s, getShiftAmountTy()));
1979  } else {
1980    SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
1981    if (Created)
1982      Created->push_back(NPQ.Val);
1983    NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
1984                      DAG.getConstant(1, getShiftAmountTy()));
1985    if (Created)
1986      Created->push_back(NPQ.Val);
1987    NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
1988    if (Created)
1989      Created->push_back(NPQ.Val);
1990    return DAG.getNode(ISD::SRL, VT, NPQ,
1991                       DAG.getConstant(magics.s-1, getShiftAmountTy()));
1992  }
1993}
1994