ConstantRange.cpp revision 663e711dc235cae94eb50abb1c0571fd0b3a6a35
1//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Represent a range of possible values that may occur when the program is run
11// for an integral value.  This keeps track of a lower and upper bound for the
12// constant, which MAY wrap around the end of the numeric range.  To do this, it
13// keeps track of a [lower, upper) bound, which specifies an interval just like
14// STL iterators.  When used with boolean values, the following are important
15// ranges (other integral ranges use min/max values for special range values):
16//
17//  [F, F) = {}     = Empty set
18//  [T, F) = {T}
19//  [F, T) = {F}
20//  [T, T) = {F, T} = Full set
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Support/ConstantRange.h"
25#include "llvm/Constants.h"
26#include "llvm/Instruction.h"
27#include "llvm/Instructions.h"
28#include "llvm/Type.h"
29#include "llvm/DerivedTypes.h"
30#include "llvm/Support/Streams.h"
31#include <ostream>
32using namespace llvm;
33
34/// Initialize a full (the default) or empty set for the specified type.
35///
36ConstantRange::ConstantRange(const Type *Ty, bool Full) :
37  Lower(cast<IntegerType>(Ty)->getBitWidth(), 0),
38  Upper(cast<IntegerType>(Ty)->getBitWidth(), 0) {
39  uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
40  if (Full)
41    Lower = Upper = APInt::getMaxValue(BitWidth);
42  else
43    Lower = Upper = APInt::getMinValue(BitWidth);
44}
45
46/// Initialize a range to hold the single specified value.
47///
48ConstantRange::ConstantRange(Constant *V)
49  : Lower(cast<ConstantInt>(V)->getValue()),
50    Upper(cast<ConstantInt>(V)->getValue() + 1) { }
51
52/// Initialize a range of values explicitly... this will assert out if
53/// Lower==Upper and Lower != Min or Max for its type (or if the two constants
54/// have different types)
55///
56ConstantRange::ConstantRange(Constant *L, Constant *U)
57  : Lower(cast<ConstantInt>(L)->getValue()),
58    Upper(cast<ConstantInt>(U)->getValue()) {
59  assert(L->getType() == U->getType() && "Invalid ConstantRange types!");
60  assert(L->getType()->isInteger() && "Invalid ConstantRange types!");
61
62  // Make sure that if L & U are equal that they are either Min or Max...
63
64  uint32_t BitWidth = cast<IntegerType>(L->getType())->getBitWidth();
65  const IntegerType *Ty = cast<IntegerType>(L->getType());
66  assert((L != U || (L == ConstantInt::get(Ty, APInt::getMaxValue(BitWidth))
67                 ||  L == ConstantInt::get(Ty, APInt::getMinValue(BitWidth))))
68          && "Lower == Upper, but they aren't min or max for type!");
69}
70
71ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
72  Lower(L), Upper(U) {
73  assert(L.getBitWidth() == U.getBitWidth() &&
74         "ConstantRange with unequal bit widths");
75  uint32_t BitWidth = L.getBitWidth();
76  assert((L != U || (L == APInt::getMaxValue(BitWidth) ||
77                     L == APInt::getMinValue(BitWidth))) &&
78         "Lower == Upper, but they aren't min or max value!");
79}
80
81/// Initialize a set of values that all satisfy the condition with C.
82///
83ConstantRange::ConstantRange(unsigned short ICmpOpcode, ConstantInt *C)
84  : Lower(cast<IntegerType>(C->getType())->getBitWidth(), 0),
85    Upper(cast<IntegerType>(C->getType())->getBitWidth(), 0) {
86  const APInt& Val = C->getValue();
87  uint32_t BitWidth = cast<IntegerType>(C->getType())->getBitWidth();
88  switch (ICmpOpcode) {
89  default: assert(0 && "Invalid ICmp opcode to ConstantRange ctor!");
90  case ICmpInst::ICMP_EQ: Lower = Val; Upper = Val + 1; return;
91  case ICmpInst::ICMP_NE: Upper = Val; Lower = Val + 1; return;
92  case ICmpInst::ICMP_ULT:
93    Lower = APInt::getMinValue(BitWidth);
94    Upper = Val;
95    return;
96  case ICmpInst::ICMP_SLT:
97    Lower = APInt::getSignedMinValue(BitWidth);
98    Upper = Val;
99    return;
100  case ICmpInst::ICMP_UGT:
101    Lower = Val + 1;
102    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
103    return;
104  case ICmpInst::ICMP_SGT:
105    Lower = Val + 1;
106    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
107    return;
108  case ICmpInst::ICMP_ULE:
109    Lower = APInt::getMinValue(BitWidth);
110    Upper = Val + 1;
111    return;
112  case ICmpInst::ICMP_SLE:
113    Lower = APInt::getSignedMinValue(BitWidth);
114    Upper = Val + 1;
115    return;
116  case ICmpInst::ICMP_UGE:
117    Lower = Val;
118    Upper = APInt::getMinValue(BitWidth);        // Min = Next(Max)
119    return;
120  case ICmpInst::ICMP_SGE:
121    Lower = Val;
122    Upper = APInt::getSignedMinValue(BitWidth);  // Min = Next(Max)
123    return;
124  }
125}
126
127/// getType - Return the LLVM data type of this range.
128///
129const Type *ConstantRange::getType() const {
130  return IntegerType::get(Lower.getBitWidth());
131}
132
133ConstantInt *ConstantRange::getLower() const {
134  return ConstantInt::get(getType(), Lower);
135}
136
137ConstantInt *ConstantRange::getUpper() const {
138  return ConstantInt::get(getType(), Upper);
139}
140
141/// isFullSet - Return true if this set contains all of the elements possible
142/// for this data-type
143bool ConstantRange::isFullSet() const {
144  return Lower == Upper && Lower == APInt::getMaxValue(Lower.getBitWidth());
145}
146
147/// isEmptySet - Return true if this set contains no members.
148///
149bool ConstantRange::isEmptySet() const {
150  return Lower == Upper && Lower == APInt::getMinValue(Lower.getBitWidth());
151}
152
153/// isWrappedSet - Return true if this set wraps around the top of the range,
154/// for example: [100, 8)
155///
156bool ConstantRange::isWrappedSet(bool isSigned) const {
157  if (isSigned)
158    return Lower.sgt(Upper);
159  return Lower.ugt(Upper);
160}
161
162/// getSingleElement - If this set contains a single element, return it,
163/// otherwise return null.
164ConstantInt *ConstantRange::getSingleElement() const {
165  if (Upper == Lower + 1)  // Is it a single element range?
166    return ConstantInt::get(getType(), Lower);
167  return 0;
168}
169
170/// getSetSize - Return the number of elements in this set.
171///
172APInt ConstantRange::getSetSize() const {
173  if (isEmptySet())
174    return APInt(Lower.getBitWidth(), 0);
175  if (getType() == Type::Int1Ty) {
176    if (Lower != Upper)  // One of T or F in the set...
177      return APInt(Lower.getBitWidth(), 1);
178    return APInt(Lower.getBitWidth(), 2);      // Must be full set...
179  }
180
181  // Simply subtract the bounds...
182  return Upper - Lower;
183}
184
185/// contains - Return true if the specified value is in the set.
186///
187bool ConstantRange::contains(ConstantInt *Val, bool isSigned) const {
188  if (Lower == Upper) {
189    if (isFullSet())
190      return true;
191    return false;
192  }
193
194  const APInt &V = Val->getValue();
195  if (!isWrappedSet(isSigned))
196    if (isSigned)
197      return Lower.sle(V) && V.slt(Upper);
198    else
199      return Lower.ule(V) && V.ult(Upper);
200  if (isSigned)
201    return Lower.sle(V) || V.slt(Upper);
202  else
203    return Lower.ule(V) || V.ult(Upper);
204}
205
206/// subtract - Subtract the specified constant from the endpoints of this
207/// constant range.
208ConstantRange ConstantRange::subtract(ConstantInt *CI) const {
209  assert(CI->getType() == getType() &&
210         "Cannot subtract from different type range or non-integer!");
211  // If the set is empty or full, don't modify the endpoints.
212  if (Lower == Upper)
213    return *this;
214
215  const APInt &Val = CI->getValue();
216  return ConstantRange(Lower - Val, Upper - Val);
217}
218
219
220// intersect1Wrapped - This helper function is used to intersect two ranges when
221// it is known that LHS is wrapped and RHS isn't.
222//
223ConstantRange
224ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
225                                 const ConstantRange &RHS, bool isSigned) {
226  assert(LHS.isWrappedSet(isSigned) && !RHS.isWrappedSet(isSigned));
227
228  // Check to see if we overlap on the Left side of RHS...
229  //
230  bool LT = (isSigned ? RHS.Lower.slt(LHS.Upper) : RHS.Lower.ult(LHS.Upper));
231  bool GT = (isSigned ? RHS.Upper.sgt(LHS.Lower) : RHS.Upper.ugt(LHS.Lower));
232  if (LT) {
233    // We do overlap on the left side of RHS, see if we overlap on the right of
234    // RHS...
235    if (GT) {
236      // Ok, the result overlaps on both the left and right sides.  See if the
237      // resultant interval will be smaller if we wrap or not...
238      //
239      if (LHS.getSetSize().ult(RHS.getSetSize()))
240        return LHS;
241      else
242        return RHS;
243
244    } else {
245      // No overlap on the right, just on the left.
246      return ConstantRange(RHS.getLower(), LHS.getUpper());
247    }
248  } else {
249    // We don't overlap on the left side of RHS, see if we overlap on the right
250    // of RHS...
251    if (GT) {
252      // Simple overlap...
253      return ConstantRange(LHS.getLower(), RHS.getUpper());
254    } else {
255      // No overlap...
256      return ConstantRange(LHS.getType(), false);
257    }
258  }
259}
260
261/// intersectWith - Return the range that results from the intersection of this
262/// range with another range.
263///
264ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
265                                           bool isSigned) const {
266  assert(getType() == CR.getType() && "ConstantRange types don't agree!");
267  // Handle common special cases
268  if (isEmptySet() || CR.isFullSet())
269    return *this;
270  if (isFullSet()  || CR.isEmptySet())
271    return CR;
272
273  if (!isWrappedSet(isSigned)) {
274    if (!CR.isWrappedSet(isSigned)) {
275      using namespace APIntOps;
276      APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
277      APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
278
279      if (isSigned ? L.slt(U) : L.ult(U)) // If range isn't empty...
280        return ConstantRange(L, U);
281      else
282        return ConstantRange(getType(), false);  // Otherwise, return empty set
283    } else
284      return intersect1Wrapped(CR, *this, isSigned);
285  } else {   // We know "this" is wrapped...
286    if (!CR.isWrappedSet(isSigned))
287      return intersect1Wrapped(*this, CR, isSigned);
288    else {
289      // Both ranges are wrapped...
290      using namespace APIntOps;
291      APInt L = isSigned ? smax(Lower, CR.Lower) : umax(Lower, CR.Lower);
292      APInt U = isSigned ? smin(Upper, CR.Upper) : umin(Upper, CR.Upper);
293      return ConstantRange(L, U);
294    }
295  }
296  return *this;
297}
298
299/// unionWith - Return the range that results from the union of this range with
300/// another range.  The resultant range is guaranteed to include the elements of
301/// both sets, but may contain more.  For example, [3, 9) union [12,15) is [3,
302/// 15), which includes 9, 10, and 11, which were not included in either set
303/// before.
304///
305ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
306                                       bool isSigned) const {
307  assert(getType() == CR.getType() && "ConstantRange types don't agree!");
308
309  assert(0 && "Range union not implemented yet!");
310
311  return *this;
312}
313
314/// zeroExtend - Return a new range in the specified integer type, which must
315/// be strictly larger than the current type.  The returned range will
316/// correspond to the possible range of values as if the source range had been
317/// zero extended.
318ConstantRange ConstantRange::zeroExtend(const Type *Ty) const {
319  unsigned SrcTySize = Lower.getBitWidth();
320  unsigned DstTySize = Ty->getPrimitiveSizeInBits();
321  assert(SrcTySize < DstTySize && "Not a value extension");
322  if (isFullSet()) {
323    // Change a source full set into [0, 1 << 8*numbytes)
324    return ConstantRange(Constant::getNullValue(Ty),
325                         ConstantInt::get(Ty, 1ULL << SrcTySize));
326  }
327
328  APInt L = Lower; L.zext(DstTySize);
329  APInt U = Upper; U.zext(DstTySize);
330  return ConstantRange(L, U);
331}
332
333/// truncate - Return a new range in the specified integer type, which must be
334/// strictly smaller than the current type.  The returned range will
335/// correspond to the possible range of values as if the source range had been
336/// truncated to the specified type.
337ConstantRange ConstantRange::truncate(const Type *Ty) const {
338  unsigned SrcTySize = Lower.getBitWidth();
339  unsigned DstTySize = Ty->getPrimitiveSizeInBits();
340  assert(SrcTySize > DstTySize && "Not a value truncation");
341  APInt Size = APInt::getMaxValue(DstTySize).zext(SrcTySize);
342  if (isFullSet() || getSetSize().ugt(Size))
343    return ConstantRange(getType());
344
345  APInt L = Lower; L.trunc(DstTySize);
346  APInt U = Upper; U.trunc(DstTySize);
347  return ConstantRange(L, U);
348}
349
350/// print - Print out the bounds to a stream...
351///
352void ConstantRange::print(std::ostream &OS) const {
353  OS << "[" << Lower.toStringSigned(10) << ","
354            << Upper.toStringSigned(10) << " )";
355}
356
357/// dump - Allow printing from a debugger easily...
358///
359void ConstantRange::dump() const {
360  print(cerr);
361}
362