ConstantRange.cpp revision 95a3be0ba44e96308c65c28ee859acc36149ddd8
1//===-- ConstantRange.cpp - ConstantRange implementation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Represent a range of possible values that may occur when the program is run
11// for an integral value.  This keeps track of a lower and upper bound for the
12// constant, which MAY wrap around the end of the numeric range.  To do this, it
13// keeps track of a [lower, upper) bound, which specifies an interval just like
14// STL iterators.  When used with boolean values, the following are important
15// ranges (other integral ranges use min/max values for special range values):
16//
17//  [F, F) = {}     = Empty set
18//  [T, F) = {T}
19//  [F, T) = {F}
20//  [T, T) = {F, T} = Full set
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Support/ConstantRange.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Instructions.h"
27using namespace llvm;
28
29/// Initialize a full (the default) or empty set for the specified type.
30///
31ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) {
32  if (Full)
33    Lower = Upper = APInt::getMaxValue(BitWidth);
34  else
35    Lower = Upper = APInt::getMinValue(BitWidth);
36}
37
38/// Initialize a range to hold the single specified value.
39///
40ConstantRange::ConstantRange(const APInt & V) : Lower(V), Upper(V + 1) {}
41
42ConstantRange::ConstantRange(const APInt &L, const APInt &U) :
43  Lower(L), Upper(U) {
44  assert(L.getBitWidth() == U.getBitWidth() &&
45         "ConstantRange with unequal bit widths");
46  assert((L != U || (L.isMaxValue() || L.isMinValue())) &&
47         "Lower == Upper, but they aren't min or max value!");
48}
49
50ConstantRange ConstantRange::makeICmpRegion(unsigned Pred,
51                                            const ConstantRange &CR) {
52  uint32_t W = CR.getBitWidth();
53  switch (Pred) {
54    default: assert(!"Invalid ICmp predicate to makeICmpRegion()");
55    case ICmpInst::ICMP_EQ:
56      return CR;
57    case ICmpInst::ICMP_NE:
58      if (CR.isSingleElement())
59        return ConstantRange(CR.getUpper(), CR.getLower());
60      return ConstantRange(W);
61    case ICmpInst::ICMP_ULT:
62      return ConstantRange(APInt::getMinValue(W), CR.getUnsignedMax());
63    case ICmpInst::ICMP_SLT:
64      return ConstantRange(APInt::getSignedMinValue(W), CR.getSignedMax());
65    case ICmpInst::ICMP_ULE: {
66      APInt UMax(CR.getUnsignedMax());
67      if (UMax.isMaxValue())
68        return ConstantRange(W);
69      return ConstantRange(APInt::getMinValue(W), UMax + 1);
70    }
71    case ICmpInst::ICMP_SLE: {
72      APInt SMax(CR.getSignedMax());
73      if (SMax.isMaxSignedValue() || (SMax+1).isMaxSignedValue())
74        return ConstantRange(W);
75      return ConstantRange(APInt::getSignedMinValue(W), SMax + 1);
76    }
77    case ICmpInst::ICMP_UGT:
78      return ConstantRange(CR.getUnsignedMin() + 1, APInt::getNullValue(W));
79    case ICmpInst::ICMP_SGT:
80      return ConstantRange(CR.getSignedMin() + 1,
81                           APInt::getSignedMinValue(W));
82    case ICmpInst::ICMP_UGE: {
83      APInt UMin(CR.getUnsignedMin());
84      if (UMin.isMinValue())
85        return ConstantRange(W);
86      return ConstantRange(UMin, APInt::getNullValue(W));
87    }
88    case ICmpInst::ICMP_SGE: {
89      APInt SMin(CR.getSignedMin());
90      if (SMin.isMinSignedValue())
91        return ConstantRange(W);
92      return ConstantRange(SMin, APInt::getSignedMinValue(W));
93    }
94  }
95}
96
97/// isFullSet - Return true if this set contains all of the elements possible
98/// for this data-type
99bool ConstantRange::isFullSet() const {
100  return Lower == Upper && Lower.isMaxValue();
101}
102
103/// isEmptySet - Return true if this set contains no members.
104///
105bool ConstantRange::isEmptySet() const {
106  return Lower == Upper && Lower.isMinValue();
107}
108
109/// isWrappedSet - Return true if this set wraps around the top of the range,
110/// for example: [100, 8)
111///
112bool ConstantRange::isWrappedSet() const {
113  return Lower.ugt(Upper);
114}
115
116/// getSetSize - Return the number of elements in this set.
117///
118APInt ConstantRange::getSetSize() const {
119  if (isEmptySet())
120    return APInt(getBitWidth(), 0);
121  if (getBitWidth() == 1) {
122    if (Lower != Upper)  // One of T or F in the set...
123      return APInt(2, 1);
124    return APInt(2, 2);      // Must be full set...
125  }
126
127  // Simply subtract the bounds...
128  return Upper - Lower;
129}
130
131/// getUnsignedMax - Return the largest unsigned value contained in the
132/// ConstantRange.
133///
134APInt ConstantRange::getUnsignedMax() const {
135  if (isFullSet() || isWrappedSet())
136    return APInt::getMaxValue(getBitWidth());
137  else
138    return getUpper() - 1;
139}
140
141/// getUnsignedMin - Return the smallest unsigned value contained in the
142/// ConstantRange.
143///
144APInt ConstantRange::getUnsignedMin() const {
145  if (isFullSet() || (isWrappedSet() && getUpper() != 0))
146    return APInt::getMinValue(getBitWidth());
147  else
148    return getLower();
149}
150
151/// getSignedMax - Return the largest signed value contained in the
152/// ConstantRange.
153///
154APInt ConstantRange::getSignedMax() const {
155  APInt SignedMax(APInt::getSignedMaxValue(getBitWidth()));
156  if (!isWrappedSet()) {
157    if (getLower().sle(getUpper() - 1))
158      return getUpper() - 1;
159    else
160      return SignedMax;
161  } else {
162    if (getLower().isNegative() == getUpper().isNegative())
163      return SignedMax;
164    else
165      return getUpper() - 1;
166  }
167}
168
169/// getSignedMin - Return the smallest signed value contained in the
170/// ConstantRange.
171///
172APInt ConstantRange::getSignedMin() const {
173  APInt SignedMin(APInt::getSignedMinValue(getBitWidth()));
174  if (!isWrappedSet()) {
175    if (getLower().sle(getUpper() - 1))
176      return getLower();
177    else
178      return SignedMin;
179  } else {
180    if ((getUpper() - 1).slt(getLower())) {
181      if (getUpper() != SignedMin)
182        return SignedMin;
183      else
184        return getLower();
185    } else {
186      return getLower();
187    }
188  }
189}
190
191/// contains - Return true if the specified value is in the set.
192///
193bool ConstantRange::contains(const APInt &V) const {
194  if (Lower == Upper)
195    return isFullSet();
196
197  if (!isWrappedSet())
198    return Lower.ule(V) && V.ult(Upper);
199  else
200    return Lower.ule(V) || V.ult(Upper);
201}
202
203/// contains - Return true if the argument is a subset of this range.
204/// Two equal set contain each other. The empty set is considered to be
205/// contained by all other sets.
206///
207bool ConstantRange::contains(const ConstantRange &Other) const {
208  if (isFullSet()) return true;
209  if (Other.isFullSet()) return false;
210  if (Other.isEmptySet()) return true;
211  if (isEmptySet()) return false;
212
213  if (!isWrappedSet()) {
214    if (Other.isWrappedSet())
215      return false;
216
217    return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
218  }
219
220  if (!Other.isWrappedSet())
221    return Other.getUpper().ule(Upper) ||
222           Lower.ule(Other.getLower());
223
224  return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
225}
226
227/// subtract - Subtract the specified constant from the endpoints of this
228/// constant range.
229ConstantRange ConstantRange::subtract(const APInt &Val) const {
230  assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
231  // If the set is empty or full, don't modify the endpoints.
232  if (Lower == Upper)
233    return *this;
234  return ConstantRange(Lower - Val, Upper - Val);
235}
236
237
238// intersect1Wrapped - This helper function is used to intersect two ranges when
239// it is known that LHS is wrapped and RHS isn't.
240//
241ConstantRange
242ConstantRange::intersect1Wrapped(const ConstantRange &LHS,
243                                 const ConstantRange &RHS) {
244  assert(LHS.isWrappedSet() && !RHS.isWrappedSet());
245
246  // Check to see if we overlap on the Left side of RHS...
247  //
248  if (RHS.Lower.ult(LHS.Upper)) {
249    // We do overlap on the left side of RHS, see if we overlap on the right of
250    // RHS...
251    if (RHS.Upper.ugt(LHS.Lower)) {
252      // Ok, the result overlaps on both the left and right sides.  See if the
253      // resultant interval will be smaller if we wrap or not...
254      //
255      if (LHS.getSetSize().ult(RHS.getSetSize()))
256        return LHS;
257      else
258        return RHS;
259
260    } else {
261      // No overlap on the right, just on the left.
262      return ConstantRange(RHS.Lower, LHS.Upper);
263    }
264  } else {
265    // We don't overlap on the left side of RHS, see if we overlap on the right
266    // of RHS...
267    if (RHS.Upper.ugt(LHS.Lower)) {
268      // Simple overlap...
269      return ConstantRange(LHS.Lower, RHS.Upper);
270    } else {
271      // No overlap...
272      return ConstantRange(LHS.getBitWidth(), false);
273    }
274  }
275}
276
277/// intersectWith - Return the range that results from the intersection of this
278/// range with another range.  The resultant range is guaranteed to include all
279/// elements contained in both input ranges, and to have the smallest possible
280/// set size that does so.  Because there may be two intersections with the
281/// same set size, A.intersectWith(B) might not be equal to B.intersectWith(A).
282ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const {
283  assert(getBitWidth() == CR.getBitWidth() &&
284         "ConstantRange types don't agree!");
285
286  // Handle common cases.
287  if (   isEmptySet() || CR.isFullSet()) return *this;
288  if (CR.isEmptySet() ||    isFullSet()) return CR;
289
290  if (!isWrappedSet() && CR.isWrappedSet())
291    return CR.intersectWith(*this);
292
293  if (!isWrappedSet() && !CR.isWrappedSet()) {
294    if (Lower.ult(CR.Lower)) {
295      if (Upper.ule(CR.Lower))
296        return ConstantRange(getBitWidth(), false);
297
298      if (Upper.ult(CR.Upper))
299        return ConstantRange(CR.Lower, Upper);
300
301      return CR;
302    } else {
303      if (Upper.ult(CR.Upper))
304        return *this;
305
306      if (Lower.ult(CR.Upper))
307        return ConstantRange(Lower, CR.Upper);
308
309      return ConstantRange(getBitWidth(), false);
310    }
311  }
312
313  if (isWrappedSet() && !CR.isWrappedSet()) {
314    if (CR.Lower.ult(Upper)) {
315      if (CR.Upper.ult(Upper))
316        return CR;
317
318      if (CR.Upper.ult(Lower))
319        return ConstantRange(CR.Lower, Upper);
320
321      if (getSetSize().ult(CR.getSetSize()))
322        return *this;
323      else
324        return CR;
325    } else if (CR.Lower.ult(Lower)) {
326      if (CR.Upper.ule(Lower))
327        return ConstantRange(getBitWidth(), false);
328
329      return ConstantRange(Lower, CR.Upper);
330    }
331    return CR;
332  }
333
334  if (CR.Upper.ult(Upper)) {
335    if (CR.Lower.ult(Upper)) {
336      if (getSetSize().ult(CR.getSetSize()))
337        return *this;
338      else
339        return CR;
340    }
341
342    if (CR.Lower.ult(Lower))
343      return ConstantRange(Lower, CR.Upper);
344
345    return CR;
346  } else if (CR.Upper.ult(Lower)) {
347    if (CR.Lower.ult(Lower))
348      return *this;
349
350    return ConstantRange(CR.Lower, Upper);
351  }
352  if (getSetSize().ult(CR.getSetSize()))
353    return *this;
354  else
355    return CR;
356}
357
358
359/// unionWith - Return the range that results from the union of this range with
360/// another range.  The resultant range is guaranteed to include the elements of
361/// both sets, but may contain more.  For example, [3, 9) union [12,15) is
362/// [3, 15), which includes 9, 10, and 11, which were not included in either
363/// set before.
364///
365ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const {
366  assert(getBitWidth() == CR.getBitWidth() &&
367         "ConstantRange types don't agree!");
368
369  if (   isFullSet() || CR.isEmptySet()) return *this;
370  if (CR.isFullSet() ||    isEmptySet()) return CR;
371
372  if (!isWrappedSet() && CR.isWrappedSet()) return CR.unionWith(*this);
373
374  if (!isWrappedSet() && !CR.isWrappedSet()) {
375    if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) {
376      // If the two ranges are disjoint, find the smaller gap and bridge it.
377      APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
378      if (d1.ult(d2))
379        return ConstantRange(Lower, CR.Upper);
380      else
381        return ConstantRange(CR.Lower, Upper);
382    }
383
384    APInt L = Lower, U = Upper;
385    if (CR.Lower.ult(L))
386      L = CR.Lower;
387    if ((CR.Upper - 1).ugt(U - 1))
388      U = CR.Upper;
389
390    if (L == 0 && U == 0)
391      return ConstantRange(getBitWidth());
392
393    return ConstantRange(L, U);
394  }
395
396  if (!CR.isWrappedSet()) {
397    // ------U   L-----  and  ------U   L----- : this
398    //   L--U                            L--U  : CR
399    if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
400      return *this;
401
402    // ------U   L----- : this
403    //    L---------U   : CR
404    if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
405      return ConstantRange(getBitWidth());
406
407    // ----U       L---- : this
408    //       L---U       : CR
409    //    <d1>  <d2>
410    if (Upper.ule(CR.Lower) && CR.Upper.ule(Lower)) {
411      APInt d1 = CR.Lower - Upper, d2 = Lower - CR.Upper;
412      if (d1.ult(d2))
413        return ConstantRange(Lower, CR.Upper);
414      else
415        return ConstantRange(CR.Lower, Upper);
416    }
417
418    // ----U     L----- : this
419    //        L----U    : CR
420    if (Upper.ult(CR.Lower) && Lower.ult(CR.Upper))
421      return ConstantRange(CR.Lower, Upper);
422
423    // ------U    L---- : this
424    //    L-----U       : CR
425    if (CR.Lower.ult(Upper) && CR.Upper.ult(Lower))
426      return ConstantRange(Lower, CR.Upper);
427  }
428
429  assert(isWrappedSet() && CR.isWrappedSet() &&
430         "ConstantRange::unionWith missed wrapped union unwrapped case");
431
432  // ------U    L----  and  ------U    L---- : this
433  // -U  L-----------  and  ------------U  L : CR
434  if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
435    return ConstantRange(getBitWidth());
436
437  APInt L = Lower, U = Upper;
438  if (CR.Upper.ugt(U))
439    U = CR.Upper;
440  if (CR.Lower.ult(L))
441    L = CR.Lower;
442
443  return ConstantRange(L, U);
444}
445
446/// zeroExtend - Return a new range in the specified integer type, which must
447/// be strictly larger than the current type.  The returned range will
448/// correspond to the possible range of values as if the source range had been
449/// zero extended.
450ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
451  unsigned SrcTySize = getBitWidth();
452  assert(SrcTySize < DstTySize && "Not a value extension");
453  if (isFullSet())
454    // Change a source full set into [0, 1 << 8*numbytes)
455    return ConstantRange(APInt(DstTySize,0), APInt(DstTySize,1).shl(SrcTySize));
456
457  APInt L = Lower; L.zext(DstTySize);
458  APInt U = Upper; U.zext(DstTySize);
459  return ConstantRange(L, U);
460}
461
462/// signExtend - Return a new range in the specified integer type, which must
463/// be strictly larger than the current type.  The returned range will
464/// correspond to the possible range of values as if the source range had been
465/// sign extended.
466ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
467  unsigned SrcTySize = getBitWidth();
468  assert(SrcTySize < DstTySize && "Not a value extension");
469  if (isFullSet()) {
470    return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
471                         APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
472  }
473
474  APInt L = Lower; L.sext(DstTySize);
475  APInt U = Upper; U.sext(DstTySize);
476  return ConstantRange(L, U);
477}
478
479/// truncate - Return a new range in the specified integer type, which must be
480/// strictly smaller than the current type.  The returned range will
481/// correspond to the possible range of values as if the source range had been
482/// truncated to the specified type.
483ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
484  unsigned SrcTySize = getBitWidth();
485  assert(SrcTySize > DstTySize && "Not a value truncation");
486  APInt Size(APInt::getLowBitsSet(SrcTySize, DstTySize));
487  if (isFullSet() || getSetSize().ugt(Size))
488    return ConstantRange(DstTySize);
489
490  APInt L = Lower; L.trunc(DstTySize);
491  APInt U = Upper; U.trunc(DstTySize);
492  return ConstantRange(L, U);
493}
494
495/// zextOrTrunc - make this range have the bit width given by \p DstTySize. The
496/// value is zero extended, truncated, or left alone to make it that width.
497ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
498  unsigned SrcTySize = getBitWidth();
499  if (SrcTySize > DstTySize)
500    return truncate(DstTySize);
501  else if (SrcTySize < DstTySize)
502    return zeroExtend(DstTySize);
503  else
504    return *this;
505}
506
507/// sextOrTrunc - make this range have the bit width given by \p DstTySize. The
508/// value is sign extended, truncated, or left alone to make it that width.
509ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
510  unsigned SrcTySize = getBitWidth();
511  if (SrcTySize > DstTySize)
512    return truncate(DstTySize);
513  else if (SrcTySize < DstTySize)
514    return signExtend(DstTySize);
515  else
516    return *this;
517}
518
519ConstantRange
520ConstantRange::add(const ConstantRange &Other) const {
521  if (isEmptySet() || Other.isEmptySet())
522    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
523  if (isFullSet() || Other.isFullSet())
524    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
525
526  APInt Spread_X = getSetSize(), Spread_Y = Other.getSetSize();
527  APInt NewLower = getLower() + Other.getLower();
528  APInt NewUpper = getUpper() + Other.getUpper() - 1;
529  if (NewLower == NewUpper)
530    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
531
532  ConstantRange X = ConstantRange(NewLower, NewUpper);
533  if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y))
534    // We've wrapped, therefore, full set.
535    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
536
537  return X;
538}
539
540ConstantRange
541ConstantRange::multiply(const ConstantRange &Other) const {
542  if (isEmptySet() || Other.isEmptySet())
543    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
544  if (isFullSet() || Other.isFullSet())
545    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
546
547  APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
548  APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
549  APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
550  APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
551
552  ConstantRange Result_zext = ConstantRange(this_min * Other_min,
553                                            this_max * Other_max + 1);
554  return Result_zext.truncate(getBitWidth());
555}
556
557ConstantRange
558ConstantRange::smax(const ConstantRange &Other) const {
559  // X smax Y is: range(smax(X_smin, Y_smin),
560  //                    smax(X_smax, Y_smax))
561  if (isEmptySet() || Other.isEmptySet())
562    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
563  APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
564  APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
565  if (NewU == NewL)
566    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
567  return ConstantRange(NewL, NewU);
568}
569
570ConstantRange
571ConstantRange::umax(const ConstantRange &Other) const {
572  // X umax Y is: range(umax(X_umin, Y_umin),
573  //                    umax(X_umax, Y_umax))
574  if (isEmptySet() || Other.isEmptySet())
575    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
576  APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
577  APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
578  if (NewU == NewL)
579    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
580  return ConstantRange(NewL, NewU);
581}
582
583ConstantRange
584ConstantRange::udiv(const ConstantRange &RHS) const {
585  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax() == 0)
586    return ConstantRange(getBitWidth(), /*isFullSet=*/false);
587  if (RHS.isFullSet())
588    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
589
590  APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
591
592  APInt RHS_umin = RHS.getUnsignedMin();
593  if (RHS_umin == 0) {
594    // We want the lowest value in RHS excluding zero. Usually that would be 1
595    // except for a range in the form of [X, 1) in which case it would be X.
596    if (RHS.getUpper() == 1)
597      RHS_umin = RHS.getLower();
598    else
599      RHS_umin = APInt(getBitWidth(), 1);
600  }
601
602  APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
603
604  // If the LHS is Full and the RHS is a wrapped interval containing 1 then
605  // this could occur.
606  if (Lower == Upper)
607    return ConstantRange(getBitWidth(), /*isFullSet=*/true);
608
609  return ConstantRange(Lower, Upper);
610}
611
612/// print - Print out the bounds to a stream...
613///
614void ConstantRange::print(raw_ostream &OS) const {
615  OS << "[" << Lower << "," << Upper << ")";
616}
617
618/// dump - Allow printing from a debugger easily...
619///
620void ConstantRange::dump() const {
621  print(errs());
622}
623
624
625