LoopRotation.cpp revision c137120bb047a7017cbab21f5f9c9e6f65e2b84f
1//===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements Loop Rotation Pass.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "loop-rotate"
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/Function.h"
17#include "llvm/IntrinsicInst.h"
18#include "llvm/Analysis/CodeMetrics.h"
19#include "llvm/Analysis/LoopPass.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/ScalarEvolution.h"
22#include "llvm/Transforms/Utils/Local.h"
23#include "llvm/Transforms/Utils/BasicBlockUtils.h"
24#include "llvm/Transforms/Utils/SSAUpdater.h"
25#include "llvm/Transforms/Utils/ValueMapper.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/ADT/Statistic.h"
28using namespace llvm;
29
30#define MAX_HEADER_SIZE 16
31
32STATISTIC(NumRotated, "Number of loops rotated");
33namespace {
34
35  class LoopRotate : public LoopPass {
36  public:
37    static char ID; // Pass ID, replacement for typeid
38    LoopRotate() : LoopPass(ID) {
39      initializeLoopRotatePass(*PassRegistry::getPassRegistry());
40    }
41
42    // LCSSA form makes instruction renaming easier.
43    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
44      AU.addPreserved<DominatorTree>();
45      AU.addRequired<LoopInfo>();
46      AU.addPreserved<LoopInfo>();
47      AU.addRequiredID(LoopSimplifyID);
48      AU.addPreservedID(LoopSimplifyID);
49      AU.addRequiredID(LCSSAID);
50      AU.addPreservedID(LCSSAID);
51      AU.addPreserved<ScalarEvolution>();
52    }
53
54    bool runOnLoop(Loop *L, LPPassManager &LPM);
55    bool rotateLoop(Loop *L);
56
57  private:
58    LoopInfo *LI;
59  };
60}
61
62char LoopRotate::ID = 0;
63INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
64INITIALIZE_PASS_DEPENDENCY(LoopInfo)
65INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
66INITIALIZE_PASS_DEPENDENCY(LCSSA)
67INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
68
69Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
70
71/// Rotate Loop L as many times as possible. Return true if
72/// the loop is rotated at least once.
73bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
74  LI = &getAnalysis<LoopInfo>();
75
76  // One loop can be rotated multiple times.
77  bool MadeChange = false;
78  while (rotateLoop(L))
79    MadeChange = true;
80
81  return MadeChange;
82}
83
84/// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
85/// old header into the preheader.  If there were uses of the values produced by
86/// these instruction that were outside of the loop, we have to insert PHI nodes
87/// to merge the two values.  Do this now.
88static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
89                                            BasicBlock *OrigPreheader,
90                                            ValueToValueMapTy &ValueMap) {
91  // Remove PHI node entries that are no longer live.
92  BasicBlock::iterator I, E = OrigHeader->end();
93  for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
94    PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
95
96  // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
97  // as necessary.
98  SSAUpdater SSA;
99  for (I = OrigHeader->begin(); I != E; ++I) {
100    Value *OrigHeaderVal = I;
101
102    // If there are no uses of the value (e.g. because it returns void), there
103    // is nothing to rewrite.
104    if (OrigHeaderVal->use_empty())
105      continue;
106
107    Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
108
109    // The value now exits in two versions: the initial value in the preheader
110    // and the loop "next" value in the original header.
111    SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
112    SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
113    SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
114
115    // Visit each use of the OrigHeader instruction.
116    for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
117         UE = OrigHeaderVal->use_end(); UI != UE; ) {
118      // Grab the use before incrementing the iterator.
119      Use &U = UI.getUse();
120
121      // Increment the iterator before removing the use from the list.
122      ++UI;
123
124      // SSAUpdater can't handle a non-PHI use in the same block as an
125      // earlier def. We can easily handle those cases manually.
126      Instruction *UserInst = cast<Instruction>(U.getUser());
127      if (!isa<PHINode>(UserInst)) {
128        BasicBlock *UserBB = UserInst->getParent();
129
130        // The original users in the OrigHeader are already using the
131        // original definitions.
132        if (UserBB == OrigHeader)
133          continue;
134
135        // Users in the OrigPreHeader need to use the value to which the
136        // original definitions are mapped.
137        if (UserBB == OrigPreheader) {
138          U = OrigPreHeaderVal;
139          continue;
140        }
141      }
142
143      // Anything else can be handled by SSAUpdater.
144      SSA.RewriteUse(U);
145    }
146  }
147}
148
149/// Rotate loop LP. Return true if the loop is rotated.
150bool LoopRotate::rotateLoop(Loop *L) {
151  // If the loop has only one block then there is not much to rotate.
152  if (L->getBlocks().size() == 1)
153    return false;
154
155  BasicBlock *OrigHeader = L->getHeader();
156
157  BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
158  if (BI == 0 || BI->isUnconditional())
159    return false;
160
161  // If the loop header is not one of the loop exiting blocks then
162  // either this loop is already rotated or it is not
163  // suitable for loop rotation transformations.
164  if (!L->isLoopExiting(OrigHeader))
165    return false;
166
167  // Updating PHInodes in loops with multiple exits adds complexity.
168  // Keep it simple, and restrict loop rotation to loops with one exit only.
169  // In future, lift this restriction and support for multiple exits if
170  // required.
171  SmallVector<BasicBlock*, 8> ExitBlocks;
172  L->getExitBlocks(ExitBlocks);
173  if (ExitBlocks.size() > 1)
174    return false;
175
176  // Check size of original header and reject loop if it is very big.
177  {
178    CodeMetrics Metrics;
179    Metrics.analyzeBasicBlock(OrigHeader);
180    if (Metrics.NumInsts > MAX_HEADER_SIZE)
181      return false;
182  }
183
184  // Now, this loop is suitable for rotation.
185  BasicBlock *OrigPreheader = L->getLoopPreheader();
186  BasicBlock *OrigLatch = L->getLoopLatch();
187
188  // If the loop could not be converted to canonical form, it must have an
189  // indirectbr in it, just give up.
190  if (OrigPreheader == 0 || OrigLatch == 0)
191    return false;
192
193  // Anything ScalarEvolution may know about this loop or the PHI nodes
194  // in its header will soon be invalidated.
195  if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
196    SE->forgetLoop(L);
197
198  // Find new Loop header. NewHeader is a Header's one and only successor
199  // that is inside loop.  Header's other successor is outside the
200  // loop.  Otherwise loop is not suitable for rotation.
201  BasicBlock *Exit = BI->getSuccessor(0);
202  BasicBlock *NewHeader = BI->getSuccessor(1);
203  if (L->contains(Exit))
204    std::swap(Exit, NewHeader);
205  assert(NewHeader && "Unable to determine new loop header");
206  assert(L->contains(NewHeader) && !L->contains(Exit) &&
207         "Unable to determine loop header and exit blocks");
208
209  // This code assumes that the new header has exactly one predecessor.
210  // Remove any single-entry PHI nodes in it.
211  assert(NewHeader->getSinglePredecessor() &&
212         "New header doesn't have one pred!");
213  FoldSingleEntryPHINodes(NewHeader);
214
215  // Begin by walking OrigHeader and populating ValueMap with an entry for
216  // each Instruction.
217  BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
218  ValueToValueMapTy ValueMap;
219
220  // For PHI nodes, the value available in OldPreHeader is just the
221  // incoming value from OldPreHeader.
222  for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
223    ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
224
225  // For the rest of the instructions, either hoist to the OrigPreheader if
226  // possible or create a clone in the OldPreHeader if not.
227  TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
228  while (I != E) {
229    Instruction *Inst = I++;
230
231    // If the instruction's operands are invariant and it doesn't read or write
232    // memory, then it is safe to hoist.  Doing this doesn't change the order of
233    // execution in the preheader, but does prevent the instruction from
234    // executing in each iteration of the loop.  This means it is safe to hoist
235    // something that might trap, but isn't safe to hoist something that reads
236    // memory (without proving that the loop doesn't write).
237    if (L->hasLoopInvariantOperands(Inst) &&
238        !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
239        !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst)) {
240      Inst->moveBefore(LoopEntryBranch);
241      continue;
242    }
243
244    // Otherwise, create a duplicate of the instruction.
245    Instruction *C = Inst->clone();
246
247    // Eagerly remap the operands of the instruction.
248    RemapInstruction(C, ValueMap,
249                     RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
250
251    // With the operands remapped, see if the instruction constant folds or is
252    // otherwise simplifyable.  This commonly occurs because the entry from PHI
253    // nodes allows icmps and other instructions to fold.
254    Value *V = SimplifyInstruction(C);
255    if (V && LI->replacementPreservesLCSSAForm(C, V)) {
256      // If so, then delete the temporary instruction and stick the folded value
257      // in the map.
258      delete C;
259      ValueMap[Inst] = V;
260    } else {
261      // Otherwise, stick the new instruction into the new block!
262      C->setName(Inst->getName());
263      C->insertBefore(LoopEntryBranch);
264      ValueMap[Inst] = C;
265    }
266  }
267
268  // Along with all the other instructions, we just cloned OrigHeader's
269  // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
270  // successors by duplicating their incoming values for OrigHeader.
271  TerminatorInst *TI = OrigHeader->getTerminator();
272  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
273    for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
274         PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
275      PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
276
277  // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
278  // OrigPreHeader's old terminator (the original branch into the loop), and
279  // remove the corresponding incoming values from the PHI nodes in OrigHeader.
280  LoopEntryBranch->eraseFromParent();
281
282  // If there were any uses of instructions in the duplicated block outside the
283  // loop, update them, inserting PHI nodes as required
284  RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
285
286  // NewHeader is now the header of the loop.
287  L->moveToHeader(NewHeader);
288  assert(L->getHeader() == NewHeader && "Latch block is our new header");
289
290
291  // At this point, we've finished our major CFG changes.  As part of cloning
292  // the loop into the preheader we've simplified instructions and the
293  // duplicated conditional branch may now be branching on a constant.  If it is
294  // branching on a constant and if that constant means that we enter the loop,
295  // then we fold away the cond branch to an uncond branch.  This simplifies the
296  // loop in cases important for nested loops, and it also means we don't have
297  // to split as many edges.
298  BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
299  assert(PHBI->isConditional() && "Should be clone of BI condbr!");
300  if (!isa<ConstantInt>(PHBI->getCondition()) ||
301      PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
302          != NewHeader) {
303    // The conditional branch can't be folded, handle the general case.
304    // Update DominatorTree to reflect the CFG change we just made.  Then split
305    // edges as necessary to preserve LoopSimplify form.
306    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
307      // Since OrigPreheader now has the conditional branch to Exit block, it is
308      // the dominator of Exit.
309      DT->changeImmediateDominator(Exit, OrigPreheader);
310      DT->changeImmediateDominator(NewHeader, OrigPreheader);
311
312      // Update OrigHeader to be dominated by the new header block.
313      DT->changeImmediateDominator(OrigHeader, OrigLatch);
314    }
315
316    // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
317    // thus is not a preheader anymore.  Split the edge to form a real preheader.
318    BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
319    NewPH->setName(NewHeader->getName() + ".lr.ph");
320
321    // Preserve canonical loop form, which means that 'Exit' should have only one
322    // predecessor.
323    BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
324    ExitSplit->moveBefore(Exit);
325  } else {
326    // We can fold the conditional branch in the preheader, this makes things
327    // simpler. The first step is to remove the extra edge to the Exit block.
328    Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
329    BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
330    NewBI->setDebugLoc(PHBI->getDebugLoc());
331    PHBI->eraseFromParent();
332
333    // With our CFG finalized, update DomTree if it is available.
334    if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
335      // Update OrigHeader to be dominated by the new header block.
336      DT->changeImmediateDominator(NewHeader, OrigPreheader);
337      DT->changeImmediateDominator(OrigHeader, OrigLatch);
338    }
339  }
340
341  assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
342  assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
343
344  // Now that the CFG and DomTree are in a consistent state again, try to merge
345  // the OrigHeader block into OrigLatch.  This will succeed if they are
346  // connected by an unconditional branch.  This is just a cleanup so the
347  // emitted code isn't too gross in this common case.
348  MergeBlockIntoPredecessor(OrigHeader, this);
349
350  ++NumRotated;
351  return true;
352}
353
354