ScalarReplAggregates.cpp revision 02518140ac3310d0357c26a87b2372d85da9c2f4
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced,  "Number of allocas broken up");
44STATISTIC(NumPromoted,  "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
47
48namespace {
49  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50    static char ID; // Pass identification, replacement for typeid
51    explicit SROA(signed T = -1) : FunctionPass((intptr_t)&ID) {
52      if (T == -1)
53        SRThreshold = 128;
54      else
55        SRThreshold = T;
56    }
57
58    bool runOnFunction(Function &F);
59
60    bool performScalarRepl(Function &F);
61    bool performPromotion(Function &F);
62
63    // getAnalysisUsage - This pass does not require any passes, but we know it
64    // will not alter the CFG, so say so.
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<DominatorTree>();
67      AU.addRequired<DominanceFrontier>();
68      AU.addRequired<TargetData>();
69      AU.setPreservesCFG();
70    }
71
72  private:
73    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
74    /// information about the uses.  All these fields are initialized to false
75    /// and set to true when something is learned.
76    struct AllocaInfo {
77      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
78      bool isUnsafe : 1;
79
80      /// needsCanon - This is set to true if there is some use of the alloca
81      /// that requires canonicalization.
82      bool needsCanon : 1;
83
84      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
85      bool isMemCpySrc : 1;
86
87      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
88      bool isMemCpyDst : 1;
89
90      AllocaInfo()
91        : isUnsafe(false), needsCanon(false),
92          isMemCpySrc(false), isMemCpyDst(false) {}
93    };
94
95    unsigned SRThreshold;
96
97    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
98
99    int isSafeAllocaToScalarRepl(AllocationInst *AI);
100
101    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
102                               AllocaInfo &Info);
103    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
104                         AllocaInfo &Info);
105    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
106                                        unsigned OpNo, AllocaInfo &Info);
107    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
108                                        AllocaInfo &Info);
109
110    void DoScalarReplacement(AllocationInst *AI,
111                             std::vector<AllocationInst*> &WorkList);
112    void CanonicalizeAllocaUsers(AllocationInst *AI);
113    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
114
115    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
116                                    SmallVector<AllocaInst*, 32> &NewElts);
117
118    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
119    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
120    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
121    Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
122                                     unsigned Offset);
123    Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
124                                      unsigned Offset);
125    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
126  };
127}
128
129char SROA::ID = 0;
130static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
131
132// Public interface to the ScalarReplAggregates pass
133FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
134  return new SROA(Threshold);
135}
136
137
138bool SROA::runOnFunction(Function &F) {
139  bool Changed = performPromotion(F);
140  while (1) {
141    bool LocalChange = performScalarRepl(F);
142    if (!LocalChange) break;   // No need to repromote if no scalarrepl
143    Changed = true;
144    LocalChange = performPromotion(F);
145    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
146  }
147
148  return Changed;
149}
150
151
152bool SROA::performPromotion(Function &F) {
153  std::vector<AllocaInst*> Allocas;
154  DominatorTree         &DT = getAnalysis<DominatorTree>();
155  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
156
157  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
158
159  bool Changed = false;
160
161  while (1) {
162    Allocas.clear();
163
164    // Find allocas that are safe to promote, by looking at all instructions in
165    // the entry node
166    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
167      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
168        if (isAllocaPromotable(AI))
169          Allocas.push_back(AI);
170
171    if (Allocas.empty()) break;
172
173    PromoteMemToReg(Allocas, DT, DF);
174    NumPromoted += Allocas.size();
175    Changed = true;
176  }
177
178  return Changed;
179}
180
181// performScalarRepl - This algorithm is a simple worklist driven algorithm,
182// which runs on all of the malloc/alloca instructions in the function, removing
183// them if they are only used by getelementptr instructions.
184//
185bool SROA::performScalarRepl(Function &F) {
186  std::vector<AllocationInst*> WorkList;
187
188  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
189  BasicBlock &BB = F.getEntryBlock();
190  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
191    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
192      WorkList.push_back(A);
193
194  const TargetData &TD = getAnalysis<TargetData>();
195
196  // Process the worklist
197  bool Changed = false;
198  while (!WorkList.empty()) {
199    AllocationInst *AI = WorkList.back();
200    WorkList.pop_back();
201
202    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
203    // with unused elements.
204    if (AI->use_empty()) {
205      AI->eraseFromParent();
206      continue;
207    }
208
209    // If we can turn this aggregate value (potentially with casts) into a
210    // simple scalar value that can be mem2reg'd into a register value.
211    bool IsNotTrivial = false;
212    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
213      if (IsNotTrivial && ActualType != Type::VoidTy) {
214        ConvertToScalar(AI, ActualType);
215        Changed = true;
216        continue;
217      }
218
219    // Check to see if we can perform the core SROA transformation.  We cannot
220    // transform the allocation instruction if it is an array allocation
221    // (allocations OF arrays are ok though), and an allocation of a scalar
222    // value cannot be decomposed at all.
223    if (!AI->isArrayAllocation() &&
224        (isa<StructType>(AI->getAllocatedType()) ||
225         isa<ArrayType>(AI->getAllocatedType())) &&
226        AI->getAllocatedType()->isSized() &&
227        TD.getABITypeSize(AI->getAllocatedType()) < SRThreshold) {
228      // Check that all of the users of the allocation are capable of being
229      // transformed.
230      switch (isSafeAllocaToScalarRepl(AI)) {
231      default: assert(0 && "Unexpected value!");
232      case 0:  // Not safe to scalar replace.
233        break;
234      case 1:  // Safe, but requires cleanup/canonicalizations first
235        CanonicalizeAllocaUsers(AI);
236        // FALL THROUGH.
237      case 3:  // Safe to scalar replace.
238        DoScalarReplacement(AI, WorkList);
239        Changed = true;
240        continue;
241      }
242    }
243
244    // Check to see if this allocation is only modified by a memcpy/memmove from
245    // a constant global.  If this is the case, we can change all users to use
246    // the constant global instead.  This is commonly produced by the CFE by
247    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
248    // is only subsequently read.
249    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
250      DOUT << "Found alloca equal to global: " << *AI;
251      DOUT << "  memcpy = " << *TheCopy;
252      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
253      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
254      TheCopy->eraseFromParent();  // Don't mutate the global.
255      AI->eraseFromParent();
256      ++NumGlobals;
257      Changed = true;
258      continue;
259    }
260
261    // Otherwise, couldn't process this.
262  }
263
264  return Changed;
265}
266
267/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
268/// predicate, do SROA now.
269void SROA::DoScalarReplacement(AllocationInst *AI,
270                               std::vector<AllocationInst*> &WorkList) {
271  DOUT << "Found inst to SROA: " << *AI;
272  SmallVector<AllocaInst*, 32> ElementAllocas;
273  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
274    ElementAllocas.reserve(ST->getNumContainedTypes());
275    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
276      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
277                                      AI->getAlignment(),
278                                      AI->getName() + "." + utostr(i), AI);
279      ElementAllocas.push_back(NA);
280      WorkList.push_back(NA);  // Add to worklist for recursive processing
281    }
282  } else {
283    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
284    ElementAllocas.reserve(AT->getNumElements());
285    const Type *ElTy = AT->getElementType();
286    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
287      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
288                                      AI->getName() + "." + utostr(i), AI);
289      ElementAllocas.push_back(NA);
290      WorkList.push_back(NA);  // Add to worklist for recursive processing
291    }
292  }
293
294  // Now that we have created the alloca instructions that we want to use,
295  // expand the getelementptr instructions to use them.
296  //
297  while (!AI->use_empty()) {
298    Instruction *User = cast<Instruction>(AI->use_back());
299    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
300      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
301      BCInst->eraseFromParent();
302      continue;
303    }
304
305    // Replace %res = load { i32, i32 }* %alloc
306    // by
307    // %load.0 = load i32* %alloc.0
308    // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
309    // %load.1 = load i32* %alloc.1
310    // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
311    // (Also works for arrays instead of structs)
312    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
313      Value *Insert = UndefValue::get(LI->getType());
314      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
315        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
316        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
317      }
318      LI->replaceAllUsesWith(Insert);
319      LI->eraseFromParent();
320      continue;
321    }
322
323    // Replace store { i32, i32 } %val, { i32, i32 }* %alloc
324    // by
325    // %val.0 = extractvalue { i32, i32 } %val, 0
326    // store i32 %val.0, i32* %alloc.0
327    // %val.1 = extractvalue { i32, i32 } %val, 1
328    // store i32 %val.1, i32* %alloc.1
329    // (Also works for arrays instead of structs)
330    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
331      Value *Val = SI->getOperand(0);
332      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
333        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
334        new StoreInst(Extract, ElementAllocas[i], SI);
335      }
336      SI->eraseFromParent();
337      continue;
338    }
339
340    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
341    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
342    unsigned Idx =
343       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
344
345    assert(Idx < ElementAllocas.size() && "Index out of range?");
346    AllocaInst *AllocaToUse = ElementAllocas[Idx];
347
348    Value *RepValue;
349    if (GEPI->getNumOperands() == 3) {
350      // Do not insert a new getelementptr instruction with zero indices, only
351      // to have it optimized out later.
352      RepValue = AllocaToUse;
353    } else {
354      // We are indexing deeply into the structure, so we still need a
355      // getelement ptr instruction to finish the indexing.  This may be
356      // expanded itself once the worklist is rerun.
357      //
358      SmallVector<Value*, 8> NewArgs;
359      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
360      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
361      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
362                                           NewArgs.end(), "", GEPI);
363      RepValue->takeName(GEPI);
364    }
365
366    // If this GEP is to the start of the aggregate, check for memcpys.
367    if (Idx == 0) {
368      bool IsStartOfAggregateGEP = true;
369      for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
370        if (!isa<ConstantInt>(GEPI->getOperand(i))) {
371          IsStartOfAggregateGEP = false;
372          break;
373        }
374        if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
375          IsStartOfAggregateGEP = false;
376          break;
377        }
378      }
379
380      if (IsStartOfAggregateGEP)
381        RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
382    }
383
384
385    // Move all of the users over to the new GEP.
386    GEPI->replaceAllUsesWith(RepValue);
387    // Delete the old GEP
388    GEPI->eraseFromParent();
389  }
390
391  // Finally, delete the Alloca instruction
392  AI->eraseFromParent();
393  NumReplaced++;
394}
395
396
397/// isSafeElementUse - Check to see if this use is an allowed use for a
398/// getelementptr instruction of an array aggregate allocation.  isFirstElt
399/// indicates whether Ptr is known to the start of the aggregate.
400///
401void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
402                            AllocaInfo &Info) {
403  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
404       I != E; ++I) {
405    Instruction *User = cast<Instruction>(*I);
406    switch (User->getOpcode()) {
407    case Instruction::Load:  break;
408    case Instruction::Store:
409      // Store is ok if storing INTO the pointer, not storing the pointer
410      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
411      break;
412    case Instruction::GetElementPtr: {
413      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
414      bool AreAllZeroIndices = isFirstElt;
415      if (GEP->getNumOperands() > 1) {
416        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
417            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
418          // Using pointer arithmetic to navigate the array.
419          return MarkUnsafe(Info);
420
421        if (AreAllZeroIndices) {
422          for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
423            if (!isa<ConstantInt>(GEP->getOperand(i)) ||
424                !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
425              AreAllZeroIndices = false;
426              break;
427            }
428          }
429        }
430      }
431      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
432      if (Info.isUnsafe) return;
433      break;
434    }
435    case Instruction::BitCast:
436      if (isFirstElt) {
437        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
438        if (Info.isUnsafe) return;
439        break;
440      }
441      DOUT << "  Transformation preventing inst: " << *User;
442      return MarkUnsafe(Info);
443    case Instruction::Call:
444      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
445        if (isFirstElt) {
446          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
447          if (Info.isUnsafe) return;
448          break;
449        }
450      }
451      DOUT << "  Transformation preventing inst: " << *User;
452      return MarkUnsafe(Info);
453    default:
454      DOUT << "  Transformation preventing inst: " << *User;
455      return MarkUnsafe(Info);
456    }
457  }
458  return;  // All users look ok :)
459}
460
461/// AllUsersAreLoads - Return true if all users of this value are loads.
462static bool AllUsersAreLoads(Value *Ptr) {
463  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
464       I != E; ++I)
465    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
466      return false;
467  return true;
468}
469
470/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
471/// aggregate allocation.
472///
473void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
474                                 AllocaInfo &Info) {
475  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
476    return isSafeUseOfBitCastedAllocation(C, AI, Info);
477
478  if (isa<LoadInst>(User))
479    return; // Loads (returning a first class aggregrate) are always rewritable
480
481  if (isa<StoreInst>(User) && User->getOperand(0) != AI)
482    return; // Store is ok if storing INTO the pointer, not storing the pointer
483
484  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
485  if (GEPI == 0)
486    return MarkUnsafe(Info);
487
488  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
489
490  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
491  if (I == E ||
492      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
493    return MarkUnsafe(Info);
494  }
495
496  ++I;
497  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
498
499  bool IsAllZeroIndices = true;
500
501  // If this is a use of an array allocation, do a bit more checking for sanity.
502  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
503    uint64_t NumElements = AT->getNumElements();
504
505    if (ConstantInt *Idx = dyn_cast<ConstantInt>(I.getOperand())) {
506      IsAllZeroIndices &= Idx->isZero();
507
508      // Check to make sure that index falls within the array.  If not,
509      // something funny is going on, so we won't do the optimization.
510      //
511      if (Idx->getZExtValue() >= NumElements)
512        return MarkUnsafe(Info);
513
514      // We cannot scalar repl this level of the array unless any array
515      // sub-indices are in-range constants.  In particular, consider:
516      // A[0][i].  We cannot know that the user isn't doing invalid things like
517      // allowing i to index an out-of-range subscript that accesses A[1].
518      //
519      // Scalar replacing *just* the outer index of the array is probably not
520      // going to be a win anyway, so just give up.
521      for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
522        uint64_t NumElements;
523        if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
524          NumElements = SubArrayTy->getNumElements();
525        else
526          NumElements = cast<VectorType>(*I)->getNumElements();
527
528        ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
529        if (!IdxVal) return MarkUnsafe(Info);
530        if (IdxVal->getZExtValue() >= NumElements)
531          return MarkUnsafe(Info);
532        IsAllZeroIndices &= IdxVal->isZero();
533      }
534
535    } else {
536      IsAllZeroIndices = 0;
537
538      // If this is an array index and the index is not constant, we cannot
539      // promote... that is unless the array has exactly one or two elements in
540      // it, in which case we CAN promote it, but we have to canonicalize this
541      // out if this is the only problem.
542      if ((NumElements == 1 || NumElements == 2) &&
543          AllUsersAreLoads(GEPI)) {
544        Info.needsCanon = true;
545        return;  // Canonicalization required!
546      }
547      return MarkUnsafe(Info);
548    }
549  }
550
551  // If there are any non-simple uses of this getelementptr, make sure to reject
552  // them.
553  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
554}
555
556/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
557/// intrinsic can be promoted by SROA.  At this point, we know that the operand
558/// of the memintrinsic is a pointer to the beginning of the allocation.
559void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
560                                          unsigned OpNo, AllocaInfo &Info) {
561  // If not constant length, give up.
562  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
563  if (!Length) return MarkUnsafe(Info);
564
565  // If not the whole aggregate, give up.
566  const TargetData &TD = getAnalysis<TargetData>();
567  if (Length->getZExtValue() !=
568      TD.getABITypeSize(AI->getType()->getElementType()))
569    return MarkUnsafe(Info);
570
571  // We only know about memcpy/memset/memmove.
572  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
573    return MarkUnsafe(Info);
574
575  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
576  // into or out of the aggregate.
577  if (OpNo == 1)
578    Info.isMemCpyDst = true;
579  else {
580    assert(OpNo == 2);
581    Info.isMemCpySrc = true;
582  }
583}
584
585/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
586/// are
587void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
588                                          AllocaInfo &Info) {
589  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
590       UI != E; ++UI) {
591    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
592      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
593    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
594      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
595    } else {
596      return MarkUnsafe(Info);
597    }
598    if (Info.isUnsafe) return;
599  }
600}
601
602/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
603/// to its first element.  Transform users of the cast to use the new values
604/// instead.
605void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
606                                      SmallVector<AllocaInst*, 32> &NewElts) {
607  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
608  const TargetData &TD = getAnalysis<TargetData>();
609
610  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
611  while (UI != UE) {
612    if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
613      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
614      ++UI;
615      BCU->eraseFromParent();
616      continue;
617    }
618
619    // Otherwise, must be memcpy/memmove/memset of the entire aggregate.  Split
620    // into one per element.
621    MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
622
623    // If it's not a mem intrinsic, it must be some other user of a gep of the
624    // first pointer.  Just leave these alone.
625    if (!MI) {
626      ++UI;
627      continue;
628    }
629
630    // If this is a memcpy/memmove, construct the other pointer as the
631    // appropriate type.
632    Value *OtherPtr = 0;
633    if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
634      if (BCInst == MCI->getRawDest())
635        OtherPtr = MCI->getRawSource();
636      else {
637        assert(BCInst == MCI->getRawSource());
638        OtherPtr = MCI->getRawDest();
639      }
640    } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
641      if (BCInst == MMI->getRawDest())
642        OtherPtr = MMI->getRawSource();
643      else {
644        assert(BCInst == MMI->getRawSource());
645        OtherPtr = MMI->getRawDest();
646      }
647    }
648
649    // If there is an other pointer, we want to convert it to the same pointer
650    // type as AI has, so we can GEP through it.
651    if (OtherPtr) {
652      // It is likely that OtherPtr is a bitcast, if so, remove it.
653      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
654        OtherPtr = BC->getOperand(0);
655      if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
656        if (BCE->getOpcode() == Instruction::BitCast)
657          OtherPtr = BCE->getOperand(0);
658
659      // If the pointer is not the right type, insert a bitcast to the right
660      // type.
661      if (OtherPtr->getType() != AI->getType())
662        OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
663                                   MI);
664    }
665
666    // Process each element of the aggregate.
667    Value *TheFn = MI->getOperand(0);
668    const Type *BytePtrTy = MI->getRawDest()->getType();
669    bool SROADest = MI->getRawDest() == BCInst;
670
671    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
672      // If this is a memcpy/memmove, emit a GEP of the other element address.
673      Value *OtherElt = 0;
674      if (OtherPtr) {
675        Value *Idx[2];
676        Idx[0] = Zero;
677        Idx[1] = ConstantInt::get(Type::Int32Ty, i);
678        OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
679                                             OtherPtr->getNameStr()+"."+utostr(i),
680                                             MI);
681      }
682
683      Value *EltPtr = NewElts[i];
684      const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
685
686      // If we got down to a scalar, insert a load or store as appropriate.
687      if (EltTy->isSingleValueType()) {
688        if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
689          Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
690                                    MI);
691          new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
692          continue;
693        } else {
694          assert(isa<MemSetInst>(MI));
695
696          // If the stored element is zero (common case), just store a null
697          // constant.
698          Constant *StoreVal;
699          if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
700            if (CI->isZero()) {
701              StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
702            } else {
703              // If EltTy is a vector type, get the element type.
704              const Type *ValTy = EltTy;
705              if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
706                ValTy = VTy->getElementType();
707
708              // Construct an integer with the right value.
709              unsigned EltSize = TD.getTypeSizeInBits(ValTy);
710              APInt OneVal(EltSize, CI->getZExtValue());
711              APInt TotalVal(OneVal);
712              // Set each byte.
713              for (unsigned i = 0; 8*i < EltSize; ++i) {
714                TotalVal = TotalVal.shl(8);
715                TotalVal |= OneVal;
716              }
717
718              // Convert the integer value to the appropriate type.
719              StoreVal = ConstantInt::get(TotalVal);
720              if (isa<PointerType>(ValTy))
721                StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
722              else if (ValTy->isFloatingPoint())
723                StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
724              assert(StoreVal->getType() == ValTy && "Type mismatch!");
725
726              // If the requested value was a vector constant, create it.
727              if (EltTy != ValTy) {
728                unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
729                SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
730                StoreVal = ConstantVector::get(&Elts[0], NumElts);
731              }
732            }
733            new StoreInst(StoreVal, EltPtr, MI);
734            continue;
735          }
736          // Otherwise, if we're storing a byte variable, use a memset call for
737          // this element.
738        }
739      }
740
741      // Cast the element pointer to BytePtrTy.
742      if (EltPtr->getType() != BytePtrTy)
743        EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
744
745      // Cast the other pointer (if we have one) to BytePtrTy.
746      if (OtherElt && OtherElt->getType() != BytePtrTy)
747        OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
748                                   MI);
749
750      unsigned EltSize = TD.getABITypeSize(EltTy);
751
752      // Finally, insert the meminst for this element.
753      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
754        Value *Ops[] = {
755          SROADest ? EltPtr : OtherElt,  // Dest ptr
756          SROADest ? OtherElt : EltPtr,  // Src ptr
757          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
758          Zero  // Align
759        };
760        CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
761      } else {
762        assert(isa<MemSetInst>(MI));
763        Value *Ops[] = {
764          EltPtr, MI->getOperand(2),  // Dest, Value,
765          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
766          Zero  // Align
767        };
768        CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
769      }
770    }
771
772    // Finally, MI is now dead, as we've modified its actions to occur on all of
773    // the elements of the aggregate.
774    ++UI;
775    MI->eraseFromParent();
776  }
777}
778
779/// HasPadding - Return true if the specified type has any structure or
780/// alignment padding, false otherwise.
781static bool HasPadding(const Type *Ty, const TargetData &TD) {
782  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
783    const StructLayout *SL = TD.getStructLayout(STy);
784    unsigned PrevFieldBitOffset = 0;
785    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
786      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
787
788      // Padding in sub-elements?
789      if (HasPadding(STy->getElementType(i), TD))
790        return true;
791
792      // Check to see if there is any padding between this element and the
793      // previous one.
794      if (i) {
795        unsigned PrevFieldEnd =
796        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
797        if (PrevFieldEnd < FieldBitOffset)
798          return true;
799      }
800
801      PrevFieldBitOffset = FieldBitOffset;
802    }
803
804    //  Check for tail padding.
805    if (unsigned EltCount = STy->getNumElements()) {
806      unsigned PrevFieldEnd = PrevFieldBitOffset +
807                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
808      if (PrevFieldEnd < SL->getSizeInBits())
809        return true;
810    }
811
812  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
813    return HasPadding(ATy->getElementType(), TD);
814  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
815    return HasPadding(VTy->getElementType(), TD);
816  }
817  return TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
818}
819
820/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
821/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
822/// or 1 if safe after canonicalization has been performed.
823///
824int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
825  // Loop over the use list of the alloca.  We can only transform it if all of
826  // the users are safe to transform.
827  AllocaInfo Info;
828
829  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
830       I != E; ++I) {
831    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
832    if (Info.isUnsafe) {
833      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
834      return 0;
835    }
836  }
837
838  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
839  // source and destination, we have to be careful.  In particular, the memcpy
840  // could be moving around elements that live in structure padding of the LLVM
841  // types, but may actually be used.  In these cases, we refuse to promote the
842  // struct.
843  if (Info.isMemCpySrc && Info.isMemCpyDst &&
844      HasPadding(AI->getType()->getElementType(), getAnalysis<TargetData>()))
845    return 0;
846
847  // If we require cleanup, return 1, otherwise return 3.
848  return Info.needsCanon ? 1 : 3;
849}
850
851/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
852/// allocation, but only if cleaned up, perform the cleanups required.
853void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
854  // At this point, we know that the end result will be SROA'd and promoted, so
855  // we can insert ugly code if required so long as sroa+mem2reg will clean it
856  // up.
857  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
858       UI != E; ) {
859    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
860    if (!GEPI) continue;
861    gep_type_iterator I = gep_type_begin(GEPI);
862    ++I;
863
864    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
865      uint64_t NumElements = AT->getNumElements();
866
867      if (!isa<ConstantInt>(I.getOperand())) {
868        if (NumElements == 1) {
869          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
870        } else {
871          assert(NumElements == 2 && "Unhandled case!");
872          // All users of the GEP must be loads.  At each use of the GEP, insert
873          // two loads of the appropriate indexed GEP and select between them.
874          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
875                              Constant::getNullValue(I.getOperand()->getType()),
876             "isone", GEPI);
877          // Insert the new GEP instructions, which are properly indexed.
878          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
879          Indices[1] = Constant::getNullValue(Type::Int32Ty);
880          Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
881                                                     Indices.begin(),
882                                                     Indices.end(),
883                                                     GEPI->getName()+".0", GEPI);
884          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
885          Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
886                                                    Indices.begin(),
887                                                    Indices.end(),
888                                                    GEPI->getName()+".1", GEPI);
889          // Replace all loads of the variable index GEP with loads from both
890          // indexes and a select.
891          while (!GEPI->use_empty()) {
892            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
893            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
894            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
895            Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
896            LI->replaceAllUsesWith(R);
897            LI->eraseFromParent();
898          }
899          GEPI->eraseFromParent();
900        }
901      }
902    }
903  }
904}
905
906/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
907/// types are incompatible, return true, otherwise update Accum and return
908/// false.
909///
910/// There are three cases we handle here:
911///   1) An effectively-integer union, where the pieces are stored into as
912///      smaller integers (common with byte swap and other idioms).
913///   2) A union of vector types of the same size and potentially its elements.
914///      Here we turn element accesses into insert/extract element operations.
915///   3) A union of scalar types, such as int/float or int/pointer.  Here we
916///      merge together into integers, allowing the xform to work with #1 as
917///      well.
918static bool MergeInType(const Type *In, const Type *&Accum,
919                        const TargetData &TD) {
920  // If this is our first type, just use it.
921  const VectorType *PTy;
922  if (Accum == Type::VoidTy || In == Accum) {
923    Accum = In;
924  } else if (In == Type::VoidTy) {
925    // Noop.
926  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
927    // Otherwise pick whichever type is larger.
928    if (cast<IntegerType>(In)->getBitWidth() >
929        cast<IntegerType>(Accum)->getBitWidth())
930      Accum = In;
931  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
932    // Pointer unions just stay as one of the pointers.
933  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
934    if ((PTy = dyn_cast<VectorType>(Accum)) &&
935        PTy->getElementType() == In) {
936      // Accum is a vector, and we are accessing an element: ok.
937    } else if ((PTy = dyn_cast<VectorType>(In)) &&
938               PTy->getElementType() == Accum) {
939      // In is a vector, and accum is an element: ok, remember In.
940      Accum = In;
941    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
942               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
943      // Two vectors of the same size: keep Accum.
944    } else {
945      // Cannot insert an short into a <4 x int> or handle
946      // <2 x int> -> <4 x int>
947      return true;
948    }
949  } else {
950    // Pointer/FP/Integer unions merge together as integers.
951    switch (Accum->getTypeID()) {
952    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
953    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
954    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
955    case Type::X86_FP80TyID:  return true;
956    case Type::FP128TyID: return true;
957    case Type::PPC_FP128TyID: return true;
958    default:
959      assert(Accum->isInteger() && "Unknown FP type!");
960      break;
961    }
962
963    switch (In->getTypeID()) {
964    case Type::PointerTyID: In = TD.getIntPtrType(); break;
965    case Type::FloatTyID:   In = Type::Int32Ty; break;
966    case Type::DoubleTyID:  In = Type::Int64Ty; break;
967    case Type::X86_FP80TyID:  return true;
968    case Type::FP128TyID: return true;
969    case Type::PPC_FP128TyID: return true;
970    default:
971      assert(In->isInteger() && "Unknown FP type!");
972      break;
973    }
974    return MergeInType(In, Accum, TD);
975  }
976  return false;
977}
978
979/// getUIntAtLeastAsBigAs - Return an unsigned integer type that is at least
980/// as big as the specified type.  If there is no suitable type, this returns
981/// null.
982const Type *getUIntAtLeastAsBigAs(unsigned NumBits) {
983  if (NumBits > 64) return 0;
984  if (NumBits > 32) return Type::Int64Ty;
985  if (NumBits > 16) return Type::Int32Ty;
986  if (NumBits > 8) return Type::Int16Ty;
987  return Type::Int8Ty;
988}
989
990/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
991/// single scalar integer type, return that type.  Further, if the use is not
992/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
993/// there are no uses of this pointer, return Type::VoidTy to differentiate from
994/// failure.
995///
996const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
997  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
998  const TargetData &TD = getAnalysis<TargetData>();
999  const PointerType *PTy = cast<PointerType>(V->getType());
1000
1001  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1002    Instruction *User = cast<Instruction>(*UI);
1003
1004    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1005      // FIXME: Loads of a first class aggregrate value could be converted to a
1006      // series of loads and insertvalues
1007      if (!LI->getType()->isSingleValueType())
1008        return 0;
1009
1010      if (MergeInType(LI->getType(), UsedType, TD))
1011        return 0;
1012
1013    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1014      // Storing the pointer, not into the value?
1015      if (SI->getOperand(0) == V) return 0;
1016
1017      // FIXME: Stores of a first class aggregrate value could be converted to a
1018      // series of extractvalues and stores
1019      if (!SI->getOperand(0)->getType()->isSingleValueType())
1020        return 0;
1021
1022      // NOTE: We could handle storing of FP imms into integers here!
1023
1024      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
1025        return 0;
1026    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1027      IsNotTrivial = true;
1028      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
1029      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
1030    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1031      // Check to see if this is stepping over an element: GEP Ptr, int C
1032      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
1033        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1034        unsigned ElSize = TD.getABITypeSize(PTy->getElementType());
1035        unsigned BitOffset = Idx*ElSize*8;
1036        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
1037
1038        IsNotTrivial = true;
1039        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
1040        if (SubElt == 0) return 0;
1041        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
1042          const Type *NewTy =
1043            getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(SubElt)+BitOffset);
1044          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
1045          continue;
1046        }
1047      } else if (GEP->getNumOperands() == 3 &&
1048                 isa<ConstantInt>(GEP->getOperand(1)) &&
1049                 isa<ConstantInt>(GEP->getOperand(2)) &&
1050                 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
1051        // We are stepping into an element, e.g. a structure or an array:
1052        // GEP Ptr, int 0, uint C
1053        const Type *AggTy = PTy->getElementType();
1054        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1055
1056        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
1057          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
1058        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
1059          // Getting an element of the vector.
1060          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
1061
1062          // Merge in the vector type.
1063          if (MergeInType(VectorTy, UsedType, TD)) return 0;
1064
1065          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1066          if (SubTy == 0) return 0;
1067
1068          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1069            return 0;
1070
1071          // We'll need to change this to an insert/extract element operation.
1072          IsNotTrivial = true;
1073          continue;    // Everything looks ok
1074
1075        } else if (isa<StructType>(AggTy)) {
1076          // Structs are always ok.
1077        } else {
1078          return 0;
1079        }
1080        const Type *NTy = getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(AggTy));
1081        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
1082        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1083        if (SubTy == 0) return 0;
1084        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1085          return 0;
1086        continue;    // Everything looks ok
1087      }
1088      return 0;
1089    } else {
1090      // Cannot handle this!
1091      return 0;
1092    }
1093  }
1094
1095  return UsedType;
1096}
1097
1098/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1099/// predicate and is non-trivial.  Convert it to something that can be trivially
1100/// promoted into a register by mem2reg.
1101void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1102  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
1103       << *ActualTy << "\n";
1104  ++NumConverted;
1105
1106  BasicBlock *EntryBlock = AI->getParent();
1107  assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
1108         "Not in the entry block!");
1109  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
1110
1111  // Create and insert the alloca.
1112  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1113                                     EntryBlock->begin());
1114  ConvertUsesToScalar(AI, NewAI, 0);
1115  delete AI;
1116}
1117
1118
1119/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1120/// directly.  This happens when we are converting an "integer union" to a
1121/// single integer scalar, or when we are converting a "vector union" to a
1122/// vector with insert/extractelement instructions.
1123///
1124/// Offset is an offset from the original alloca, in bits that need to be
1125/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1126void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
1127  while (!Ptr->use_empty()) {
1128    Instruction *User = cast<Instruction>(Ptr->use_back());
1129
1130    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1131      Value *NV = ConvertUsesOfLoadToScalar(LI, NewAI, Offset);
1132      LI->replaceAllUsesWith(NV);
1133      LI->eraseFromParent();
1134    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1135      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1136
1137      Value *SV = ConvertUsesOfStoreToScalar(SI, NewAI, Offset);
1138      new StoreInst(SV, NewAI, SI);
1139      SI->eraseFromParent();
1140
1141    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1142      ConvertUsesToScalar(CI, NewAI, Offset);
1143      CI->eraseFromParent();
1144    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1145      const PointerType *AggPtrTy =
1146        cast<PointerType>(GEP->getOperand(0)->getType());
1147      const TargetData &TD = getAnalysis<TargetData>();
1148      unsigned AggSizeInBits =
1149        TD.getABITypeSizeInBits(AggPtrTy->getElementType());
1150
1151      // Check to see if this is stepping over an element: GEP Ptr, int C
1152      unsigned NewOffset = Offset;
1153      if (GEP->getNumOperands() == 2) {
1154        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1155        unsigned BitOffset = Idx*AggSizeInBits;
1156
1157        NewOffset += BitOffset;
1158      } else if (GEP->getNumOperands() == 3) {
1159        // We know that operand #2 is zero.
1160        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1161        const Type *AggTy = AggPtrTy->getElementType();
1162        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1163          unsigned ElSizeBits =
1164            TD.getABITypeSizeInBits(SeqTy->getElementType());
1165
1166          NewOffset += ElSizeBits*Idx;
1167        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
1168          unsigned EltBitOffset =
1169            TD.getStructLayout(STy)->getElementOffsetInBits(Idx);
1170
1171          NewOffset += EltBitOffset;
1172        } else {
1173          assert(0 && "Unsupported operation!");
1174          abort();
1175        }
1176      } else {
1177        assert(0 && "Unsupported operation!");
1178        abort();
1179      }
1180      ConvertUsesToScalar(GEP, NewAI, NewOffset);
1181      GEP->eraseFromParent();
1182    } else {
1183      assert(0 && "Unsupported operation!");
1184      abort();
1185    }
1186  }
1187}
1188
1189/// ConvertUsesOfLoadToScalar - Convert all of the users the specified load to
1190/// use the new alloca directly, returning the value that should replace the
1191/// load.  This happens when we are converting an "integer union" to a
1192/// single integer scalar, or when we are converting a "vector union" to a
1193/// vector with insert/extractelement instructions.
1194///
1195/// Offset is an offset from the original alloca, in bits that need to be
1196/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1197Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
1198                                       unsigned Offset) {
1199  // The load is a bit extract from NewAI shifted right by Offset bits.
1200  Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1201
1202  if (NV->getType() == LI->getType() && Offset == 0) {
1203    // We win, no conversion needed.
1204    return NV;
1205  }
1206
1207  // If the result type of the 'union' is a pointer, then this must be ptr->ptr
1208  // cast.  Anything else would result in NV being an integer.
1209  if (isa<PointerType>(NV->getType())) {
1210    assert(isa<PointerType>(LI->getType()));
1211    return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1212  }
1213
1214  if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
1215    // If the result alloca is a vector type, this is either an element
1216    // access or a bitcast to another vector type.
1217    if (isa<VectorType>(LI->getType()))
1218      return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1219
1220    // Otherwise it must be an element access.
1221    const TargetData &TD = getAnalysis<TargetData>();
1222    unsigned Elt = 0;
1223    if (Offset) {
1224      unsigned EltSize = TD.getABITypeSizeInBits(VTy->getElementType());
1225      Elt = Offset/EltSize;
1226      Offset -= EltSize*Elt;
1227    }
1228    NV = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
1229                                "tmp", LI);
1230
1231    // If we're done, return this element.
1232    if (NV->getType() == LI->getType() && Offset == 0)
1233      return NV;
1234  }
1235
1236  const IntegerType *NTy = cast<IntegerType>(NV->getType());
1237
1238  // If this is a big-endian system and the load is narrower than the
1239  // full alloca type, we need to do a shift to get the right bits.
1240  int ShAmt = 0;
1241  const TargetData &TD = getAnalysis<TargetData>();
1242  if (TD.isBigEndian()) {
1243    // On big-endian machines, the lowest bit is stored at the bit offset
1244    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1245    // integers with a bitwidth that is not a multiple of 8.
1246    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
1247    TD.getTypeStoreSizeInBits(LI->getType()) - Offset;
1248  } else {
1249    ShAmt = Offset;
1250  }
1251
1252  // Note: we support negative bitwidths (with shl) which are not defined.
1253  // We do this to support (f.e.) loads off the end of a structure where
1254  // only some bits are used.
1255  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1256    NV = BinaryOperator::CreateLShr(NV,
1257                                    ConstantInt::get(NV->getType(),ShAmt),
1258                                    LI->getName(), LI);
1259  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1260    NV = BinaryOperator::CreateShl(NV,
1261                                   ConstantInt::get(NV->getType(),-ShAmt),
1262                                   LI->getName(), LI);
1263
1264  // Finally, unconditionally truncate the integer to the right width.
1265  unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
1266  if (LIBitWidth < NTy->getBitWidth())
1267    NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1268                       LI->getName(), LI);
1269
1270  // If the result is an integer, this is a trunc or bitcast.
1271  if (isa<IntegerType>(LI->getType())) {
1272    // Should be done.
1273  } else if (LI->getType()->isFloatingPoint()) {
1274    // Just do a bitcast, we know the sizes match up.
1275    NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1276  } else {
1277    // Otherwise must be a pointer.
1278    NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1279  }
1280  assert(NV->getType() == LI->getType() && "Didn't convert right?");
1281  return NV;
1282}
1283
1284
1285/// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
1286/// pair of the new alloca directly, returning the value that should be stored
1287/// to the alloca.  This happens when we are converting an "integer union" to a
1288/// single integer scalar, or when we are converting a "vector union" to a
1289/// vector with insert/extractelement instructions.
1290///
1291/// Offset is an offset from the original alloca, in bits that need to be
1292/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1293Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
1294                                        unsigned Offset) {
1295
1296  // Convert the stored type to the actual type, shift it left to insert
1297  // then 'or' into place.
1298  Value *SV = SI->getOperand(0);
1299  const Type *AllocaType = NewAI->getType()->getElementType();
1300  if (SV->getType() == AllocaType && Offset == 0) {
1301    // All is well.
1302  } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1303    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1304
1305    // If the result alloca is a vector type, this is either an element
1306    // access or a bitcast to another vector type.
1307    if (isa<VectorType>(SV->getType())) {
1308      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1309    } else {
1310      // Must be an element insertion.
1311      const TargetData &TD = getAnalysis<TargetData>();
1312      unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
1313      SV = InsertElementInst::Create(Old, SV,
1314                                     ConstantInt::get(Type::Int32Ty, Elt),
1315                                     "tmp", SI);
1316    }
1317  } else if (isa<PointerType>(AllocaType)) {
1318    // If the alloca type is a pointer, then all the elements must be
1319    // pointers.
1320    if (SV->getType() != AllocaType)
1321      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1322  } else {
1323    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1324
1325    // If SV is a float, convert it to the appropriate integer type.
1326    // If it is a pointer, do the same, and also handle ptr->ptr casts
1327    // here.
1328    const TargetData &TD = getAnalysis<TargetData>();
1329    unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1330    unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
1331    unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
1332    unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
1333    if (SV->getType()->isFloatingPoint())
1334      SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1335                           SV->getName(), SI);
1336    else if (isa<PointerType>(SV->getType()))
1337      SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
1338
1339    // Always zero extend the value if needed.
1340    if (SV->getType() != AllocaType)
1341      SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1342
1343    // If this is a big-endian system and the store is narrower than the
1344    // full alloca type, we need to do a shift to get the right bits.
1345    int ShAmt = 0;
1346    if (TD.isBigEndian()) {
1347      // On big-endian machines, the lowest bit is stored at the bit offset
1348      // from the pointer given by getTypeStoreSizeInBits.  This matters for
1349      // integers with a bitwidth that is not a multiple of 8.
1350      ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1351    } else {
1352      ShAmt = Offset;
1353    }
1354
1355    // Note: we support negative bitwidths (with shr) which are not defined.
1356    // We do this to support (f.e.) stores off the end of a structure where
1357    // only some bits in the structure are set.
1358    APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1359    if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1360      SV = BinaryOperator::CreateShl(SV,
1361                                     ConstantInt::get(SV->getType(), ShAmt),
1362                                     SV->getName(), SI);
1363      Mask <<= ShAmt;
1364    } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1365      SV = BinaryOperator::CreateLShr(SV,
1366                                      ConstantInt::get(SV->getType(),-ShAmt),
1367                                      SV->getName(), SI);
1368      Mask = Mask.lshr(ShAmt);
1369    }
1370
1371    // Mask out the bits we are about to insert from the old value, and or
1372    // in the new bits.
1373    if (SrcWidth != DestWidth) {
1374      assert(DestWidth > SrcWidth);
1375      Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
1376                                      Old->getName()+".mask", SI);
1377      SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI);
1378    }
1379  }
1380  return SV;
1381}
1382
1383
1384
1385/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1386/// some part of a constant global variable.  This intentionally only accepts
1387/// constant expressions because we don't can't rewrite arbitrary instructions.
1388static bool PointsToConstantGlobal(Value *V) {
1389  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1390    return GV->isConstant();
1391  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1392    if (CE->getOpcode() == Instruction::BitCast ||
1393        CE->getOpcode() == Instruction::GetElementPtr)
1394      return PointsToConstantGlobal(CE->getOperand(0));
1395  return false;
1396}
1397
1398/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1399/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1400/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1401/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1402/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1403/// the alloca, and if the source pointer is a pointer to a constant  global, we
1404/// can optimize this.
1405static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1406                                           bool isOffset) {
1407  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1408    if (isa<LoadInst>(*UI)) {
1409      // Ignore loads, they are always ok.
1410      continue;
1411    }
1412    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1413      // If uses of the bitcast are ok, we are ok.
1414      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1415        return false;
1416      continue;
1417    }
1418    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1419      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1420      // doesn't, it does.
1421      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1422                                         isOffset || !GEP->hasAllZeroIndices()))
1423        return false;
1424      continue;
1425    }
1426
1427    // If this is isn't our memcpy/memmove, reject it as something we can't
1428    // handle.
1429    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1430      return false;
1431
1432    // If we already have seen a copy, reject the second one.
1433    if (TheCopy) return false;
1434
1435    // If the pointer has been offset from the start of the alloca, we can't
1436    // safely handle this.
1437    if (isOffset) return false;
1438
1439    // If the memintrinsic isn't using the alloca as the dest, reject it.
1440    if (UI.getOperandNo() != 1) return false;
1441
1442    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1443
1444    // If the source of the memcpy/move is not a constant global, reject it.
1445    if (!PointsToConstantGlobal(MI->getOperand(2)))
1446      return false;
1447
1448    // Otherwise, the transform is safe.  Remember the copy instruction.
1449    TheCopy = MI;
1450  }
1451  return true;
1452}
1453
1454/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1455/// modified by a copy from a constant global.  If we can prove this, we can
1456/// replace any uses of the alloca with uses of the global directly.
1457Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1458  Instruction *TheCopy = 0;
1459  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1460    return TheCopy;
1461  return 0;
1462}
1463