ScalarReplAggregates.cpp revision 02a3be020a6b4eedb4b489959997d23a22cdf22e
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3// This transformation implements the well known scalar replacement of
4// aggregates transformation.  This xform breaks up alloca instructions of
5// aggregate type (structure or array) into individual alloca instructions for
6// each member (if possible).  Then, if possible, it transforms the individual
7// alloca instructions into nice clean scalar SSA form.
8//
9// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
10// often interact, especially for C++ programs.  As such, iterating between
11// SRoA, then Mem2Reg until we run out of things to promote works well.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/Pass.h"
20#include "llvm/iMemory.h"
21#include "llvm/Analysis/Dominators.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Transforms/Utils/PromoteMemToReg.h"
24#include "Support/Debug.h"
25#include "Support/Statistic.h"
26#include "Support/StringExtras.h"
27
28namespace {
29  Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
30  Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");
31
32  struct SROA : public FunctionPass {
33    bool runOnFunction(Function &F);
34
35    bool performScalarRepl(Function &F);
36    bool performPromotion(Function &F);
37
38    // getAnalysisUsage - This pass does not require any passes, but we know it
39    // will not alter the CFG, so say so.
40    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
41      AU.addRequired<DominanceFrontier>();
42      AU.addRequired<TargetData>();
43      AU.setPreservesCFG();
44    }
45
46  private:
47    bool isSafeElementUse(Value *Ptr);
48    bool isSafeUseOfAllocation(Instruction *User);
49    bool isSafeStructAllocaToPromote(AllocationInst *AI);
50    bool isSafeArrayAllocaToPromote(AllocationInst *AI);
51    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
52  };
53
54  RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
55}
56
57Pass *createScalarReplAggregatesPass() { return new SROA(); }
58
59
60bool SROA::runOnFunction(Function &F) {
61  bool Changed = performPromotion(F);
62  while (1) {
63    bool LocalChange = performScalarRepl(F);
64    if (!LocalChange) break;   // No need to repromote if no scalarrepl
65    Changed = true;
66    LocalChange = performPromotion(F);
67    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
68  }
69
70  return Changed;
71}
72
73
74bool SROA::performPromotion(Function &F) {
75  std::vector<AllocaInst*> Allocas;
76  const TargetData &TD = getAnalysis<TargetData>();
77
78  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
79
80  bool Changed = false;
81
82  while (1) {
83    Allocas.clear();
84
85    // Find allocas that are safe to promote, by looking at all instructions in
86    // the entry node
87    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
88      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
89        if (isAllocaPromotable(AI, TD))
90          Allocas.push_back(AI);
91
92    if (Allocas.empty()) break;
93
94    PromoteMemToReg(Allocas, getAnalysis<DominanceFrontier>(), TD);
95    NumPromoted += Allocas.size();
96    Changed = true;
97  }
98
99  return Changed;
100}
101
102
103// performScalarRepl - This algorithm is a simple worklist driven algorithm,
104// which runs on all of the malloc/alloca instructions in the function, removing
105// them if they are only used by getelementptr instructions.
106//
107bool SROA::performScalarRepl(Function &F) {
108  std::vector<AllocationInst*> WorkList;
109
110  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
111  BasicBlock &BB = F.getEntryBlock();
112  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
113    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
114      WorkList.push_back(A);
115
116  // Process the worklist
117  bool Changed = false;
118  while (!WorkList.empty()) {
119    AllocationInst *AI = WorkList.back();
120    WorkList.pop_back();
121
122    // We cannot transform the allocation instruction if it is an array
123    // allocation (allocations OF arrays are ok though), and an allocation of a
124    // scalar value cannot be decomposed at all.
125    //
126    if (AI->isArrayAllocation() ||
127        (!isa<StructType>(AI->getAllocatedType()) &&
128         !isa<ArrayType>(AI->getAllocatedType()))) continue;
129
130    // Check that all of the users of the allocation are capable of being
131    // transformed.
132    if (isa<StructType>(AI->getAllocatedType())) {
133      if (!isSafeStructAllocaToPromote(AI))
134        continue;
135    } else if (!isSafeArrayAllocaToPromote(AI))
136      continue;
137
138    DEBUG(std::cerr << "Found inst to xform: " << *AI);
139    Changed = true;
140
141    std::vector<AllocaInst*> ElementAllocas;
142    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
143      ElementAllocas.reserve(ST->getNumContainedTypes());
144      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
145        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
146                                        AI->getName() + "." + utostr(i), AI);
147        ElementAllocas.push_back(NA);
148        WorkList.push_back(NA);  // Add to worklist for recursive processing
149      }
150    } else {
151      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
152      ElementAllocas.reserve(AT->getNumElements());
153      const Type *ElTy = AT->getElementType();
154      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
155        AllocaInst *NA = new AllocaInst(ElTy, 0,
156                                        AI->getName() + "." + utostr(i), AI);
157        ElementAllocas.push_back(NA);
158        WorkList.push_back(NA);  // Add to worklist for recursive processing
159      }
160    }
161
162    // Now that we have created the alloca instructions that we want to use,
163    // expand the getelementptr instructions to use them.
164    //
165    for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
166         I != E; ++I) {
167      Instruction *User = cast<Instruction>(*I);
168      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
169        // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
170        uint64_t Idx = cast<ConstantInt>(GEPI->getOperand(2))->getRawValue();
171
172        assert(Idx < ElementAllocas.size() && "Index out of range?");
173        AllocaInst *AllocaToUse = ElementAllocas[Idx];
174
175        Value *RepValue;
176        if (GEPI->getNumOperands() == 3) {
177          // Do not insert a new getelementptr instruction with zero indices,
178          // only to have it optimized out later.
179          RepValue = AllocaToUse;
180        } else {
181          // We are indexing deeply into the structure, so we still need a
182          // getelement ptr instruction to finish the indexing.  This may be
183          // expanded itself once the worklist is rerun.
184          //
185          std::string OldName = GEPI->getName();  // Steal the old name...
186          std::vector<Value*> NewArgs;
187          NewArgs.push_back(Constant::getNullValue(Type::LongTy));
188          NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
189          GEPI->setName("");
190          RepValue =
191            new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
192        }
193
194        // Move all of the users over to the new GEP.
195        GEPI->replaceAllUsesWith(RepValue);
196        // Delete the old GEP
197        GEPI->getParent()->getInstList().erase(GEPI);
198      } else {
199        assert(0 && "Unexpected instruction type!");
200      }
201    }
202
203    // Finally, delete the Alloca instruction
204    AI->getParent()->getInstList().erase(AI);
205    NumReplaced++;
206  }
207
208  return Changed;
209}
210
211
212/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
213/// aggregate allocation.
214///
215bool SROA::isSafeUseOfAllocation(Instruction *User) {
216  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
217    // The GEP is safe to transform if it is of the form GEP <ptr>, 0, <cst>
218    if (GEPI->getNumOperands() <= 2 ||
219        GEPI->getOperand(1) != Constant::getNullValue(Type::LongTy) ||
220        !isa<Constant>(GEPI->getOperand(2)) ||
221        isa<ConstantExpr>(GEPI->getOperand(2)))
222      return false;
223  } else {
224    return false;
225  }
226  return true;
227}
228
229/// isSafeElementUse - Check to see if this use is an allowed use for a
230/// getelementptr instruction of an array aggregate allocation.
231///
232bool SROA::isSafeElementUse(Value *Ptr) {
233  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
234       I != E; ++I) {
235    Instruction *User = cast<Instruction>(*I);
236    switch (User->getOpcode()) {
237    case Instruction::Load:  break;
238    case Instruction::Store:
239      // Store is ok if storing INTO the pointer, not storing the pointer
240      if (User->getOperand(0) == Ptr) return false;
241      break;
242    case Instruction::GetElementPtr: {
243      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
244      if (GEP->getNumOperands() > 1) {
245        if (!isa<Constant>(GEP->getOperand(1)) ||
246            !cast<Constant>(GEP->getOperand(1))->isNullValue())
247          return false;  // Using pointer arithmetic to navigate the array...
248      }
249      if (!isSafeElementUse(GEP)) return false;
250      break;
251    }
252    default:
253      DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
254      return false;
255    }
256  }
257  return true;  // All users look ok :)
258}
259
260
261/// isSafeStructAllocaToPromote - Check to see if the specified allocation of a
262/// structure can be broken down into elements.
263///
264bool SROA::isSafeStructAllocaToPromote(AllocationInst *AI) {
265  // Loop over the use list of the alloca.  We can only transform it if all of
266  // the users are safe to transform.
267  //
268  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
269       I != E; ++I) {
270    if (!isSafeUseOfAllocation(cast<Instruction>(*I))) {
271      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
272                      << *I);
273      return false;
274    }
275
276    // Pedantic check to avoid breaking broken programs...
277    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*I))
278      if (GEPI->getNumOperands() == 3 && !isSafeElementUse(GEPI))
279        return false;
280  }
281  return true;
282}
283
284
285/// isSafeArrayAllocaToPromote - Check to see if the specified allocation of a
286/// structure can be broken down into elements.
287///
288bool SROA::isSafeArrayAllocaToPromote(AllocationInst *AI) {
289  const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
290  int64_t NumElements = AT->getNumElements();
291
292  // Loop over the use list of the alloca.  We can only transform it if all of
293  // the users are safe to transform.  Array allocas have extra constraints to
294  // meet though.
295  //
296  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
297       I != E; ++I) {
298    Instruction *User = cast<Instruction>(*I);
299    if (!isSafeUseOfAllocation(User)) {
300      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
301                      << User);
302      return false;
303    }
304
305    // Check to make sure that getelementptr follow the extra rules for arrays:
306    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
307      // Check to make sure that index falls within the array.  If not,
308      // something funny is going on, so we won't do the optimization.
309      //
310      if (cast<ConstantSInt>(GEPI->getOperand(2))->getValue() >= NumElements)
311        return false;
312
313      // Check to make sure that the only thing that uses the resultant pointer
314      // is safe for an array access.  For example, code that looks like:
315      //   P = &A[0];  P = P + 1
316      // is legal, and should prevent promotion.
317      //
318      if (!isSafeElementUse(GEPI)) {
319        DEBUG(std::cerr << "Cannot transform: " << *AI
320                        << "  due to uses of user: " << *GEPI);
321        return false;
322      }
323    }
324  }
325  return true;
326}
327
328