ScalarReplAggregates.cpp revision 032c10fee2a4bb731488ce75844878009d3bd409
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Analysis/Loads.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Transforms/Utils/PromoteMemToReg.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include "llvm/Transforms/Utils/SSAUpdater.h"
40#include "llvm/Support/CallSite.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GetElementPtrTypeIterator.h"
44#include "llvm/Support/IRBuilder.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50using namespace llvm;
51
52STATISTIC(NumReplaced,  "Number of allocas broken up");
53STATISTIC(NumPromoted,  "Number of allocas promoted");
54STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
55STATISTIC(NumConverted, "Number of aggregates converted to scalar");
56STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
57
58namespace {
59  struct SROA : public FunctionPass {
60    SROA(int T, bool hasDT, char &ID)
61      : FunctionPass(ID), HasDomTree(hasDT) {
62      if (T == -1)
63        SRThreshold = 128;
64      else
65        SRThreshold = T;
66    }
67
68    bool runOnFunction(Function &F);
69
70    bool performScalarRepl(Function &F);
71    bool performPromotion(Function &F);
72
73  private:
74    bool HasDomTree;
75    TargetData *TD;
76
77    /// DeadInsts - Keep track of instructions we have made dead, so that
78    /// we can remove them after we are done working.
79    SmallVector<Value*, 32> DeadInsts;
80
81    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82    /// information about the uses.  All these fields are initialized to false
83    /// and set to true when something is learned.
84    struct AllocaInfo {
85      /// The alloca to promote.
86      AllocaInst *AI;
87
88      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
89      /// looping and avoid redundant work.
90      SmallPtrSet<PHINode*, 8> CheckedPHIs;
91
92      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
93      bool isUnsafe : 1;
94
95      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
96      bool isMemCpySrc : 1;
97
98      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
99      bool isMemCpyDst : 1;
100
101      /// hasSubelementAccess - This is true if a subelement of the alloca is
102      /// ever accessed, or false if the alloca is only accessed with mem
103      /// intrinsics or load/store that only access the entire alloca at once.
104      bool hasSubelementAccess : 1;
105
106      /// hasALoadOrStore - This is true if there are any loads or stores to it.
107      /// The alloca may just be accessed with memcpy, for example, which would
108      /// not set this.
109      bool hasALoadOrStore : 1;
110
111      explicit AllocaInfo(AllocaInst *ai)
112        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
113          hasSubelementAccess(false), hasALoadOrStore(false) {}
114    };
115
116    unsigned SRThreshold;
117
118    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
119      I.isUnsafe = true;
120      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
121    }
122
123    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
124
125    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
126    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
127                                         AllocaInfo &Info);
128    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
129    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
130                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
131                         Instruction *TheAccess, bool AllowWholeAccess);
132    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
133    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
134                                  const Type *&IdxTy);
135
136    void DoScalarReplacement(AllocaInst *AI,
137                             std::vector<AllocaInst*> &WorkList);
138    void DeleteDeadInstructions();
139
140    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
141                              SmallVector<AllocaInst*, 32> &NewElts);
142    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
143                        SmallVector<AllocaInst*, 32> &NewElts);
144    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
145                    SmallVector<AllocaInst*, 32> &NewElts);
146    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
147                                      AllocaInst *AI,
148                                      SmallVector<AllocaInst*, 32> &NewElts);
149    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
150                                       SmallVector<AllocaInst*, 32> &NewElts);
151    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
152                                      SmallVector<AllocaInst*, 32> &NewElts);
153
154    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
155  };
156
157  // SROA_DT - SROA that uses DominatorTree.
158  struct SROA_DT : public SROA {
159    static char ID;
160  public:
161    SROA_DT(int T = -1) : SROA(T, true, ID) {
162      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
163    }
164
165    // getAnalysisUsage - This pass does not require any passes, but we know it
166    // will not alter the CFG, so say so.
167    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
168      AU.addRequired<DominatorTree>();
169      AU.setPreservesCFG();
170    }
171  };
172
173  // SROA_SSAUp - SROA that uses SSAUpdater.
174  struct SROA_SSAUp : public SROA {
175    static char ID;
176  public:
177    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
178      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
179    }
180
181    // getAnalysisUsage - This pass does not require any passes, but we know it
182    // will not alter the CFG, so say so.
183    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
184      AU.setPreservesCFG();
185    }
186  };
187
188}
189
190char SROA_DT::ID = 0;
191char SROA_SSAUp::ID = 0;
192
193INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
194                "Scalar Replacement of Aggregates (DT)", false, false)
195INITIALIZE_PASS_DEPENDENCY(DominatorTree)
196INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
197                "Scalar Replacement of Aggregates (DT)", false, false)
198
199INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
200                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
201INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
202                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
203
204// Public interface to the ScalarReplAggregates pass
205FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
206                                                   bool UseDomTree) {
207  if (UseDomTree)
208    return new SROA_DT(Threshold);
209  return new SROA_SSAUp(Threshold);
210}
211
212
213//===----------------------------------------------------------------------===//
214// Convert To Scalar Optimization.
215//===----------------------------------------------------------------------===//
216
217namespace {
218/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
219/// optimization, which scans the uses of an alloca and determines if it can
220/// rewrite it in terms of a single new alloca that can be mem2reg'd.
221class ConvertToScalarInfo {
222  /// AllocaSize - The size of the alloca being considered.
223  unsigned AllocaSize;
224  const TargetData &TD;
225
226  /// IsNotTrivial - This is set to true if there is some access to the object
227  /// which means that mem2reg can't promote it.
228  bool IsNotTrivial;
229
230  /// VectorTy - This tracks the type that we should promote the vector to if
231  /// it is possible to turn it into a vector.  This starts out null, and if it
232  /// isn't possible to turn into a vector type, it gets set to VoidTy.
233  const Type *VectorTy;
234
235  /// HadAVector - True if there is at least one vector access to the alloca.
236  /// We don't want to turn random arrays into vectors and use vector element
237  /// insert/extract, but if there are element accesses to something that is
238  /// also declared as a vector, we do want to promote to a vector.
239  bool HadAVector;
240
241public:
242  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
243    : AllocaSize(Size), TD(td) {
244    IsNotTrivial = false;
245    VectorTy = 0;
246    HadAVector = false;
247  }
248
249  AllocaInst *TryConvert(AllocaInst *AI);
250
251private:
252  bool CanConvertToScalar(Value *V, uint64_t Offset);
253  void MergeInType(const Type *In, uint64_t Offset);
254  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
255  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
256
257  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
258                                    uint64_t Offset, IRBuilder<> &Builder);
259  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
260                                   uint64_t Offset, IRBuilder<> &Builder);
261};
262} // end anonymous namespace.
263
264
265/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
266/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
267/// alloca if possible or null if not.
268AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
269  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
270  // out.
271  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
272    return 0;
273
274  // If we were able to find a vector type that can handle this with
275  // insert/extract elements, and if there was at least one use that had
276  // a vector type, promote this to a vector.  We don't want to promote
277  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
278  // we just get a lot of insert/extracts.  If at least one vector is
279  // involved, then we probably really do have a union of vector/array.
280  const Type *NewTy;
281  if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
282    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
283          << *VectorTy << '\n');
284    NewTy = VectorTy;  // Use the vector type.
285  } else {
286    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
287    // Create and insert the integer alloca.
288    NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
289  }
290  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
291  ConvertUsesToScalar(AI, NewAI, 0);
292  return NewAI;
293}
294
295/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
296/// so far at the offset specified by Offset (which is specified in bytes).
297///
298/// There are three cases we handle here:
299///   1) A union of vector types of the same size and potentially its elements.
300///      Here we turn element accesses into insert/extract element operations.
301///      This promotes a <4 x float> with a store of float to the third element
302///      into a <4 x float> that uses insert element.
303///   2) A union of vector types with power-of-2 size differences, e.g. a float,
304///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
305///      and extract element operations, and <2 x float> accesses into a cast to
306///      <2 x double>, an extract, and a cast back to <2 x float>.
307///   3) A fully general blob of memory, which we turn into some (potentially
308///      large) integer type with extract and insert operations where the loads
309///      and stores would mutate the memory.  We mark this by setting VectorTy
310///      to VoidTy.
311void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
312  // If we already decided to turn this into a blob of integer memory, there is
313  // nothing to be done.
314  if (VectorTy && VectorTy->isVoidTy())
315    return;
316
317  // If this could be contributing to a vector, analyze it.
318
319  // If the In type is a vector that is the same size as the alloca, see if it
320  // matches the existing VecTy.
321  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
322    if (MergeInVectorType(VInTy, Offset))
323      return;
324  } else if (In->isFloatTy() || In->isDoubleTy() ||
325             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
326              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
327    // If we're accessing something that could be an element of a vector, see
328    // if the implied vector agrees with what we already have and if Offset is
329    // compatible with it.
330    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
331    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
332        (VectorTy == 0 ||
333         cast<VectorType>(VectorTy)->getElementType()
334               ->getPrimitiveSizeInBits()/8 == EltSize)) {
335      if (VectorTy == 0)
336        VectorTy = VectorType::get(In, AllocaSize/EltSize);
337      return;
338    }
339  }
340
341  // Otherwise, we have a case that we can't handle with an optimized vector
342  // form.  We can still turn this into a large integer.
343  VectorTy = Type::getVoidTy(In->getContext());
344}
345
346/// MergeInVectorType - Handles the vector case of MergeInType, returning true
347/// if the type was successfully merged and false otherwise.
348bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
349                                            uint64_t Offset) {
350  // Remember if we saw a vector type.
351  HadAVector = true;
352
353  // TODO: Support nonzero offsets?
354  if (Offset != 0)
355    return false;
356
357  // Only allow vectors that are a power-of-2 away from the size of the alloca.
358  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
359    return false;
360
361  // If this the first vector we see, remember the type so that we know the
362  // element size.
363  if (!VectorTy) {
364    VectorTy = VInTy;
365    return true;
366  }
367
368  unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
369  unsigned InBitWidth = VInTy->getBitWidth();
370
371  // Vectors of the same size can be converted using a simple bitcast.
372  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
373    return true;
374
375  const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
376  const Type *InElementTy = cast<VectorType>(VectorTy)->getElementType();
377
378  // Do not allow mixed integer and floating-point accesses from vectors of
379  // different sizes.
380  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
381    return false;
382
383  if (ElementTy->isFloatingPointTy()) {
384    // Only allow floating-point vectors of different sizes if they have the
385    // same element type.
386    // TODO: This could be loosened a bit, but would anything benefit?
387    if (ElementTy != InElementTy)
388      return false;
389
390    // There are no arbitrary-precision floating-point types, which limits the
391    // number of legal vector types with larger element types that we can form
392    // to bitcast and extract a subvector.
393    // TODO: We could support some more cases with mixed fp128 and double here.
394    if (!(BitWidth == 64 || BitWidth == 128) ||
395        !(InBitWidth == 64 || InBitWidth == 128))
396      return false;
397  } else {
398    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
399                                       "or floating-point.");
400    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
401    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
402
403    // Do not allow integer types smaller than a byte or types whose widths are
404    // not a multiple of a byte.
405    if (BitWidth < 8 || InBitWidth < 8 ||
406        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
407      return false;
408  }
409
410  // Pick the largest of the two vector types.
411  if (InBitWidth > BitWidth)
412    VectorTy = VInTy;
413
414  return true;
415}
416
417/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
418/// its accesses to a single vector type, return true and set VecTy to
419/// the new type.  If we could convert the alloca into a single promotable
420/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
421/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
422/// is the current offset from the base of the alloca being analyzed.
423///
424/// If we see at least one access to the value that is as a vector type, set the
425/// SawVec flag.
426bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
427  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
428    Instruction *User = cast<Instruction>(*UI);
429
430    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
431      // Don't break volatile loads.
432      if (LI->isVolatile())
433        return false;
434      // Don't touch MMX operations.
435      if (LI->getType()->isX86_MMXTy())
436        return false;
437      MergeInType(LI->getType(), Offset);
438      continue;
439    }
440
441    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
442      // Storing the pointer, not into the value?
443      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
444      // Don't touch MMX operations.
445      if (SI->getOperand(0)->getType()->isX86_MMXTy())
446        return false;
447      MergeInType(SI->getOperand(0)->getType(), Offset);
448      continue;
449    }
450
451    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
452      IsNotTrivial = true;  // Can't be mem2reg'd.
453      if (!CanConvertToScalar(BCI, Offset))
454        return false;
455      continue;
456    }
457
458    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
459      // If this is a GEP with a variable indices, we can't handle it.
460      if (!GEP->hasAllConstantIndices())
461        return false;
462
463      // Compute the offset that this GEP adds to the pointer.
464      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
465      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
466                                               &Indices[0], Indices.size());
467      // See if all uses can be converted.
468      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
469        return false;
470      IsNotTrivial = true;  // Can't be mem2reg'd.
471      continue;
472    }
473
474    // If this is a constant sized memset of a constant value (e.g. 0) we can
475    // handle it.
476    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
477      // Store of constant value and constant size.
478      if (!isa<ConstantInt>(MSI->getValue()) ||
479          !isa<ConstantInt>(MSI->getLength()))
480        return false;
481      IsNotTrivial = true;  // Can't be mem2reg'd.
482      continue;
483    }
484
485    // If this is a memcpy or memmove into or out of the whole allocation, we
486    // can handle it like a load or store of the scalar type.
487    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
488      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
489      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
490        return false;
491
492      IsNotTrivial = true;  // Can't be mem2reg'd.
493      continue;
494    }
495
496    // Otherwise, we cannot handle this!
497    return false;
498  }
499
500  return true;
501}
502
503/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
504/// directly.  This happens when we are converting an "integer union" to a
505/// single integer scalar, or when we are converting a "vector union" to a
506/// vector with insert/extractelement instructions.
507///
508/// Offset is an offset from the original alloca, in bits that need to be
509/// shifted to the right.  By the end of this, there should be no uses of Ptr.
510void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
511                                              uint64_t Offset) {
512  while (!Ptr->use_empty()) {
513    Instruction *User = cast<Instruction>(Ptr->use_back());
514
515    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
516      ConvertUsesToScalar(CI, NewAI, Offset);
517      CI->eraseFromParent();
518      continue;
519    }
520
521    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
522      // Compute the offset that this GEP adds to the pointer.
523      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
524      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
525                                               &Indices[0], Indices.size());
526      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
527      GEP->eraseFromParent();
528      continue;
529    }
530
531    IRBuilder<> Builder(User);
532
533    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
534      // The load is a bit extract from NewAI shifted right by Offset bits.
535      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
536      Value *NewLoadVal
537        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
538      LI->replaceAllUsesWith(NewLoadVal);
539      LI->eraseFromParent();
540      continue;
541    }
542
543    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
544      assert(SI->getOperand(0) != Ptr && "Consistency error!");
545      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
546      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
547                                             Builder);
548      Builder.CreateStore(New, NewAI);
549      SI->eraseFromParent();
550
551      // If the load we just inserted is now dead, then the inserted store
552      // overwrote the entire thing.
553      if (Old->use_empty())
554        Old->eraseFromParent();
555      continue;
556    }
557
558    // If this is a constant sized memset of a constant value (e.g. 0) we can
559    // transform it into a store of the expanded constant value.
560    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
561      assert(MSI->getRawDest() == Ptr && "Consistency error!");
562      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
563      if (NumBytes != 0) {
564        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
565
566        // Compute the value replicated the right number of times.
567        APInt APVal(NumBytes*8, Val);
568
569        // Splat the value if non-zero.
570        if (Val)
571          for (unsigned i = 1; i != NumBytes; ++i)
572            APVal |= APVal << 8;
573
574        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
575        Value *New = ConvertScalar_InsertValue(
576                                    ConstantInt::get(User->getContext(), APVal),
577                                               Old, Offset, Builder);
578        Builder.CreateStore(New, NewAI);
579
580        // If the load we just inserted is now dead, then the memset overwrote
581        // the entire thing.
582        if (Old->use_empty())
583          Old->eraseFromParent();
584      }
585      MSI->eraseFromParent();
586      continue;
587    }
588
589    // If this is a memcpy or memmove into or out of the whole allocation, we
590    // can handle it like a load or store of the scalar type.
591    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
592      assert(Offset == 0 && "must be store to start of alloca");
593
594      // If the source and destination are both to the same alloca, then this is
595      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
596      // as appropriate.
597      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
598
599      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
600        // Dest must be OrigAI, change this to be a load from the original
601        // pointer (bitcasted), then a store to our new alloca.
602        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
603        Value *SrcPtr = MTI->getSource();
604        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
605        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
606        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
607          AIPTy = PointerType::get(AIPTy->getElementType(),
608                                   SPTy->getAddressSpace());
609        }
610        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
611
612        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
613        SrcVal->setAlignment(MTI->getAlignment());
614        Builder.CreateStore(SrcVal, NewAI);
615      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
616        // Src must be OrigAI, change this to be a load from NewAI then a store
617        // through the original dest pointer (bitcasted).
618        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
619        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
620
621        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
622        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
623        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
624          AIPTy = PointerType::get(AIPTy->getElementType(),
625                                   DPTy->getAddressSpace());
626        }
627        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
628
629        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
630        NewStore->setAlignment(MTI->getAlignment());
631      } else {
632        // Noop transfer. Src == Dst
633      }
634
635      MTI->eraseFromParent();
636      continue;
637    }
638
639    llvm_unreachable("Unsupported operation!");
640  }
641}
642
643/// getScaledElementType - Gets a scaled element type for a partial vector
644/// access of an alloca. The input type must be an integer or float, and
645/// the resulting type must be an integer, float or double.
646static const Type *getScaledElementType(const Type *OldTy, unsigned Scale) {
647  assert((OldTy->isIntegerTy() || OldTy->isFloatTy()) && "Partial vector "
648         "accesses must be scaled from integer or float elements.");
649
650  LLVMContext &Context = OldTy->getContext();
651  unsigned Size = OldTy->getPrimitiveSizeInBits() * Scale;
652
653  if (OldTy->isIntegerTy())
654    return Type::getIntNTy(Context, Size);
655  if (Size == 32)
656    return Type::getFloatTy(Context);
657  if (Size == 64)
658    return Type::getDoubleTy(Context);
659
660  llvm_unreachable("Invalid type for a partial vector access of an alloca!");
661}
662
663/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
664/// or vector value FromVal, extracting the bits from the offset specified by
665/// Offset.  This returns the value, which is of type ToType.
666///
667/// This happens when we are converting an "integer union" to a single
668/// integer scalar, or when we are converting a "vector union" to a vector with
669/// insert/extractelement instructions.
670///
671/// Offset is an offset from the original alloca, in bits that need to be
672/// shifted to the right.
673Value *ConvertToScalarInfo::
674ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
675                           uint64_t Offset, IRBuilder<> &Builder) {
676  // If the load is of the whole new alloca, no conversion is needed.
677  if (FromVal->getType() == ToType && Offset == 0)
678    return FromVal;
679
680  // If the result alloca is a vector type, this is either an element
681  // access or a bitcast to another vector type of the same size.
682  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
683    if (ToType->isVectorTy()) {
684      unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
685      if (ToTypeSize == AllocaSize)
686        return Builder.CreateBitCast(FromVal, ToType, "tmp");
687
688      assert(isPowerOf2_64(AllocaSize / ToTypeSize) &&
689             "Partial vector access of an alloca must have a power-of-2 size "
690             "ratio.");
691      assert(Offset == 0 && "Can't extract a value of a smaller vector type "
692                            "from a nonzero offset.");
693
694      const Type *ToElementTy = cast<VectorType>(ToType)->getElementType();
695      unsigned Scale = AllocaSize / ToTypeSize;
696      const Type *CastElementTy = getScaledElementType(ToElementTy, Scale);
697      unsigned NumCastVectorElements = VTy->getNumElements() / Scale;
698
699      LLVMContext &Context = FromVal->getContext();
700      const Type *CastTy = VectorType::get(CastElementTy,
701                                           NumCastVectorElements);
702      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
703      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
704                                        Type::getInt32Ty(Context), 0), "tmp");
705      return Builder.CreateBitCast(Extract, ToType, "tmp");
706    }
707
708    // Otherwise it must be an element access.
709    unsigned Elt = 0;
710    if (Offset) {
711      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
712      Elt = Offset/EltSize;
713      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
714    }
715    // Return the element extracted out of it.
716    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
717                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
718    if (V->getType() != ToType)
719      V = Builder.CreateBitCast(V, ToType, "tmp");
720    return V;
721  }
722
723  // If ToType is a first class aggregate, extract out each of the pieces and
724  // use insertvalue's to form the FCA.
725  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
726    const StructLayout &Layout = *TD.getStructLayout(ST);
727    Value *Res = UndefValue::get(ST);
728    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
729      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
730                                        Offset+Layout.getElementOffsetInBits(i),
731                                              Builder);
732      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
733    }
734    return Res;
735  }
736
737  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
738    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
739    Value *Res = UndefValue::get(AT);
740    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
741      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
742                                              Offset+i*EltSize, Builder);
743      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
744    }
745    return Res;
746  }
747
748  // Otherwise, this must be a union that was converted to an integer value.
749  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
750
751  // If this is a big-endian system and the load is narrower than the
752  // full alloca type, we need to do a shift to get the right bits.
753  int ShAmt = 0;
754  if (TD.isBigEndian()) {
755    // On big-endian machines, the lowest bit is stored at the bit offset
756    // from the pointer given by getTypeStoreSizeInBits.  This matters for
757    // integers with a bitwidth that is not a multiple of 8.
758    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
759            TD.getTypeStoreSizeInBits(ToType) - Offset;
760  } else {
761    ShAmt = Offset;
762  }
763
764  // Note: we support negative bitwidths (with shl) which are not defined.
765  // We do this to support (f.e.) loads off the end of a structure where
766  // only some bits are used.
767  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
768    FromVal = Builder.CreateLShr(FromVal,
769                                 ConstantInt::get(FromVal->getType(),
770                                                           ShAmt), "tmp");
771  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
772    FromVal = Builder.CreateShl(FromVal,
773                                ConstantInt::get(FromVal->getType(),
774                                                          -ShAmt), "tmp");
775
776  // Finally, unconditionally truncate the integer to the right width.
777  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
778  if (LIBitWidth < NTy->getBitWidth())
779    FromVal =
780      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
781                                                    LIBitWidth), "tmp");
782  else if (LIBitWidth > NTy->getBitWidth())
783    FromVal =
784       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
785                                                    LIBitWidth), "tmp");
786
787  // If the result is an integer, this is a trunc or bitcast.
788  if (ToType->isIntegerTy()) {
789    // Should be done.
790  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
791    // Just do a bitcast, we know the sizes match up.
792    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
793  } else {
794    // Otherwise must be a pointer.
795    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
796  }
797  assert(FromVal->getType() == ToType && "Didn't convert right?");
798  return FromVal;
799}
800
801/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
802/// or vector value "Old" at the offset specified by Offset.
803///
804/// This happens when we are converting an "integer union" to a
805/// single integer scalar, or when we are converting a "vector union" to a
806/// vector with insert/extractelement instructions.
807///
808/// Offset is an offset from the original alloca, in bits that need to be
809/// shifted to the right.
810Value *ConvertToScalarInfo::
811ConvertScalar_InsertValue(Value *SV, Value *Old,
812                          uint64_t Offset, IRBuilder<> &Builder) {
813  // Convert the stored type to the actual type, shift it left to insert
814  // then 'or' into place.
815  const Type *AllocaType = Old->getType();
816  LLVMContext &Context = Old->getContext();
817
818  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
819    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
820    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
821
822    // Changing the whole vector with memset or with an access of a different
823    // vector type?
824    if (ValSize == VecSize)
825      return Builder.CreateBitCast(SV, AllocaType, "tmp");
826
827    if (SV->getType()->isVectorTy() && isPowerOf2_64(VecSize / ValSize)) {
828      assert(Offset == 0 && "Can't insert a value of a smaller vector type at "
829                            "a nonzero offset.");
830
831      const Type *ToElementTy =
832        cast<VectorType>(SV->getType())->getElementType();
833      unsigned Scale = VecSize / ValSize;
834      const Type *CastElementTy = getScaledElementType(ToElementTy, Scale);
835      unsigned NumCastVectorElements = VTy->getNumElements() / Scale;
836
837      LLVMContext &Context = SV->getContext();
838      const Type *OldCastTy = VectorType::get(CastElementTy,
839                                              NumCastVectorElements);
840      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
841
842      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
843      Value *Insert =
844        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
845                                    Type::getInt32Ty(Context), 0), "tmp");
846      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
847    }
848
849    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
850
851    // Must be an element insertion.
852    unsigned Elt = Offset/EltSize;
853
854    if (SV->getType() != VTy->getElementType())
855      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
856
857    SV = Builder.CreateInsertElement(Old, SV,
858                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
859                                     "tmp");
860    return SV;
861  }
862
863  // If SV is a first-class aggregate value, insert each value recursively.
864  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
865    const StructLayout &Layout = *TD.getStructLayout(ST);
866    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
867      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
868      Old = ConvertScalar_InsertValue(Elt, Old,
869                                      Offset+Layout.getElementOffsetInBits(i),
870                                      Builder);
871    }
872    return Old;
873  }
874
875  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
876    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
877    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
878      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
879      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
880    }
881    return Old;
882  }
883
884  // If SV is a float, convert it to the appropriate integer type.
885  // If it is a pointer, do the same.
886  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
887  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
888  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
889  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
890  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
891    SV = Builder.CreateBitCast(SV,
892                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
893  else if (SV->getType()->isPointerTy())
894    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
895
896  // Zero extend or truncate the value if needed.
897  if (SV->getType() != AllocaType) {
898    if (SV->getType()->getPrimitiveSizeInBits() <
899             AllocaType->getPrimitiveSizeInBits())
900      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
901    else {
902      // Truncation may be needed if storing more than the alloca can hold
903      // (undefined behavior).
904      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
905      SrcWidth = DestWidth;
906      SrcStoreWidth = DestStoreWidth;
907    }
908  }
909
910  // If this is a big-endian system and the store is narrower than the
911  // full alloca type, we need to do a shift to get the right bits.
912  int ShAmt = 0;
913  if (TD.isBigEndian()) {
914    // On big-endian machines, the lowest bit is stored at the bit offset
915    // from the pointer given by getTypeStoreSizeInBits.  This matters for
916    // integers with a bitwidth that is not a multiple of 8.
917    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
918  } else {
919    ShAmt = Offset;
920  }
921
922  // Note: we support negative bitwidths (with shr) which are not defined.
923  // We do this to support (f.e.) stores off the end of a structure where
924  // only some bits in the structure are set.
925  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
926  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
927    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
928                           ShAmt), "tmp");
929    Mask <<= ShAmt;
930  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
931    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
932                            -ShAmt), "tmp");
933    Mask = Mask.lshr(-ShAmt);
934  }
935
936  // Mask out the bits we are about to insert from the old value, and or
937  // in the new bits.
938  if (SrcWidth != DestWidth) {
939    assert(DestWidth > SrcWidth);
940    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
941    SV = Builder.CreateOr(Old, SV, "ins");
942  }
943  return SV;
944}
945
946
947//===----------------------------------------------------------------------===//
948// SRoA Driver
949//===----------------------------------------------------------------------===//
950
951
952bool SROA::runOnFunction(Function &F) {
953  TD = getAnalysisIfAvailable<TargetData>();
954
955  bool Changed = performPromotion(F);
956
957  // FIXME: ScalarRepl currently depends on TargetData more than it
958  // theoretically needs to. It should be refactored in order to support
959  // target-independent IR. Until this is done, just skip the actual
960  // scalar-replacement portion of this pass.
961  if (!TD) return Changed;
962
963  while (1) {
964    bool LocalChange = performScalarRepl(F);
965    if (!LocalChange) break;   // No need to repromote if no scalarrepl
966    Changed = true;
967    LocalChange = performPromotion(F);
968    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
969  }
970
971  return Changed;
972}
973
974namespace {
975class AllocaPromoter : public LoadAndStorePromoter {
976  AllocaInst *AI;
977public:
978  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
979    : LoadAndStorePromoter(Insts, S), AI(0) {}
980
981  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
982    // Remember which alloca we're promoting (for isInstInList).
983    this->AI = AI;
984    LoadAndStorePromoter::run(Insts);
985    AI->eraseFromParent();
986  }
987
988  virtual bool isInstInList(Instruction *I,
989                            const SmallVectorImpl<Instruction*> &Insts) const {
990    if (LoadInst *LI = dyn_cast<LoadInst>(I))
991      return LI->getOperand(0) == AI;
992    return cast<StoreInst>(I)->getPointerOperand() == AI;
993  }
994};
995} // end anon namespace
996
997/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
998/// subsequently loaded can be rewritten to load both input pointers and then
999/// select between the result, allowing the load of the alloca to be promoted.
1000/// From this:
1001///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1002///   %V = load i32* %P2
1003/// to:
1004///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1005///   %V2 = load i32* %Other
1006///   %V = select i1 %cond, i32 %V1, i32 %V2
1007///
1008/// We can do this to a select if its only uses are loads and if the operand to
1009/// the select can be loaded unconditionally.
1010static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1011  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1012  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1013
1014  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1015       UI != UE; ++UI) {
1016    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1017    if (LI == 0 || LI->isVolatile()) return false;
1018
1019    // Both operands to the select need to be dereferencable, either absolutely
1020    // (e.g. allocas) or at this point because we can see other accesses to it.
1021    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1022                                                    LI->getAlignment(), TD))
1023      return false;
1024    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1025                                                    LI->getAlignment(), TD))
1026      return false;
1027  }
1028
1029  return true;
1030}
1031
1032/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1033/// subsequently loaded can be rewritten to load both input pointers in the pred
1034/// blocks and then PHI the results, allowing the load of the alloca to be
1035/// promoted.
1036/// From this:
1037///   %P2 = phi [i32* %Alloca, i32* %Other]
1038///   %V = load i32* %P2
1039/// to:
1040///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1041///   ...
1042///   %V2 = load i32* %Other
1043///   ...
1044///   %V = phi [i32 %V1, i32 %V2]
1045///
1046/// We can do this to a select if its only uses are loads and if the operand to
1047/// the select can be loaded unconditionally.
1048static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1049  // For now, we can only do this promotion if the load is in the same block as
1050  // the PHI, and if there are no stores between the phi and load.
1051  // TODO: Allow recursive phi users.
1052  // TODO: Allow stores.
1053  BasicBlock *BB = PN->getParent();
1054  unsigned MaxAlign = 0;
1055  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1056       UI != UE; ++UI) {
1057    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1058    if (LI == 0 || LI->isVolatile()) return false;
1059
1060    // For now we only allow loads in the same block as the PHI.  This is a
1061    // common case that happens when instcombine merges two loads through a PHI.
1062    if (LI->getParent() != BB) return false;
1063
1064    // Ensure that there are no instructions between the PHI and the load that
1065    // could store.
1066    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1067      if (BBI->mayWriteToMemory())
1068        return false;
1069
1070    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1071  }
1072
1073  // Okay, we know that we have one or more loads in the same block as the PHI.
1074  // We can transform this if it is safe to push the loads into the predecessor
1075  // blocks.  The only thing to watch out for is that we can't put a possibly
1076  // trapping load in the predecessor if it is a critical edge.
1077  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1078    BasicBlock *Pred = PN->getIncomingBlock(i);
1079
1080    // If the predecessor has a single successor, then the edge isn't critical.
1081    if (Pred->getTerminator()->getNumSuccessors() == 1)
1082      continue;
1083
1084    Value *InVal = PN->getIncomingValue(i);
1085
1086    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1087    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1088      if (II->getParent() == Pred)
1089        return false;
1090
1091    // If this pointer is always safe to load, or if we can prove that there is
1092    // already a load in the block, then we can move the load to the pred block.
1093    if (InVal->isDereferenceablePointer() ||
1094        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1095      continue;
1096
1097    return false;
1098  }
1099
1100  return true;
1101}
1102
1103
1104/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1105/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1106/// not quite there, this will transform the code to allow promotion.  As such,
1107/// it is a non-pure predicate.
1108static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1109  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1110            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1111
1112  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1113       UI != UE; ++UI) {
1114    User *U = *UI;
1115    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1116      if (LI->isVolatile())
1117        return false;
1118      continue;
1119    }
1120
1121    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1122      if (SI->getOperand(0) == AI || SI->isVolatile())
1123        return false;   // Don't allow a store OF the AI, only INTO the AI.
1124      continue;
1125    }
1126
1127    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1128      // If the condition being selected on is a constant, fold the select, yes
1129      // this does (rarely) happen early on.
1130      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1131        Value *Result = SI->getOperand(1+CI->isZero());
1132        SI->replaceAllUsesWith(Result);
1133        SI->eraseFromParent();
1134
1135        // This is very rare and we just scrambled the use list of AI, start
1136        // over completely.
1137        return tryToMakeAllocaBePromotable(AI, TD);
1138      }
1139
1140      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1141      // loads, then we can transform this by rewriting the select.
1142      if (!isSafeSelectToSpeculate(SI, TD))
1143        return false;
1144
1145      InstsToRewrite.insert(SI);
1146      continue;
1147    }
1148
1149    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1150      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1151        InstsToRewrite.insert(PN);
1152        continue;
1153      }
1154
1155      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1156      // in the pred blocks, then we can transform this by rewriting the PHI.
1157      if (!isSafePHIToSpeculate(PN, TD))
1158        return false;
1159
1160      InstsToRewrite.insert(PN);
1161      continue;
1162    }
1163
1164    return false;
1165  }
1166
1167  // If there are no instructions to rewrite, then all uses are load/stores and
1168  // we're done!
1169  if (InstsToRewrite.empty())
1170    return true;
1171
1172  // If we have instructions that need to be rewritten for this to be promotable
1173  // take care of it now.
1174  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1175    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1176      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1177      // loads with a new select.
1178      while (!SI->use_empty()) {
1179        LoadInst *LI = cast<LoadInst>(SI->use_back());
1180
1181        IRBuilder<> Builder(LI);
1182        LoadInst *TrueLoad =
1183          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1184        LoadInst *FalseLoad =
1185          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1186
1187        // Transfer alignment and TBAA info if present.
1188        TrueLoad->setAlignment(LI->getAlignment());
1189        FalseLoad->setAlignment(LI->getAlignment());
1190        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1191          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1192          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1193        }
1194
1195        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1196        V->takeName(LI);
1197        LI->replaceAllUsesWith(V);
1198        LI->eraseFromParent();
1199      }
1200
1201      // Now that all the loads are gone, the select is gone too.
1202      SI->eraseFromParent();
1203      continue;
1204    }
1205
1206    // Otherwise, we have a PHI node which allows us to push the loads into the
1207    // predecessors.
1208    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1209    if (PN->use_empty()) {
1210      PN->eraseFromParent();
1211      continue;
1212    }
1213
1214    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1215    PHINode *NewPN = PHINode::Create(LoadTy, PN->getName()+".ld", PN);
1216
1217    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1218    // matter which one we get and if any differ, it doesn't matter.
1219    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1220    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1221    unsigned Align = SomeLoad->getAlignment();
1222
1223    // Rewrite all loads of the PN to use the new PHI.
1224    while (!PN->use_empty()) {
1225      LoadInst *LI = cast<LoadInst>(PN->use_back());
1226      LI->replaceAllUsesWith(NewPN);
1227      LI->eraseFromParent();
1228    }
1229
1230    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1231    // insert them into in case we have multiple edges from the same block.
1232    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1233
1234    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1235      BasicBlock *Pred = PN->getIncomingBlock(i);
1236      LoadInst *&Load = InsertedLoads[Pred];
1237      if (Load == 0) {
1238        Load = new LoadInst(PN->getIncomingValue(i),
1239                            PN->getName() + "." + Pred->getName(),
1240                            Pred->getTerminator());
1241        Load->setAlignment(Align);
1242        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1243      }
1244
1245      NewPN->addIncoming(Load, Pred);
1246    }
1247
1248    PN->eraseFromParent();
1249  }
1250
1251  ++NumAdjusted;
1252  return true;
1253}
1254
1255
1256bool SROA::performPromotion(Function &F) {
1257  std::vector<AllocaInst*> Allocas;
1258  DominatorTree *DT = 0;
1259  if (HasDomTree)
1260    DT = &getAnalysis<DominatorTree>();
1261
1262  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1263
1264  bool Changed = false;
1265  SmallVector<Instruction*, 64> Insts;
1266  while (1) {
1267    Allocas.clear();
1268
1269    // Find allocas that are safe to promote, by looking at all instructions in
1270    // the entry node
1271    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1272      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1273        if (tryToMakeAllocaBePromotable(AI, TD))
1274          Allocas.push_back(AI);
1275
1276    if (Allocas.empty()) break;
1277
1278    if (HasDomTree)
1279      PromoteMemToReg(Allocas, *DT);
1280    else {
1281      SSAUpdater SSA;
1282      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1283        AllocaInst *AI = Allocas[i];
1284
1285        // Build list of instructions to promote.
1286        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1287             UI != E; ++UI)
1288          Insts.push_back(cast<Instruction>(*UI));
1289
1290        AllocaPromoter(Insts, SSA).run(AI, Insts);
1291        Insts.clear();
1292      }
1293    }
1294    NumPromoted += Allocas.size();
1295    Changed = true;
1296  }
1297
1298  return Changed;
1299}
1300
1301
1302/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1303/// SROA.  It must be a struct or array type with a small number of elements.
1304static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1305  const Type *T = AI->getAllocatedType();
1306  // Do not promote any struct into more than 32 separate vars.
1307  if (const StructType *ST = dyn_cast<StructType>(T))
1308    return ST->getNumElements() <= 32;
1309  // Arrays are much less likely to be safe for SROA; only consider
1310  // them if they are very small.
1311  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1312    return AT->getNumElements() <= 8;
1313  return false;
1314}
1315
1316
1317// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1318// which runs on all of the malloc/alloca instructions in the function, removing
1319// them if they are only used by getelementptr instructions.
1320//
1321bool SROA::performScalarRepl(Function &F) {
1322  std::vector<AllocaInst*> WorkList;
1323
1324  // Scan the entry basic block, adding allocas to the worklist.
1325  BasicBlock &BB = F.getEntryBlock();
1326  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1327    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1328      WorkList.push_back(A);
1329
1330  // Process the worklist
1331  bool Changed = false;
1332  while (!WorkList.empty()) {
1333    AllocaInst *AI = WorkList.back();
1334    WorkList.pop_back();
1335
1336    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1337    // with unused elements.
1338    if (AI->use_empty()) {
1339      AI->eraseFromParent();
1340      Changed = true;
1341      continue;
1342    }
1343
1344    // If this alloca is impossible for us to promote, reject it early.
1345    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1346      continue;
1347
1348    // Check to see if this allocation is only modified by a memcpy/memmove from
1349    // a constant global.  If this is the case, we can change all users to use
1350    // the constant global instead.  This is commonly produced by the CFE by
1351    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1352    // is only subsequently read.
1353    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1354      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1355      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1356      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1357      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1358      TheCopy->eraseFromParent();  // Don't mutate the global.
1359      AI->eraseFromParent();
1360      ++NumGlobals;
1361      Changed = true;
1362      continue;
1363    }
1364
1365    // Check to see if we can perform the core SROA transformation.  We cannot
1366    // transform the allocation instruction if it is an array allocation
1367    // (allocations OF arrays are ok though), and an allocation of a scalar
1368    // value cannot be decomposed at all.
1369    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1370
1371    // Do not promote [0 x %struct].
1372    if (AllocaSize == 0) continue;
1373
1374    // Do not promote any struct whose size is too big.
1375    if (AllocaSize > SRThreshold) continue;
1376
1377    // If the alloca looks like a good candidate for scalar replacement, and if
1378    // all its users can be transformed, then split up the aggregate into its
1379    // separate elements.
1380    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1381      DoScalarReplacement(AI, WorkList);
1382      Changed = true;
1383      continue;
1384    }
1385
1386    // If we can turn this aggregate value (potentially with casts) into a
1387    // simple scalar value that can be mem2reg'd into a register value.
1388    // IsNotTrivial tracks whether this is something that mem2reg could have
1389    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1390    // that we can't just check based on the type: the alloca may be of an i32
1391    // but that has pointer arithmetic to set byte 3 of it or something.
1392    if (AllocaInst *NewAI =
1393          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1394      NewAI->takeName(AI);
1395      AI->eraseFromParent();
1396      ++NumConverted;
1397      Changed = true;
1398      continue;
1399    }
1400
1401    // Otherwise, couldn't process this alloca.
1402  }
1403
1404  return Changed;
1405}
1406
1407/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1408/// predicate, do SROA now.
1409void SROA::DoScalarReplacement(AllocaInst *AI,
1410                               std::vector<AllocaInst*> &WorkList) {
1411  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1412  SmallVector<AllocaInst*, 32> ElementAllocas;
1413  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1414    ElementAllocas.reserve(ST->getNumContainedTypes());
1415    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1416      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1417                                      AI->getAlignment(),
1418                                      AI->getName() + "." + Twine(i), AI);
1419      ElementAllocas.push_back(NA);
1420      WorkList.push_back(NA);  // Add to worklist for recursive processing
1421    }
1422  } else {
1423    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1424    ElementAllocas.reserve(AT->getNumElements());
1425    const Type *ElTy = AT->getElementType();
1426    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1427      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1428                                      AI->getName() + "." + Twine(i), AI);
1429      ElementAllocas.push_back(NA);
1430      WorkList.push_back(NA);  // Add to worklist for recursive processing
1431    }
1432  }
1433
1434  // Now that we have created the new alloca instructions, rewrite all the
1435  // uses of the old alloca.
1436  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1437
1438  // Now erase any instructions that were made dead while rewriting the alloca.
1439  DeleteDeadInstructions();
1440  AI->eraseFromParent();
1441
1442  ++NumReplaced;
1443}
1444
1445/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1446/// recursively including all their operands that become trivially dead.
1447void SROA::DeleteDeadInstructions() {
1448  while (!DeadInsts.empty()) {
1449    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1450
1451    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1452      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1453        // Zero out the operand and see if it becomes trivially dead.
1454        // (But, don't add allocas to the dead instruction list -- they are
1455        // already on the worklist and will be deleted separately.)
1456        *OI = 0;
1457        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1458          DeadInsts.push_back(U);
1459      }
1460
1461    I->eraseFromParent();
1462  }
1463}
1464
1465/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1466/// performing scalar replacement of alloca AI.  The results are flagged in
1467/// the Info parameter.  Offset indicates the position within AI that is
1468/// referenced by this instruction.
1469void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1470                               AllocaInfo &Info) {
1471  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1472    Instruction *User = cast<Instruction>(*UI);
1473
1474    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1475      isSafeForScalarRepl(BC, Offset, Info);
1476    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1477      uint64_t GEPOffset = Offset;
1478      isSafeGEP(GEPI, GEPOffset, Info);
1479      if (!Info.isUnsafe)
1480        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1481    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1482      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1483      if (Length == 0)
1484        return MarkUnsafe(Info, User);
1485      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1486                      UI.getOperandNo() == 0, Info, MI,
1487                      true /*AllowWholeAccess*/);
1488    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1489      if (LI->isVolatile())
1490        return MarkUnsafe(Info, User);
1491      const Type *LIType = LI->getType();
1492      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1493                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1494      Info.hasALoadOrStore = true;
1495
1496    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1497      // Store is ok if storing INTO the pointer, not storing the pointer
1498      if (SI->isVolatile() || SI->getOperand(0) == I)
1499        return MarkUnsafe(Info, User);
1500
1501      const Type *SIType = SI->getOperand(0)->getType();
1502      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1503                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1504      Info.hasALoadOrStore = true;
1505    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1506      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1507    } else {
1508      return MarkUnsafe(Info, User);
1509    }
1510    if (Info.isUnsafe) return;
1511  }
1512}
1513
1514
1515/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1516/// derived from the alloca, we can often still split the alloca into elements.
1517/// This is useful if we have a large alloca where one element is phi'd
1518/// together somewhere: we can SRoA and promote all the other elements even if
1519/// we end up not being able to promote this one.
1520///
1521/// All we require is that the uses of the PHI do not index into other parts of
1522/// the alloca.  The most important use case for this is single load and stores
1523/// that are PHI'd together, which can happen due to code sinking.
1524void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1525                                           AllocaInfo &Info) {
1526  // If we've already checked this PHI, don't do it again.
1527  if (PHINode *PN = dyn_cast<PHINode>(I))
1528    if (!Info.CheckedPHIs.insert(PN))
1529      return;
1530
1531  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1532    Instruction *User = cast<Instruction>(*UI);
1533
1534    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1535      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1536    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1537      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1538      // but would have to prove that we're staying inside of an element being
1539      // promoted.
1540      if (!GEPI->hasAllZeroIndices())
1541        return MarkUnsafe(Info, User);
1542      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1543    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1544      if (LI->isVolatile())
1545        return MarkUnsafe(Info, User);
1546      const Type *LIType = LI->getType();
1547      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1548                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1549      Info.hasALoadOrStore = true;
1550
1551    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1552      // Store is ok if storing INTO the pointer, not storing the pointer
1553      if (SI->isVolatile() || SI->getOperand(0) == I)
1554        return MarkUnsafe(Info, User);
1555
1556      const Type *SIType = SI->getOperand(0)->getType();
1557      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1558                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1559      Info.hasALoadOrStore = true;
1560    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1561      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1562    } else {
1563      return MarkUnsafe(Info, User);
1564    }
1565    if (Info.isUnsafe) return;
1566  }
1567}
1568
1569/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1570/// replacement.  It is safe when all the indices are constant, in-bounds
1571/// references, and when the resulting offset corresponds to an element within
1572/// the alloca type.  The results are flagged in the Info parameter.  Upon
1573/// return, Offset is adjusted as specified by the GEP indices.
1574void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1575                     uint64_t &Offset, AllocaInfo &Info) {
1576  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1577  if (GEPIt == E)
1578    return;
1579
1580  // Walk through the GEP type indices, checking the types that this indexes
1581  // into.
1582  for (; GEPIt != E; ++GEPIt) {
1583    // Ignore struct elements, no extra checking needed for these.
1584    if ((*GEPIt)->isStructTy())
1585      continue;
1586
1587    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1588    if (!IdxVal)
1589      return MarkUnsafe(Info, GEPI);
1590  }
1591
1592  // Compute the offset due to this GEP and check if the alloca has a
1593  // component element at that offset.
1594  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1595  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1596                                 &Indices[0], Indices.size());
1597  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1598    MarkUnsafe(Info, GEPI);
1599}
1600
1601/// isHomogeneousAggregate - Check if type T is a struct or array containing
1602/// elements of the same type (which is always true for arrays).  If so,
1603/// return true with NumElts and EltTy set to the number of elements and the
1604/// element type, respectively.
1605static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1606                                   const Type *&EltTy) {
1607  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1608    NumElts = AT->getNumElements();
1609    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1610    return true;
1611  }
1612  if (const StructType *ST = dyn_cast<StructType>(T)) {
1613    NumElts = ST->getNumContainedTypes();
1614    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1615    for (unsigned n = 1; n < NumElts; ++n) {
1616      if (ST->getContainedType(n) != EltTy)
1617        return false;
1618    }
1619    return true;
1620  }
1621  return false;
1622}
1623
1624/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1625/// "homogeneous" aggregates with the same element type and number of elements.
1626static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1627  if (T1 == T2)
1628    return true;
1629
1630  unsigned NumElts1, NumElts2;
1631  const Type *EltTy1, *EltTy2;
1632  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1633      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1634      NumElts1 == NumElts2 &&
1635      EltTy1 == EltTy2)
1636    return true;
1637
1638  return false;
1639}
1640
1641/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1642/// alloca or has an offset and size that corresponds to a component element
1643/// within it.  The offset checked here may have been formed from a GEP with a
1644/// pointer bitcasted to a different type.
1645///
1646/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1647/// unit.  If false, it only allows accesses known to be in a single element.
1648void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1649                           const Type *MemOpType, bool isStore,
1650                           AllocaInfo &Info, Instruction *TheAccess,
1651                           bool AllowWholeAccess) {
1652  // Check if this is a load/store of the entire alloca.
1653  if (Offset == 0 && AllowWholeAccess &&
1654      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1655    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1656    // loads/stores (which are essentially the same as the MemIntrinsics with
1657    // regard to copying padding between elements).  But, if an alloca is
1658    // flagged as both a source and destination of such operations, we'll need
1659    // to check later for padding between elements.
1660    if (!MemOpType || MemOpType->isIntegerTy()) {
1661      if (isStore)
1662        Info.isMemCpyDst = true;
1663      else
1664        Info.isMemCpySrc = true;
1665      return;
1666    }
1667    // This is also safe for references using a type that is compatible with
1668    // the type of the alloca, so that loads/stores can be rewritten using
1669    // insertvalue/extractvalue.
1670    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1671      Info.hasSubelementAccess = true;
1672      return;
1673    }
1674  }
1675  // Check if the offset/size correspond to a component within the alloca type.
1676  const Type *T = Info.AI->getAllocatedType();
1677  if (TypeHasComponent(T, Offset, MemSize)) {
1678    Info.hasSubelementAccess = true;
1679    return;
1680  }
1681
1682  return MarkUnsafe(Info, TheAccess);
1683}
1684
1685/// TypeHasComponent - Return true if T has a component type with the
1686/// specified offset and size.  If Size is zero, do not check the size.
1687bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1688  const Type *EltTy;
1689  uint64_t EltSize;
1690  if (const StructType *ST = dyn_cast<StructType>(T)) {
1691    const StructLayout *Layout = TD->getStructLayout(ST);
1692    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1693    EltTy = ST->getContainedType(EltIdx);
1694    EltSize = TD->getTypeAllocSize(EltTy);
1695    Offset -= Layout->getElementOffset(EltIdx);
1696  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1697    EltTy = AT->getElementType();
1698    EltSize = TD->getTypeAllocSize(EltTy);
1699    if (Offset >= AT->getNumElements() * EltSize)
1700      return false;
1701    Offset %= EltSize;
1702  } else {
1703    return false;
1704  }
1705  if (Offset == 0 && (Size == 0 || EltSize == Size))
1706    return true;
1707  // Check if the component spans multiple elements.
1708  if (Offset + Size > EltSize)
1709    return false;
1710  return TypeHasComponent(EltTy, Offset, Size);
1711}
1712
1713/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1714/// the instruction I, which references it, to use the separate elements.
1715/// Offset indicates the position within AI that is referenced by this
1716/// instruction.
1717void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1718                                SmallVector<AllocaInst*, 32> &NewElts) {
1719  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1720    Use &TheUse = UI.getUse();
1721    Instruction *User = cast<Instruction>(*UI++);
1722
1723    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1724      RewriteBitCast(BC, AI, Offset, NewElts);
1725      continue;
1726    }
1727
1728    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1729      RewriteGEP(GEPI, AI, Offset, NewElts);
1730      continue;
1731    }
1732
1733    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1734      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1735      uint64_t MemSize = Length->getZExtValue();
1736      if (Offset == 0 &&
1737          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1738        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1739      // Otherwise the intrinsic can only touch a single element and the
1740      // address operand will be updated, so nothing else needs to be done.
1741      continue;
1742    }
1743
1744    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1745      const Type *LIType = LI->getType();
1746
1747      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1748        // Replace:
1749        //   %res = load { i32, i32 }* %alloc
1750        // with:
1751        //   %load.0 = load i32* %alloc.0
1752        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1753        //   %load.1 = load i32* %alloc.1
1754        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1755        // (Also works for arrays instead of structs)
1756        Value *Insert = UndefValue::get(LIType);
1757        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1758          Value *Load = new LoadInst(NewElts[i], "load", LI);
1759          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1760        }
1761        LI->replaceAllUsesWith(Insert);
1762        DeadInsts.push_back(LI);
1763      } else if (LIType->isIntegerTy() &&
1764                 TD->getTypeAllocSize(LIType) ==
1765                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1766        // If this is a load of the entire alloca to an integer, rewrite it.
1767        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1768      }
1769      continue;
1770    }
1771
1772    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1773      Value *Val = SI->getOperand(0);
1774      const Type *SIType = Val->getType();
1775      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1776        // Replace:
1777        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1778        // with:
1779        //   %val.0 = extractvalue { i32, i32 } %val, 0
1780        //   store i32 %val.0, i32* %alloc.0
1781        //   %val.1 = extractvalue { i32, i32 } %val, 1
1782        //   store i32 %val.1, i32* %alloc.1
1783        // (Also works for arrays instead of structs)
1784        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1785          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1786          new StoreInst(Extract, NewElts[i], SI);
1787        }
1788        DeadInsts.push_back(SI);
1789      } else if (SIType->isIntegerTy() &&
1790                 TD->getTypeAllocSize(SIType) ==
1791                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1792        // If this is a store of the entire alloca from an integer, rewrite it.
1793        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1794      }
1795      continue;
1796    }
1797
1798    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1799      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1800      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1801      // the new pointer.
1802      if (!isa<AllocaInst>(I)) continue;
1803
1804      assert(Offset == 0 && NewElts[0] &&
1805             "Direct alloca use should have a zero offset");
1806
1807      // If we have a use of the alloca, we know the derived uses will be
1808      // utilizing just the first element of the scalarized result.  Insert a
1809      // bitcast of the first alloca before the user as required.
1810      AllocaInst *NewAI = NewElts[0];
1811      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1812      NewAI->moveBefore(BCI);
1813      TheUse = BCI;
1814      continue;
1815    }
1816  }
1817}
1818
1819/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1820/// and recursively continue updating all of its uses.
1821void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1822                          SmallVector<AllocaInst*, 32> &NewElts) {
1823  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1824  if (BC->getOperand(0) != AI)
1825    return;
1826
1827  // The bitcast references the original alloca.  Replace its uses with
1828  // references to the first new element alloca.
1829  Instruction *Val = NewElts[0];
1830  if (Val->getType() != BC->getDestTy()) {
1831    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1832    Val->takeName(BC);
1833  }
1834  BC->replaceAllUsesWith(Val);
1835  DeadInsts.push_back(BC);
1836}
1837
1838/// FindElementAndOffset - Return the index of the element containing Offset
1839/// within the specified type, which must be either a struct or an array.
1840/// Sets T to the type of the element and Offset to the offset within that
1841/// element.  IdxTy is set to the type of the index result to be used in a
1842/// GEP instruction.
1843uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1844                                    const Type *&IdxTy) {
1845  uint64_t Idx = 0;
1846  if (const StructType *ST = dyn_cast<StructType>(T)) {
1847    const StructLayout *Layout = TD->getStructLayout(ST);
1848    Idx = Layout->getElementContainingOffset(Offset);
1849    T = ST->getContainedType(Idx);
1850    Offset -= Layout->getElementOffset(Idx);
1851    IdxTy = Type::getInt32Ty(T->getContext());
1852    return Idx;
1853  }
1854  const ArrayType *AT = cast<ArrayType>(T);
1855  T = AT->getElementType();
1856  uint64_t EltSize = TD->getTypeAllocSize(T);
1857  Idx = Offset / EltSize;
1858  Offset -= Idx * EltSize;
1859  IdxTy = Type::getInt64Ty(T->getContext());
1860  return Idx;
1861}
1862
1863/// RewriteGEP - Check if this GEP instruction moves the pointer across
1864/// elements of the alloca that are being split apart, and if so, rewrite
1865/// the GEP to be relative to the new element.
1866void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1867                      SmallVector<AllocaInst*, 32> &NewElts) {
1868  uint64_t OldOffset = Offset;
1869  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1870  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1871                                 &Indices[0], Indices.size());
1872
1873  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1874
1875  const Type *T = AI->getAllocatedType();
1876  const Type *IdxTy;
1877  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1878  if (GEPI->getOperand(0) == AI)
1879    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1880
1881  T = AI->getAllocatedType();
1882  uint64_t EltOffset = Offset;
1883  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1884
1885  // If this GEP does not move the pointer across elements of the alloca
1886  // being split, then it does not needs to be rewritten.
1887  if (Idx == OldIdx)
1888    return;
1889
1890  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1891  SmallVector<Value*, 8> NewArgs;
1892  NewArgs.push_back(Constant::getNullValue(i32Ty));
1893  while (EltOffset != 0) {
1894    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1895    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1896  }
1897  Instruction *Val = NewElts[Idx];
1898  if (NewArgs.size() > 1) {
1899    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1900                                            NewArgs.end(), "", GEPI);
1901    Val->takeName(GEPI);
1902  }
1903  if (Val->getType() != GEPI->getType())
1904    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1905  GEPI->replaceAllUsesWith(Val);
1906  DeadInsts.push_back(GEPI);
1907}
1908
1909/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1910/// Rewrite it to copy or set the elements of the scalarized memory.
1911void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1912                                        AllocaInst *AI,
1913                                        SmallVector<AllocaInst*, 32> &NewElts) {
1914  // If this is a memcpy/memmove, construct the other pointer as the
1915  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1916  // that doesn't have anything to do with the alloca that we are promoting. For
1917  // memset, this Value* stays null.
1918  Value *OtherPtr = 0;
1919  unsigned MemAlignment = MI->getAlignment();
1920  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1921    if (Inst == MTI->getRawDest())
1922      OtherPtr = MTI->getRawSource();
1923    else {
1924      assert(Inst == MTI->getRawSource());
1925      OtherPtr = MTI->getRawDest();
1926    }
1927  }
1928
1929  // If there is an other pointer, we want to convert it to the same pointer
1930  // type as AI has, so we can GEP through it safely.
1931  if (OtherPtr) {
1932    unsigned AddrSpace =
1933      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1934
1935    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
1936    // optimization, but it's also required to detect the corner case where
1937    // both pointer operands are referencing the same memory, and where
1938    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
1939    // function is only called for mem intrinsics that access the whole
1940    // aggregate, so non-zero GEPs are not an issue here.)
1941    OtherPtr = OtherPtr->stripPointerCasts();
1942
1943    // Copying the alloca to itself is a no-op: just delete it.
1944    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1945      // This code will run twice for a no-op memcpy -- once for each operand.
1946      // Put only one reference to MI on the DeadInsts list.
1947      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1948             E = DeadInsts.end(); I != E; ++I)
1949        if (*I == MI) return;
1950      DeadInsts.push_back(MI);
1951      return;
1952    }
1953
1954    // If the pointer is not the right type, insert a bitcast to the right
1955    // type.
1956    const Type *NewTy =
1957      PointerType::get(AI->getType()->getElementType(), AddrSpace);
1958
1959    if (OtherPtr->getType() != NewTy)
1960      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1961  }
1962
1963  // Process each element of the aggregate.
1964  bool SROADest = MI->getRawDest() == Inst;
1965
1966  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1967
1968  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1969    // If this is a memcpy/memmove, emit a GEP of the other element address.
1970    Value *OtherElt = 0;
1971    unsigned OtherEltAlign = MemAlignment;
1972
1973    if (OtherPtr) {
1974      Value *Idx[2] = { Zero,
1975                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1976      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1977                                              OtherPtr->getName()+"."+Twine(i),
1978                                                   MI);
1979      uint64_t EltOffset;
1980      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1981      const Type *OtherTy = OtherPtrTy->getElementType();
1982      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1983        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1984      } else {
1985        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
1986        EltOffset = TD->getTypeAllocSize(EltTy)*i;
1987      }
1988
1989      // The alignment of the other pointer is the guaranteed alignment of the
1990      // element, which is affected by both the known alignment of the whole
1991      // mem intrinsic and the alignment of the element.  If the alignment of
1992      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1993      // known alignment is just 4 bytes.
1994      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
1995    }
1996
1997    Value *EltPtr = NewElts[i];
1998    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
1999
2000    // If we got down to a scalar, insert a load or store as appropriate.
2001    if (EltTy->isSingleValueType()) {
2002      if (isa<MemTransferInst>(MI)) {
2003        if (SROADest) {
2004          // From Other to Alloca.
2005          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2006          new StoreInst(Elt, EltPtr, MI);
2007        } else {
2008          // From Alloca to Other.
2009          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2010          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2011        }
2012        continue;
2013      }
2014      assert(isa<MemSetInst>(MI));
2015
2016      // If the stored element is zero (common case), just store a null
2017      // constant.
2018      Constant *StoreVal;
2019      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2020        if (CI->isZero()) {
2021          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2022        } else {
2023          // If EltTy is a vector type, get the element type.
2024          const Type *ValTy = EltTy->getScalarType();
2025
2026          // Construct an integer with the right value.
2027          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2028          APInt OneVal(EltSize, CI->getZExtValue());
2029          APInt TotalVal(OneVal);
2030          // Set each byte.
2031          for (unsigned i = 0; 8*i < EltSize; ++i) {
2032            TotalVal = TotalVal.shl(8);
2033            TotalVal |= OneVal;
2034          }
2035
2036          // Convert the integer value to the appropriate type.
2037          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2038          if (ValTy->isPointerTy())
2039            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2040          else if (ValTy->isFloatingPointTy())
2041            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2042          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2043
2044          // If the requested value was a vector constant, create it.
2045          if (EltTy != ValTy) {
2046            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2047            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2048            StoreVal = ConstantVector::get(Elts);
2049          }
2050        }
2051        new StoreInst(StoreVal, EltPtr, MI);
2052        continue;
2053      }
2054      // Otherwise, if we're storing a byte variable, use a memset call for
2055      // this element.
2056    }
2057
2058    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2059
2060    IRBuilder<> Builder(MI);
2061
2062    // Finally, insert the meminst for this element.
2063    if (isa<MemSetInst>(MI)) {
2064      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2065                           MI->isVolatile());
2066    } else {
2067      assert(isa<MemTransferInst>(MI));
2068      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2069      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2070
2071      if (isa<MemCpyInst>(MI))
2072        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2073      else
2074        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2075    }
2076  }
2077  DeadInsts.push_back(MI);
2078}
2079
2080/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2081/// overwrites the entire allocation.  Extract out the pieces of the stored
2082/// integer and store them individually.
2083void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2084                                         SmallVector<AllocaInst*, 32> &NewElts){
2085  // Extract each element out of the integer according to its structure offset
2086  // and store the element value to the individual alloca.
2087  Value *SrcVal = SI->getOperand(0);
2088  const Type *AllocaEltTy = AI->getAllocatedType();
2089  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2090
2091  IRBuilder<> Builder(SI);
2092
2093  // Handle tail padding by extending the operand
2094  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2095    SrcVal = Builder.CreateZExt(SrcVal,
2096                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2097
2098  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2099               << '\n');
2100
2101  // There are two forms here: AI could be an array or struct.  Both cases
2102  // have different ways to compute the element offset.
2103  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2104    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2105
2106    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2107      // Get the number of bits to shift SrcVal to get the value.
2108      const Type *FieldTy = EltSTy->getElementType(i);
2109      uint64_t Shift = Layout->getElementOffsetInBits(i);
2110
2111      if (TD->isBigEndian())
2112        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2113
2114      Value *EltVal = SrcVal;
2115      if (Shift) {
2116        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2117        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2118      }
2119
2120      // Truncate down to an integer of the right size.
2121      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2122
2123      // Ignore zero sized fields like {}, they obviously contain no data.
2124      if (FieldSizeBits == 0) continue;
2125
2126      if (FieldSizeBits != AllocaSizeBits)
2127        EltVal = Builder.CreateTrunc(EltVal,
2128                             IntegerType::get(SI->getContext(), FieldSizeBits));
2129      Value *DestField = NewElts[i];
2130      if (EltVal->getType() == FieldTy) {
2131        // Storing to an integer field of this size, just do it.
2132      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2133        // Bitcast to the right element type (for fp/vector values).
2134        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2135      } else {
2136        // Otherwise, bitcast the dest pointer (for aggregates).
2137        DestField = Builder.CreateBitCast(DestField,
2138                                     PointerType::getUnqual(EltVal->getType()));
2139      }
2140      new StoreInst(EltVal, DestField, SI);
2141    }
2142
2143  } else {
2144    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2145    const Type *ArrayEltTy = ATy->getElementType();
2146    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2147    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2148
2149    uint64_t Shift;
2150
2151    if (TD->isBigEndian())
2152      Shift = AllocaSizeBits-ElementOffset;
2153    else
2154      Shift = 0;
2155
2156    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2157      // Ignore zero sized fields like {}, they obviously contain no data.
2158      if (ElementSizeBits == 0) continue;
2159
2160      Value *EltVal = SrcVal;
2161      if (Shift) {
2162        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2163        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2164      }
2165
2166      // Truncate down to an integer of the right size.
2167      if (ElementSizeBits != AllocaSizeBits)
2168        EltVal = Builder.CreateTrunc(EltVal,
2169                                     IntegerType::get(SI->getContext(),
2170                                                      ElementSizeBits));
2171      Value *DestField = NewElts[i];
2172      if (EltVal->getType() == ArrayEltTy) {
2173        // Storing to an integer field of this size, just do it.
2174      } else if (ArrayEltTy->isFloatingPointTy() ||
2175                 ArrayEltTy->isVectorTy()) {
2176        // Bitcast to the right element type (for fp/vector values).
2177        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2178      } else {
2179        // Otherwise, bitcast the dest pointer (for aggregates).
2180        DestField = Builder.CreateBitCast(DestField,
2181                                     PointerType::getUnqual(EltVal->getType()));
2182      }
2183      new StoreInst(EltVal, DestField, SI);
2184
2185      if (TD->isBigEndian())
2186        Shift -= ElementOffset;
2187      else
2188        Shift += ElementOffset;
2189    }
2190  }
2191
2192  DeadInsts.push_back(SI);
2193}
2194
2195/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2196/// an integer.  Load the individual pieces to form the aggregate value.
2197void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2198                                        SmallVector<AllocaInst*, 32> &NewElts) {
2199  // Extract each element out of the NewElts according to its structure offset
2200  // and form the result value.
2201  const Type *AllocaEltTy = AI->getAllocatedType();
2202  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2203
2204  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2205               << '\n');
2206
2207  // There are two forms here: AI could be an array or struct.  Both cases
2208  // have different ways to compute the element offset.
2209  const StructLayout *Layout = 0;
2210  uint64_t ArrayEltBitOffset = 0;
2211  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2212    Layout = TD->getStructLayout(EltSTy);
2213  } else {
2214    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2215    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2216  }
2217
2218  Value *ResultVal =
2219    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2220
2221  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2222    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2223    // the pointer to an integer of the same size before doing the load.
2224    Value *SrcField = NewElts[i];
2225    const Type *FieldTy =
2226      cast<PointerType>(SrcField->getType())->getElementType();
2227    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2228
2229    // Ignore zero sized fields like {}, they obviously contain no data.
2230    if (FieldSizeBits == 0) continue;
2231
2232    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2233                                                     FieldSizeBits);
2234    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2235        !FieldTy->isVectorTy())
2236      SrcField = new BitCastInst(SrcField,
2237                                 PointerType::getUnqual(FieldIntTy),
2238                                 "", LI);
2239    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2240
2241    // If SrcField is a fp or vector of the right size but that isn't an
2242    // integer type, bitcast to an integer so we can shift it.
2243    if (SrcField->getType() != FieldIntTy)
2244      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2245
2246    // Zero extend the field to be the same size as the final alloca so that
2247    // we can shift and insert it.
2248    if (SrcField->getType() != ResultVal->getType())
2249      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2250
2251    // Determine the number of bits to shift SrcField.
2252    uint64_t Shift;
2253    if (Layout) // Struct case.
2254      Shift = Layout->getElementOffsetInBits(i);
2255    else  // Array case.
2256      Shift = i*ArrayEltBitOffset;
2257
2258    if (TD->isBigEndian())
2259      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2260
2261    if (Shift) {
2262      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2263      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2264    }
2265
2266    // Don't create an 'or x, 0' on the first iteration.
2267    if (!isa<Constant>(ResultVal) ||
2268        !cast<Constant>(ResultVal)->isNullValue())
2269      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2270    else
2271      ResultVal = SrcField;
2272  }
2273
2274  // Handle tail padding by truncating the result
2275  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2276    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2277
2278  LI->replaceAllUsesWith(ResultVal);
2279  DeadInsts.push_back(LI);
2280}
2281
2282/// HasPadding - Return true if the specified type has any structure or
2283/// alignment padding in between the elements that would be split apart
2284/// by SROA; return false otherwise.
2285static bool HasPadding(const Type *Ty, const TargetData &TD) {
2286  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2287    Ty = ATy->getElementType();
2288    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2289  }
2290
2291  // SROA currently handles only Arrays and Structs.
2292  const StructType *STy = cast<StructType>(Ty);
2293  const StructLayout *SL = TD.getStructLayout(STy);
2294  unsigned PrevFieldBitOffset = 0;
2295  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2296    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2297
2298    // Check to see if there is any padding between this element and the
2299    // previous one.
2300    if (i) {
2301      unsigned PrevFieldEnd =
2302        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2303      if (PrevFieldEnd < FieldBitOffset)
2304        return true;
2305    }
2306    PrevFieldBitOffset = FieldBitOffset;
2307  }
2308  // Check for tail padding.
2309  if (unsigned EltCount = STy->getNumElements()) {
2310    unsigned PrevFieldEnd = PrevFieldBitOffset +
2311      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2312    if (PrevFieldEnd < SL->getSizeInBits())
2313      return true;
2314  }
2315  return false;
2316}
2317
2318/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2319/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2320/// or 1 if safe after canonicalization has been performed.
2321bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2322  // Loop over the use list of the alloca.  We can only transform it if all of
2323  // the users are safe to transform.
2324  AllocaInfo Info(AI);
2325
2326  isSafeForScalarRepl(AI, 0, Info);
2327  if (Info.isUnsafe) {
2328    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2329    return false;
2330  }
2331
2332  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2333  // source and destination, we have to be careful.  In particular, the memcpy
2334  // could be moving around elements that live in structure padding of the LLVM
2335  // types, but may actually be used.  In these cases, we refuse to promote the
2336  // struct.
2337  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2338      HasPadding(AI->getAllocatedType(), *TD))
2339    return false;
2340
2341  // If the alloca never has an access to just *part* of it, but is accessed
2342  // via loads and stores, then we should use ConvertToScalarInfo to promote
2343  // the alloca instead of promoting each piece at a time and inserting fission
2344  // and fusion code.
2345  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2346    // If the struct/array just has one element, use basic SRoA.
2347    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2348      if (ST->getNumElements() > 1) return false;
2349    } else {
2350      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2351        return false;
2352    }
2353  }
2354
2355  return true;
2356}
2357
2358
2359
2360/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2361/// some part of a constant global variable.  This intentionally only accepts
2362/// constant expressions because we don't can't rewrite arbitrary instructions.
2363static bool PointsToConstantGlobal(Value *V) {
2364  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2365    return GV->isConstant();
2366  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2367    if (CE->getOpcode() == Instruction::BitCast ||
2368        CE->getOpcode() == Instruction::GetElementPtr)
2369      return PointsToConstantGlobal(CE->getOperand(0));
2370  return false;
2371}
2372
2373/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2374/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2375/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2376/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2377/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2378/// the alloca, and if the source pointer is a pointer to a constant global, we
2379/// can optimize this.
2380static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2381                                           bool isOffset) {
2382  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2383    User *U = cast<Instruction>(*UI);
2384
2385    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2386      // Ignore non-volatile loads, they are always ok.
2387      if (LI->isVolatile()) return false;
2388      continue;
2389    }
2390
2391    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2392      // If uses of the bitcast are ok, we are ok.
2393      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2394        return false;
2395      continue;
2396    }
2397    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2398      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2399      // doesn't, it does.
2400      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2401                                         isOffset || !GEP->hasAllZeroIndices()))
2402        return false;
2403      continue;
2404    }
2405
2406    if (CallSite CS = U) {
2407      // If this is a readonly/readnone call site, then we know it is just a
2408      // load and we can ignore it.
2409      if (CS.onlyReadsMemory())
2410        continue;
2411
2412      // If this is the function being called then we treat it like a load and
2413      // ignore it.
2414      if (CS.isCallee(UI))
2415        continue;
2416
2417      // If this is being passed as a byval argument, the caller is making a
2418      // copy, so it is only a read of the alloca.
2419      unsigned ArgNo = CS.getArgumentNo(UI);
2420      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2421        continue;
2422    }
2423
2424    // If this is isn't our memcpy/memmove, reject it as something we can't
2425    // handle.
2426    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2427    if (MI == 0)
2428      return false;
2429
2430    // If the transfer is using the alloca as a source of the transfer, then
2431    // ignore it since it is a load (unless the transfer is volatile).
2432    if (UI.getOperandNo() == 1) {
2433      if (MI->isVolatile()) return false;
2434      continue;
2435    }
2436
2437    // If we already have seen a copy, reject the second one.
2438    if (TheCopy) return false;
2439
2440    // If the pointer has been offset from the start of the alloca, we can't
2441    // safely handle this.
2442    if (isOffset) return false;
2443
2444    // If the memintrinsic isn't using the alloca as the dest, reject it.
2445    if (UI.getOperandNo() != 0) return false;
2446
2447    // If the source of the memcpy/move is not a constant global, reject it.
2448    if (!PointsToConstantGlobal(MI->getSource()))
2449      return false;
2450
2451    // Otherwise, the transform is safe.  Remember the copy instruction.
2452    TheCopy = MI;
2453  }
2454  return true;
2455}
2456
2457/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2458/// modified by a copy from a constant global.  If we can prove this, we can
2459/// replace any uses of the alloca with uses of the global directly.
2460MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2461  MemTransferInst *TheCopy = 0;
2462  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2463    return TheCopy;
2464  return 0;
2465}
2466