ScalarReplAggregates.cpp revision 0a205a459884ec745df1c529396dd921f029dafd
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/PromoteMemToReg.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/GetElementPtrTypeIterator.h"
38#include "llvm/Support/IRBuilder.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/Compiler.h"
41#include "llvm/ADT/SmallVector.h"
42#include "llvm/ADT/Statistic.h"
43#include "llvm/ADT/StringExtras.h"
44using namespace llvm;
45
46STATISTIC(NumReplaced,  "Number of allocas broken up");
47STATISTIC(NumPromoted,  "Number of allocas promoted");
48STATISTIC(NumConverted, "Number of aggregates converted to scalar");
49STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
50
51namespace {
52  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
53    static char ID; // Pass identification, replacement for typeid
54    explicit SROA(signed T = -1) : FunctionPass(&ID) {
55      if (T == -1)
56        SRThreshold = 128;
57      else
58        SRThreshold = T;
59    }
60
61    bool runOnFunction(Function &F);
62
63    bool performScalarRepl(Function &F);
64    bool performPromotion(Function &F);
65
66    // getAnalysisUsage - This pass does not require any passes, but we know it
67    // will not alter the CFG, so say so.
68    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69      AU.addRequired<DominatorTree>();
70      AU.addRequired<DominanceFrontier>();
71      AU.addRequired<TargetData>();
72      AU.setPreservesCFG();
73    }
74
75  private:
76    TargetData *TD;
77
78    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
79    /// information about the uses.  All these fields are initialized to false
80    /// and set to true when something is learned.
81    struct AllocaInfo {
82      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
83      bool isUnsafe : 1;
84
85      /// needsCleanup - This is set to true if there is some use of the alloca
86      /// that requires cleanup.
87      bool needsCleanup : 1;
88
89      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
90      bool isMemCpySrc : 1;
91
92      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
93      bool isMemCpyDst : 1;
94
95      AllocaInfo()
96        : isUnsafe(false), needsCleanup(false),
97          isMemCpySrc(false), isMemCpyDst(false) {}
98    };
99
100    unsigned SRThreshold;
101
102    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
103
104    int isSafeAllocaToScalarRepl(AllocationInst *AI);
105
106    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
107                               AllocaInfo &Info);
108    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
109                         AllocaInfo &Info);
110    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
111                                        unsigned OpNo, AllocaInfo &Info);
112    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
113                                        AllocaInfo &Info);
114
115    void DoScalarReplacement(AllocationInst *AI,
116                             std::vector<AllocationInst*> &WorkList);
117    void CleanupGEP(GetElementPtrInst *GEP);
118    void CleanupAllocaUsers(AllocationInst *AI);
119    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
120
121    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
122                                    SmallVector<AllocaInst*, 32> &NewElts);
123
124    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
125                                      AllocationInst *AI,
126                                      SmallVector<AllocaInst*, 32> &NewElts);
127    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
128                                       SmallVector<AllocaInst*, 32> &NewElts);
129    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
130                                      SmallVector<AllocaInst*, 32> &NewElts);
131
132    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
133                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
134    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
135    Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
136                                     uint64_t Offset, IRBuilder<> &Builder);
137    Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
138                                     uint64_t Offset, IRBuilder<> &Builder);
139    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
140  };
141}
142
143char SROA::ID = 0;
144static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
145
146// Public interface to the ScalarReplAggregates pass
147FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
148  return new SROA(Threshold);
149}
150
151
152bool SROA::runOnFunction(Function &F) {
153  TD = &getAnalysis<TargetData>();
154
155  bool Changed = performPromotion(F);
156  while (1) {
157    bool LocalChange = performScalarRepl(F);
158    if (!LocalChange) break;   // No need to repromote if no scalarrepl
159    Changed = true;
160    LocalChange = performPromotion(F);
161    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
162  }
163
164  return Changed;
165}
166
167
168bool SROA::performPromotion(Function &F) {
169  std::vector<AllocaInst*> Allocas;
170  DominatorTree         &DT = getAnalysis<DominatorTree>();
171  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
172
173  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
174
175  bool Changed = false;
176
177  while (1) {
178    Allocas.clear();
179
180    // Find allocas that are safe to promote, by looking at all instructions in
181    // the entry node
182    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
183      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
184        if (isAllocaPromotable(AI))
185          Allocas.push_back(AI);
186
187    if (Allocas.empty()) break;
188
189    PromoteMemToReg(Allocas, DT, DF, Context);
190    NumPromoted += Allocas.size();
191    Changed = true;
192  }
193
194  return Changed;
195}
196
197/// getNumSAElements - Return the number of elements in the specific struct or
198/// array.
199static uint64_t getNumSAElements(const Type *T) {
200  if (const StructType *ST = dyn_cast<StructType>(T))
201    return ST->getNumElements();
202  return cast<ArrayType>(T)->getNumElements();
203}
204
205// performScalarRepl - This algorithm is a simple worklist driven algorithm,
206// which runs on all of the malloc/alloca instructions in the function, removing
207// them if they are only used by getelementptr instructions.
208//
209bool SROA::performScalarRepl(Function &F) {
210  std::vector<AllocationInst*> WorkList;
211
212  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
213  BasicBlock &BB = F.getEntryBlock();
214  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
215    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
216      WorkList.push_back(A);
217
218  // Process the worklist
219  bool Changed = false;
220  while (!WorkList.empty()) {
221    AllocationInst *AI = WorkList.back();
222    WorkList.pop_back();
223
224    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
225    // with unused elements.
226    if (AI->use_empty()) {
227      AI->eraseFromParent();
228      continue;
229    }
230
231    // If this alloca is impossible for us to promote, reject it early.
232    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
233      continue;
234
235    // Check to see if this allocation is only modified by a memcpy/memmove from
236    // a constant global.  If this is the case, we can change all users to use
237    // the constant global instead.  This is commonly produced by the CFE by
238    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
239    // is only subsequently read.
240    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
241      DOUT << "Found alloca equal to global: " << *AI;
242      DOUT << "  memcpy = " << *TheCopy;
243      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
244      AI->replaceAllUsesWith(
245                        Context->getConstantExprBitCast(TheSrc, AI->getType()));
246      TheCopy->eraseFromParent();  // Don't mutate the global.
247      AI->eraseFromParent();
248      ++NumGlobals;
249      Changed = true;
250      continue;
251    }
252
253    // Check to see if we can perform the core SROA transformation.  We cannot
254    // transform the allocation instruction if it is an array allocation
255    // (allocations OF arrays are ok though), and an allocation of a scalar
256    // value cannot be decomposed at all.
257    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
258
259    // Do not promote any struct whose size is too big.
260    if (AllocaSize > SRThreshold) continue;
261
262    if ((isa<StructType>(AI->getAllocatedType()) ||
263         isa<ArrayType>(AI->getAllocatedType())) &&
264        // Do not promote any struct into more than "32" separate vars.
265        getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
266      // Check that all of the users of the allocation are capable of being
267      // transformed.
268      switch (isSafeAllocaToScalarRepl(AI)) {
269      default: assert(0 && "Unexpected value!");
270      case 0:  // Not safe to scalar replace.
271        break;
272      case 1:  // Safe, but requires cleanup/canonicalizations first
273        CleanupAllocaUsers(AI);
274        // FALL THROUGH.
275      case 3:  // Safe to scalar replace.
276        DoScalarReplacement(AI, WorkList);
277        Changed = true;
278        continue;
279      }
280    }
281
282    // If we can turn this aggregate value (potentially with casts) into a
283    // simple scalar value that can be mem2reg'd into a register value.
284    // IsNotTrivial tracks whether this is something that mem2reg could have
285    // promoted itself.  If so, we don't want to transform it needlessly.  Note
286    // that we can't just check based on the type: the alloca may be of an i32
287    // but that has pointer arithmetic to set byte 3 of it or something.
288    bool IsNotTrivial = false;
289    const Type *VectorTy = 0;
290    bool HadAVector = false;
291    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
292                           0, unsigned(AllocaSize)) && IsNotTrivial) {
293      AllocaInst *NewAI;
294      // If we were able to find a vector type that can handle this with
295      // insert/extract elements, and if there was at least one use that had
296      // a vector type, promote this to a vector.  We don't want to promote
297      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
298      // we just get a lot of insert/extracts.  If at least one vector is
299      // involved, then we probably really do have a union of vector/array.
300      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
301        DOUT << "CONVERT TO VECTOR: " << *AI << "  TYPE = " << *VectorTy <<"\n";
302
303        // Create and insert the vector alloca.
304        NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
305        ConvertUsesToScalar(AI, NewAI, 0);
306      } else {
307        DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
308
309        // Create and insert the integer alloca.
310        const Type *NewTy = Context->getIntegerType(AllocaSize*8);
311        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
312        ConvertUsesToScalar(AI, NewAI, 0);
313      }
314      NewAI->takeName(AI);
315      AI->eraseFromParent();
316      ++NumConverted;
317      Changed = true;
318      continue;
319    }
320
321    // Otherwise, couldn't process this alloca.
322  }
323
324  return Changed;
325}
326
327/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
328/// predicate, do SROA now.
329void SROA::DoScalarReplacement(AllocationInst *AI,
330                               std::vector<AllocationInst*> &WorkList) {
331  DOUT << "Found inst to SROA: " << *AI;
332  SmallVector<AllocaInst*, 32> ElementAllocas;
333  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
334    ElementAllocas.reserve(ST->getNumContainedTypes());
335    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
336      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
337                                      AI->getAlignment(),
338                                      AI->getName() + "." + utostr(i), AI);
339      ElementAllocas.push_back(NA);
340      WorkList.push_back(NA);  // Add to worklist for recursive processing
341    }
342  } else {
343    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
344    ElementAllocas.reserve(AT->getNumElements());
345    const Type *ElTy = AT->getElementType();
346    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
347      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
348                                      AI->getName() + "." + utostr(i), AI);
349      ElementAllocas.push_back(NA);
350      WorkList.push_back(NA);  // Add to worklist for recursive processing
351    }
352  }
353
354  // Now that we have created the alloca instructions that we want to use,
355  // expand the getelementptr instructions to use them.
356  //
357  while (!AI->use_empty()) {
358    Instruction *User = cast<Instruction>(AI->use_back());
359    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
360      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
361      BCInst->eraseFromParent();
362      continue;
363    }
364
365    // Replace:
366    //   %res = load { i32, i32 }* %alloc
367    // with:
368    //   %load.0 = load i32* %alloc.0
369    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
370    //   %load.1 = load i32* %alloc.1
371    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
372    // (Also works for arrays instead of structs)
373    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
374      Value *Insert = Context->getUndef(LI->getType());
375      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
376        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
377        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
378      }
379      LI->replaceAllUsesWith(Insert);
380      LI->eraseFromParent();
381      continue;
382    }
383
384    // Replace:
385    //   store { i32, i32 } %val, { i32, i32 }* %alloc
386    // with:
387    //   %val.0 = extractvalue { i32, i32 } %val, 0
388    //   store i32 %val.0, i32* %alloc.0
389    //   %val.1 = extractvalue { i32, i32 } %val, 1
390    //   store i32 %val.1, i32* %alloc.1
391    // (Also works for arrays instead of structs)
392    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
393      Value *Val = SI->getOperand(0);
394      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
395        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
396        new StoreInst(Extract, ElementAllocas[i], SI);
397      }
398      SI->eraseFromParent();
399      continue;
400    }
401
402    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
403    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
404    unsigned Idx =
405       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
406
407    assert(Idx < ElementAllocas.size() && "Index out of range?");
408    AllocaInst *AllocaToUse = ElementAllocas[Idx];
409
410    Value *RepValue;
411    if (GEPI->getNumOperands() == 3) {
412      // Do not insert a new getelementptr instruction with zero indices, only
413      // to have it optimized out later.
414      RepValue = AllocaToUse;
415    } else {
416      // We are indexing deeply into the structure, so we still need a
417      // getelement ptr instruction to finish the indexing.  This may be
418      // expanded itself once the worklist is rerun.
419      //
420      SmallVector<Value*, 8> NewArgs;
421      NewArgs.push_back(Context->getNullValue(Type::Int32Ty));
422      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
423      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
424                                           NewArgs.end(), "", GEPI);
425      RepValue->takeName(GEPI);
426    }
427
428    // If this GEP is to the start of the aggregate, check for memcpys.
429    if (Idx == 0 && GEPI->hasAllZeroIndices())
430      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
431
432    // Move all of the users over to the new GEP.
433    GEPI->replaceAllUsesWith(RepValue);
434    // Delete the old GEP
435    GEPI->eraseFromParent();
436  }
437
438  // Finally, delete the Alloca instruction
439  AI->eraseFromParent();
440  NumReplaced++;
441}
442
443
444/// isSafeElementUse - Check to see if this use is an allowed use for a
445/// getelementptr instruction of an array aggregate allocation.  isFirstElt
446/// indicates whether Ptr is known to the start of the aggregate.
447///
448void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
449                            AllocaInfo &Info) {
450  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
451       I != E; ++I) {
452    Instruction *User = cast<Instruction>(*I);
453    switch (User->getOpcode()) {
454    case Instruction::Load:  break;
455    case Instruction::Store:
456      // Store is ok if storing INTO the pointer, not storing the pointer
457      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
458      break;
459    case Instruction::GetElementPtr: {
460      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
461      bool AreAllZeroIndices = isFirstElt;
462      if (GEP->getNumOperands() > 1) {
463        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
464            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
465          // Using pointer arithmetic to navigate the array.
466          return MarkUnsafe(Info);
467
468        if (AreAllZeroIndices)
469          AreAllZeroIndices = GEP->hasAllZeroIndices();
470      }
471      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
472      if (Info.isUnsafe) return;
473      break;
474    }
475    case Instruction::BitCast:
476      if (isFirstElt) {
477        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
478        if (Info.isUnsafe) return;
479        break;
480      }
481      DOUT << "  Transformation preventing inst: " << *User;
482      return MarkUnsafe(Info);
483    case Instruction::Call:
484      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
485        if (isFirstElt) {
486          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
487          if (Info.isUnsafe) return;
488          break;
489        }
490      }
491      DOUT << "  Transformation preventing inst: " << *User;
492      return MarkUnsafe(Info);
493    default:
494      DOUT << "  Transformation preventing inst: " << *User;
495      return MarkUnsafe(Info);
496    }
497  }
498  return;  // All users look ok :)
499}
500
501/// AllUsersAreLoads - Return true if all users of this value are loads.
502static bool AllUsersAreLoads(Value *Ptr) {
503  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
504       I != E; ++I)
505    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
506      return false;
507  return true;
508}
509
510/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
511/// aggregate allocation.
512///
513void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
514                                 AllocaInfo &Info) {
515  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
516    return isSafeUseOfBitCastedAllocation(C, AI, Info);
517
518  if (LoadInst *LI = dyn_cast<LoadInst>(User))
519    if (!LI->isVolatile())
520      return;// Loads (returning a first class aggregrate) are always rewritable
521
522  if (StoreInst *SI = dyn_cast<StoreInst>(User))
523    if (!SI->isVolatile() && SI->getOperand(0) != AI)
524      return;// Store is ok if storing INTO the pointer, not storing the pointer
525
526  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
527  if (GEPI == 0)
528    return MarkUnsafe(Info);
529
530  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
531
532  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
533  if (I == E ||
534      I.getOperand() != Context->getNullValue(I.getOperand()->getType())) {
535    return MarkUnsafe(Info);
536  }
537
538  ++I;
539  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
540
541  bool IsAllZeroIndices = true;
542
543  // If the first index is a non-constant index into an array, see if we can
544  // handle it as a special case.
545  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
546    if (!isa<ConstantInt>(I.getOperand())) {
547      IsAllZeroIndices = 0;
548      uint64_t NumElements = AT->getNumElements();
549
550      // If this is an array index and the index is not constant, we cannot
551      // promote... that is unless the array has exactly one or two elements in
552      // it, in which case we CAN promote it, but we have to canonicalize this
553      // out if this is the only problem.
554      if ((NumElements == 1 || NumElements == 2) &&
555          AllUsersAreLoads(GEPI)) {
556        Info.needsCleanup = true;
557        return;  // Canonicalization required!
558      }
559      return MarkUnsafe(Info);
560    }
561  }
562
563  // Walk through the GEP type indices, checking the types that this indexes
564  // into.
565  for (; I != E; ++I) {
566    // Ignore struct elements, no extra checking needed for these.
567    if (isa<StructType>(*I))
568      continue;
569
570    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
571    if (!IdxVal) return MarkUnsafe(Info);
572
573    // Are all indices still zero?
574    IsAllZeroIndices &= IdxVal->isZero();
575
576    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
577      // This GEP indexes an array.  Verify that this is an in-range constant
578      // integer. Specifically, consider A[0][i]. We cannot know that the user
579      // isn't doing invalid things like allowing i to index an out-of-range
580      // subscript that accesses A[1].  Because of this, we have to reject SROA
581      // of any accesses into structs where any of the components are variables.
582      if (IdxVal->getZExtValue() >= AT->getNumElements())
583        return MarkUnsafe(Info);
584    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
585      if (IdxVal->getZExtValue() >= VT->getNumElements())
586        return MarkUnsafe(Info);
587    }
588  }
589
590  // If there are any non-simple uses of this getelementptr, make sure to reject
591  // them.
592  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
593}
594
595/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
596/// intrinsic can be promoted by SROA.  At this point, we know that the operand
597/// of the memintrinsic is a pointer to the beginning of the allocation.
598void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
599                                          unsigned OpNo, AllocaInfo &Info) {
600  // If not constant length, give up.
601  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
602  if (!Length) return MarkUnsafe(Info);
603
604  // If not the whole aggregate, give up.
605  if (Length->getZExtValue() !=
606      TD->getTypeAllocSize(AI->getType()->getElementType()))
607    return MarkUnsafe(Info);
608
609  // We only know about memcpy/memset/memmove.
610  if (!isa<MemIntrinsic>(MI))
611    return MarkUnsafe(Info);
612
613  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
614  // into or out of the aggregate.
615  if (OpNo == 1)
616    Info.isMemCpyDst = true;
617  else {
618    assert(OpNo == 2);
619    Info.isMemCpySrc = true;
620  }
621}
622
623/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
624/// are
625void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
626                                          AllocaInfo &Info) {
627  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
628       UI != E; ++UI) {
629    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
630      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
631    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
632      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
633    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
634      if (SI->isVolatile())
635        return MarkUnsafe(Info);
636
637      // If storing the entire alloca in one chunk through a bitcasted pointer
638      // to integer, we can transform it.  This happens (for example) when you
639      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
640      // memcpy case and occurs in various "byval" cases and emulated memcpys.
641      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
642          TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
643          TD->getTypeAllocSize(AI->getType()->getElementType())) {
644        Info.isMemCpyDst = true;
645        continue;
646      }
647      return MarkUnsafe(Info);
648    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
649      if (LI->isVolatile())
650        return MarkUnsafe(Info);
651
652      // If loading the entire alloca in one chunk through a bitcasted pointer
653      // to integer, we can transform it.  This happens (for example) when you
654      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
655      // memcpy case and occurs in various "byval" cases and emulated memcpys.
656      if (isa<IntegerType>(LI->getType()) &&
657          TD->getTypeAllocSize(LI->getType()) ==
658          TD->getTypeAllocSize(AI->getType()->getElementType())) {
659        Info.isMemCpySrc = true;
660        continue;
661      }
662      return MarkUnsafe(Info);
663    } else if (isa<DbgInfoIntrinsic>(UI)) {
664      // If one user is DbgInfoIntrinsic then check if all users are
665      // DbgInfoIntrinsics.
666      if (OnlyUsedByDbgInfoIntrinsics(BC)) {
667        Info.needsCleanup = true;
668        return;
669      }
670      else
671        MarkUnsafe(Info);
672    }
673    else {
674      return MarkUnsafe(Info);
675    }
676    if (Info.isUnsafe) return;
677  }
678}
679
680/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
681/// to its first element.  Transform users of the cast to use the new values
682/// instead.
683void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
684                                      SmallVector<AllocaInst*, 32> &NewElts) {
685  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
686  while (UI != UE) {
687    Instruction *User = cast<Instruction>(*UI++);
688    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
689      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
690      if (BCU->use_empty()) BCU->eraseFromParent();
691      continue;
692    }
693
694    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
695      // This must be memcpy/memmove/memset of the entire aggregate.
696      // Split into one per element.
697      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
698      continue;
699    }
700
701    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
702      // If this is a store of the entire alloca from an integer, rewrite it.
703      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
704      continue;
705    }
706
707    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
708      // If this is a load of the entire alloca to an integer, rewrite it.
709      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
710      continue;
711    }
712
713    // Otherwise it must be some other user of a gep of the first pointer.  Just
714    // leave these alone.
715    continue;
716  }
717}
718
719/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
720/// Rewrite it to copy or set the elements of the scalarized memory.
721void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
722                                        AllocationInst *AI,
723                                        SmallVector<AllocaInst*, 32> &NewElts) {
724
725  // If this is a memcpy/memmove, construct the other pointer as the
726  // appropriate type.  The "Other" pointer is the pointer that goes to memory
727  // that doesn't have anything to do with the alloca that we are promoting. For
728  // memset, this Value* stays null.
729  Value *OtherPtr = 0;
730  unsigned MemAlignment = MI->getAlignment();
731  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
732    if (BCInst == MTI->getRawDest())
733      OtherPtr = MTI->getRawSource();
734    else {
735      assert(BCInst == MTI->getRawSource());
736      OtherPtr = MTI->getRawDest();
737    }
738  }
739
740  // If there is an other pointer, we want to convert it to the same pointer
741  // type as AI has, so we can GEP through it safely.
742  if (OtherPtr) {
743    // It is likely that OtherPtr is a bitcast, if so, remove it.
744    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
745      OtherPtr = BC->getOperand(0);
746    // All zero GEPs are effectively bitcasts.
747    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
748      if (GEP->hasAllZeroIndices())
749        OtherPtr = GEP->getOperand(0);
750
751    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
752      if (BCE->getOpcode() == Instruction::BitCast)
753        OtherPtr = BCE->getOperand(0);
754
755    // If the pointer is not the right type, insert a bitcast to the right
756    // type.
757    if (OtherPtr->getType() != AI->getType())
758      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
759                                 MI);
760  }
761
762  // Process each element of the aggregate.
763  Value *TheFn = MI->getOperand(0);
764  const Type *BytePtrTy = MI->getRawDest()->getType();
765  bool SROADest = MI->getRawDest() == BCInst;
766
767  Constant *Zero = Context->getNullValue(Type::Int32Ty);
768
769  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
770    // If this is a memcpy/memmove, emit a GEP of the other element address.
771    Value *OtherElt = 0;
772    unsigned OtherEltAlign = MemAlignment;
773
774    if (OtherPtr) {
775      Value *Idx[2] = { Zero, Context->getConstantInt(Type::Int32Ty, i) };
776      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
777                                           OtherPtr->getNameStr()+"."+utostr(i),
778                                           MI);
779      uint64_t EltOffset;
780      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
781      if (const StructType *ST =
782            dyn_cast<StructType>(OtherPtrTy->getElementType())) {
783        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
784      } else {
785        const Type *EltTy =
786          cast<SequentialType>(OtherPtr->getType())->getElementType();
787        EltOffset = TD->getTypeAllocSize(EltTy)*i;
788      }
789
790      // The alignment of the other pointer is the guaranteed alignment of the
791      // element, which is affected by both the known alignment of the whole
792      // mem intrinsic and the alignment of the element.  If the alignment of
793      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
794      // known alignment is just 4 bytes.
795      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
796    }
797
798    Value *EltPtr = NewElts[i];
799    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
800
801    // If we got down to a scalar, insert a load or store as appropriate.
802    if (EltTy->isSingleValueType()) {
803      if (isa<MemTransferInst>(MI)) {
804        if (SROADest) {
805          // From Other to Alloca.
806          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
807          new StoreInst(Elt, EltPtr, MI);
808        } else {
809          // From Alloca to Other.
810          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
811          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
812        }
813        continue;
814      }
815      assert(isa<MemSetInst>(MI));
816
817      // If the stored element is zero (common case), just store a null
818      // constant.
819      Constant *StoreVal;
820      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
821        if (CI->isZero()) {
822          StoreVal = Context->getNullValue(EltTy);  // 0.0, null, 0, <0,0>
823        } else {
824          // If EltTy is a vector type, get the element type.
825          const Type *ValTy = EltTy->getScalarType();
826
827          // Construct an integer with the right value.
828          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
829          APInt OneVal(EltSize, CI->getZExtValue());
830          APInt TotalVal(OneVal);
831          // Set each byte.
832          for (unsigned i = 0; 8*i < EltSize; ++i) {
833            TotalVal = TotalVal.shl(8);
834            TotalVal |= OneVal;
835          }
836
837          // Convert the integer value to the appropriate type.
838          StoreVal = Context->getConstantInt(TotalVal);
839          if (isa<PointerType>(ValTy))
840            StoreVal = Context->getConstantExprIntToPtr(StoreVal, ValTy);
841          else if (ValTy->isFloatingPoint())
842            StoreVal = Context->getConstantExprBitCast(StoreVal, ValTy);
843          assert(StoreVal->getType() == ValTy && "Type mismatch!");
844
845          // If the requested value was a vector constant, create it.
846          if (EltTy != ValTy) {
847            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
848            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
849            StoreVal = Context->getConstantVector(&Elts[0], NumElts);
850          }
851        }
852        new StoreInst(StoreVal, EltPtr, MI);
853        continue;
854      }
855      // Otherwise, if we're storing a byte variable, use a memset call for
856      // this element.
857    }
858
859    // Cast the element pointer to BytePtrTy.
860    if (EltPtr->getType() != BytePtrTy)
861      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
862
863    // Cast the other pointer (if we have one) to BytePtrTy.
864    if (OtherElt && OtherElt->getType() != BytePtrTy)
865      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
866                                 MI);
867
868    unsigned EltSize = TD->getTypeAllocSize(EltTy);
869
870    // Finally, insert the meminst for this element.
871    if (isa<MemTransferInst>(MI)) {
872      Value *Ops[] = {
873        SROADest ? EltPtr : OtherElt,  // Dest ptr
874        SROADest ? OtherElt : EltPtr,  // Src ptr
875        Context->getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size
876        Context->getConstantInt(Type::Int32Ty, OtherEltAlign)  // Align
877      };
878      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
879    } else {
880      assert(isa<MemSetInst>(MI));
881      Value *Ops[] = {
882        EltPtr, MI->getOperand(2),  // Dest, Value,
883        Context->getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size
884        Zero  // Align
885      };
886      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
887    }
888  }
889  MI->eraseFromParent();
890}
891
892/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
893/// overwrites the entire allocation.  Extract out the pieces of the stored
894/// integer and store them individually.
895void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
896                                         AllocationInst *AI,
897                                         SmallVector<AllocaInst*, 32> &NewElts){
898  // Extract each element out of the integer according to its structure offset
899  // and store the element value to the individual alloca.
900  Value *SrcVal = SI->getOperand(0);
901  const Type *AllocaEltTy = AI->getType()->getElementType();
902  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
903
904  // If this isn't a store of an integer to the whole alloca, it may be a store
905  // to the first element.  Just ignore the store in this case and normal SROA
906  // will handle it.
907  if (!isa<IntegerType>(SrcVal->getType()) ||
908      TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
909    return;
910  // Handle tail padding by extending the operand
911  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
912    SrcVal = new ZExtInst(SrcVal,
913                          Context->getIntegerType(AllocaSizeBits), "", SI);
914
915  DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
916
917  // There are two forms here: AI could be an array or struct.  Both cases
918  // have different ways to compute the element offset.
919  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
920    const StructLayout *Layout = TD->getStructLayout(EltSTy);
921
922    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
923      // Get the number of bits to shift SrcVal to get the value.
924      const Type *FieldTy = EltSTy->getElementType(i);
925      uint64_t Shift = Layout->getElementOffsetInBits(i);
926
927      if (TD->isBigEndian())
928        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
929
930      Value *EltVal = SrcVal;
931      if (Shift) {
932        Value *ShiftVal = Context->getConstantInt(EltVal->getType(), Shift);
933        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
934                                            "sroa.store.elt", SI);
935      }
936
937      // Truncate down to an integer of the right size.
938      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
939
940      // Ignore zero sized fields like {}, they obviously contain no data.
941      if (FieldSizeBits == 0) continue;
942
943      if (FieldSizeBits != AllocaSizeBits)
944        EltVal = new TruncInst(EltVal,
945                               Context->getIntegerType(FieldSizeBits), "", SI);
946      Value *DestField = NewElts[i];
947      if (EltVal->getType() == FieldTy) {
948        // Storing to an integer field of this size, just do it.
949      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
950        // Bitcast to the right element type (for fp/vector values).
951        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
952      } else {
953        // Otherwise, bitcast the dest pointer (for aggregates).
954        DestField = new BitCastInst(DestField,
955                              Context->getPointerTypeUnqual(EltVal->getType()),
956                                    "", SI);
957      }
958      new StoreInst(EltVal, DestField, SI);
959    }
960
961  } else {
962    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
963    const Type *ArrayEltTy = ATy->getElementType();
964    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
965    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
966
967    uint64_t Shift;
968
969    if (TD->isBigEndian())
970      Shift = AllocaSizeBits-ElementOffset;
971    else
972      Shift = 0;
973
974    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
975      // Ignore zero sized fields like {}, they obviously contain no data.
976      if (ElementSizeBits == 0) continue;
977
978      Value *EltVal = SrcVal;
979      if (Shift) {
980        Value *ShiftVal = Context->getConstantInt(EltVal->getType(), Shift);
981        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
982                                            "sroa.store.elt", SI);
983      }
984
985      // Truncate down to an integer of the right size.
986      if (ElementSizeBits != AllocaSizeBits)
987        EltVal = new TruncInst(EltVal,
988                               Context->getIntegerType(ElementSizeBits),"",SI);
989      Value *DestField = NewElts[i];
990      if (EltVal->getType() == ArrayEltTy) {
991        // Storing to an integer field of this size, just do it.
992      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
993        // Bitcast to the right element type (for fp/vector values).
994        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
995      } else {
996        // Otherwise, bitcast the dest pointer (for aggregates).
997        DestField = new BitCastInst(DestField,
998                              Context->getPointerTypeUnqual(EltVal->getType()),
999                                    "", SI);
1000      }
1001      new StoreInst(EltVal, DestField, SI);
1002
1003      if (TD->isBigEndian())
1004        Shift -= ElementOffset;
1005      else
1006        Shift += ElementOffset;
1007    }
1008  }
1009
1010  SI->eraseFromParent();
1011}
1012
1013/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
1014/// an integer.  Load the individual pieces to form the aggregate value.
1015void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
1016                                        SmallVector<AllocaInst*, 32> &NewElts) {
1017  // Extract each element out of the NewElts according to its structure offset
1018  // and form the result value.
1019  const Type *AllocaEltTy = AI->getType()->getElementType();
1020  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1021
1022  // If this isn't a load of the whole alloca to an integer, it may be a load
1023  // of the first element.  Just ignore the load in this case and normal SROA
1024  // will handle it.
1025  if (!isa<IntegerType>(LI->getType()) ||
1026      TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
1027    return;
1028
1029  DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
1030
1031  // There are two forms here: AI could be an array or struct.  Both cases
1032  // have different ways to compute the element offset.
1033  const StructLayout *Layout = 0;
1034  uint64_t ArrayEltBitOffset = 0;
1035  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1036    Layout = TD->getStructLayout(EltSTy);
1037  } else {
1038    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1039    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1040  }
1041
1042  Value *ResultVal =
1043                 Context->getNullValue(Context->getIntegerType(AllocaSizeBits));
1044
1045  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1046    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1047    // the pointer to an integer of the same size before doing the load.
1048    Value *SrcField = NewElts[i];
1049    const Type *FieldTy =
1050      cast<PointerType>(SrcField->getType())->getElementType();
1051    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1052
1053    // Ignore zero sized fields like {}, they obviously contain no data.
1054    if (FieldSizeBits == 0) continue;
1055
1056    const IntegerType *FieldIntTy = Context->getIntegerType(FieldSizeBits);
1057    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1058        !isa<VectorType>(FieldTy))
1059      SrcField = new BitCastInst(SrcField,
1060                                 Context->getPointerTypeUnqual(FieldIntTy),
1061                                 "", LI);
1062    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1063
1064    // If SrcField is a fp or vector of the right size but that isn't an
1065    // integer type, bitcast to an integer so we can shift it.
1066    if (SrcField->getType() != FieldIntTy)
1067      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1068
1069    // Zero extend the field to be the same size as the final alloca so that
1070    // we can shift and insert it.
1071    if (SrcField->getType() != ResultVal->getType())
1072      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1073
1074    // Determine the number of bits to shift SrcField.
1075    uint64_t Shift;
1076    if (Layout) // Struct case.
1077      Shift = Layout->getElementOffsetInBits(i);
1078    else  // Array case.
1079      Shift = i*ArrayEltBitOffset;
1080
1081    if (TD->isBigEndian())
1082      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1083
1084    if (Shift) {
1085      Value *ShiftVal = Context->getConstantInt(SrcField->getType(), Shift);
1086      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1087    }
1088
1089    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1090  }
1091
1092  // Handle tail padding by truncating the result
1093  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1094    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1095
1096  LI->replaceAllUsesWith(ResultVal);
1097  LI->eraseFromParent();
1098}
1099
1100
1101/// HasPadding - Return true if the specified type has any structure or
1102/// alignment padding, false otherwise.
1103static bool HasPadding(const Type *Ty, const TargetData &TD) {
1104  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1105    const StructLayout *SL = TD.getStructLayout(STy);
1106    unsigned PrevFieldBitOffset = 0;
1107    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1108      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1109
1110      // Padding in sub-elements?
1111      if (HasPadding(STy->getElementType(i), TD))
1112        return true;
1113
1114      // Check to see if there is any padding between this element and the
1115      // previous one.
1116      if (i) {
1117        unsigned PrevFieldEnd =
1118        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1119        if (PrevFieldEnd < FieldBitOffset)
1120          return true;
1121      }
1122
1123      PrevFieldBitOffset = FieldBitOffset;
1124    }
1125
1126    //  Check for tail padding.
1127    if (unsigned EltCount = STy->getNumElements()) {
1128      unsigned PrevFieldEnd = PrevFieldBitOffset +
1129                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1130      if (PrevFieldEnd < SL->getSizeInBits())
1131        return true;
1132    }
1133
1134  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1135    return HasPadding(ATy->getElementType(), TD);
1136  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1137    return HasPadding(VTy->getElementType(), TD);
1138  }
1139  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1140}
1141
1142/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1143/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1144/// or 1 if safe after canonicalization has been performed.
1145///
1146int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1147  // Loop over the use list of the alloca.  We can only transform it if all of
1148  // the users are safe to transform.
1149  AllocaInfo Info;
1150
1151  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1152       I != E; ++I) {
1153    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1154    if (Info.isUnsafe) {
1155      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
1156      return 0;
1157    }
1158  }
1159
1160  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1161  // source and destination, we have to be careful.  In particular, the memcpy
1162  // could be moving around elements that live in structure padding of the LLVM
1163  // types, but may actually be used.  In these cases, we refuse to promote the
1164  // struct.
1165  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1166      HasPadding(AI->getType()->getElementType(), *TD))
1167    return 0;
1168
1169  // If we require cleanup, return 1, otherwise return 3.
1170  return Info.needsCleanup ? 1 : 3;
1171}
1172
1173/// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1174/// is canonicalized here.
1175void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1176  gep_type_iterator I = gep_type_begin(GEPI);
1177  ++I;
1178
1179  const ArrayType *AT = dyn_cast<ArrayType>(*I);
1180  if (!AT)
1181    return;
1182
1183  uint64_t NumElements = AT->getNumElements();
1184
1185  if (isa<ConstantInt>(I.getOperand()))
1186    return;
1187
1188  if (NumElements == 1) {
1189    GEPI->setOperand(2, Context->getNullValue(Type::Int32Ty));
1190    return;
1191  }
1192
1193  assert(NumElements == 2 && "Unhandled case!");
1194  // All users of the GEP must be loads.  At each use of the GEP, insert
1195  // two loads of the appropriate indexed GEP and select between them.
1196  Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
1197                              Context->getNullValue(I.getOperand()->getType()),
1198                              "isone", GEPI);
1199  // Insert the new GEP instructions, which are properly indexed.
1200  SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1201  Indices[1] = Context->getNullValue(Type::Int32Ty);
1202  Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1203                                             Indices.begin(),
1204                                             Indices.end(),
1205                                             GEPI->getName()+".0", GEPI);
1206  Indices[1] = Context->getConstantInt(Type::Int32Ty, 1);
1207  Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1208                                            Indices.begin(),
1209                                            Indices.end(),
1210                                            GEPI->getName()+".1", GEPI);
1211  // Replace all loads of the variable index GEP with loads from both
1212  // indexes and a select.
1213  while (!GEPI->use_empty()) {
1214    LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1215    Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1216    Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1217    Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1218    LI->replaceAllUsesWith(R);
1219    LI->eraseFromParent();
1220  }
1221  GEPI->eraseFromParent();
1222}
1223
1224
1225/// CleanupAllocaUsers - If SROA reported that it can promote the specified
1226/// allocation, but only if cleaned up, perform the cleanups required.
1227void SROA::CleanupAllocaUsers(AllocationInst *AI) {
1228  // At this point, we know that the end result will be SROA'd and promoted, so
1229  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1230  // up.
1231  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1232       UI != E; ) {
1233    User *U = *UI++;
1234    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1235      CleanupGEP(GEPI);
1236    else {
1237      Instruction *I = cast<Instruction>(U);
1238      SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1239      if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1240        // Safe to remove debug info uses.
1241        while (!DbgInUses.empty()) {
1242          DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1243          DI->eraseFromParent();
1244        }
1245        I->eraseFromParent();
1246      }
1247    }
1248  }
1249}
1250
1251/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1252/// the offset specified by Offset (which is specified in bytes).
1253///
1254/// There are two cases we handle here:
1255///   1) A union of vector types of the same size and potentially its elements.
1256///      Here we turn element accesses into insert/extract element operations.
1257///      This promotes a <4 x float> with a store of float to the third element
1258///      into a <4 x float> that uses insert element.
1259///   2) A fully general blob of memory, which we turn into some (potentially
1260///      large) integer type with extract and insert operations where the loads
1261///      and stores would mutate the memory.
1262static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1263                        unsigned AllocaSize, const TargetData &TD,
1264                        LLVMContext* Context) {
1265  // If this could be contributing to a vector, analyze it.
1266  if (VecTy != Type::VoidTy) { // either null or a vector type.
1267
1268    // If the In type is a vector that is the same size as the alloca, see if it
1269    // matches the existing VecTy.
1270    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1271      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1272        // If we're storing/loading a vector of the right size, allow it as a
1273        // vector.  If this the first vector we see, remember the type so that
1274        // we know the element size.
1275        if (VecTy == 0)
1276          VecTy = VInTy;
1277        return;
1278      }
1279    } else if (In == Type::FloatTy || In == Type::DoubleTy ||
1280               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1281                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1282      // If we're accessing something that could be an element of a vector, see
1283      // if the implied vector agrees with what we already have and if Offset is
1284      // compatible with it.
1285      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1286      if (Offset % EltSize == 0 &&
1287          AllocaSize % EltSize == 0 &&
1288          (VecTy == 0 ||
1289           cast<VectorType>(VecTy)->getElementType()
1290                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1291        if (VecTy == 0)
1292          VecTy = Context->getVectorType(In, AllocaSize/EltSize);
1293        return;
1294      }
1295    }
1296  }
1297
1298  // Otherwise, we have a case that we can't handle with an optimized vector
1299  // form.  We can still turn this into a large integer.
1300  VecTy = Type::VoidTy;
1301}
1302
1303/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1304/// its accesses to use a to single vector type, return true, and set VecTy to
1305/// the new type.  If we could convert the alloca into a single promotable
1306/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1307/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1308/// is the current offset from the base of the alloca being analyzed.
1309///
1310/// If we see at least one access to the value that is as a vector type, set the
1311/// SawVec flag.
1312///
1313bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1314                              bool &SawVec, uint64_t Offset,
1315                              unsigned AllocaSize) {
1316  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1317    Instruction *User = cast<Instruction>(*UI);
1318
1319    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1320      // Don't break volatile loads.
1321      if (LI->isVolatile())
1322        return false;
1323      MergeInType(LI->getType(), Offset, VecTy, AllocaSize, *TD, Context);
1324      SawVec |= isa<VectorType>(LI->getType());
1325      continue;
1326    }
1327
1328    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1329      // Storing the pointer, not into the value?
1330      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1331      MergeInType(SI->getOperand(0)->getType(), Offset,
1332                  VecTy, AllocaSize, *TD, Context);
1333      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1334      continue;
1335    }
1336
1337    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1338      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1339                              AllocaSize))
1340        return false;
1341      IsNotTrivial = true;
1342      continue;
1343    }
1344
1345    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1346      // If this is a GEP with a variable indices, we can't handle it.
1347      if (!GEP->hasAllConstantIndices())
1348        return false;
1349
1350      // Compute the offset that this GEP adds to the pointer.
1351      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1352      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1353                                                &Indices[0], Indices.size());
1354      // See if all uses can be converted.
1355      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1356                              AllocaSize))
1357        return false;
1358      IsNotTrivial = true;
1359      continue;
1360    }
1361
1362    // If this is a constant sized memset of a constant value (e.g. 0) we can
1363    // handle it.
1364    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1365      // Store of constant value and constant size.
1366      if (isa<ConstantInt>(MSI->getValue()) &&
1367          isa<ConstantInt>(MSI->getLength())) {
1368        IsNotTrivial = true;
1369        continue;
1370      }
1371    }
1372
1373    // If this is a memcpy or memmove into or out of the whole allocation, we
1374    // can handle it like a load or store of the scalar type.
1375    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1376      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1377        if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1378          IsNotTrivial = true;
1379          continue;
1380        }
1381    }
1382
1383    // Ignore dbg intrinsic.
1384    if (isa<DbgInfoIntrinsic>(User))
1385      continue;
1386
1387    // Otherwise, we cannot handle this!
1388    return false;
1389  }
1390
1391  return true;
1392}
1393
1394
1395/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1396/// directly.  This happens when we are converting an "integer union" to a
1397/// single integer scalar, or when we are converting a "vector union" to a
1398/// vector with insert/extractelement instructions.
1399///
1400/// Offset is an offset from the original alloca, in bits that need to be
1401/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1402void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1403  while (!Ptr->use_empty()) {
1404    Instruction *User = cast<Instruction>(Ptr->use_back());
1405
1406    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1407      ConvertUsesToScalar(CI, NewAI, Offset);
1408      CI->eraseFromParent();
1409      continue;
1410    }
1411
1412    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1413      // Compute the offset that this GEP adds to the pointer.
1414      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1415      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1416                                                &Indices[0], Indices.size());
1417      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1418      GEP->eraseFromParent();
1419      continue;
1420    }
1421
1422    IRBuilder<> Builder(User->getParent(), User);
1423
1424    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1425      // The load is a bit extract from NewAI shifted right by Offset bits.
1426      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1427      Value *NewLoadVal
1428        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1429      LI->replaceAllUsesWith(NewLoadVal);
1430      LI->eraseFromParent();
1431      continue;
1432    }
1433
1434    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1435      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1436      Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
1437      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1438                                             Builder);
1439      Builder.CreateStore(New, NewAI);
1440      SI->eraseFromParent();
1441      continue;
1442    }
1443
1444    // If this is a constant sized memset of a constant value (e.g. 0) we can
1445    // transform it into a store of the expanded constant value.
1446    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1447      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1448      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1449      if (NumBytes != 0) {
1450        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1451
1452        // Compute the value replicated the right number of times.
1453        APInt APVal(NumBytes*8, Val);
1454
1455        // Splat the value if non-zero.
1456        if (Val)
1457          for (unsigned i = 1; i != NumBytes; ++i)
1458            APVal |= APVal << 8;
1459
1460        Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
1461        Value *New = ConvertScalar_InsertValue(Context->getConstantInt(APVal),
1462                                               Old, Offset, Builder);
1463        Builder.CreateStore(New, NewAI);
1464      }
1465      MSI->eraseFromParent();
1466      continue;
1467    }
1468
1469    // If this is a memcpy or memmove into or out of the whole allocation, we
1470    // can handle it like a load or store of the scalar type.
1471    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1472      assert(Offset == 0 && "must be store to start of alloca");
1473
1474      // If the source and destination are both to the same alloca, then this is
1475      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
1476      // as appropriate.
1477      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1478
1479      if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1480        // Dest must be OrigAI, change this to be a load from the original
1481        // pointer (bitcasted), then a store to our new alloca.
1482        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1483        Value *SrcPtr = MTI->getSource();
1484        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1485
1486        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1487        SrcVal->setAlignment(MTI->getAlignment());
1488        Builder.CreateStore(SrcVal, NewAI);
1489      } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1490        // Src must be OrigAI, change this to be a load from NewAI then a store
1491        // through the original dest pointer (bitcasted).
1492        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1493        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1494
1495        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1496        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1497        NewStore->setAlignment(MTI->getAlignment());
1498      } else {
1499        // Noop transfer. Src == Dst
1500      }
1501
1502
1503      MTI->eraseFromParent();
1504      continue;
1505    }
1506
1507    // If user is a dbg info intrinsic then it is safe to remove it.
1508    if (isa<DbgInfoIntrinsic>(User)) {
1509      User->eraseFromParent();
1510      continue;
1511    }
1512
1513    assert(0 && "Unsupported operation!");
1514    abort();
1515  }
1516}
1517
1518/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1519/// or vector value FromVal, extracting the bits from the offset specified by
1520/// Offset.  This returns the value, which is of type ToType.
1521///
1522/// This happens when we are converting an "integer union" to a single
1523/// integer scalar, or when we are converting a "vector union" to a vector with
1524/// insert/extractelement instructions.
1525///
1526/// Offset is an offset from the original alloca, in bits that need to be
1527/// shifted to the right.
1528Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1529                                        uint64_t Offset, IRBuilder<> &Builder) {
1530  // If the load is of the whole new alloca, no conversion is needed.
1531  if (FromVal->getType() == ToType && Offset == 0)
1532    return FromVal;
1533
1534  // If the result alloca is a vector type, this is either an element
1535  // access or a bitcast to another vector type of the same size.
1536  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1537    if (isa<VectorType>(ToType))
1538      return Builder.CreateBitCast(FromVal, ToType, "tmp");
1539
1540    // Otherwise it must be an element access.
1541    unsigned Elt = 0;
1542    if (Offset) {
1543      unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1544      Elt = Offset/EltSize;
1545      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1546    }
1547    // Return the element extracted out of it.
1548    Value *V = Builder.CreateExtractElement(FromVal,
1549                                    Context->getConstantInt(Type::Int32Ty,Elt),
1550                                            "tmp");
1551    if (V->getType() != ToType)
1552      V = Builder.CreateBitCast(V, ToType, "tmp");
1553    return V;
1554  }
1555
1556  // If ToType is a first class aggregate, extract out each of the pieces and
1557  // use insertvalue's to form the FCA.
1558  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1559    const StructLayout &Layout = *TD->getStructLayout(ST);
1560    Value *Res = Context->getUndef(ST);
1561    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1562      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1563                                        Offset+Layout.getElementOffsetInBits(i),
1564                                              Builder);
1565      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1566    }
1567    return Res;
1568  }
1569
1570  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1571    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1572    Value *Res = Context->getUndef(AT);
1573    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1574      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1575                                              Offset+i*EltSize, Builder);
1576      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1577    }
1578    return Res;
1579  }
1580
1581  // Otherwise, this must be a union that was converted to an integer value.
1582  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1583
1584  // If this is a big-endian system and the load is narrower than the
1585  // full alloca type, we need to do a shift to get the right bits.
1586  int ShAmt = 0;
1587  if (TD->isBigEndian()) {
1588    // On big-endian machines, the lowest bit is stored at the bit offset
1589    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1590    // integers with a bitwidth that is not a multiple of 8.
1591    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1592            TD->getTypeStoreSizeInBits(ToType) - Offset;
1593  } else {
1594    ShAmt = Offset;
1595  }
1596
1597  // Note: we support negative bitwidths (with shl) which are not defined.
1598  // We do this to support (f.e.) loads off the end of a structure where
1599  // only some bits are used.
1600  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1601    FromVal = Builder.CreateLShr(FromVal,
1602                                 Context->getConstantInt(FromVal->getType(),
1603                                                           ShAmt), "tmp");
1604  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1605    FromVal = Builder.CreateShl(FromVal,
1606                                Context->getConstantInt(FromVal->getType(),
1607                                                          -ShAmt), "tmp");
1608
1609  // Finally, unconditionally truncate the integer to the right width.
1610  unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1611  if (LIBitWidth < NTy->getBitWidth())
1612    FromVal =
1613      Builder.CreateTrunc(FromVal, Context->getIntegerType(LIBitWidth), "tmp");
1614  else if (LIBitWidth > NTy->getBitWidth())
1615    FromVal =
1616       Builder.CreateZExt(FromVal, Context->getIntegerType(LIBitWidth), "tmp");
1617
1618  // If the result is an integer, this is a trunc or bitcast.
1619  if (isa<IntegerType>(ToType)) {
1620    // Should be done.
1621  } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1622    // Just do a bitcast, we know the sizes match up.
1623    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1624  } else {
1625    // Otherwise must be a pointer.
1626    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1627  }
1628  assert(FromVal->getType() == ToType && "Didn't convert right?");
1629  return FromVal;
1630}
1631
1632
1633/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1634/// or vector value "Old" at the offset specified by Offset.
1635///
1636/// This happens when we are converting an "integer union" to a
1637/// single integer scalar, or when we are converting a "vector union" to a
1638/// vector with insert/extractelement instructions.
1639///
1640/// Offset is an offset from the original alloca, in bits that need to be
1641/// shifted to the right.
1642Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1643                                       uint64_t Offset, IRBuilder<> &Builder) {
1644
1645  // Convert the stored type to the actual type, shift it left to insert
1646  // then 'or' into place.
1647  const Type *AllocaType = Old->getType();
1648
1649  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1650    uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1651    uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1652
1653    // Changing the whole vector with memset or with an access of a different
1654    // vector type?
1655    if (ValSize == VecSize)
1656      return Builder.CreateBitCast(SV, AllocaType, "tmp");
1657
1658    uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1659
1660    // Must be an element insertion.
1661    unsigned Elt = Offset/EltSize;
1662
1663    if (SV->getType() != VTy->getElementType())
1664      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1665
1666    SV = Builder.CreateInsertElement(Old, SV,
1667                                   Context->getConstantInt(Type::Int32Ty, Elt),
1668                                     "tmp");
1669    return SV;
1670  }
1671
1672  // If SV is a first-class aggregate value, insert each value recursively.
1673  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1674    const StructLayout &Layout = *TD->getStructLayout(ST);
1675    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1676      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1677      Old = ConvertScalar_InsertValue(Elt, Old,
1678                                      Offset+Layout.getElementOffsetInBits(i),
1679                                      Builder);
1680    }
1681    return Old;
1682  }
1683
1684  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1685    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1686    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1687      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1688      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1689    }
1690    return Old;
1691  }
1692
1693  // If SV is a float, convert it to the appropriate integer type.
1694  // If it is a pointer, do the same.
1695  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1696  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1697  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1698  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1699  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1700    SV = Builder.CreateBitCast(SV, Context->getIntegerType(SrcWidth), "tmp");
1701  else if (isa<PointerType>(SV->getType()))
1702    SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(), "tmp");
1703
1704  // Zero extend or truncate the value if needed.
1705  if (SV->getType() != AllocaType) {
1706    if (SV->getType()->getPrimitiveSizeInBits() <
1707             AllocaType->getPrimitiveSizeInBits())
1708      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1709    else {
1710      // Truncation may be needed if storing more than the alloca can hold
1711      // (undefined behavior).
1712      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1713      SrcWidth = DestWidth;
1714      SrcStoreWidth = DestStoreWidth;
1715    }
1716  }
1717
1718  // If this is a big-endian system and the store is narrower than the
1719  // full alloca type, we need to do a shift to get the right bits.
1720  int ShAmt = 0;
1721  if (TD->isBigEndian()) {
1722    // On big-endian machines, the lowest bit is stored at the bit offset
1723    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1724    // integers with a bitwidth that is not a multiple of 8.
1725    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1726  } else {
1727    ShAmt = Offset;
1728  }
1729
1730  // Note: we support negative bitwidths (with shr) which are not defined.
1731  // We do this to support (f.e.) stores off the end of a structure where
1732  // only some bits in the structure are set.
1733  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1734  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1735    SV = Builder.CreateShl(SV, Context->getConstantInt(SV->getType(),
1736                           ShAmt), "tmp");
1737    Mask <<= ShAmt;
1738  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1739    SV = Builder.CreateLShr(SV, Context->getConstantInt(SV->getType(),
1740                            -ShAmt), "tmp");
1741    Mask = Mask.lshr(-ShAmt);
1742  }
1743
1744  // Mask out the bits we are about to insert from the old value, and or
1745  // in the new bits.
1746  if (SrcWidth != DestWidth) {
1747    assert(DestWidth > SrcWidth);
1748    Old = Builder.CreateAnd(Old, Context->getConstantInt(~Mask), "mask");
1749    SV = Builder.CreateOr(Old, SV, "ins");
1750  }
1751  return SV;
1752}
1753
1754
1755
1756/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1757/// some part of a constant global variable.  This intentionally only accepts
1758/// constant expressions because we don't can't rewrite arbitrary instructions.
1759static bool PointsToConstantGlobal(Value *V) {
1760  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1761    return GV->isConstant();
1762  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1763    if (CE->getOpcode() == Instruction::BitCast ||
1764        CE->getOpcode() == Instruction::GetElementPtr)
1765      return PointsToConstantGlobal(CE->getOperand(0));
1766  return false;
1767}
1768
1769/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1770/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1771/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1772/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1773/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1774/// the alloca, and if the source pointer is a pointer to a constant  global, we
1775/// can optimize this.
1776static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1777                                           bool isOffset) {
1778  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1779    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1780      // Ignore non-volatile loads, they are always ok.
1781      if (!LI->isVolatile())
1782        continue;
1783
1784    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1785      // If uses of the bitcast are ok, we are ok.
1786      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1787        return false;
1788      continue;
1789    }
1790    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1791      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1792      // doesn't, it does.
1793      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1794                                         isOffset || !GEP->hasAllZeroIndices()))
1795        return false;
1796      continue;
1797    }
1798
1799    // If this is isn't our memcpy/memmove, reject it as something we can't
1800    // handle.
1801    if (!isa<MemTransferInst>(*UI))
1802      return false;
1803
1804    // If we already have seen a copy, reject the second one.
1805    if (TheCopy) return false;
1806
1807    // If the pointer has been offset from the start of the alloca, we can't
1808    // safely handle this.
1809    if (isOffset) return false;
1810
1811    // If the memintrinsic isn't using the alloca as the dest, reject it.
1812    if (UI.getOperandNo() != 1) return false;
1813
1814    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1815
1816    // If the source of the memcpy/move is not a constant global, reject it.
1817    if (!PointsToConstantGlobal(MI->getOperand(2)))
1818      return false;
1819
1820    // Otherwise, the transform is safe.  Remember the copy instruction.
1821    TheCopy = MI;
1822  }
1823  return true;
1824}
1825
1826/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1827/// modified by a copy from a constant global.  If we can prove this, we can
1828/// replace any uses of the alloca with uses of the global directly.
1829Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1830  Instruction *TheCopy = 0;
1831  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1832    return TheCopy;
1833  return 0;
1834}
1835