ScalarReplAggregates.cpp revision 14b0529532904b9e5a1e34526b4a3209f3e5bc62
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Scalar.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/Pass.h"
27#include "llvm/Instructions.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Support/GetElementPtrTypeIterator.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/Transforms/Utils/PromoteMemToReg.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/StringExtras.h"
35using namespace llvm;
36
37namespace {
38  Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
39  Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");
40
41  struct SROA : public FunctionPass {
42    bool runOnFunction(Function &F);
43
44    bool performScalarRepl(Function &F);
45    bool performPromotion(Function &F);
46
47    // getAnalysisUsage - This pass does not require any passes, but we know it
48    // will not alter the CFG, so say so.
49    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
50      AU.addRequired<DominatorTree>();
51      AU.addRequired<DominanceFrontier>();
52      AU.addRequired<TargetData>();
53      AU.setPreservesCFG();
54    }
55
56  private:
57    int isSafeElementUse(Value *Ptr);
58    int isSafeUseOfAllocation(Instruction *User);
59    int isSafeAllocaToScalarRepl(AllocationInst *AI);
60    void CanonicalizeAllocaUsers(AllocationInst *AI);
61    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
62  };
63
64  RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
65}
66
67// Public interface to the ScalarReplAggregates pass
68FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }
69
70
71bool SROA::runOnFunction(Function &F) {
72  bool Changed = performPromotion(F);
73  while (1) {
74    bool LocalChange = performScalarRepl(F);
75    if (!LocalChange) break;   // No need to repromote if no scalarrepl
76    Changed = true;
77    LocalChange = performPromotion(F);
78    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
79  }
80
81  return Changed;
82}
83
84
85bool SROA::performPromotion(Function &F) {
86  std::vector<AllocaInst*> Allocas;
87  const TargetData &TD = getAnalysis<TargetData>();
88  DominatorTree     &DT = getAnalysis<DominatorTree>();
89  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
90
91  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
92
93  bool Changed = false;
94
95  while (1) {
96    Allocas.clear();
97
98    // Find allocas that are safe to promote, by looking at all instructions in
99    // the entry node
100    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
101      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
102        if (isAllocaPromotable(AI, TD))
103          Allocas.push_back(AI);
104
105    if (Allocas.empty()) break;
106
107    PromoteMemToReg(Allocas, DT, DF, TD);
108    NumPromoted += Allocas.size();
109    Changed = true;
110  }
111
112  return Changed;
113}
114
115
116// performScalarRepl - This algorithm is a simple worklist driven algorithm,
117// which runs on all of the malloc/alloca instructions in the function, removing
118// them if they are only used by getelementptr instructions.
119//
120bool SROA::performScalarRepl(Function &F) {
121  std::vector<AllocationInst*> WorkList;
122
123  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
124  BasicBlock &BB = F.getEntryBlock();
125  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
126    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
127      WorkList.push_back(A);
128
129  // Process the worklist
130  bool Changed = false;
131  while (!WorkList.empty()) {
132    AllocationInst *AI = WorkList.back();
133    WorkList.pop_back();
134
135    // We cannot transform the allocation instruction if it is an array
136    // allocation (allocations OF arrays are ok though), and an allocation of a
137    // scalar value cannot be decomposed at all.
138    //
139    if (AI->isArrayAllocation() ||
140        (!isa<StructType>(AI->getAllocatedType()) &&
141         !isa<ArrayType>(AI->getAllocatedType()))) continue;
142
143    // Check that all of the users of the allocation are capable of being
144    // transformed.
145    switch (isSafeAllocaToScalarRepl(AI)) {
146    default: assert(0 && "Unexpected value!");
147    case 0:  // Not safe to scalar replace.
148      continue;
149    case 1:  // Safe, but requires cleanup/canonicalizations first
150      CanonicalizeAllocaUsers(AI);
151    case 3:  // Safe to scalar replace.
152      break;
153    }
154
155    DEBUG(std::cerr << "Found inst to xform: " << *AI);
156    Changed = true;
157
158    std::vector<AllocaInst*> ElementAllocas;
159    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
160      ElementAllocas.reserve(ST->getNumContainedTypes());
161      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
162        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
163                                        AI->getAlignment(),
164                                        AI->getName() + "." + utostr(i), AI);
165        ElementAllocas.push_back(NA);
166        WorkList.push_back(NA);  // Add to worklist for recursive processing
167      }
168    } else {
169      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
170      ElementAllocas.reserve(AT->getNumElements());
171      const Type *ElTy = AT->getElementType();
172      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
173        AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
174                                        AI->getName() + "." + utostr(i), AI);
175        ElementAllocas.push_back(NA);
176        WorkList.push_back(NA);  // Add to worklist for recursive processing
177      }
178    }
179
180    // Now that we have created the alloca instructions that we want to use,
181    // expand the getelementptr instructions to use them.
182    //
183    while (!AI->use_empty()) {
184      Instruction *User = cast<Instruction>(AI->use_back());
185      GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
186      // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
187      unsigned Idx =
188         (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getRawValue();
189
190      assert(Idx < ElementAllocas.size() && "Index out of range?");
191      AllocaInst *AllocaToUse = ElementAllocas[Idx];
192
193      Value *RepValue;
194      if (GEPI->getNumOperands() == 3) {
195        // Do not insert a new getelementptr instruction with zero indices, only
196        // to have it optimized out later.
197        RepValue = AllocaToUse;
198      } else {
199        // We are indexing deeply into the structure, so we still need a
200        // getelement ptr instruction to finish the indexing.  This may be
201        // expanded itself once the worklist is rerun.
202        //
203        std::string OldName = GEPI->getName();  // Steal the old name.
204        std::vector<Value*> NewArgs;
205        NewArgs.push_back(Constant::getNullValue(Type::IntTy));
206        NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
207        GEPI->setName("");
208        RepValue = new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
209      }
210
211      // Move all of the users over to the new GEP.
212      GEPI->replaceAllUsesWith(RepValue);
213      // Delete the old GEP
214      GEPI->eraseFromParent();
215    }
216
217    // Finally, delete the Alloca instruction
218    AI->getParent()->getInstList().erase(AI);
219    NumReplaced++;
220  }
221
222  return Changed;
223}
224
225
226/// isSafeElementUse - Check to see if this use is an allowed use for a
227/// getelementptr instruction of an array aggregate allocation.
228///
229int SROA::isSafeElementUse(Value *Ptr) {
230  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
231       I != E; ++I) {
232    Instruction *User = cast<Instruction>(*I);
233    switch (User->getOpcode()) {
234    case Instruction::Load:  break;
235    case Instruction::Store:
236      // Store is ok if storing INTO the pointer, not storing the pointer
237      if (User->getOperand(0) == Ptr) return 0;
238      break;
239    case Instruction::GetElementPtr: {
240      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
241      if (GEP->getNumOperands() > 1) {
242        if (!isa<Constant>(GEP->getOperand(1)) ||
243            !cast<Constant>(GEP->getOperand(1))->isNullValue())
244          return 0;  // Using pointer arithmetic to navigate the array...
245      }
246      if (!isSafeElementUse(GEP)) return 0;
247      break;
248    }
249    default:
250      DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
251      return 0;
252    }
253  }
254  return 3;  // All users look ok :)
255}
256
257/// AllUsersAreLoads - Return true if all users of this value are loads.
258static bool AllUsersAreLoads(Value *Ptr) {
259  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
260       I != E; ++I)
261    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
262      return false;
263  return true;
264}
265
266/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
267/// aggregate allocation.
268///
269int SROA::isSafeUseOfAllocation(Instruction *User) {
270  if (!isa<GetElementPtrInst>(User)) return 0;
271
272  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
273  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
274
275  // The GEP is safe to transform if it is of the form GEP <ptr>, 0, <cst>
276  if (I == E ||
277      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
278    return 0;
279
280  ++I;
281  if (I == E) return 0;  // ran out of GEP indices??
282
283  // If this is a use of an array allocation, do a bit more checking for sanity.
284  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
285    uint64_t NumElements = AT->getNumElements();
286
287    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
288      // Check to make sure that index falls within the array.  If not,
289      // something funny is going on, so we won't do the optimization.
290      //
291      if (cast<ConstantInt>(GEPI->getOperand(2))->getRawValue() >= NumElements)
292        return 0;
293
294    } else {
295      // If this is an array index and the index is not constant, we cannot
296      // promote... that is unless the array has exactly one or two elements in
297      // it, in which case we CAN promote it, but we have to canonicalize this
298      // out if this is the only problem.
299      if (NumElements == 1 || NumElements == 2)
300        return AllUsersAreLoads(GEPI) ? 1 : 0;  // Canonicalization required!
301      return 0;
302    }
303  }
304
305  // If there are any non-simple uses of this getelementptr, make sure to reject
306  // them.
307  return isSafeElementUse(GEPI);
308}
309
310/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
311/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
312/// or 1 if safe after canonicalization has been performed.
313///
314int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
315  // Loop over the use list of the alloca.  We can only transform it if all of
316  // the users are safe to transform.
317  //
318  int isSafe = 3;
319  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
320       I != E; ++I) {
321    isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I));
322    if (isSafe == 0) {
323      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
324            << **I);
325      return 0;
326    }
327  }
328  // If we require cleanup, isSafe is now 1, otherwise it is 3.
329  return isSafe;
330}
331
332/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
333/// allocation, but only if cleaned up, perform the cleanups required.
334void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
335  // At this point, we know that the end result will be SROA'd and promoted, so
336  // we can insert ugly code if required so long as sroa+mem2reg will clean it
337  // up.
338  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
339       UI != E; ) {
340    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(*UI++);
341    gep_type_iterator I = gep_type_begin(GEPI);
342    ++I;
343
344    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
345      uint64_t NumElements = AT->getNumElements();
346
347      if (!isa<ConstantInt>(I.getOperand())) {
348        if (NumElements == 1) {
349          GEPI->setOperand(2, Constant::getNullValue(Type::IntTy));
350        } else {
351          assert(NumElements == 2 && "Unhandled case!");
352          // All users of the GEP must be loads.  At each use of the GEP, insert
353          // two loads of the appropriate indexed GEP and select between them.
354          Value *IsOne = BinaryOperator::createSetNE(I.getOperand(),
355                              Constant::getNullValue(I.getOperand()->getType()),
356                                                     "isone", GEPI);
357          // Insert the new GEP instructions, which are properly indexed.
358          std::vector<Value*> Indices(GEPI->op_begin()+1, GEPI->op_end());
359          Indices[1] = Constant::getNullValue(Type::IntTy);
360          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
361                                                 GEPI->getName()+".0", GEPI);
362          Indices[1] = ConstantInt::get(Type::IntTy, 1);
363          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
364                                                GEPI->getName()+".1", GEPI);
365          // Replace all loads of the variable index GEP with loads from both
366          // indexes and a select.
367          while (!GEPI->use_empty()) {
368            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
369            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
370            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
371            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
372            LI->replaceAllUsesWith(R);
373            LI->eraseFromParent();
374          }
375          GEPI->eraseFromParent();
376        }
377      }
378    }
379  }
380}
381