ScalarReplAggregates.cpp revision 15256cb14ef340235122750a8d7a6b18baf62ef0
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Scalar.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/Pass.h"
27#include "llvm/Instructions.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Transforms/Utils/PromoteMemToReg.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <iostream>
37using namespace llvm;
38
39namespace {
40  Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
41  Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");
42  Statistic<> NumConverted("scalarrepl",
43                           "Number of aggregates converted to scalar");
44
45  struct SROA : public FunctionPass {
46    bool runOnFunction(Function &F);
47
48    bool performScalarRepl(Function &F);
49    bool performPromotion(Function &F);
50
51    // getAnalysisUsage - This pass does not require any passes, but we know it
52    // will not alter the CFG, so say so.
53    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
54      AU.addRequired<DominatorTree>();
55      AU.addRequired<DominanceFrontier>();
56      AU.addRequired<TargetData>();
57      AU.setPreservesCFG();
58    }
59
60  private:
61    int isSafeElementUse(Value *Ptr);
62    int isSafeUseOfAllocation(Instruction *User);
63    int isSafeAllocaToScalarRepl(AllocationInst *AI);
64    void CanonicalizeAllocaUsers(AllocationInst *AI);
65    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
66
67    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
68    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
69    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
70  };
71
72  RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
73}
74
75// Public interface to the ScalarReplAggregates pass
76FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }
77
78
79bool SROA::runOnFunction(Function &F) {
80  bool Changed = performPromotion(F);
81  while (1) {
82    bool LocalChange = performScalarRepl(F);
83    if (!LocalChange) break;   // No need to repromote if no scalarrepl
84    Changed = true;
85    LocalChange = performPromotion(F);
86    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
87  }
88
89  return Changed;
90}
91
92
93bool SROA::performPromotion(Function &F) {
94  std::vector<AllocaInst*> Allocas;
95  const TargetData &TD = getAnalysis<TargetData>();
96  DominatorTree     &DT = getAnalysis<DominatorTree>();
97  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
98
99  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
100
101  bool Changed = false;
102
103  while (1) {
104    Allocas.clear();
105
106    // Find allocas that are safe to promote, by looking at all instructions in
107    // the entry node
108    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
109      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
110        if (isAllocaPromotable(AI, TD))
111          Allocas.push_back(AI);
112
113    if (Allocas.empty()) break;
114
115    PromoteMemToReg(Allocas, DT, DF, TD);
116    NumPromoted += Allocas.size();
117    Changed = true;
118  }
119
120  return Changed;
121}
122
123// performScalarRepl - This algorithm is a simple worklist driven algorithm,
124// which runs on all of the malloc/alloca instructions in the function, removing
125// them if they are only used by getelementptr instructions.
126//
127bool SROA::performScalarRepl(Function &F) {
128  std::vector<AllocationInst*> WorkList;
129
130  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
131  BasicBlock &BB = F.getEntryBlock();
132  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
133    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
134      WorkList.push_back(A);
135
136  // Process the worklist
137  bool Changed = false;
138  while (!WorkList.empty()) {
139    AllocationInst *AI = WorkList.back();
140    WorkList.pop_back();
141
142    // If we can turn this aggregate value (potentially with casts) into a
143    // simple scalar value that can be mem2reg'd into a register value.
144    bool IsNotTrivial = false;
145    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
146      if (IsNotTrivial) {
147        ConvertToScalar(AI, ActualType);
148        Changed = true;
149        continue;
150      }
151
152    // We cannot transform the allocation instruction if it is an array
153    // allocation (allocations OF arrays are ok though), and an allocation of a
154    // scalar value cannot be decomposed at all.
155    //
156    if (AI->isArrayAllocation() ||
157        (!isa<StructType>(AI->getAllocatedType()) &&
158         !isa<ArrayType>(AI->getAllocatedType()))) continue;
159
160    // Check that all of the users of the allocation are capable of being
161    // transformed.
162    switch (isSafeAllocaToScalarRepl(AI)) {
163    default: assert(0 && "Unexpected value!");
164    case 0:  // Not safe to scalar replace.
165      continue;
166    case 1:  // Safe, but requires cleanup/canonicalizations first
167      CanonicalizeAllocaUsers(AI);
168    case 3:  // Safe to scalar replace.
169      break;
170    }
171
172    DEBUG(std::cerr << "Found inst to xform: " << *AI);
173    Changed = true;
174
175    std::vector<AllocaInst*> ElementAllocas;
176    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
177      ElementAllocas.reserve(ST->getNumContainedTypes());
178      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
179        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
180                                        AI->getAlignment(),
181                                        AI->getName() + "." + utostr(i), AI);
182        ElementAllocas.push_back(NA);
183        WorkList.push_back(NA);  // Add to worklist for recursive processing
184      }
185    } else {
186      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
187      ElementAllocas.reserve(AT->getNumElements());
188      const Type *ElTy = AT->getElementType();
189      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
190        AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
191                                        AI->getName() + "." + utostr(i), AI);
192        ElementAllocas.push_back(NA);
193        WorkList.push_back(NA);  // Add to worklist for recursive processing
194      }
195    }
196
197    // Now that we have created the alloca instructions that we want to use,
198    // expand the getelementptr instructions to use them.
199    //
200    while (!AI->use_empty()) {
201      Instruction *User = cast<Instruction>(AI->use_back());
202      GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
203      // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
204      unsigned Idx =
205         (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getRawValue();
206
207      assert(Idx < ElementAllocas.size() && "Index out of range?");
208      AllocaInst *AllocaToUse = ElementAllocas[Idx];
209
210      Value *RepValue;
211      if (GEPI->getNumOperands() == 3) {
212        // Do not insert a new getelementptr instruction with zero indices, only
213        // to have it optimized out later.
214        RepValue = AllocaToUse;
215      } else {
216        // We are indexing deeply into the structure, so we still need a
217        // getelement ptr instruction to finish the indexing.  This may be
218        // expanded itself once the worklist is rerun.
219        //
220        std::string OldName = GEPI->getName();  // Steal the old name.
221        std::vector<Value*> NewArgs;
222        NewArgs.push_back(Constant::getNullValue(Type::IntTy));
223        NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
224        GEPI->setName("");
225        RepValue = new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
226      }
227
228      // Move all of the users over to the new GEP.
229      GEPI->replaceAllUsesWith(RepValue);
230      // Delete the old GEP
231      GEPI->eraseFromParent();
232    }
233
234    // Finally, delete the Alloca instruction
235    AI->getParent()->getInstList().erase(AI);
236    NumReplaced++;
237  }
238
239  return Changed;
240}
241
242
243/// isSafeElementUse - Check to see if this use is an allowed use for a
244/// getelementptr instruction of an array aggregate allocation.
245///
246int SROA::isSafeElementUse(Value *Ptr) {
247  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
248       I != E; ++I) {
249    Instruction *User = cast<Instruction>(*I);
250    switch (User->getOpcode()) {
251    case Instruction::Load:  break;
252    case Instruction::Store:
253      // Store is ok if storing INTO the pointer, not storing the pointer
254      if (User->getOperand(0) == Ptr) return 0;
255      break;
256    case Instruction::GetElementPtr: {
257      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
258      if (GEP->getNumOperands() > 1) {
259        if (!isa<Constant>(GEP->getOperand(1)) ||
260            !cast<Constant>(GEP->getOperand(1))->isNullValue())
261          return 0;  // Using pointer arithmetic to navigate the array...
262      }
263      if (!isSafeElementUse(GEP)) return 0;
264      break;
265    }
266    default:
267      DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
268      return 0;
269    }
270  }
271  return 3;  // All users look ok :)
272}
273
274/// AllUsersAreLoads - Return true if all users of this value are loads.
275static bool AllUsersAreLoads(Value *Ptr) {
276  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
277       I != E; ++I)
278    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
279      return false;
280  return true;
281}
282
283/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
284/// aggregate allocation.
285///
286int SROA::isSafeUseOfAllocation(Instruction *User) {
287  if (!isa<GetElementPtrInst>(User)) return 0;
288
289  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
290  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
291
292  // The GEP is safe to transform if it is of the form GEP <ptr>, 0, <cst>
293  if (I == E ||
294      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
295    return 0;
296
297  ++I;
298  if (I == E) return 0;  // ran out of GEP indices??
299
300  // If this is a use of an array allocation, do a bit more checking for sanity.
301  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
302    uint64_t NumElements = AT->getNumElements();
303
304    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
305      // Check to make sure that index falls within the array.  If not,
306      // something funny is going on, so we won't do the optimization.
307      //
308      if (cast<ConstantInt>(GEPI->getOperand(2))->getRawValue() >= NumElements)
309        return 0;
310
311    } else {
312      // If this is an array index and the index is not constant, we cannot
313      // promote... that is unless the array has exactly one or two elements in
314      // it, in which case we CAN promote it, but we have to canonicalize this
315      // out if this is the only problem.
316      if (NumElements == 1 || NumElements == 2)
317        return AllUsersAreLoads(GEPI) ? 1 : 0;  // Canonicalization required!
318      return 0;
319    }
320  }
321
322  // If there are any non-simple uses of this getelementptr, make sure to reject
323  // them.
324  return isSafeElementUse(GEPI);
325}
326
327/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
328/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
329/// or 1 if safe after canonicalization has been performed.
330///
331int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
332  // Loop over the use list of the alloca.  We can only transform it if all of
333  // the users are safe to transform.
334  //
335  int isSafe = 3;
336  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
337       I != E; ++I) {
338    isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I));
339    if (isSafe == 0) {
340      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
341            << **I);
342      return 0;
343    }
344  }
345  // If we require cleanup, isSafe is now 1, otherwise it is 3.
346  return isSafe;
347}
348
349/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
350/// allocation, but only if cleaned up, perform the cleanups required.
351void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
352  // At this point, we know that the end result will be SROA'd and promoted, so
353  // we can insert ugly code if required so long as sroa+mem2reg will clean it
354  // up.
355  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
356       UI != E; ) {
357    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(*UI++);
358    gep_type_iterator I = gep_type_begin(GEPI);
359    ++I;
360
361    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
362      uint64_t NumElements = AT->getNumElements();
363
364      if (!isa<ConstantInt>(I.getOperand())) {
365        if (NumElements == 1) {
366          GEPI->setOperand(2, Constant::getNullValue(Type::IntTy));
367        } else {
368          assert(NumElements == 2 && "Unhandled case!");
369          // All users of the GEP must be loads.  At each use of the GEP, insert
370          // two loads of the appropriate indexed GEP and select between them.
371          Value *IsOne = BinaryOperator::createSetNE(I.getOperand(),
372                              Constant::getNullValue(I.getOperand()->getType()),
373                                                     "isone", GEPI);
374          // Insert the new GEP instructions, which are properly indexed.
375          std::vector<Value*> Indices(GEPI->op_begin()+1, GEPI->op_end());
376          Indices[1] = Constant::getNullValue(Type::IntTy);
377          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
378                                                 GEPI->getName()+".0", GEPI);
379          Indices[1] = ConstantInt::get(Type::IntTy, 1);
380          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
381                                                GEPI->getName()+".1", GEPI);
382          // Replace all loads of the variable index GEP with loads from both
383          // indexes and a select.
384          while (!GEPI->use_empty()) {
385            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
386            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
387            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
388            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
389            LI->replaceAllUsesWith(R);
390            LI->eraseFromParent();
391          }
392          GEPI->eraseFromParent();
393        }
394      }
395    }
396  }
397}
398
399/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
400/// types are incompatible, return true, otherwise update Accum and return
401/// false.
402static bool MergeInType(const Type *In, const Type *&Accum) {
403  if (!In->isIntegral()) return true;
404
405  // If this is our first type, just use it.
406  if (Accum == Type::VoidTy) {
407    Accum = In;
408  } else {
409    // Otherwise pick whichever type is larger.
410    if (In->getTypeID() > Accum->getTypeID())
411      Accum = In;
412  }
413  return false;
414}
415
416/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
417/// as big as the specified type.  If there is no suitable type, this returns
418/// null.
419const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
420  if (NumBits > 64) return 0;
421  if (NumBits > 32) return Type::ULongTy;
422  if (NumBits > 16) return Type::UIntTy;
423  if (NumBits > 8) return Type::UShortTy;
424  return Type::UByteTy;
425}
426
427/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
428/// single scalar integer type, return that type.  Further, if the use is not
429/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
430/// there are no uses of this pointer, return Type::VoidTy to differentiate from
431/// failure.
432///
433const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
434  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
435  const TargetData &TD = getAnalysis<TargetData>();
436  const PointerType *PTy = cast<PointerType>(V->getType());
437
438  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
439    Instruction *User = cast<Instruction>(*UI);
440
441    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
442      if (MergeInType(LI->getType(), UsedType))
443        return 0;
444
445    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
446      // Storing the pointer, not the into the value?
447      if (SI->getOperand(0) == V) return 0;
448
449      // NOTE: We could handle storing of FP imms here!
450
451      if (MergeInType(SI->getOperand(0)->getType(), UsedType))
452        return 0;
453    } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
454      if (!isa<PointerType>(CI->getType())) return 0;
455      IsNotTrivial = true;
456      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
457      if (!SubTy || MergeInType(SubTy, UsedType)) return 0;
458    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
459      // Check to see if this is stepping over an element: GEP Ptr, int C
460      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
461        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getRawValue();
462        unsigned ElSize = TD.getTypeSize(PTy->getElementType());
463        unsigned BitOffset = Idx*ElSize*8;
464        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
465
466        IsNotTrivial = true;
467        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
468        if (SubElt == 0) return 0;
469        if (SubElt != Type::VoidTy) {
470          const Type *NewTy =
471            getUIntAtLeastAsBitAs(SubElt->getPrimitiveSizeInBits()+BitOffset);
472          if (NewTy == 0 || MergeInType(NewTy, UsedType)) return 0;
473          continue;
474        }
475      } else if (GEP->getNumOperands() == 3 &&
476                 isa<ConstantInt>(GEP->getOperand(1)) &&
477                 isa<ConstantInt>(GEP->getOperand(2)) &&
478                 cast<Constant>(GEP->getOperand(1))->isNullValue()) {
479        // We are stepping into an element, e.g. a structure or an array:
480        // GEP Ptr, int 0, uint C
481        const Type *AggTy = PTy->getElementType();
482        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getRawValue();
483
484        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
485          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
486        } else if (const PackedType *PTy = dyn_cast<PackedType>(AggTy)) {
487          if (Idx >= PTy->getNumElements()) return 0;  // Out of range.
488        } else if (isa<StructType>(AggTy)) {
489          // Structs are always ok.
490        } else {
491          return 0;
492        }
493        const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
494        if (NTy == 0 || MergeInType(NTy, UsedType)) return 0;
495        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
496        if (SubTy == 0) return 0;
497        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType))
498          return 0;
499        continue;    // Everything looks ok
500      }
501      return 0;
502    } else {
503      // Cannot handle this!
504      return 0;
505    }
506  }
507
508  return UsedType;
509}
510
511/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
512/// predicate and is non-trivial.  Convert it to something that can be trivially
513/// promoted into a register by mem2reg.
514void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
515  DEBUG(std::cerr << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
516                  << *ActualTy << "\n");
517  ++NumConverted;
518
519  BasicBlock *EntryBlock = AI->getParent();
520  assert(EntryBlock == &EntryBlock->getParent()->front() &&
521         "Not in the entry block!");
522  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
523
524  // Create and insert the alloca.
525  AllocaInst *NewAI = new AllocaInst(ActualTy->getUnsignedVersion(), 0,
526                                     AI->getName(), EntryBlock->begin());
527  ConvertUsesToScalar(AI, NewAI, 0);
528  delete AI;
529}
530
531
532/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
533/// directly.  Offset is an offset from the original alloca, in bits that need
534/// to be shifted to the right.  By the end of this, there should be no uses of
535/// Ptr.
536void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
537  while (!Ptr->use_empty()) {
538    Instruction *User = cast<Instruction>(Ptr->use_back());
539
540    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
541      // The load is a bit extract from NewAI shifted right by Offset bits.
542      Value *NV = new LoadInst(NewAI, LI->getName(), LI);
543      if (Offset && Offset < NV->getType()->getPrimitiveSizeInBits())
544        NV = new ShiftInst(Instruction::Shr, NV,
545                           ConstantUInt::get(Type::UByteTy, Offset),
546                           LI->getName(), LI);
547      if (NV->getType() != LI->getType())
548        NV = new CastInst(NV, LI->getType(), LI->getName(), LI);
549      LI->replaceAllUsesWith(NV);
550      LI->eraseFromParent();
551    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
552      assert(SI->getOperand(0) != Ptr && "Consistency error!");
553
554      // Convert the stored type to the actual type, shift it left to insert
555      // then 'or' into place.
556      Value *SV = SI->getOperand(0);
557      if (SV->getType() != NewAI->getType()->getElementType() || Offset != 0) {
558        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
559        // If SV is signed, convert it to unsigned, so that the next cast zero
560        // extends the value.
561        if (SV->getType()->isSigned())
562          SV = new CastInst(SV, SV->getType()->getUnsignedVersion(),
563                            SV->getName(), SI);
564        SV = new CastInst(SV, Old->getType(), SV->getName(), SI);
565        if (Offset && Offset < SV->getType()->getPrimitiveSizeInBits())
566          SV = new ShiftInst(Instruction::Shl, SV,
567                             ConstantUInt::get(Type::UByteTy, Offset),
568                             SV->getName()+".adj", SI);
569        // Mask out the bits we are about to insert from the old value.
570        unsigned TotalBits = SV->getType()->getPrimitiveSizeInBits();
571        unsigned InsertBits =
572          SI->getOperand(0)->getType()->getPrimitiveSizeInBits();
573        if (TotalBits != InsertBits) {
574          assert(TotalBits > InsertBits);
575          uint64_t Mask = ~(((1ULL << InsertBits)-1) << Offset);
576          if (TotalBits != 64)
577            Mask = Mask & ((1ULL << TotalBits)-1);
578          Old = BinaryOperator::createAnd(Old,
579                                        ConstantUInt::get(Old->getType(), Mask),
580                                          Old->getName()+".mask", SI);
581          SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
582        }
583      }
584      new StoreInst(SV, NewAI, SI);
585      SI->eraseFromParent();
586
587    } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
588      unsigned NewOff = Offset;
589      const TargetData &TD = getAnalysis<TargetData>();
590      if (TD.isBigEndian()) {
591        // Adjust the pointer.  For example, storing 16-bits into a 32-bit
592        // alloca with just a cast makes it modify the top 16-bits.
593        const Type *SrcTy = cast<PointerType>(Ptr->getType())->getElementType();
594        const Type *DstTy = cast<PointerType>(CI->getType())->getElementType();
595        int PtrDiffBits = TD.getTypeSize(SrcTy)*8-TD.getTypeSize(DstTy)*8;
596        NewOff += PtrDiffBits;
597      }
598      ConvertUsesToScalar(CI, NewAI, NewOff);
599      CI->eraseFromParent();
600    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
601      const PointerType *AggPtrTy =
602        cast<PointerType>(GEP->getOperand(0)->getType());
603      const TargetData &TD = getAnalysis<TargetData>();
604      unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
605
606      // Check to see if this is stepping over an element: GEP Ptr, int C
607      unsigned NewOffset = Offset;
608      if (GEP->getNumOperands() == 2) {
609        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getRawValue();
610        unsigned BitOffset = Idx*AggSizeInBits;
611
612        if (TD.isLittleEndian())
613          NewOffset += BitOffset;
614        else
615          NewOffset -= BitOffset;
616
617      } else if (GEP->getNumOperands() == 3) {
618        // We know that operand #2 is zero.
619        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getRawValue();
620        const Type *AggTy = AggPtrTy->getElementType();
621        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
622          unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;
623
624          if (TD.isLittleEndian())
625            NewOffset += ElSizeBits*Idx;
626          else
627            NewOffset += AggSizeInBits-ElSizeBits*(Idx+1);
628        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
629          unsigned EltBitOffset = TD.getStructLayout(STy)->MemberOffsets[Idx]*8;
630
631          if (TD.isLittleEndian())
632            NewOffset += EltBitOffset;
633          else {
634            const PointerType *ElPtrTy = cast<PointerType>(GEP->getType());
635            unsigned ElSizeBits = TD.getTypeSize(ElPtrTy->getElementType())*8;
636            NewOffset += AggSizeInBits-(EltBitOffset+ElSizeBits);
637          }
638
639        } else {
640          assert(0 && "Unsupported operation!");
641          abort();
642        }
643      } else {
644        assert(0 && "Unsupported operation!");
645        abort();
646      }
647      ConvertUsesToScalar(GEP, NewAI, NewOffset);
648      GEP->eraseFromParent();
649    } else {
650      assert(0 && "Unsupported operation!");
651      abort();
652    }
653  }
654}
655