ScalarReplAggregates.cpp revision 1537ce75ed25bbca58096383bb1fb9dd427bf1aa
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Analysis/Loads.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Transforms/Utils/PromoteMemToReg.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include "llvm/Transforms/Utils/SSAUpdater.h"
40#include "llvm/Support/CallSite.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GetElementPtrTypeIterator.h"
44#include "llvm/Support/IRBuilder.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50using namespace llvm;
51
52STATISTIC(NumReplaced,  "Number of allocas broken up");
53STATISTIC(NumPromoted,  "Number of allocas promoted");
54STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
55STATISTIC(NumConverted, "Number of aggregates converted to scalar");
56STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
57
58namespace {
59  struct SROA : public FunctionPass {
60    SROA(int T, bool hasDT, char &ID)
61      : FunctionPass(ID), HasDomTree(hasDT) {
62      if (T == -1)
63        SRThreshold = 128;
64      else
65        SRThreshold = T;
66    }
67
68    bool runOnFunction(Function &F);
69
70    bool performScalarRepl(Function &F);
71    bool performPromotion(Function &F);
72
73  private:
74    bool HasDomTree;
75    TargetData *TD;
76
77    /// DeadInsts - Keep track of instructions we have made dead, so that
78    /// we can remove them after we are done working.
79    SmallVector<Value*, 32> DeadInsts;
80
81    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82    /// information about the uses.  All these fields are initialized to false
83    /// and set to true when something is learned.
84    struct AllocaInfo {
85      /// The alloca to promote.
86      AllocaInst *AI;
87
88      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
89      /// looping and avoid redundant work.
90      SmallPtrSet<PHINode*, 8> CheckedPHIs;
91
92      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
93      bool isUnsafe : 1;
94
95      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
96      bool isMemCpySrc : 1;
97
98      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
99      bool isMemCpyDst : 1;
100
101      /// hasSubelementAccess - This is true if a subelement of the alloca is
102      /// ever accessed, or false if the alloca is only accessed with mem
103      /// intrinsics or load/store that only access the entire alloca at once.
104      bool hasSubelementAccess : 1;
105
106      /// hasALoadOrStore - This is true if there are any loads or stores to it.
107      /// The alloca may just be accessed with memcpy, for example, which would
108      /// not set this.
109      bool hasALoadOrStore : 1;
110
111      explicit AllocaInfo(AllocaInst *ai)
112        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
113          hasSubelementAccess(false), hasALoadOrStore(false) {}
114    };
115
116    unsigned SRThreshold;
117
118    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
119      I.isUnsafe = true;
120      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
121    }
122
123    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
124
125    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
126    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
127                                         AllocaInfo &Info);
128    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
129    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
130                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
131                         Instruction *TheAccess, bool AllowWholeAccess);
132    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
133    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
134                                  const Type *&IdxTy);
135
136    void DoScalarReplacement(AllocaInst *AI,
137                             std::vector<AllocaInst*> &WorkList);
138    void DeleteDeadInstructions();
139
140    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
141                              SmallVector<AllocaInst*, 32> &NewElts);
142    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
143                        SmallVector<AllocaInst*, 32> &NewElts);
144    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
145                    SmallVector<AllocaInst*, 32> &NewElts);
146    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
147                                      AllocaInst *AI,
148                                      SmallVector<AllocaInst*, 32> &NewElts);
149    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
150                                       SmallVector<AllocaInst*, 32> &NewElts);
151    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
152                                      SmallVector<AllocaInst*, 32> &NewElts);
153
154    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
155  };
156
157  // SROA_DT - SROA that uses DominatorTree.
158  struct SROA_DT : public SROA {
159    static char ID;
160  public:
161    SROA_DT(int T = -1) : SROA(T, true, ID) {
162      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
163    }
164
165    // getAnalysisUsage - This pass does not require any passes, but we know it
166    // will not alter the CFG, so say so.
167    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
168      AU.addRequired<DominatorTree>();
169      AU.setPreservesCFG();
170    }
171  };
172
173  // SROA_SSAUp - SROA that uses SSAUpdater.
174  struct SROA_SSAUp : public SROA {
175    static char ID;
176  public:
177    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
178      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
179    }
180
181    // getAnalysisUsage - This pass does not require any passes, but we know it
182    // will not alter the CFG, so say so.
183    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
184      AU.setPreservesCFG();
185    }
186  };
187
188}
189
190char SROA_DT::ID = 0;
191char SROA_SSAUp::ID = 0;
192
193INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
194                "Scalar Replacement of Aggregates (DT)", false, false)
195INITIALIZE_PASS_DEPENDENCY(DominatorTree)
196INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
197                "Scalar Replacement of Aggregates (DT)", false, false)
198
199INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
200                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
201INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
202                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
203
204// Public interface to the ScalarReplAggregates pass
205FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
206                                                   bool UseDomTree) {
207  if (UseDomTree)
208    return new SROA_DT(Threshold);
209  return new SROA_SSAUp(Threshold);
210}
211
212
213//===----------------------------------------------------------------------===//
214// Convert To Scalar Optimization.
215//===----------------------------------------------------------------------===//
216
217namespace {
218/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
219/// optimization, which scans the uses of an alloca and determines if it can
220/// rewrite it in terms of a single new alloca that can be mem2reg'd.
221class ConvertToScalarInfo {
222  /// AllocaSize - The size of the alloca being considered in bytes.
223  unsigned AllocaSize;
224  const TargetData &TD;
225
226  /// IsNotTrivial - This is set to true if there is some access to the object
227  /// which means that mem2reg can't promote it.
228  bool IsNotTrivial;
229
230  /// VectorTy - This tracks the type that we should promote the vector to if
231  /// it is possible to turn it into a vector.  This starts out null, and if it
232  /// isn't possible to turn into a vector type, it gets set to VoidTy.
233  const Type *VectorTy;
234
235  /// HadAVector - True if there is at least one vector access to the alloca.
236  /// We don't want to turn random arrays into vectors and use vector element
237  /// insert/extract, but if there are element accesses to something that is
238  /// also declared as a vector, we do want to promote to a vector.
239  bool HadAVector;
240
241  /// HadNonMemTransferAccess - True if there is at least one access to the
242  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
243  /// large integers unless there is some potential for optimization.
244  bool HadNonMemTransferAccess;
245
246public:
247  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
248    : AllocaSize(Size), TD(td), IsNotTrivial(false), VectorTy(0),
249      HadAVector(false), HadNonMemTransferAccess(false) { }
250
251  AllocaInst *TryConvert(AllocaInst *AI);
252
253private:
254  bool CanConvertToScalar(Value *V, uint64_t Offset);
255  void MergeInType(const Type *In, uint64_t Offset);
256  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
257  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
258
259  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
260                                    uint64_t Offset, IRBuilder<> &Builder);
261  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
262                                   uint64_t Offset, IRBuilder<> &Builder);
263};
264} // end anonymous namespace.
265
266
267/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
268/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
269/// alloca if possible or null if not.
270AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
271  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
272  // out.
273  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
274    return 0;
275
276  // If we were able to find a vector type that can handle this with
277  // insert/extract elements, and if there was at least one use that had
278  // a vector type, promote this to a vector.  We don't want to promote
279  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
280  // we just get a lot of insert/extracts.  If at least one vector is
281  // involved, then we probably really do have a union of vector/array.
282  const Type *NewTy;
283  if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
284    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
285          << *VectorTy << '\n');
286    NewTy = VectorTy;  // Use the vector type.
287  } else {
288    unsigned BitWidth = AllocaSize * 8;
289    if (!HadAVector && !HadNonMemTransferAccess &&
290        !TD.fitsInLegalInteger(BitWidth))
291      return 0;
292
293    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
294    // Create and insert the integer alloca.
295    NewTy = IntegerType::get(AI->getContext(), BitWidth);
296  }
297  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
298  ConvertUsesToScalar(AI, NewAI, 0);
299  return NewAI;
300}
301
302/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
303/// so far at the offset specified by Offset (which is specified in bytes).
304///
305/// There are three cases we handle here:
306///   1) A union of vector types of the same size and potentially its elements.
307///      Here we turn element accesses into insert/extract element operations.
308///      This promotes a <4 x float> with a store of float to the third element
309///      into a <4 x float> that uses insert element.
310///   2) A union of vector types with power-of-2 size differences, e.g. a float,
311///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
312///      and extract element operations, and <2 x float> accesses into a cast to
313///      <2 x double>, an extract, and a cast back to <2 x float>.
314///   3) A fully general blob of memory, which we turn into some (potentially
315///      large) integer type with extract and insert operations where the loads
316///      and stores would mutate the memory.  We mark this by setting VectorTy
317///      to VoidTy.
318void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
319  // If we already decided to turn this into a blob of integer memory, there is
320  // nothing to be done.
321  if (VectorTy && VectorTy->isVoidTy())
322    return;
323
324  // If this could be contributing to a vector, analyze it.
325
326  // If the In type is a vector that is the same size as the alloca, see if it
327  // matches the existing VecTy.
328  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
329    if (MergeInVectorType(VInTy, Offset))
330      return;
331  } else if (In->isFloatTy() || In->isDoubleTy() ||
332             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
333              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
334    // If we're accessing something that could be an element of a vector, see
335    // if the implied vector agrees with what we already have and if Offset is
336    // compatible with it.
337    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
338    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
339        (VectorTy == 0 ||
340         cast<VectorType>(VectorTy)->getElementType()
341               ->getPrimitiveSizeInBits()/8 == EltSize)) {
342      if (VectorTy == 0)
343        VectorTy = VectorType::get(In, AllocaSize/EltSize);
344      return;
345    }
346  }
347
348  // Otherwise, we have a case that we can't handle with an optimized vector
349  // form.  We can still turn this into a large integer.
350  VectorTy = Type::getVoidTy(In->getContext());
351}
352
353/// MergeInVectorType - Handles the vector case of MergeInType, returning true
354/// if the type was successfully merged and false otherwise.
355bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
356                                            uint64_t Offset) {
357  // Remember if we saw a vector type.
358  HadAVector = true;
359
360  // TODO: Support nonzero offsets?
361  if (Offset != 0)
362    return false;
363
364  // Only allow vectors that are a power-of-2 away from the size of the alloca.
365  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
366    return false;
367
368  // If this the first vector we see, remember the type so that we know the
369  // element size.
370  if (!VectorTy) {
371    VectorTy = VInTy;
372    return true;
373  }
374
375  unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
376  unsigned InBitWidth = VInTy->getBitWidth();
377
378  // Vectors of the same size can be converted using a simple bitcast.
379  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
380    return true;
381
382  const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
383  const Type *InElementTy = cast<VectorType>(VectorTy)->getElementType();
384
385  // Do not allow mixed integer and floating-point accesses from vectors of
386  // different sizes.
387  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
388    return false;
389
390  if (ElementTy->isFloatingPointTy()) {
391    // Only allow floating-point vectors of different sizes if they have the
392    // same element type.
393    // TODO: This could be loosened a bit, but would anything benefit?
394    if (ElementTy != InElementTy)
395      return false;
396
397    // There are no arbitrary-precision floating-point types, which limits the
398    // number of legal vector types with larger element types that we can form
399    // to bitcast and extract a subvector.
400    // TODO: We could support some more cases with mixed fp128 and double here.
401    if (!(BitWidth == 64 || BitWidth == 128) ||
402        !(InBitWidth == 64 || InBitWidth == 128))
403      return false;
404  } else {
405    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
406                                       "or floating-point.");
407    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
408    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
409
410    // Do not allow integer types smaller than a byte or types whose widths are
411    // not a multiple of a byte.
412    if (BitWidth < 8 || InBitWidth < 8 ||
413        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
414      return false;
415  }
416
417  // Pick the largest of the two vector types.
418  if (InBitWidth > BitWidth)
419    VectorTy = VInTy;
420
421  return true;
422}
423
424/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
425/// its accesses to a single vector type, return true and set VecTy to
426/// the new type.  If we could convert the alloca into a single promotable
427/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
428/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
429/// is the current offset from the base of the alloca being analyzed.
430///
431/// If we see at least one access to the value that is as a vector type, set the
432/// SawVec flag.
433bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
434  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
435    Instruction *User = cast<Instruction>(*UI);
436
437    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
438      // Don't break volatile loads.
439      if (LI->isVolatile())
440        return false;
441      // Don't touch MMX operations.
442      if (LI->getType()->isX86_MMXTy())
443        return false;
444      HadNonMemTransferAccess = true;
445      MergeInType(LI->getType(), Offset);
446      continue;
447    }
448
449    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
450      // Storing the pointer, not into the value?
451      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
452      // Don't touch MMX operations.
453      if (SI->getOperand(0)->getType()->isX86_MMXTy())
454        return false;
455      HadNonMemTransferAccess = true;
456      MergeInType(SI->getOperand(0)->getType(), Offset);
457      continue;
458    }
459
460    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
461      IsNotTrivial = true;  // Can't be mem2reg'd.
462      if (!CanConvertToScalar(BCI, Offset))
463        return false;
464      continue;
465    }
466
467    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
468      // If this is a GEP with a variable indices, we can't handle it.
469      if (!GEP->hasAllConstantIndices())
470        return false;
471
472      // Compute the offset that this GEP adds to the pointer.
473      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
474      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
475                                               &Indices[0], Indices.size());
476      // See if all uses can be converted.
477      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
478        return false;
479      IsNotTrivial = true;  // Can't be mem2reg'd.
480      HadNonMemTransferAccess = true;
481      continue;
482    }
483
484    // If this is a constant sized memset of a constant value (e.g. 0) we can
485    // handle it.
486    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
487      // Store of constant value and constant size.
488      if (!isa<ConstantInt>(MSI->getValue()) ||
489          !isa<ConstantInt>(MSI->getLength()))
490        return false;
491      IsNotTrivial = true;  // Can't be mem2reg'd.
492      HadNonMemTransferAccess = true;
493      continue;
494    }
495
496    // If this is a memcpy or memmove into or out of the whole allocation, we
497    // can handle it like a load or store of the scalar type.
498    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
499      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
500      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
501        return false;
502
503      IsNotTrivial = true;  // Can't be mem2reg'd.
504      continue;
505    }
506
507    // Otherwise, we cannot handle this!
508    return false;
509  }
510
511  return true;
512}
513
514/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
515/// directly.  This happens when we are converting an "integer union" to a
516/// single integer scalar, or when we are converting a "vector union" to a
517/// vector with insert/extractelement instructions.
518///
519/// Offset is an offset from the original alloca, in bits that need to be
520/// shifted to the right.  By the end of this, there should be no uses of Ptr.
521void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
522                                              uint64_t Offset) {
523  while (!Ptr->use_empty()) {
524    Instruction *User = cast<Instruction>(Ptr->use_back());
525
526    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
527      ConvertUsesToScalar(CI, NewAI, Offset);
528      CI->eraseFromParent();
529      continue;
530    }
531
532    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
533      // Compute the offset that this GEP adds to the pointer.
534      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
535      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
536                                               &Indices[0], Indices.size());
537      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
538      GEP->eraseFromParent();
539      continue;
540    }
541
542    IRBuilder<> Builder(User);
543
544    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
545      // The load is a bit extract from NewAI shifted right by Offset bits.
546      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
547      Value *NewLoadVal
548        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
549      LI->replaceAllUsesWith(NewLoadVal);
550      LI->eraseFromParent();
551      continue;
552    }
553
554    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
555      assert(SI->getOperand(0) != Ptr && "Consistency error!");
556      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
557      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
558                                             Builder);
559      Builder.CreateStore(New, NewAI);
560      SI->eraseFromParent();
561
562      // If the load we just inserted is now dead, then the inserted store
563      // overwrote the entire thing.
564      if (Old->use_empty())
565        Old->eraseFromParent();
566      continue;
567    }
568
569    // If this is a constant sized memset of a constant value (e.g. 0) we can
570    // transform it into a store of the expanded constant value.
571    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
572      assert(MSI->getRawDest() == Ptr && "Consistency error!");
573      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
574      if (NumBytes != 0) {
575        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
576
577        // Compute the value replicated the right number of times.
578        APInt APVal(NumBytes*8, Val);
579
580        // Splat the value if non-zero.
581        if (Val)
582          for (unsigned i = 1; i != NumBytes; ++i)
583            APVal |= APVal << 8;
584
585        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
586        Value *New = ConvertScalar_InsertValue(
587                                    ConstantInt::get(User->getContext(), APVal),
588                                               Old, Offset, Builder);
589        Builder.CreateStore(New, NewAI);
590
591        // If the load we just inserted is now dead, then the memset overwrote
592        // the entire thing.
593        if (Old->use_empty())
594          Old->eraseFromParent();
595      }
596      MSI->eraseFromParent();
597      continue;
598    }
599
600    // If this is a memcpy or memmove into or out of the whole allocation, we
601    // can handle it like a load or store of the scalar type.
602    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
603      assert(Offset == 0 && "must be store to start of alloca");
604
605      // If the source and destination are both to the same alloca, then this is
606      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
607      // as appropriate.
608      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
609
610      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
611        // Dest must be OrigAI, change this to be a load from the original
612        // pointer (bitcasted), then a store to our new alloca.
613        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
614        Value *SrcPtr = MTI->getSource();
615        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
616        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
617        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
618          AIPTy = PointerType::get(AIPTy->getElementType(),
619                                   SPTy->getAddressSpace());
620        }
621        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
622
623        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
624        SrcVal->setAlignment(MTI->getAlignment());
625        Builder.CreateStore(SrcVal, NewAI);
626      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
627        // Src must be OrigAI, change this to be a load from NewAI then a store
628        // through the original dest pointer (bitcasted).
629        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
630        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
631
632        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
633        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
634        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
635          AIPTy = PointerType::get(AIPTy->getElementType(),
636                                   DPTy->getAddressSpace());
637        }
638        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
639
640        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
641        NewStore->setAlignment(MTI->getAlignment());
642      } else {
643        // Noop transfer. Src == Dst
644      }
645
646      MTI->eraseFromParent();
647      continue;
648    }
649
650    llvm_unreachable("Unsupported operation!");
651  }
652}
653
654/// getScaledElementType - Gets a scaled element type for a partial vector
655/// access of an alloca. The input type must be an integer or float, and
656/// the resulting type must be an integer, float or double.
657static const Type *getScaledElementType(const Type *OldTy,
658                                        unsigned NewBitWidth) {
659  assert((OldTy->isIntegerTy() || OldTy->isFloatTy()) && "Partial vector "
660         "accesses must be scaled from integer or float elements.");
661
662  LLVMContext &Context = OldTy->getContext();
663
664  if (OldTy->isIntegerTy())
665    return Type::getIntNTy(Context, NewBitWidth);
666  if (NewBitWidth == 32)
667    return Type::getFloatTy(Context);
668  if (NewBitWidth == 64)
669    return Type::getDoubleTy(Context);
670
671  llvm_unreachable("Invalid type for a partial vector access of an alloca!");
672}
673
674/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
675/// or vector value FromVal, extracting the bits from the offset specified by
676/// Offset.  This returns the value, which is of type ToType.
677///
678/// This happens when we are converting an "integer union" to a single
679/// integer scalar, or when we are converting a "vector union" to a vector with
680/// insert/extractelement instructions.
681///
682/// Offset is an offset from the original alloca, in bits that need to be
683/// shifted to the right.
684Value *ConvertToScalarInfo::
685ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
686                           uint64_t Offset, IRBuilder<> &Builder) {
687  // If the load is of the whole new alloca, no conversion is needed.
688  if (FromVal->getType() == ToType && Offset == 0)
689    return FromVal;
690
691  // If the result alloca is a vector type, this is either an element
692  // access or a bitcast to another vector type of the same size.
693  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
694    if (ToType->isVectorTy()) {
695      unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
696      if (ToTypeSize == AllocaSize)
697        return Builder.CreateBitCast(FromVal, ToType, "tmp");
698
699      assert(isPowerOf2_64(AllocaSize / ToTypeSize) &&
700             "Partial vector access of an alloca must have a power-of-2 size "
701             "ratio.");
702      assert(Offset == 0 && "Can't extract a value of a smaller vector type "
703                            "from a nonzero offset.");
704
705      const Type *ToElementTy = cast<VectorType>(ToType)->getElementType();
706      const Type *CastElementTy = getScaledElementType(ToElementTy,
707                                                       ToTypeSize * 8);
708      unsigned NumCastVectorElements = AllocaSize / ToTypeSize;
709
710      LLVMContext &Context = FromVal->getContext();
711      const Type *CastTy = VectorType::get(CastElementTy,
712                                           NumCastVectorElements);
713      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
714      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
715                                        Type::getInt32Ty(Context), 0), "tmp");
716      return Builder.CreateBitCast(Extract, ToType, "tmp");
717    }
718
719    // Otherwise it must be an element access.
720    unsigned Elt = 0;
721    if (Offset) {
722      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
723      Elt = Offset/EltSize;
724      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
725    }
726    // Return the element extracted out of it.
727    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
728                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
729    if (V->getType() != ToType)
730      V = Builder.CreateBitCast(V, ToType, "tmp");
731    return V;
732  }
733
734  // If ToType is a first class aggregate, extract out each of the pieces and
735  // use insertvalue's to form the FCA.
736  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
737    const StructLayout &Layout = *TD.getStructLayout(ST);
738    Value *Res = UndefValue::get(ST);
739    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
740      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
741                                        Offset+Layout.getElementOffsetInBits(i),
742                                              Builder);
743      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
744    }
745    return Res;
746  }
747
748  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
749    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
750    Value *Res = UndefValue::get(AT);
751    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
752      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
753                                              Offset+i*EltSize, Builder);
754      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
755    }
756    return Res;
757  }
758
759  // Otherwise, this must be a union that was converted to an integer value.
760  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
761
762  // If this is a big-endian system and the load is narrower than the
763  // full alloca type, we need to do a shift to get the right bits.
764  int ShAmt = 0;
765  if (TD.isBigEndian()) {
766    // On big-endian machines, the lowest bit is stored at the bit offset
767    // from the pointer given by getTypeStoreSizeInBits.  This matters for
768    // integers with a bitwidth that is not a multiple of 8.
769    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
770            TD.getTypeStoreSizeInBits(ToType) - Offset;
771  } else {
772    ShAmt = Offset;
773  }
774
775  // Note: we support negative bitwidths (with shl) which are not defined.
776  // We do this to support (f.e.) loads off the end of a structure where
777  // only some bits are used.
778  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
779    FromVal = Builder.CreateLShr(FromVal,
780                                 ConstantInt::get(FromVal->getType(),
781                                                           ShAmt), "tmp");
782  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
783    FromVal = Builder.CreateShl(FromVal,
784                                ConstantInt::get(FromVal->getType(),
785                                                          -ShAmt), "tmp");
786
787  // Finally, unconditionally truncate the integer to the right width.
788  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
789  if (LIBitWidth < NTy->getBitWidth())
790    FromVal =
791      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
792                                                    LIBitWidth), "tmp");
793  else if (LIBitWidth > NTy->getBitWidth())
794    FromVal =
795       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
796                                                    LIBitWidth), "tmp");
797
798  // If the result is an integer, this is a trunc or bitcast.
799  if (ToType->isIntegerTy()) {
800    // Should be done.
801  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
802    // Just do a bitcast, we know the sizes match up.
803    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
804  } else {
805    // Otherwise must be a pointer.
806    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
807  }
808  assert(FromVal->getType() == ToType && "Didn't convert right?");
809  return FromVal;
810}
811
812/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
813/// or vector value "Old" at the offset specified by Offset.
814///
815/// This happens when we are converting an "integer union" to a
816/// single integer scalar, or when we are converting a "vector union" to a
817/// vector with insert/extractelement instructions.
818///
819/// Offset is an offset from the original alloca, in bits that need to be
820/// shifted to the right.
821Value *ConvertToScalarInfo::
822ConvertScalar_InsertValue(Value *SV, Value *Old,
823                          uint64_t Offset, IRBuilder<> &Builder) {
824  // Convert the stored type to the actual type, shift it left to insert
825  // then 'or' into place.
826  const Type *AllocaType = Old->getType();
827  LLVMContext &Context = Old->getContext();
828
829  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
830    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
831    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
832
833    // Changing the whole vector with memset or with an access of a different
834    // vector type?
835    if (ValSize == VecSize)
836      return Builder.CreateBitCast(SV, AllocaType, "tmp");
837
838    if (SV->getType()->isVectorTy() && isPowerOf2_64(VecSize / ValSize)) {
839      assert(Offset == 0 && "Can't insert a value of a smaller vector type at "
840                            "a nonzero offset.");
841
842      const Type *ToElementTy =
843        cast<VectorType>(SV->getType())->getElementType();
844      const Type *CastElementTy = getScaledElementType(ToElementTy, ValSize);
845      unsigned NumCastVectorElements = VecSize / ValSize;
846
847      LLVMContext &Context = SV->getContext();
848      const Type *OldCastTy = VectorType::get(CastElementTy,
849                                              NumCastVectorElements);
850      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
851
852      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
853      Value *Insert =
854        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
855                                    Type::getInt32Ty(Context), 0), "tmp");
856      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
857    }
858
859    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
860
861    // Must be an element insertion.
862    unsigned Elt = Offset/EltSize;
863
864    if (SV->getType() != VTy->getElementType())
865      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
866
867    SV = Builder.CreateInsertElement(Old, SV,
868                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
869                                     "tmp");
870    return SV;
871  }
872
873  // If SV is a first-class aggregate value, insert each value recursively.
874  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
875    const StructLayout &Layout = *TD.getStructLayout(ST);
876    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
877      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
878      Old = ConvertScalar_InsertValue(Elt, Old,
879                                      Offset+Layout.getElementOffsetInBits(i),
880                                      Builder);
881    }
882    return Old;
883  }
884
885  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
886    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
887    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
888      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
889      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
890    }
891    return Old;
892  }
893
894  // If SV is a float, convert it to the appropriate integer type.
895  // If it is a pointer, do the same.
896  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
897  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
898  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
899  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
900  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
901    SV = Builder.CreateBitCast(SV,
902                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
903  else if (SV->getType()->isPointerTy())
904    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
905
906  // Zero extend or truncate the value if needed.
907  if (SV->getType() != AllocaType) {
908    if (SV->getType()->getPrimitiveSizeInBits() <
909             AllocaType->getPrimitiveSizeInBits())
910      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
911    else {
912      // Truncation may be needed if storing more than the alloca can hold
913      // (undefined behavior).
914      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
915      SrcWidth = DestWidth;
916      SrcStoreWidth = DestStoreWidth;
917    }
918  }
919
920  // If this is a big-endian system and the store is narrower than the
921  // full alloca type, we need to do a shift to get the right bits.
922  int ShAmt = 0;
923  if (TD.isBigEndian()) {
924    // On big-endian machines, the lowest bit is stored at the bit offset
925    // from the pointer given by getTypeStoreSizeInBits.  This matters for
926    // integers with a bitwidth that is not a multiple of 8.
927    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
928  } else {
929    ShAmt = Offset;
930  }
931
932  // Note: we support negative bitwidths (with shr) which are not defined.
933  // We do this to support (f.e.) stores off the end of a structure where
934  // only some bits in the structure are set.
935  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
936  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
937    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
938                           ShAmt), "tmp");
939    Mask <<= ShAmt;
940  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
941    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
942                            -ShAmt), "tmp");
943    Mask = Mask.lshr(-ShAmt);
944  }
945
946  // Mask out the bits we are about to insert from the old value, and or
947  // in the new bits.
948  if (SrcWidth != DestWidth) {
949    assert(DestWidth > SrcWidth);
950    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
951    SV = Builder.CreateOr(Old, SV, "ins");
952  }
953  return SV;
954}
955
956
957//===----------------------------------------------------------------------===//
958// SRoA Driver
959//===----------------------------------------------------------------------===//
960
961
962bool SROA::runOnFunction(Function &F) {
963  TD = getAnalysisIfAvailable<TargetData>();
964
965  bool Changed = performPromotion(F);
966
967  // FIXME: ScalarRepl currently depends on TargetData more than it
968  // theoretically needs to. It should be refactored in order to support
969  // target-independent IR. Until this is done, just skip the actual
970  // scalar-replacement portion of this pass.
971  if (!TD) return Changed;
972
973  while (1) {
974    bool LocalChange = performScalarRepl(F);
975    if (!LocalChange) break;   // No need to repromote if no scalarrepl
976    Changed = true;
977    LocalChange = performPromotion(F);
978    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
979  }
980
981  return Changed;
982}
983
984namespace {
985class AllocaPromoter : public LoadAndStorePromoter {
986  AllocaInst *AI;
987public:
988  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
989    : LoadAndStorePromoter(Insts, S), AI(0) {}
990
991  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
992    // Remember which alloca we're promoting (for isInstInList).
993    this->AI = AI;
994    LoadAndStorePromoter::run(Insts);
995    AI->eraseFromParent();
996  }
997
998  virtual bool isInstInList(Instruction *I,
999                            const SmallVectorImpl<Instruction*> &Insts) const {
1000    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1001      return LI->getOperand(0) == AI;
1002    return cast<StoreInst>(I)->getPointerOperand() == AI;
1003  }
1004};
1005} // end anon namespace
1006
1007/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1008/// subsequently loaded can be rewritten to load both input pointers and then
1009/// select between the result, allowing the load of the alloca to be promoted.
1010/// From this:
1011///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1012///   %V = load i32* %P2
1013/// to:
1014///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1015///   %V2 = load i32* %Other
1016///   %V = select i1 %cond, i32 %V1, i32 %V2
1017///
1018/// We can do this to a select if its only uses are loads and if the operand to
1019/// the select can be loaded unconditionally.
1020static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1021  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1022  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1023
1024  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1025       UI != UE; ++UI) {
1026    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1027    if (LI == 0 || LI->isVolatile()) return false;
1028
1029    // Both operands to the select need to be dereferencable, either absolutely
1030    // (e.g. allocas) or at this point because we can see other accesses to it.
1031    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1032                                                    LI->getAlignment(), TD))
1033      return false;
1034    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1035                                                    LI->getAlignment(), TD))
1036      return false;
1037  }
1038
1039  return true;
1040}
1041
1042/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1043/// subsequently loaded can be rewritten to load both input pointers in the pred
1044/// blocks and then PHI the results, allowing the load of the alloca to be
1045/// promoted.
1046/// From this:
1047///   %P2 = phi [i32* %Alloca, i32* %Other]
1048///   %V = load i32* %P2
1049/// to:
1050///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1051///   ...
1052///   %V2 = load i32* %Other
1053///   ...
1054///   %V = phi [i32 %V1, i32 %V2]
1055///
1056/// We can do this to a select if its only uses are loads and if the operand to
1057/// the select can be loaded unconditionally.
1058static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1059  // For now, we can only do this promotion if the load is in the same block as
1060  // the PHI, and if there are no stores between the phi and load.
1061  // TODO: Allow recursive phi users.
1062  // TODO: Allow stores.
1063  BasicBlock *BB = PN->getParent();
1064  unsigned MaxAlign = 0;
1065  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1066       UI != UE; ++UI) {
1067    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1068    if (LI == 0 || LI->isVolatile()) return false;
1069
1070    // For now we only allow loads in the same block as the PHI.  This is a
1071    // common case that happens when instcombine merges two loads through a PHI.
1072    if (LI->getParent() != BB) return false;
1073
1074    // Ensure that there are no instructions between the PHI and the load that
1075    // could store.
1076    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1077      if (BBI->mayWriteToMemory())
1078        return false;
1079
1080    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1081  }
1082
1083  // Okay, we know that we have one or more loads in the same block as the PHI.
1084  // We can transform this if it is safe to push the loads into the predecessor
1085  // blocks.  The only thing to watch out for is that we can't put a possibly
1086  // trapping load in the predecessor if it is a critical edge.
1087  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1088    BasicBlock *Pred = PN->getIncomingBlock(i);
1089
1090    // If the predecessor has a single successor, then the edge isn't critical.
1091    if (Pred->getTerminator()->getNumSuccessors() == 1)
1092      continue;
1093
1094    Value *InVal = PN->getIncomingValue(i);
1095
1096    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1097    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1098      if (II->getParent() == Pred)
1099        return false;
1100
1101    // If this pointer is always safe to load, or if we can prove that there is
1102    // already a load in the block, then we can move the load to the pred block.
1103    if (InVal->isDereferenceablePointer() ||
1104        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1105      continue;
1106
1107    return false;
1108  }
1109
1110  return true;
1111}
1112
1113
1114/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1115/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1116/// not quite there, this will transform the code to allow promotion.  As such,
1117/// it is a non-pure predicate.
1118static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1119  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1120            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1121
1122  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1123       UI != UE; ++UI) {
1124    User *U = *UI;
1125    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1126      if (LI->isVolatile())
1127        return false;
1128      continue;
1129    }
1130
1131    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1132      if (SI->getOperand(0) == AI || SI->isVolatile())
1133        return false;   // Don't allow a store OF the AI, only INTO the AI.
1134      continue;
1135    }
1136
1137    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1138      // If the condition being selected on is a constant, fold the select, yes
1139      // this does (rarely) happen early on.
1140      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1141        Value *Result = SI->getOperand(1+CI->isZero());
1142        SI->replaceAllUsesWith(Result);
1143        SI->eraseFromParent();
1144
1145        // This is very rare and we just scrambled the use list of AI, start
1146        // over completely.
1147        return tryToMakeAllocaBePromotable(AI, TD);
1148      }
1149
1150      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1151      // loads, then we can transform this by rewriting the select.
1152      if (!isSafeSelectToSpeculate(SI, TD))
1153        return false;
1154
1155      InstsToRewrite.insert(SI);
1156      continue;
1157    }
1158
1159    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1160      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1161        InstsToRewrite.insert(PN);
1162        continue;
1163      }
1164
1165      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1166      // in the pred blocks, then we can transform this by rewriting the PHI.
1167      if (!isSafePHIToSpeculate(PN, TD))
1168        return false;
1169
1170      InstsToRewrite.insert(PN);
1171      continue;
1172    }
1173
1174    return false;
1175  }
1176
1177  // If there are no instructions to rewrite, then all uses are load/stores and
1178  // we're done!
1179  if (InstsToRewrite.empty())
1180    return true;
1181
1182  // If we have instructions that need to be rewritten for this to be promotable
1183  // take care of it now.
1184  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1185    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1186      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1187      // loads with a new select.
1188      while (!SI->use_empty()) {
1189        LoadInst *LI = cast<LoadInst>(SI->use_back());
1190
1191        IRBuilder<> Builder(LI);
1192        LoadInst *TrueLoad =
1193          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1194        LoadInst *FalseLoad =
1195          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1196
1197        // Transfer alignment and TBAA info if present.
1198        TrueLoad->setAlignment(LI->getAlignment());
1199        FalseLoad->setAlignment(LI->getAlignment());
1200        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1201          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1202          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1203        }
1204
1205        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1206        V->takeName(LI);
1207        LI->replaceAllUsesWith(V);
1208        LI->eraseFromParent();
1209      }
1210
1211      // Now that all the loads are gone, the select is gone too.
1212      SI->eraseFromParent();
1213      continue;
1214    }
1215
1216    // Otherwise, we have a PHI node which allows us to push the loads into the
1217    // predecessors.
1218    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1219    if (PN->use_empty()) {
1220      PN->eraseFromParent();
1221      continue;
1222    }
1223
1224    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1225    PHINode *NewPN = PHINode::Create(LoadTy, PN->getName()+".ld", PN);
1226
1227    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1228    // matter which one we get and if any differ, it doesn't matter.
1229    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1230    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1231    unsigned Align = SomeLoad->getAlignment();
1232
1233    // Rewrite all loads of the PN to use the new PHI.
1234    while (!PN->use_empty()) {
1235      LoadInst *LI = cast<LoadInst>(PN->use_back());
1236      LI->replaceAllUsesWith(NewPN);
1237      LI->eraseFromParent();
1238    }
1239
1240    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1241    // insert them into in case we have multiple edges from the same block.
1242    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1243
1244    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1245      BasicBlock *Pred = PN->getIncomingBlock(i);
1246      LoadInst *&Load = InsertedLoads[Pred];
1247      if (Load == 0) {
1248        Load = new LoadInst(PN->getIncomingValue(i),
1249                            PN->getName() + "." + Pred->getName(),
1250                            Pred->getTerminator());
1251        Load->setAlignment(Align);
1252        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1253      }
1254
1255      NewPN->addIncoming(Load, Pred);
1256    }
1257
1258    PN->eraseFromParent();
1259  }
1260
1261  ++NumAdjusted;
1262  return true;
1263}
1264
1265
1266bool SROA::performPromotion(Function &F) {
1267  std::vector<AllocaInst*> Allocas;
1268  DominatorTree *DT = 0;
1269  if (HasDomTree)
1270    DT = &getAnalysis<DominatorTree>();
1271
1272  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1273
1274  bool Changed = false;
1275  SmallVector<Instruction*, 64> Insts;
1276  while (1) {
1277    Allocas.clear();
1278
1279    // Find allocas that are safe to promote, by looking at all instructions in
1280    // the entry node
1281    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1282      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1283        if (tryToMakeAllocaBePromotable(AI, TD))
1284          Allocas.push_back(AI);
1285
1286    if (Allocas.empty()) break;
1287
1288    if (HasDomTree)
1289      PromoteMemToReg(Allocas, *DT);
1290    else {
1291      SSAUpdater SSA;
1292      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1293        AllocaInst *AI = Allocas[i];
1294
1295        // Build list of instructions to promote.
1296        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1297             UI != E; ++UI)
1298          Insts.push_back(cast<Instruction>(*UI));
1299
1300        AllocaPromoter(Insts, SSA).run(AI, Insts);
1301        Insts.clear();
1302      }
1303    }
1304    NumPromoted += Allocas.size();
1305    Changed = true;
1306  }
1307
1308  return Changed;
1309}
1310
1311
1312/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1313/// SROA.  It must be a struct or array type with a small number of elements.
1314static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1315  const Type *T = AI->getAllocatedType();
1316  // Do not promote any struct into more than 32 separate vars.
1317  if (const StructType *ST = dyn_cast<StructType>(T))
1318    return ST->getNumElements() <= 32;
1319  // Arrays are much less likely to be safe for SROA; only consider
1320  // them if they are very small.
1321  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1322    return AT->getNumElements() <= 8;
1323  return false;
1324}
1325
1326
1327// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1328// which runs on all of the malloc/alloca instructions in the function, removing
1329// them if they are only used by getelementptr instructions.
1330//
1331bool SROA::performScalarRepl(Function &F) {
1332  std::vector<AllocaInst*> WorkList;
1333
1334  // Scan the entry basic block, adding allocas to the worklist.
1335  BasicBlock &BB = F.getEntryBlock();
1336  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1337    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1338      WorkList.push_back(A);
1339
1340  // Process the worklist
1341  bool Changed = false;
1342  while (!WorkList.empty()) {
1343    AllocaInst *AI = WorkList.back();
1344    WorkList.pop_back();
1345
1346    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1347    // with unused elements.
1348    if (AI->use_empty()) {
1349      AI->eraseFromParent();
1350      Changed = true;
1351      continue;
1352    }
1353
1354    // If this alloca is impossible for us to promote, reject it early.
1355    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1356      continue;
1357
1358    // Check to see if this allocation is only modified by a memcpy/memmove from
1359    // a constant global.  If this is the case, we can change all users to use
1360    // the constant global instead.  This is commonly produced by the CFE by
1361    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1362    // is only subsequently read.
1363    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1364      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1365      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1366      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1367      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1368      TheCopy->eraseFromParent();  // Don't mutate the global.
1369      AI->eraseFromParent();
1370      ++NumGlobals;
1371      Changed = true;
1372      continue;
1373    }
1374
1375    // Check to see if we can perform the core SROA transformation.  We cannot
1376    // transform the allocation instruction if it is an array allocation
1377    // (allocations OF arrays are ok though), and an allocation of a scalar
1378    // value cannot be decomposed at all.
1379    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1380
1381    // Do not promote [0 x %struct].
1382    if (AllocaSize == 0) continue;
1383
1384    // Do not promote any struct whose size is too big.
1385    if (AllocaSize > SRThreshold) continue;
1386
1387    // If the alloca looks like a good candidate for scalar replacement, and if
1388    // all its users can be transformed, then split up the aggregate into its
1389    // separate elements.
1390    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1391      DoScalarReplacement(AI, WorkList);
1392      Changed = true;
1393      continue;
1394    }
1395
1396    // If we can turn this aggregate value (potentially with casts) into a
1397    // simple scalar value that can be mem2reg'd into a register value.
1398    // IsNotTrivial tracks whether this is something that mem2reg could have
1399    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1400    // that we can't just check based on the type: the alloca may be of an i32
1401    // but that has pointer arithmetic to set byte 3 of it or something.
1402    if (AllocaInst *NewAI =
1403          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1404      NewAI->takeName(AI);
1405      AI->eraseFromParent();
1406      ++NumConverted;
1407      Changed = true;
1408      continue;
1409    }
1410
1411    // Otherwise, couldn't process this alloca.
1412  }
1413
1414  return Changed;
1415}
1416
1417/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1418/// predicate, do SROA now.
1419void SROA::DoScalarReplacement(AllocaInst *AI,
1420                               std::vector<AllocaInst*> &WorkList) {
1421  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1422  SmallVector<AllocaInst*, 32> ElementAllocas;
1423  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1424    ElementAllocas.reserve(ST->getNumContainedTypes());
1425    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1426      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1427                                      AI->getAlignment(),
1428                                      AI->getName() + "." + Twine(i), AI);
1429      ElementAllocas.push_back(NA);
1430      WorkList.push_back(NA);  // Add to worklist for recursive processing
1431    }
1432  } else {
1433    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1434    ElementAllocas.reserve(AT->getNumElements());
1435    const Type *ElTy = AT->getElementType();
1436    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1437      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1438                                      AI->getName() + "." + Twine(i), AI);
1439      ElementAllocas.push_back(NA);
1440      WorkList.push_back(NA);  // Add to worklist for recursive processing
1441    }
1442  }
1443
1444  // Now that we have created the new alloca instructions, rewrite all the
1445  // uses of the old alloca.
1446  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1447
1448  // Now erase any instructions that were made dead while rewriting the alloca.
1449  DeleteDeadInstructions();
1450  AI->eraseFromParent();
1451
1452  ++NumReplaced;
1453}
1454
1455/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1456/// recursively including all their operands that become trivially dead.
1457void SROA::DeleteDeadInstructions() {
1458  while (!DeadInsts.empty()) {
1459    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1460
1461    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1462      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1463        // Zero out the operand and see if it becomes trivially dead.
1464        // (But, don't add allocas to the dead instruction list -- they are
1465        // already on the worklist and will be deleted separately.)
1466        *OI = 0;
1467        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1468          DeadInsts.push_back(U);
1469      }
1470
1471    I->eraseFromParent();
1472  }
1473}
1474
1475/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1476/// performing scalar replacement of alloca AI.  The results are flagged in
1477/// the Info parameter.  Offset indicates the position within AI that is
1478/// referenced by this instruction.
1479void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1480                               AllocaInfo &Info) {
1481  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1482    Instruction *User = cast<Instruction>(*UI);
1483
1484    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1485      isSafeForScalarRepl(BC, Offset, Info);
1486    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1487      uint64_t GEPOffset = Offset;
1488      isSafeGEP(GEPI, GEPOffset, Info);
1489      if (!Info.isUnsafe)
1490        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1491    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1492      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1493      if (Length == 0)
1494        return MarkUnsafe(Info, User);
1495      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1496                      UI.getOperandNo() == 0, Info, MI,
1497                      true /*AllowWholeAccess*/);
1498    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1499      if (LI->isVolatile())
1500        return MarkUnsafe(Info, User);
1501      const Type *LIType = LI->getType();
1502      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1503                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1504      Info.hasALoadOrStore = true;
1505
1506    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1507      // Store is ok if storing INTO the pointer, not storing the pointer
1508      if (SI->isVolatile() || SI->getOperand(0) == I)
1509        return MarkUnsafe(Info, User);
1510
1511      const Type *SIType = SI->getOperand(0)->getType();
1512      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1513                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1514      Info.hasALoadOrStore = true;
1515    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1516      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1517    } else {
1518      return MarkUnsafe(Info, User);
1519    }
1520    if (Info.isUnsafe) return;
1521  }
1522}
1523
1524
1525/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1526/// derived from the alloca, we can often still split the alloca into elements.
1527/// This is useful if we have a large alloca where one element is phi'd
1528/// together somewhere: we can SRoA and promote all the other elements even if
1529/// we end up not being able to promote this one.
1530///
1531/// All we require is that the uses of the PHI do not index into other parts of
1532/// the alloca.  The most important use case for this is single load and stores
1533/// that are PHI'd together, which can happen due to code sinking.
1534void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1535                                           AllocaInfo &Info) {
1536  // If we've already checked this PHI, don't do it again.
1537  if (PHINode *PN = dyn_cast<PHINode>(I))
1538    if (!Info.CheckedPHIs.insert(PN))
1539      return;
1540
1541  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1542    Instruction *User = cast<Instruction>(*UI);
1543
1544    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1545      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1546    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1547      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1548      // but would have to prove that we're staying inside of an element being
1549      // promoted.
1550      if (!GEPI->hasAllZeroIndices())
1551        return MarkUnsafe(Info, User);
1552      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1553    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1554      if (LI->isVolatile())
1555        return MarkUnsafe(Info, User);
1556      const Type *LIType = LI->getType();
1557      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1558                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1559      Info.hasALoadOrStore = true;
1560
1561    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1562      // Store is ok if storing INTO the pointer, not storing the pointer
1563      if (SI->isVolatile() || SI->getOperand(0) == I)
1564        return MarkUnsafe(Info, User);
1565
1566      const Type *SIType = SI->getOperand(0)->getType();
1567      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1568                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1569      Info.hasALoadOrStore = true;
1570    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1571      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1572    } else {
1573      return MarkUnsafe(Info, User);
1574    }
1575    if (Info.isUnsafe) return;
1576  }
1577}
1578
1579/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1580/// replacement.  It is safe when all the indices are constant, in-bounds
1581/// references, and when the resulting offset corresponds to an element within
1582/// the alloca type.  The results are flagged in the Info parameter.  Upon
1583/// return, Offset is adjusted as specified by the GEP indices.
1584void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1585                     uint64_t &Offset, AllocaInfo &Info) {
1586  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1587  if (GEPIt == E)
1588    return;
1589
1590  // Walk through the GEP type indices, checking the types that this indexes
1591  // into.
1592  for (; GEPIt != E; ++GEPIt) {
1593    // Ignore struct elements, no extra checking needed for these.
1594    if ((*GEPIt)->isStructTy())
1595      continue;
1596
1597    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1598    if (!IdxVal)
1599      return MarkUnsafe(Info, GEPI);
1600  }
1601
1602  // Compute the offset due to this GEP and check if the alloca has a
1603  // component element at that offset.
1604  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1605  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1606                                 &Indices[0], Indices.size());
1607  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1608    MarkUnsafe(Info, GEPI);
1609}
1610
1611/// isHomogeneousAggregate - Check if type T is a struct or array containing
1612/// elements of the same type (which is always true for arrays).  If so,
1613/// return true with NumElts and EltTy set to the number of elements and the
1614/// element type, respectively.
1615static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1616                                   const Type *&EltTy) {
1617  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1618    NumElts = AT->getNumElements();
1619    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1620    return true;
1621  }
1622  if (const StructType *ST = dyn_cast<StructType>(T)) {
1623    NumElts = ST->getNumContainedTypes();
1624    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1625    for (unsigned n = 1; n < NumElts; ++n) {
1626      if (ST->getContainedType(n) != EltTy)
1627        return false;
1628    }
1629    return true;
1630  }
1631  return false;
1632}
1633
1634/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1635/// "homogeneous" aggregates with the same element type and number of elements.
1636static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1637  if (T1 == T2)
1638    return true;
1639
1640  unsigned NumElts1, NumElts2;
1641  const Type *EltTy1, *EltTy2;
1642  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1643      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1644      NumElts1 == NumElts2 &&
1645      EltTy1 == EltTy2)
1646    return true;
1647
1648  return false;
1649}
1650
1651/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1652/// alloca or has an offset and size that corresponds to a component element
1653/// within it.  The offset checked here may have been formed from a GEP with a
1654/// pointer bitcasted to a different type.
1655///
1656/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1657/// unit.  If false, it only allows accesses known to be in a single element.
1658void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1659                           const Type *MemOpType, bool isStore,
1660                           AllocaInfo &Info, Instruction *TheAccess,
1661                           bool AllowWholeAccess) {
1662  // Check if this is a load/store of the entire alloca.
1663  if (Offset == 0 && AllowWholeAccess &&
1664      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1665    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1666    // loads/stores (which are essentially the same as the MemIntrinsics with
1667    // regard to copying padding between elements).  But, if an alloca is
1668    // flagged as both a source and destination of such operations, we'll need
1669    // to check later for padding between elements.
1670    if (!MemOpType || MemOpType->isIntegerTy()) {
1671      if (isStore)
1672        Info.isMemCpyDst = true;
1673      else
1674        Info.isMemCpySrc = true;
1675      return;
1676    }
1677    // This is also safe for references using a type that is compatible with
1678    // the type of the alloca, so that loads/stores can be rewritten using
1679    // insertvalue/extractvalue.
1680    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1681      Info.hasSubelementAccess = true;
1682      return;
1683    }
1684  }
1685  // Check if the offset/size correspond to a component within the alloca type.
1686  const Type *T = Info.AI->getAllocatedType();
1687  if (TypeHasComponent(T, Offset, MemSize)) {
1688    Info.hasSubelementAccess = true;
1689    return;
1690  }
1691
1692  return MarkUnsafe(Info, TheAccess);
1693}
1694
1695/// TypeHasComponent - Return true if T has a component type with the
1696/// specified offset and size.  If Size is zero, do not check the size.
1697bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1698  const Type *EltTy;
1699  uint64_t EltSize;
1700  if (const StructType *ST = dyn_cast<StructType>(T)) {
1701    const StructLayout *Layout = TD->getStructLayout(ST);
1702    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1703    EltTy = ST->getContainedType(EltIdx);
1704    EltSize = TD->getTypeAllocSize(EltTy);
1705    Offset -= Layout->getElementOffset(EltIdx);
1706  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1707    EltTy = AT->getElementType();
1708    EltSize = TD->getTypeAllocSize(EltTy);
1709    if (Offset >= AT->getNumElements() * EltSize)
1710      return false;
1711    Offset %= EltSize;
1712  } else {
1713    return false;
1714  }
1715  if (Offset == 0 && (Size == 0 || EltSize == Size))
1716    return true;
1717  // Check if the component spans multiple elements.
1718  if (Offset + Size > EltSize)
1719    return false;
1720  return TypeHasComponent(EltTy, Offset, Size);
1721}
1722
1723/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1724/// the instruction I, which references it, to use the separate elements.
1725/// Offset indicates the position within AI that is referenced by this
1726/// instruction.
1727void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1728                                SmallVector<AllocaInst*, 32> &NewElts) {
1729  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1730    Use &TheUse = UI.getUse();
1731    Instruction *User = cast<Instruction>(*UI++);
1732
1733    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1734      RewriteBitCast(BC, AI, Offset, NewElts);
1735      continue;
1736    }
1737
1738    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1739      RewriteGEP(GEPI, AI, Offset, NewElts);
1740      continue;
1741    }
1742
1743    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1744      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1745      uint64_t MemSize = Length->getZExtValue();
1746      if (Offset == 0 &&
1747          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1748        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1749      // Otherwise the intrinsic can only touch a single element and the
1750      // address operand will be updated, so nothing else needs to be done.
1751      continue;
1752    }
1753
1754    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1755      const Type *LIType = LI->getType();
1756
1757      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1758        // Replace:
1759        //   %res = load { i32, i32 }* %alloc
1760        // with:
1761        //   %load.0 = load i32* %alloc.0
1762        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1763        //   %load.1 = load i32* %alloc.1
1764        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1765        // (Also works for arrays instead of structs)
1766        Value *Insert = UndefValue::get(LIType);
1767        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1768          Value *Load = new LoadInst(NewElts[i], "load", LI);
1769          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1770        }
1771        LI->replaceAllUsesWith(Insert);
1772        DeadInsts.push_back(LI);
1773      } else if (LIType->isIntegerTy() &&
1774                 TD->getTypeAllocSize(LIType) ==
1775                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1776        // If this is a load of the entire alloca to an integer, rewrite it.
1777        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1778      }
1779      continue;
1780    }
1781
1782    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1783      Value *Val = SI->getOperand(0);
1784      const Type *SIType = Val->getType();
1785      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1786        // Replace:
1787        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1788        // with:
1789        //   %val.0 = extractvalue { i32, i32 } %val, 0
1790        //   store i32 %val.0, i32* %alloc.0
1791        //   %val.1 = extractvalue { i32, i32 } %val, 1
1792        //   store i32 %val.1, i32* %alloc.1
1793        // (Also works for arrays instead of structs)
1794        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1795          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1796          new StoreInst(Extract, NewElts[i], SI);
1797        }
1798        DeadInsts.push_back(SI);
1799      } else if (SIType->isIntegerTy() &&
1800                 TD->getTypeAllocSize(SIType) ==
1801                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1802        // If this is a store of the entire alloca from an integer, rewrite it.
1803        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1804      }
1805      continue;
1806    }
1807
1808    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1809      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1810      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1811      // the new pointer.
1812      if (!isa<AllocaInst>(I)) continue;
1813
1814      assert(Offset == 0 && NewElts[0] &&
1815             "Direct alloca use should have a zero offset");
1816
1817      // If we have a use of the alloca, we know the derived uses will be
1818      // utilizing just the first element of the scalarized result.  Insert a
1819      // bitcast of the first alloca before the user as required.
1820      AllocaInst *NewAI = NewElts[0];
1821      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1822      NewAI->moveBefore(BCI);
1823      TheUse = BCI;
1824      continue;
1825    }
1826  }
1827}
1828
1829/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1830/// and recursively continue updating all of its uses.
1831void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1832                          SmallVector<AllocaInst*, 32> &NewElts) {
1833  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1834  if (BC->getOperand(0) != AI)
1835    return;
1836
1837  // The bitcast references the original alloca.  Replace its uses with
1838  // references to the first new element alloca.
1839  Instruction *Val = NewElts[0];
1840  if (Val->getType() != BC->getDestTy()) {
1841    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1842    Val->takeName(BC);
1843  }
1844  BC->replaceAllUsesWith(Val);
1845  DeadInsts.push_back(BC);
1846}
1847
1848/// FindElementAndOffset - Return the index of the element containing Offset
1849/// within the specified type, which must be either a struct or an array.
1850/// Sets T to the type of the element and Offset to the offset within that
1851/// element.  IdxTy is set to the type of the index result to be used in a
1852/// GEP instruction.
1853uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1854                                    const Type *&IdxTy) {
1855  uint64_t Idx = 0;
1856  if (const StructType *ST = dyn_cast<StructType>(T)) {
1857    const StructLayout *Layout = TD->getStructLayout(ST);
1858    Idx = Layout->getElementContainingOffset(Offset);
1859    T = ST->getContainedType(Idx);
1860    Offset -= Layout->getElementOffset(Idx);
1861    IdxTy = Type::getInt32Ty(T->getContext());
1862    return Idx;
1863  }
1864  const ArrayType *AT = cast<ArrayType>(T);
1865  T = AT->getElementType();
1866  uint64_t EltSize = TD->getTypeAllocSize(T);
1867  Idx = Offset / EltSize;
1868  Offset -= Idx * EltSize;
1869  IdxTy = Type::getInt64Ty(T->getContext());
1870  return Idx;
1871}
1872
1873/// RewriteGEP - Check if this GEP instruction moves the pointer across
1874/// elements of the alloca that are being split apart, and if so, rewrite
1875/// the GEP to be relative to the new element.
1876void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1877                      SmallVector<AllocaInst*, 32> &NewElts) {
1878  uint64_t OldOffset = Offset;
1879  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1880  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1881                                 &Indices[0], Indices.size());
1882
1883  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1884
1885  const Type *T = AI->getAllocatedType();
1886  const Type *IdxTy;
1887  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1888  if (GEPI->getOperand(0) == AI)
1889    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1890
1891  T = AI->getAllocatedType();
1892  uint64_t EltOffset = Offset;
1893  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1894
1895  // If this GEP does not move the pointer across elements of the alloca
1896  // being split, then it does not needs to be rewritten.
1897  if (Idx == OldIdx)
1898    return;
1899
1900  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1901  SmallVector<Value*, 8> NewArgs;
1902  NewArgs.push_back(Constant::getNullValue(i32Ty));
1903  while (EltOffset != 0) {
1904    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1905    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1906  }
1907  Instruction *Val = NewElts[Idx];
1908  if (NewArgs.size() > 1) {
1909    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1910                                            NewArgs.end(), "", GEPI);
1911    Val->takeName(GEPI);
1912  }
1913  if (Val->getType() != GEPI->getType())
1914    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1915  GEPI->replaceAllUsesWith(Val);
1916  DeadInsts.push_back(GEPI);
1917}
1918
1919/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1920/// Rewrite it to copy or set the elements of the scalarized memory.
1921void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1922                                        AllocaInst *AI,
1923                                        SmallVector<AllocaInst*, 32> &NewElts) {
1924  // If this is a memcpy/memmove, construct the other pointer as the
1925  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1926  // that doesn't have anything to do with the alloca that we are promoting. For
1927  // memset, this Value* stays null.
1928  Value *OtherPtr = 0;
1929  unsigned MemAlignment = MI->getAlignment();
1930  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1931    if (Inst == MTI->getRawDest())
1932      OtherPtr = MTI->getRawSource();
1933    else {
1934      assert(Inst == MTI->getRawSource());
1935      OtherPtr = MTI->getRawDest();
1936    }
1937  }
1938
1939  // If there is an other pointer, we want to convert it to the same pointer
1940  // type as AI has, so we can GEP through it safely.
1941  if (OtherPtr) {
1942    unsigned AddrSpace =
1943      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1944
1945    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
1946    // optimization, but it's also required to detect the corner case where
1947    // both pointer operands are referencing the same memory, and where
1948    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
1949    // function is only called for mem intrinsics that access the whole
1950    // aggregate, so non-zero GEPs are not an issue here.)
1951    OtherPtr = OtherPtr->stripPointerCasts();
1952
1953    // Copying the alloca to itself is a no-op: just delete it.
1954    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1955      // This code will run twice for a no-op memcpy -- once for each operand.
1956      // Put only one reference to MI on the DeadInsts list.
1957      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1958             E = DeadInsts.end(); I != E; ++I)
1959        if (*I == MI) return;
1960      DeadInsts.push_back(MI);
1961      return;
1962    }
1963
1964    // If the pointer is not the right type, insert a bitcast to the right
1965    // type.
1966    const Type *NewTy =
1967      PointerType::get(AI->getType()->getElementType(), AddrSpace);
1968
1969    if (OtherPtr->getType() != NewTy)
1970      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1971  }
1972
1973  // Process each element of the aggregate.
1974  bool SROADest = MI->getRawDest() == Inst;
1975
1976  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1977
1978  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1979    // If this is a memcpy/memmove, emit a GEP of the other element address.
1980    Value *OtherElt = 0;
1981    unsigned OtherEltAlign = MemAlignment;
1982
1983    if (OtherPtr) {
1984      Value *Idx[2] = { Zero,
1985                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1986      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1987                                              OtherPtr->getName()+"."+Twine(i),
1988                                                   MI);
1989      uint64_t EltOffset;
1990      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1991      const Type *OtherTy = OtherPtrTy->getElementType();
1992      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1993        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1994      } else {
1995        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
1996        EltOffset = TD->getTypeAllocSize(EltTy)*i;
1997      }
1998
1999      // The alignment of the other pointer is the guaranteed alignment of the
2000      // element, which is affected by both the known alignment of the whole
2001      // mem intrinsic and the alignment of the element.  If the alignment of
2002      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2003      // known alignment is just 4 bytes.
2004      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2005    }
2006
2007    Value *EltPtr = NewElts[i];
2008    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2009
2010    // If we got down to a scalar, insert a load or store as appropriate.
2011    if (EltTy->isSingleValueType()) {
2012      if (isa<MemTransferInst>(MI)) {
2013        if (SROADest) {
2014          // From Other to Alloca.
2015          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2016          new StoreInst(Elt, EltPtr, MI);
2017        } else {
2018          // From Alloca to Other.
2019          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2020          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2021        }
2022        continue;
2023      }
2024      assert(isa<MemSetInst>(MI));
2025
2026      // If the stored element is zero (common case), just store a null
2027      // constant.
2028      Constant *StoreVal;
2029      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2030        if (CI->isZero()) {
2031          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2032        } else {
2033          // If EltTy is a vector type, get the element type.
2034          const Type *ValTy = EltTy->getScalarType();
2035
2036          // Construct an integer with the right value.
2037          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2038          APInt OneVal(EltSize, CI->getZExtValue());
2039          APInt TotalVal(OneVal);
2040          // Set each byte.
2041          for (unsigned i = 0; 8*i < EltSize; ++i) {
2042            TotalVal = TotalVal.shl(8);
2043            TotalVal |= OneVal;
2044          }
2045
2046          // Convert the integer value to the appropriate type.
2047          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2048          if (ValTy->isPointerTy())
2049            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2050          else if (ValTy->isFloatingPointTy())
2051            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2052          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2053
2054          // If the requested value was a vector constant, create it.
2055          if (EltTy != ValTy) {
2056            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2057            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2058            StoreVal = ConstantVector::get(Elts);
2059          }
2060        }
2061        new StoreInst(StoreVal, EltPtr, MI);
2062        continue;
2063      }
2064      // Otherwise, if we're storing a byte variable, use a memset call for
2065      // this element.
2066    }
2067
2068    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2069
2070    IRBuilder<> Builder(MI);
2071
2072    // Finally, insert the meminst for this element.
2073    if (isa<MemSetInst>(MI)) {
2074      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2075                           MI->isVolatile());
2076    } else {
2077      assert(isa<MemTransferInst>(MI));
2078      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2079      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2080
2081      if (isa<MemCpyInst>(MI))
2082        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2083      else
2084        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2085    }
2086  }
2087  DeadInsts.push_back(MI);
2088}
2089
2090/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2091/// overwrites the entire allocation.  Extract out the pieces of the stored
2092/// integer and store them individually.
2093void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2094                                         SmallVector<AllocaInst*, 32> &NewElts){
2095  // Extract each element out of the integer according to its structure offset
2096  // and store the element value to the individual alloca.
2097  Value *SrcVal = SI->getOperand(0);
2098  const Type *AllocaEltTy = AI->getAllocatedType();
2099  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2100
2101  IRBuilder<> Builder(SI);
2102
2103  // Handle tail padding by extending the operand
2104  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2105    SrcVal = Builder.CreateZExt(SrcVal,
2106                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2107
2108  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2109               << '\n');
2110
2111  // There are two forms here: AI could be an array or struct.  Both cases
2112  // have different ways to compute the element offset.
2113  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2114    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2115
2116    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2117      // Get the number of bits to shift SrcVal to get the value.
2118      const Type *FieldTy = EltSTy->getElementType(i);
2119      uint64_t Shift = Layout->getElementOffsetInBits(i);
2120
2121      if (TD->isBigEndian())
2122        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2123
2124      Value *EltVal = SrcVal;
2125      if (Shift) {
2126        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2127        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2128      }
2129
2130      // Truncate down to an integer of the right size.
2131      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2132
2133      // Ignore zero sized fields like {}, they obviously contain no data.
2134      if (FieldSizeBits == 0) continue;
2135
2136      if (FieldSizeBits != AllocaSizeBits)
2137        EltVal = Builder.CreateTrunc(EltVal,
2138                             IntegerType::get(SI->getContext(), FieldSizeBits));
2139      Value *DestField = NewElts[i];
2140      if (EltVal->getType() == FieldTy) {
2141        // Storing to an integer field of this size, just do it.
2142      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2143        // Bitcast to the right element type (for fp/vector values).
2144        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2145      } else {
2146        // Otherwise, bitcast the dest pointer (for aggregates).
2147        DestField = Builder.CreateBitCast(DestField,
2148                                     PointerType::getUnqual(EltVal->getType()));
2149      }
2150      new StoreInst(EltVal, DestField, SI);
2151    }
2152
2153  } else {
2154    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2155    const Type *ArrayEltTy = ATy->getElementType();
2156    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2157    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2158
2159    uint64_t Shift;
2160
2161    if (TD->isBigEndian())
2162      Shift = AllocaSizeBits-ElementOffset;
2163    else
2164      Shift = 0;
2165
2166    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2167      // Ignore zero sized fields like {}, they obviously contain no data.
2168      if (ElementSizeBits == 0) continue;
2169
2170      Value *EltVal = SrcVal;
2171      if (Shift) {
2172        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2173        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2174      }
2175
2176      // Truncate down to an integer of the right size.
2177      if (ElementSizeBits != AllocaSizeBits)
2178        EltVal = Builder.CreateTrunc(EltVal,
2179                                     IntegerType::get(SI->getContext(),
2180                                                      ElementSizeBits));
2181      Value *DestField = NewElts[i];
2182      if (EltVal->getType() == ArrayEltTy) {
2183        // Storing to an integer field of this size, just do it.
2184      } else if (ArrayEltTy->isFloatingPointTy() ||
2185                 ArrayEltTy->isVectorTy()) {
2186        // Bitcast to the right element type (for fp/vector values).
2187        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2188      } else {
2189        // Otherwise, bitcast the dest pointer (for aggregates).
2190        DestField = Builder.CreateBitCast(DestField,
2191                                     PointerType::getUnqual(EltVal->getType()));
2192      }
2193      new StoreInst(EltVal, DestField, SI);
2194
2195      if (TD->isBigEndian())
2196        Shift -= ElementOffset;
2197      else
2198        Shift += ElementOffset;
2199    }
2200  }
2201
2202  DeadInsts.push_back(SI);
2203}
2204
2205/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2206/// an integer.  Load the individual pieces to form the aggregate value.
2207void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2208                                        SmallVector<AllocaInst*, 32> &NewElts) {
2209  // Extract each element out of the NewElts according to its structure offset
2210  // and form the result value.
2211  const Type *AllocaEltTy = AI->getAllocatedType();
2212  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2213
2214  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2215               << '\n');
2216
2217  // There are two forms here: AI could be an array or struct.  Both cases
2218  // have different ways to compute the element offset.
2219  const StructLayout *Layout = 0;
2220  uint64_t ArrayEltBitOffset = 0;
2221  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2222    Layout = TD->getStructLayout(EltSTy);
2223  } else {
2224    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2225    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2226  }
2227
2228  Value *ResultVal =
2229    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2230
2231  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2232    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2233    // the pointer to an integer of the same size before doing the load.
2234    Value *SrcField = NewElts[i];
2235    const Type *FieldTy =
2236      cast<PointerType>(SrcField->getType())->getElementType();
2237    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2238
2239    // Ignore zero sized fields like {}, they obviously contain no data.
2240    if (FieldSizeBits == 0) continue;
2241
2242    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2243                                                     FieldSizeBits);
2244    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2245        !FieldTy->isVectorTy())
2246      SrcField = new BitCastInst(SrcField,
2247                                 PointerType::getUnqual(FieldIntTy),
2248                                 "", LI);
2249    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2250
2251    // If SrcField is a fp or vector of the right size but that isn't an
2252    // integer type, bitcast to an integer so we can shift it.
2253    if (SrcField->getType() != FieldIntTy)
2254      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2255
2256    // Zero extend the field to be the same size as the final alloca so that
2257    // we can shift and insert it.
2258    if (SrcField->getType() != ResultVal->getType())
2259      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2260
2261    // Determine the number of bits to shift SrcField.
2262    uint64_t Shift;
2263    if (Layout) // Struct case.
2264      Shift = Layout->getElementOffsetInBits(i);
2265    else  // Array case.
2266      Shift = i*ArrayEltBitOffset;
2267
2268    if (TD->isBigEndian())
2269      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2270
2271    if (Shift) {
2272      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2273      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2274    }
2275
2276    // Don't create an 'or x, 0' on the first iteration.
2277    if (!isa<Constant>(ResultVal) ||
2278        !cast<Constant>(ResultVal)->isNullValue())
2279      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2280    else
2281      ResultVal = SrcField;
2282  }
2283
2284  // Handle tail padding by truncating the result
2285  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2286    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2287
2288  LI->replaceAllUsesWith(ResultVal);
2289  DeadInsts.push_back(LI);
2290}
2291
2292/// HasPadding - Return true if the specified type has any structure or
2293/// alignment padding in between the elements that would be split apart
2294/// by SROA; return false otherwise.
2295static bool HasPadding(const Type *Ty, const TargetData &TD) {
2296  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2297    Ty = ATy->getElementType();
2298    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2299  }
2300
2301  // SROA currently handles only Arrays and Structs.
2302  const StructType *STy = cast<StructType>(Ty);
2303  const StructLayout *SL = TD.getStructLayout(STy);
2304  unsigned PrevFieldBitOffset = 0;
2305  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2306    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2307
2308    // Check to see if there is any padding between this element and the
2309    // previous one.
2310    if (i) {
2311      unsigned PrevFieldEnd =
2312        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2313      if (PrevFieldEnd < FieldBitOffset)
2314        return true;
2315    }
2316    PrevFieldBitOffset = FieldBitOffset;
2317  }
2318  // Check for tail padding.
2319  if (unsigned EltCount = STy->getNumElements()) {
2320    unsigned PrevFieldEnd = PrevFieldBitOffset +
2321      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2322    if (PrevFieldEnd < SL->getSizeInBits())
2323      return true;
2324  }
2325  return false;
2326}
2327
2328/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2329/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2330/// or 1 if safe after canonicalization has been performed.
2331bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2332  // Loop over the use list of the alloca.  We can only transform it if all of
2333  // the users are safe to transform.
2334  AllocaInfo Info(AI);
2335
2336  isSafeForScalarRepl(AI, 0, Info);
2337  if (Info.isUnsafe) {
2338    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2339    return false;
2340  }
2341
2342  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2343  // source and destination, we have to be careful.  In particular, the memcpy
2344  // could be moving around elements that live in structure padding of the LLVM
2345  // types, but may actually be used.  In these cases, we refuse to promote the
2346  // struct.
2347  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2348      HasPadding(AI->getAllocatedType(), *TD))
2349    return false;
2350
2351  // If the alloca never has an access to just *part* of it, but is accessed
2352  // via loads and stores, then we should use ConvertToScalarInfo to promote
2353  // the alloca instead of promoting each piece at a time and inserting fission
2354  // and fusion code.
2355  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2356    // If the struct/array just has one element, use basic SRoA.
2357    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2358      if (ST->getNumElements() > 1) return false;
2359    } else {
2360      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2361        return false;
2362    }
2363  }
2364
2365  return true;
2366}
2367
2368
2369
2370/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2371/// some part of a constant global variable.  This intentionally only accepts
2372/// constant expressions because we don't can't rewrite arbitrary instructions.
2373static bool PointsToConstantGlobal(Value *V) {
2374  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2375    return GV->isConstant();
2376  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2377    if (CE->getOpcode() == Instruction::BitCast ||
2378        CE->getOpcode() == Instruction::GetElementPtr)
2379      return PointsToConstantGlobal(CE->getOperand(0));
2380  return false;
2381}
2382
2383/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2384/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2385/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2386/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2387/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2388/// the alloca, and if the source pointer is a pointer to a constant global, we
2389/// can optimize this.
2390static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2391                                           bool isOffset) {
2392  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2393    User *U = cast<Instruction>(*UI);
2394
2395    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2396      // Ignore non-volatile loads, they are always ok.
2397      if (LI->isVolatile()) return false;
2398      continue;
2399    }
2400
2401    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2402      // If uses of the bitcast are ok, we are ok.
2403      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2404        return false;
2405      continue;
2406    }
2407    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2408      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2409      // doesn't, it does.
2410      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2411                                         isOffset || !GEP->hasAllZeroIndices()))
2412        return false;
2413      continue;
2414    }
2415
2416    if (CallSite CS = U) {
2417      // If this is a readonly/readnone call site, then we know it is just a
2418      // load and we can ignore it.
2419      if (CS.onlyReadsMemory())
2420        continue;
2421
2422      // If this is the function being called then we treat it like a load and
2423      // ignore it.
2424      if (CS.isCallee(UI))
2425        continue;
2426
2427      // If this is being passed as a byval argument, the caller is making a
2428      // copy, so it is only a read of the alloca.
2429      unsigned ArgNo = CS.getArgumentNo(UI);
2430      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2431        continue;
2432    }
2433
2434    // If this is isn't our memcpy/memmove, reject it as something we can't
2435    // handle.
2436    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2437    if (MI == 0)
2438      return false;
2439
2440    // If the transfer is using the alloca as a source of the transfer, then
2441    // ignore it since it is a load (unless the transfer is volatile).
2442    if (UI.getOperandNo() == 1) {
2443      if (MI->isVolatile()) return false;
2444      continue;
2445    }
2446
2447    // If we already have seen a copy, reject the second one.
2448    if (TheCopy) return false;
2449
2450    // If the pointer has been offset from the start of the alloca, we can't
2451    // safely handle this.
2452    if (isOffset) return false;
2453
2454    // If the memintrinsic isn't using the alloca as the dest, reject it.
2455    if (UI.getOperandNo() != 0) return false;
2456
2457    // If the source of the memcpy/move is not a constant global, reject it.
2458    if (!PointsToConstantGlobal(MI->getSource()))
2459      return false;
2460
2461    // Otherwise, the transform is safe.  Remember the copy instruction.
2462    TheCopy = MI;
2463  }
2464  return true;
2465}
2466
2467/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2468/// modified by a copy from a constant global.  If we can prove this, we can
2469/// replace any uses of the alloca with uses of the global directly.
2470MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2471  MemTransferInst *TheCopy = 0;
2472  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2473    return TheCopy;
2474  return 0;
2475}
2476