ScalarReplAggregates.cpp revision 1608769abeb1430dc34f31ffac0d9850f99ae36a
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DebugInfo.h"
34#include "llvm/Analysis/DIBuilder.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/Loads.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Transforms/Utils/PromoteMemToReg.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include "llvm/Transforms/Utils/SSAUpdater.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/GetElementPtrTypeIterator.h"
46#include "llvm/Support/IRBuilder.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/SetVector.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/Statistic.h"
52using namespace llvm;
53
54STATISTIC(NumReplaced,  "Number of allocas broken up");
55STATISTIC(NumPromoted,  "Number of allocas promoted");
56STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
57STATISTIC(NumConverted, "Number of aggregates converted to scalar");
58STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
59
60namespace {
61  struct SROA : public FunctionPass {
62    SROA(int T, bool hasDT, char &ID)
63      : FunctionPass(ID), HasDomTree(hasDT) {
64      if (T == -1)
65        SRThreshold = 128;
66      else
67        SRThreshold = T;
68    }
69
70    bool runOnFunction(Function &F);
71
72    bool performScalarRepl(Function &F);
73    bool performPromotion(Function &F);
74
75  private:
76    bool HasDomTree;
77    TargetData *TD;
78
79    /// DeadInsts - Keep track of instructions we have made dead, so that
80    /// we can remove them after we are done working.
81    SmallVector<Value*, 32> DeadInsts;
82
83    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84    /// information about the uses.  All these fields are initialized to false
85    /// and set to true when something is learned.
86    struct AllocaInfo {
87      /// The alloca to promote.
88      AllocaInst *AI;
89
90      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
91      /// looping and avoid redundant work.
92      SmallPtrSet<PHINode*, 8> CheckedPHIs;
93
94      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
95      bool isUnsafe : 1;
96
97      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
98      bool isMemCpySrc : 1;
99
100      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
101      bool isMemCpyDst : 1;
102
103      /// hasSubelementAccess - This is true if a subelement of the alloca is
104      /// ever accessed, or false if the alloca is only accessed with mem
105      /// intrinsics or load/store that only access the entire alloca at once.
106      bool hasSubelementAccess : 1;
107
108      /// hasALoadOrStore - This is true if there are any loads or stores to it.
109      /// The alloca may just be accessed with memcpy, for example, which would
110      /// not set this.
111      bool hasALoadOrStore : 1;
112
113      explicit AllocaInfo(AllocaInst *ai)
114        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
115          hasSubelementAccess(false), hasALoadOrStore(false) {}
116    };
117
118    unsigned SRThreshold;
119
120    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
121      I.isUnsafe = true;
122      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
123    }
124
125    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
126
127    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
128    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
129                                         AllocaInfo &Info);
130    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
131    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
132                         Type *MemOpType, bool isStore, AllocaInfo &Info,
133                         Instruction *TheAccess, bool AllowWholeAccess);
134    bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
135    uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
136                                  Type *&IdxTy);
137
138    void DoScalarReplacement(AllocaInst *AI,
139                             std::vector<AllocaInst*> &WorkList);
140    void DeleteDeadInstructions();
141
142    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
143                              SmallVector<AllocaInst*, 32> &NewElts);
144    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
145                        SmallVector<AllocaInst*, 32> &NewElts);
146    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
147                    SmallVector<AllocaInst*, 32> &NewElts);
148    void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
149                                  uint64_t Offset,
150                                  SmallVector<AllocaInst*, 32> &NewElts);
151    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
152                                      AllocaInst *AI,
153                                      SmallVector<AllocaInst*, 32> &NewElts);
154    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
155                                       SmallVector<AllocaInst*, 32> &NewElts);
156    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
157                                      SmallVector<AllocaInst*, 32> &NewElts);
158
159    static MemTransferInst *isOnlyCopiedFromConstantGlobal(
160        AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
161  };
162
163  // SROA_DT - SROA that uses DominatorTree.
164  struct SROA_DT : public SROA {
165    static char ID;
166  public:
167    SROA_DT(int T = -1) : SROA(T, true, ID) {
168      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
169    }
170
171    // getAnalysisUsage - This pass does not require any passes, but we know it
172    // will not alter the CFG, so say so.
173    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174      AU.addRequired<DominatorTree>();
175      AU.setPreservesCFG();
176    }
177  };
178
179  // SROA_SSAUp - SROA that uses SSAUpdater.
180  struct SROA_SSAUp : public SROA {
181    static char ID;
182  public:
183    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
184      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
185    }
186
187    // getAnalysisUsage - This pass does not require any passes, but we know it
188    // will not alter the CFG, so say so.
189    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
190      AU.setPreservesCFG();
191    }
192  };
193
194}
195
196char SROA_DT::ID = 0;
197char SROA_SSAUp::ID = 0;
198
199INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
200                "Scalar Replacement of Aggregates (DT)", false, false)
201INITIALIZE_PASS_DEPENDENCY(DominatorTree)
202INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
203                "Scalar Replacement of Aggregates (DT)", false, false)
204
205INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
206                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
207INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
208                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
209
210// Public interface to the ScalarReplAggregates pass
211FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
212                                                   bool UseDomTree) {
213  if (UseDomTree)
214    return new SROA_DT(Threshold);
215  return new SROA_SSAUp(Threshold);
216}
217
218
219//===----------------------------------------------------------------------===//
220// Convert To Scalar Optimization.
221//===----------------------------------------------------------------------===//
222
223namespace {
224/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
225/// optimization, which scans the uses of an alloca and determines if it can
226/// rewrite it in terms of a single new alloca that can be mem2reg'd.
227class ConvertToScalarInfo {
228  /// AllocaSize - The size of the alloca being considered in bytes.
229  unsigned AllocaSize;
230  const TargetData &TD;
231
232  /// IsNotTrivial - This is set to true if there is some access to the object
233  /// which means that mem2reg can't promote it.
234  bool IsNotTrivial;
235
236  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
237  /// computed based on the uses of the alloca rather than the LLVM type system.
238  enum {
239    Unknown,
240
241    // Accesses via GEPs that are consistent with element access of a vector
242    // type. This will not be converted into a vector unless there is a later
243    // access using an actual vector type.
244    ImplicitVector,
245
246    // Accesses via vector operations and GEPs that are consistent with the
247    // layout of a vector type.
248    Vector,
249
250    // An integer bag-of-bits with bitwise operations for insertion and
251    // extraction. Any combination of types can be converted into this kind
252    // of scalar.
253    Integer
254  } ScalarKind;
255
256  /// VectorTy - This tracks the type that we should promote the vector to if
257  /// it is possible to turn it into a vector.  This starts out null, and if it
258  /// isn't possible to turn into a vector type, it gets set to VoidTy.
259  VectorType *VectorTy;
260
261  /// HadNonMemTransferAccess - True if there is at least one access to the
262  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
263  /// large integers unless there is some potential for optimization.
264  bool HadNonMemTransferAccess;
265
266public:
267  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
268    : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
269      VectorTy(0), HadNonMemTransferAccess(false) { }
270
271  AllocaInst *TryConvert(AllocaInst *AI);
272
273private:
274  bool CanConvertToScalar(Value *V, uint64_t Offset);
275  void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
276  bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
277  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
278
279  Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
280                                    uint64_t Offset, IRBuilder<> &Builder);
281  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
282                                   uint64_t Offset, IRBuilder<> &Builder);
283};
284} // end anonymous namespace.
285
286
287/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
288/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
289/// alloca if possible or null if not.
290AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
291  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
292  // out.
293  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
294    return 0;
295
296  // If an alloca has only memset / memcpy uses, it may still have an Unknown
297  // ScalarKind. Treat it as an Integer below.
298  if (ScalarKind == Unknown)
299    ScalarKind = Integer;
300
301  if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
302    ScalarKind = Integer;
303
304  // If we were able to find a vector type that can handle this with
305  // insert/extract elements, and if there was at least one use that had
306  // a vector type, promote this to a vector.  We don't want to promote
307  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
308  // we just get a lot of insert/extracts.  If at least one vector is
309  // involved, then we probably really do have a union of vector/array.
310  Type *NewTy;
311  if (ScalarKind == Vector) {
312    assert(VectorTy && "Missing type for vector scalar.");
313    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
314          << *VectorTy << '\n');
315    NewTy = VectorTy;  // Use the vector type.
316  } else {
317    unsigned BitWidth = AllocaSize * 8;
318    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
319        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
320      return 0;
321
322    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
323    // Create and insert the integer alloca.
324    NewTy = IntegerType::get(AI->getContext(), BitWidth);
325  }
326  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
327  ConvertUsesToScalar(AI, NewAI, 0);
328  return NewAI;
329}
330
331/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
332/// (VectorTy) so far at the offset specified by Offset (which is specified in
333/// bytes).
334///
335/// There are two cases we handle here:
336///   1) A union of vector types of the same size and potentially its elements.
337///      Here we turn element accesses into insert/extract element operations.
338///      This promotes a <4 x float> with a store of float to the third element
339///      into a <4 x float> that uses insert element.
340///   2) A fully general blob of memory, which we turn into some (potentially
341///      large) integer type with extract and insert operations where the loads
342///      and stores would mutate the memory.  We mark this by setting VectorTy
343///      to VoidTy.
344void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
345                                                    uint64_t Offset) {
346  // If we already decided to turn this into a blob of integer memory, there is
347  // nothing to be done.
348  if (ScalarKind == Integer)
349    return;
350
351  // If this could be contributing to a vector, analyze it.
352
353  // If the In type is a vector that is the same size as the alloca, see if it
354  // matches the existing VecTy.
355  if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
356    if (MergeInVectorType(VInTy, Offset))
357      return;
358  } else if (In->isFloatTy() || In->isDoubleTy() ||
359             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
360              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
361    // Full width accesses can be ignored, because they can always be turned
362    // into bitcasts.
363    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
364    if (EltSize == AllocaSize)
365      return;
366
367    // If we're accessing something that could be an element of a vector, see
368    // if the implied vector agrees with what we already have and if Offset is
369    // compatible with it.
370    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
371        (!VectorTy || EltSize == VectorTy->getElementType()
372                                         ->getPrimitiveSizeInBits()/8)) {
373      if (!VectorTy) {
374        ScalarKind = ImplicitVector;
375        VectorTy = VectorType::get(In, AllocaSize/EltSize);
376      }
377      return;
378    }
379  }
380
381  // Otherwise, we have a case that we can't handle with an optimized vector
382  // form.  We can still turn this into a large integer.
383  ScalarKind = Integer;
384}
385
386/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
387/// returning true if the type was successfully merged and false otherwise.
388bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
389                                            uint64_t Offset) {
390  if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
391    // If we're storing/loading a vector of the right size, allow it as a
392    // vector.  If this the first vector we see, remember the type so that
393    // we know the element size. If this is a subsequent access, ignore it
394    // even if it is a differing type but the same size. Worst case we can
395    // bitcast the resultant vectors.
396    if (!VectorTy)
397      VectorTy = VInTy;
398    ScalarKind = Vector;
399    return true;
400  }
401
402  return false;
403}
404
405/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
406/// its accesses to a single vector type, return true and set VecTy to
407/// the new type.  If we could convert the alloca into a single promotable
408/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
409/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
410/// is the current offset from the base of the alloca being analyzed.
411///
412/// If we see at least one access to the value that is as a vector type, set the
413/// SawVec flag.
414bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
415  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
416    Instruction *User = cast<Instruction>(*UI);
417
418    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
419      // Don't break volatile loads.
420      if (!LI->isSimple())
421        return false;
422      // Don't touch MMX operations.
423      if (LI->getType()->isX86_MMXTy())
424        return false;
425      HadNonMemTransferAccess = true;
426      MergeInTypeForLoadOrStore(LI->getType(), Offset);
427      continue;
428    }
429
430    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
431      // Storing the pointer, not into the value?
432      if (SI->getOperand(0) == V || !SI->isSimple()) return false;
433      // Don't touch MMX operations.
434      if (SI->getOperand(0)->getType()->isX86_MMXTy())
435        return false;
436      HadNonMemTransferAccess = true;
437      MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
438      continue;
439    }
440
441    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
442      if (!onlyUsedByLifetimeMarkers(BCI))
443        IsNotTrivial = true;  // Can't be mem2reg'd.
444      if (!CanConvertToScalar(BCI, Offset))
445        return false;
446      continue;
447    }
448
449    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
450      // If this is a GEP with a variable indices, we can't handle it.
451      if (!GEP->hasAllConstantIndices())
452        return false;
453
454      // Compute the offset that this GEP adds to the pointer.
455      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
456      if (!GEP->getPointerOperandType()->isPointerTy())
457        return false;
458      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
459                                               Indices);
460      // See if all uses can be converted.
461      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
462        return false;
463      IsNotTrivial = true;  // Can't be mem2reg'd.
464      HadNonMemTransferAccess = true;
465      continue;
466    }
467
468    // If this is a constant sized memset of a constant value (e.g. 0) we can
469    // handle it.
470    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
471      // Store of constant value.
472      if (!isa<ConstantInt>(MSI->getValue()))
473        return false;
474
475      // Store of constant size.
476      ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
477      if (!Len)
478        return false;
479
480      // If the size differs from the alloca, we can only convert the alloca to
481      // an integer bag-of-bits.
482      // FIXME: This should handle all of the cases that are currently accepted
483      // as vector element insertions.
484      if (Len->getZExtValue() != AllocaSize || Offset != 0)
485        ScalarKind = Integer;
486
487      IsNotTrivial = true;  // Can't be mem2reg'd.
488      HadNonMemTransferAccess = true;
489      continue;
490    }
491
492    // If this is a memcpy or memmove into or out of the whole allocation, we
493    // can handle it like a load or store of the scalar type.
494    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
495      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
496      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
497        return false;
498
499      IsNotTrivial = true;  // Can't be mem2reg'd.
500      continue;
501    }
502
503    // If this is a lifetime intrinsic, we can handle it.
504    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
505      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
506          II->getIntrinsicID() == Intrinsic::lifetime_end) {
507        continue;
508      }
509    }
510
511    // Otherwise, we cannot handle this!
512    return false;
513  }
514
515  return true;
516}
517
518/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
519/// directly.  This happens when we are converting an "integer union" to a
520/// single integer scalar, or when we are converting a "vector union" to a
521/// vector with insert/extractelement instructions.
522///
523/// Offset is an offset from the original alloca, in bits that need to be
524/// shifted to the right.  By the end of this, there should be no uses of Ptr.
525void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
526                                              uint64_t Offset) {
527  while (!Ptr->use_empty()) {
528    Instruction *User = cast<Instruction>(Ptr->use_back());
529
530    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
531      ConvertUsesToScalar(CI, NewAI, Offset);
532      CI->eraseFromParent();
533      continue;
534    }
535
536    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
537      // Compute the offset that this GEP adds to the pointer.
538      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
539      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
540                                               Indices);
541      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
542      GEP->eraseFromParent();
543      continue;
544    }
545
546    IRBuilder<> Builder(User);
547
548    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
549      // The load is a bit extract from NewAI shifted right by Offset bits.
550      Value *LoadedVal = Builder.CreateLoad(NewAI);
551      Value *NewLoadVal
552        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
553      LI->replaceAllUsesWith(NewLoadVal);
554      LI->eraseFromParent();
555      continue;
556    }
557
558    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
559      assert(SI->getOperand(0) != Ptr && "Consistency error!");
560      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
561      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
562                                             Builder);
563      Builder.CreateStore(New, NewAI);
564      SI->eraseFromParent();
565
566      // If the load we just inserted is now dead, then the inserted store
567      // overwrote the entire thing.
568      if (Old->use_empty())
569        Old->eraseFromParent();
570      continue;
571    }
572
573    // If this is a constant sized memset of a constant value (e.g. 0) we can
574    // transform it into a store of the expanded constant value.
575    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
576      assert(MSI->getRawDest() == Ptr && "Consistency error!");
577      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
578      if (NumBytes != 0) {
579        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
580
581        // Compute the value replicated the right number of times.
582        APInt APVal(NumBytes*8, Val);
583
584        // Splat the value if non-zero.
585        if (Val)
586          for (unsigned i = 1; i != NumBytes; ++i)
587            APVal |= APVal << 8;
588
589        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
590        Value *New = ConvertScalar_InsertValue(
591                                    ConstantInt::get(User->getContext(), APVal),
592                                               Old, Offset, Builder);
593        Builder.CreateStore(New, NewAI);
594
595        // If the load we just inserted is now dead, then the memset overwrote
596        // the entire thing.
597        if (Old->use_empty())
598          Old->eraseFromParent();
599      }
600      MSI->eraseFromParent();
601      continue;
602    }
603
604    // If this is a memcpy or memmove into or out of the whole allocation, we
605    // can handle it like a load or store of the scalar type.
606    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
607      assert(Offset == 0 && "must be store to start of alloca");
608
609      // If the source and destination are both to the same alloca, then this is
610      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
611      // as appropriate.
612      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
613
614      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
615        // Dest must be OrigAI, change this to be a load from the original
616        // pointer (bitcasted), then a store to our new alloca.
617        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
618        Value *SrcPtr = MTI->getSource();
619        PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
620        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
621        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
622          AIPTy = PointerType::get(AIPTy->getElementType(),
623                                   SPTy->getAddressSpace());
624        }
625        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
626
627        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
628        SrcVal->setAlignment(MTI->getAlignment());
629        Builder.CreateStore(SrcVal, NewAI);
630      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
631        // Src must be OrigAI, change this to be a load from NewAI then a store
632        // through the original dest pointer (bitcasted).
633        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
634        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
635
636        PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
637        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
638        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
639          AIPTy = PointerType::get(AIPTy->getElementType(),
640                                   DPTy->getAddressSpace());
641        }
642        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
643
644        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
645        NewStore->setAlignment(MTI->getAlignment());
646      } else {
647        // Noop transfer. Src == Dst
648      }
649
650      MTI->eraseFromParent();
651      continue;
652    }
653
654    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
655      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
656          II->getIntrinsicID() == Intrinsic::lifetime_end) {
657        // There's no need to preserve these, as the resulting alloca will be
658        // converted to a register anyways.
659        II->eraseFromParent();
660        continue;
661      }
662    }
663
664    llvm_unreachable("Unsupported operation!");
665  }
666}
667
668/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
669/// or vector value FromVal, extracting the bits from the offset specified by
670/// Offset.  This returns the value, which is of type ToType.
671///
672/// This happens when we are converting an "integer union" to a single
673/// integer scalar, or when we are converting a "vector union" to a vector with
674/// insert/extractelement instructions.
675///
676/// Offset is an offset from the original alloca, in bits that need to be
677/// shifted to the right.
678Value *ConvertToScalarInfo::
679ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
680                           uint64_t Offset, IRBuilder<> &Builder) {
681  // If the load is of the whole new alloca, no conversion is needed.
682  Type *FromType = FromVal->getType();
683  if (FromType == ToType && Offset == 0)
684    return FromVal;
685
686  // If the result alloca is a vector type, this is either an element
687  // access or a bitcast to another vector type of the same size.
688  if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
689    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
690    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
691    if (FromTypeSize == ToTypeSize)
692        return Builder.CreateBitCast(FromVal, ToType);
693
694    // Otherwise it must be an element access.
695    unsigned Elt = 0;
696    if (Offset) {
697      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
698      Elt = Offset/EltSize;
699      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
700    }
701    // Return the element extracted out of it.
702    Value *V = Builder.CreateExtractElement(FromVal, Builder.getInt32(Elt));
703    if (V->getType() != ToType)
704      V = Builder.CreateBitCast(V, ToType);
705    return V;
706  }
707
708  // If ToType is a first class aggregate, extract out each of the pieces and
709  // use insertvalue's to form the FCA.
710  if (StructType *ST = dyn_cast<StructType>(ToType)) {
711    const StructLayout &Layout = *TD.getStructLayout(ST);
712    Value *Res = UndefValue::get(ST);
713    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
714      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
715                                        Offset+Layout.getElementOffsetInBits(i),
716                                              Builder);
717      Res = Builder.CreateInsertValue(Res, Elt, i);
718    }
719    return Res;
720  }
721
722  if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
723    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
724    Value *Res = UndefValue::get(AT);
725    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
726      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
727                                              Offset+i*EltSize, Builder);
728      Res = Builder.CreateInsertValue(Res, Elt, i);
729    }
730    return Res;
731  }
732
733  // Otherwise, this must be a union that was converted to an integer value.
734  IntegerType *NTy = cast<IntegerType>(FromVal->getType());
735
736  // If this is a big-endian system and the load is narrower than the
737  // full alloca type, we need to do a shift to get the right bits.
738  int ShAmt = 0;
739  if (TD.isBigEndian()) {
740    // On big-endian machines, the lowest bit is stored at the bit offset
741    // from the pointer given by getTypeStoreSizeInBits.  This matters for
742    // integers with a bitwidth that is not a multiple of 8.
743    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
744            TD.getTypeStoreSizeInBits(ToType) - Offset;
745  } else {
746    ShAmt = Offset;
747  }
748
749  // Note: we support negative bitwidths (with shl) which are not defined.
750  // We do this to support (f.e.) loads off the end of a structure where
751  // only some bits are used.
752  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
753    FromVal = Builder.CreateLShr(FromVal,
754                                 ConstantInt::get(FromVal->getType(), ShAmt));
755  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
756    FromVal = Builder.CreateShl(FromVal,
757                                ConstantInt::get(FromVal->getType(), -ShAmt));
758
759  // Finally, unconditionally truncate the integer to the right width.
760  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
761  if (LIBitWidth < NTy->getBitWidth())
762    FromVal =
763      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
764                                                    LIBitWidth));
765  else if (LIBitWidth > NTy->getBitWidth())
766    FromVal =
767       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
768                                                    LIBitWidth));
769
770  // If the result is an integer, this is a trunc or bitcast.
771  if (ToType->isIntegerTy()) {
772    // Should be done.
773  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
774    // Just do a bitcast, we know the sizes match up.
775    FromVal = Builder.CreateBitCast(FromVal, ToType);
776  } else {
777    // Otherwise must be a pointer.
778    FromVal = Builder.CreateIntToPtr(FromVal, ToType);
779  }
780  assert(FromVal->getType() == ToType && "Didn't convert right?");
781  return FromVal;
782}
783
784/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
785/// or vector value "Old" at the offset specified by Offset.
786///
787/// This happens when we are converting an "integer union" to a
788/// single integer scalar, or when we are converting a "vector union" to a
789/// vector with insert/extractelement instructions.
790///
791/// Offset is an offset from the original alloca, in bits that need to be
792/// shifted to the right.
793Value *ConvertToScalarInfo::
794ConvertScalar_InsertValue(Value *SV, Value *Old,
795                          uint64_t Offset, IRBuilder<> &Builder) {
796  // Convert the stored type to the actual type, shift it left to insert
797  // then 'or' into place.
798  Type *AllocaType = Old->getType();
799  LLVMContext &Context = Old->getContext();
800
801  if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
802    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
803    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
804
805    // Changing the whole vector with memset or with an access of a different
806    // vector type?
807    if (ValSize == VecSize)
808        return Builder.CreateBitCast(SV, AllocaType);
809
810    // Must be an element insertion.
811    Type *EltTy = VTy->getElementType();
812    if (SV->getType() != EltTy)
813      SV = Builder.CreateBitCast(SV, EltTy);
814    uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
815    unsigned Elt = Offset/EltSize;
816    return Builder.CreateInsertElement(Old, SV, Builder.getInt32(Elt));
817  }
818
819  // If SV is a first-class aggregate value, insert each value recursively.
820  if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
821    const StructLayout &Layout = *TD.getStructLayout(ST);
822    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
823      Value *Elt = Builder.CreateExtractValue(SV, i);
824      Old = ConvertScalar_InsertValue(Elt, Old,
825                                      Offset+Layout.getElementOffsetInBits(i),
826                                      Builder);
827    }
828    return Old;
829  }
830
831  if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
832    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
833    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
834      Value *Elt = Builder.CreateExtractValue(SV, i);
835      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
836    }
837    return Old;
838  }
839
840  // If SV is a float, convert it to the appropriate integer type.
841  // If it is a pointer, do the same.
842  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
843  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
844  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
845  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
846  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
847    SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
848  else if (SV->getType()->isPointerTy())
849    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
850
851  // Zero extend or truncate the value if needed.
852  if (SV->getType() != AllocaType) {
853    if (SV->getType()->getPrimitiveSizeInBits() <
854             AllocaType->getPrimitiveSizeInBits())
855      SV = Builder.CreateZExt(SV, AllocaType);
856    else {
857      // Truncation may be needed if storing more than the alloca can hold
858      // (undefined behavior).
859      SV = Builder.CreateTrunc(SV, AllocaType);
860      SrcWidth = DestWidth;
861      SrcStoreWidth = DestStoreWidth;
862    }
863  }
864
865  // If this is a big-endian system and the store is narrower than the
866  // full alloca type, we need to do a shift to get the right bits.
867  int ShAmt = 0;
868  if (TD.isBigEndian()) {
869    // On big-endian machines, the lowest bit is stored at the bit offset
870    // from the pointer given by getTypeStoreSizeInBits.  This matters for
871    // integers with a bitwidth that is not a multiple of 8.
872    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
873  } else {
874    ShAmt = Offset;
875  }
876
877  // Note: we support negative bitwidths (with shr) which are not defined.
878  // We do this to support (f.e.) stores off the end of a structure where
879  // only some bits in the structure are set.
880  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
881  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
882    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
883    Mask <<= ShAmt;
884  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
885    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
886    Mask = Mask.lshr(-ShAmt);
887  }
888
889  // Mask out the bits we are about to insert from the old value, and or
890  // in the new bits.
891  if (SrcWidth != DestWidth) {
892    assert(DestWidth > SrcWidth);
893    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
894    SV = Builder.CreateOr(Old, SV, "ins");
895  }
896  return SV;
897}
898
899
900//===----------------------------------------------------------------------===//
901// SRoA Driver
902//===----------------------------------------------------------------------===//
903
904
905bool SROA::runOnFunction(Function &F) {
906  TD = getAnalysisIfAvailable<TargetData>();
907
908  bool Changed = performPromotion(F);
909
910  // FIXME: ScalarRepl currently depends on TargetData more than it
911  // theoretically needs to. It should be refactored in order to support
912  // target-independent IR. Until this is done, just skip the actual
913  // scalar-replacement portion of this pass.
914  if (!TD) return Changed;
915
916  while (1) {
917    bool LocalChange = performScalarRepl(F);
918    if (!LocalChange) break;   // No need to repromote if no scalarrepl
919    Changed = true;
920    LocalChange = performPromotion(F);
921    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
922  }
923
924  return Changed;
925}
926
927namespace {
928class AllocaPromoter : public LoadAndStorePromoter {
929  AllocaInst *AI;
930  DIBuilder *DIB;
931  SmallVector<DbgDeclareInst *, 4> DDIs;
932  SmallVector<DbgValueInst *, 4> DVIs;
933public:
934  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
935                 DIBuilder *DB)
936    : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
937
938  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
939    // Remember which alloca we're promoting (for isInstInList).
940    this->AI = AI;
941    if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI))
942      for (Value::use_iterator UI = DebugNode->use_begin(),
943             E = DebugNode->use_end(); UI != E; ++UI)
944        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
945          DDIs.push_back(DDI);
946        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
947          DVIs.push_back(DVI);
948
949    LoadAndStorePromoter::run(Insts);
950    AI->eraseFromParent();
951    for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
952           E = DDIs.end(); I != E; ++I) {
953      DbgDeclareInst *DDI = *I;
954      DDI->eraseFromParent();
955    }
956    for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
957           E = DVIs.end(); I != E; ++I) {
958      DbgValueInst *DVI = *I;
959      DVI->eraseFromParent();
960    }
961  }
962
963  virtual bool isInstInList(Instruction *I,
964                            const SmallVectorImpl<Instruction*> &Insts) const {
965    if (LoadInst *LI = dyn_cast<LoadInst>(I))
966      return LI->getOperand(0) == AI;
967    return cast<StoreInst>(I)->getPointerOperand() == AI;
968  }
969
970  virtual void updateDebugInfo(Instruction *Inst) const {
971    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
972           E = DDIs.end(); I != E; ++I) {
973      DbgDeclareInst *DDI = *I;
974      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
975        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
976      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
977        ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
978    }
979    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
980           E = DVIs.end(); I != E; ++I) {
981      DbgValueInst *DVI = *I;
982      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
983        Instruction *DbgVal = NULL;
984        // If an argument is zero extended then use argument directly. The ZExt
985        // may be zapped by an optimization pass in future.
986        Argument *ExtendedArg = NULL;
987        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
988          ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
989        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
990          ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
991        if (ExtendedArg)
992          DbgVal = DIB->insertDbgValueIntrinsic(ExtendedArg, 0,
993                                                DIVariable(DVI->getVariable()),
994                                                SI);
995        else
996          DbgVal = DIB->insertDbgValueIntrinsic(SI->getOperand(0), 0,
997                                                DIVariable(DVI->getVariable()),
998                                                SI);
999        DbgVal->setDebugLoc(DVI->getDebugLoc());
1000      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1001        Instruction *DbgVal =
1002          DIB->insertDbgValueIntrinsic(LI->getOperand(0), 0,
1003                                       DIVariable(DVI->getVariable()), LI);
1004        DbgVal->setDebugLoc(DVI->getDebugLoc());
1005      }
1006    }
1007  }
1008};
1009} // end anon namespace
1010
1011/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1012/// subsequently loaded can be rewritten to load both input pointers and then
1013/// select between the result, allowing the load of the alloca to be promoted.
1014/// From this:
1015///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1016///   %V = load i32* %P2
1017/// to:
1018///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1019///   %V2 = load i32* %Other
1020///   %V = select i1 %cond, i32 %V1, i32 %V2
1021///
1022/// We can do this to a select if its only uses are loads and if the operand to
1023/// the select can be loaded unconditionally.
1024static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1025  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1026  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1027
1028  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1029       UI != UE; ++UI) {
1030    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1031    if (LI == 0 || !LI->isSimple()) return false;
1032
1033    // Both operands to the select need to be dereferencable, either absolutely
1034    // (e.g. allocas) or at this point because we can see other accesses to it.
1035    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1036                                                    LI->getAlignment(), TD))
1037      return false;
1038    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1039                                                    LI->getAlignment(), TD))
1040      return false;
1041  }
1042
1043  return true;
1044}
1045
1046/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1047/// subsequently loaded can be rewritten to load both input pointers in the pred
1048/// blocks and then PHI the results, allowing the load of the alloca to be
1049/// promoted.
1050/// From this:
1051///   %P2 = phi [i32* %Alloca, i32* %Other]
1052///   %V = load i32* %P2
1053/// to:
1054///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1055///   ...
1056///   %V2 = load i32* %Other
1057///   ...
1058///   %V = phi [i32 %V1, i32 %V2]
1059///
1060/// We can do this to a select if its only uses are loads and if the operand to
1061/// the select can be loaded unconditionally.
1062static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1063  // For now, we can only do this promotion if the load is in the same block as
1064  // the PHI, and if there are no stores between the phi and load.
1065  // TODO: Allow recursive phi users.
1066  // TODO: Allow stores.
1067  BasicBlock *BB = PN->getParent();
1068  unsigned MaxAlign = 0;
1069  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1070       UI != UE; ++UI) {
1071    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1072    if (LI == 0 || !LI->isSimple()) return false;
1073
1074    // For now we only allow loads in the same block as the PHI.  This is a
1075    // common case that happens when instcombine merges two loads through a PHI.
1076    if (LI->getParent() != BB) return false;
1077
1078    // Ensure that there are no instructions between the PHI and the load that
1079    // could store.
1080    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1081      if (BBI->mayWriteToMemory())
1082        return false;
1083
1084    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1085  }
1086
1087  // Okay, we know that we have one or more loads in the same block as the PHI.
1088  // We can transform this if it is safe to push the loads into the predecessor
1089  // blocks.  The only thing to watch out for is that we can't put a possibly
1090  // trapping load in the predecessor if it is a critical edge.
1091  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1092    BasicBlock *Pred = PN->getIncomingBlock(i);
1093    Value *InVal = PN->getIncomingValue(i);
1094
1095    // If the terminator of the predecessor has side-effects (an invoke),
1096    // there is no safe place to put a load in the predecessor.
1097    if (Pred->getTerminator()->mayHaveSideEffects())
1098      return false;
1099
1100    // If the value is produced by the terminator of the predecessor
1101    // (an invoke), there is no valid place to put a load in the predecessor.
1102    if (Pred->getTerminator() == InVal)
1103      return false;
1104
1105    // If the predecessor has a single successor, then the edge isn't critical.
1106    if (Pred->getTerminator()->getNumSuccessors() == 1)
1107      continue;
1108
1109    // If this pointer is always safe to load, or if we can prove that there is
1110    // already a load in the block, then we can move the load to the pred block.
1111    if (InVal->isDereferenceablePointer() ||
1112        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1113      continue;
1114
1115    return false;
1116  }
1117
1118  return true;
1119}
1120
1121
1122/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1123/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1124/// not quite there, this will transform the code to allow promotion.  As such,
1125/// it is a non-pure predicate.
1126static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1127  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1128            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1129
1130  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1131       UI != UE; ++UI) {
1132    User *U = *UI;
1133    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1134      if (!LI->isSimple())
1135        return false;
1136      continue;
1137    }
1138
1139    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1140      if (SI->getOperand(0) == AI || !SI->isSimple())
1141        return false;   // Don't allow a store OF the AI, only INTO the AI.
1142      continue;
1143    }
1144
1145    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1146      // If the condition being selected on is a constant, fold the select, yes
1147      // this does (rarely) happen early on.
1148      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1149        Value *Result = SI->getOperand(1+CI->isZero());
1150        SI->replaceAllUsesWith(Result);
1151        SI->eraseFromParent();
1152
1153        // This is very rare and we just scrambled the use list of AI, start
1154        // over completely.
1155        return tryToMakeAllocaBePromotable(AI, TD);
1156      }
1157
1158      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1159      // loads, then we can transform this by rewriting the select.
1160      if (!isSafeSelectToSpeculate(SI, TD))
1161        return false;
1162
1163      InstsToRewrite.insert(SI);
1164      continue;
1165    }
1166
1167    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1168      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1169        InstsToRewrite.insert(PN);
1170        continue;
1171      }
1172
1173      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1174      // in the pred blocks, then we can transform this by rewriting the PHI.
1175      if (!isSafePHIToSpeculate(PN, TD))
1176        return false;
1177
1178      InstsToRewrite.insert(PN);
1179      continue;
1180    }
1181
1182    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1183      if (onlyUsedByLifetimeMarkers(BCI)) {
1184        InstsToRewrite.insert(BCI);
1185        continue;
1186      }
1187    }
1188
1189    return false;
1190  }
1191
1192  // If there are no instructions to rewrite, then all uses are load/stores and
1193  // we're done!
1194  if (InstsToRewrite.empty())
1195    return true;
1196
1197  // If we have instructions that need to be rewritten for this to be promotable
1198  // take care of it now.
1199  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1200    if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1201      // This could only be a bitcast used by nothing but lifetime intrinsics.
1202      for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
1203           I != E;) {
1204        Use &U = I.getUse();
1205        ++I;
1206        cast<Instruction>(U.getUser())->eraseFromParent();
1207      }
1208      BCI->eraseFromParent();
1209      continue;
1210    }
1211
1212    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1213      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1214      // loads with a new select.
1215      while (!SI->use_empty()) {
1216        LoadInst *LI = cast<LoadInst>(SI->use_back());
1217
1218        IRBuilder<> Builder(LI);
1219        LoadInst *TrueLoad =
1220          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1221        LoadInst *FalseLoad =
1222          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1223
1224        // Transfer alignment and TBAA info if present.
1225        TrueLoad->setAlignment(LI->getAlignment());
1226        FalseLoad->setAlignment(LI->getAlignment());
1227        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1228          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1229          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1230        }
1231
1232        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1233        V->takeName(LI);
1234        LI->replaceAllUsesWith(V);
1235        LI->eraseFromParent();
1236      }
1237
1238      // Now that all the loads are gone, the select is gone too.
1239      SI->eraseFromParent();
1240      continue;
1241    }
1242
1243    // Otherwise, we have a PHI node which allows us to push the loads into the
1244    // predecessors.
1245    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1246    if (PN->use_empty()) {
1247      PN->eraseFromParent();
1248      continue;
1249    }
1250
1251    Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1252    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1253                                     PN->getName()+".ld", PN);
1254
1255    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1256    // matter which one we get and if any differ, it doesn't matter.
1257    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1258    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1259    unsigned Align = SomeLoad->getAlignment();
1260
1261    // Rewrite all loads of the PN to use the new PHI.
1262    while (!PN->use_empty()) {
1263      LoadInst *LI = cast<LoadInst>(PN->use_back());
1264      LI->replaceAllUsesWith(NewPN);
1265      LI->eraseFromParent();
1266    }
1267
1268    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1269    // insert them into in case we have multiple edges from the same block.
1270    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1271
1272    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1273      BasicBlock *Pred = PN->getIncomingBlock(i);
1274      LoadInst *&Load = InsertedLoads[Pred];
1275      if (Load == 0) {
1276        Load = new LoadInst(PN->getIncomingValue(i),
1277                            PN->getName() + "." + Pred->getName(),
1278                            Pred->getTerminator());
1279        Load->setAlignment(Align);
1280        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1281      }
1282
1283      NewPN->addIncoming(Load, Pred);
1284    }
1285
1286    PN->eraseFromParent();
1287  }
1288
1289  ++NumAdjusted;
1290  return true;
1291}
1292
1293bool SROA::performPromotion(Function &F) {
1294  std::vector<AllocaInst*> Allocas;
1295  DominatorTree *DT = 0;
1296  if (HasDomTree)
1297    DT = &getAnalysis<DominatorTree>();
1298
1299  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1300  DIBuilder DIB(*F.getParent());
1301  bool Changed = false;
1302  SmallVector<Instruction*, 64> Insts;
1303  while (1) {
1304    Allocas.clear();
1305
1306    // Find allocas that are safe to promote, by looking at all instructions in
1307    // the entry node
1308    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1309      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1310        if (tryToMakeAllocaBePromotable(AI, TD))
1311          Allocas.push_back(AI);
1312
1313    if (Allocas.empty()) break;
1314
1315    if (HasDomTree)
1316      PromoteMemToReg(Allocas, *DT);
1317    else {
1318      SSAUpdater SSA;
1319      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1320        AllocaInst *AI = Allocas[i];
1321
1322        // Build list of instructions to promote.
1323        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1324             UI != E; ++UI)
1325          Insts.push_back(cast<Instruction>(*UI));
1326        AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1327        Insts.clear();
1328      }
1329    }
1330    NumPromoted += Allocas.size();
1331    Changed = true;
1332  }
1333
1334  return Changed;
1335}
1336
1337
1338/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1339/// SROA.  It must be a struct or array type with a small number of elements.
1340static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1341  Type *T = AI->getAllocatedType();
1342  // Do not promote any struct into more than 32 separate vars.
1343  if (StructType *ST = dyn_cast<StructType>(T))
1344    return ST->getNumElements() <= 32;
1345  // Arrays are much less likely to be safe for SROA; only consider
1346  // them if they are very small.
1347  if (ArrayType *AT = dyn_cast<ArrayType>(T))
1348    return AT->getNumElements() <= 8;
1349  return false;
1350}
1351
1352
1353// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1354// which runs on all of the alloca instructions in the function, removing them
1355// if they are only used by getelementptr instructions.
1356//
1357bool SROA::performScalarRepl(Function &F) {
1358  std::vector<AllocaInst*> WorkList;
1359
1360  // Scan the entry basic block, adding allocas to the worklist.
1361  BasicBlock &BB = F.getEntryBlock();
1362  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1363    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1364      WorkList.push_back(A);
1365
1366  // Process the worklist
1367  bool Changed = false;
1368  while (!WorkList.empty()) {
1369    AllocaInst *AI = WorkList.back();
1370    WorkList.pop_back();
1371
1372    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1373    // with unused elements.
1374    if (AI->use_empty()) {
1375      AI->eraseFromParent();
1376      Changed = true;
1377      continue;
1378    }
1379
1380    // If this alloca is impossible for us to promote, reject it early.
1381    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1382      continue;
1383
1384    // Check to see if this allocation is only modified by a memcpy/memmove from
1385    // a constant global.  If this is the case, we can change all users to use
1386    // the constant global instead.  This is commonly produced by the CFE by
1387    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1388    // is only subsequently read.
1389    SmallVector<Instruction *, 4> ToDelete;
1390    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
1391      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1392      DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
1393      for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
1394        ToDelete[i]->eraseFromParent();
1395      Constant *TheSrc = cast<Constant>(Copy->getSource());
1396      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1397      Copy->eraseFromParent();  // Don't mutate the global.
1398      AI->eraseFromParent();
1399      ++NumGlobals;
1400      Changed = true;
1401      continue;
1402    }
1403
1404    // Check to see if we can perform the core SROA transformation.  We cannot
1405    // transform the allocation instruction if it is an array allocation
1406    // (allocations OF arrays are ok though), and an allocation of a scalar
1407    // value cannot be decomposed at all.
1408    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1409
1410    // Do not promote [0 x %struct].
1411    if (AllocaSize == 0) continue;
1412
1413    // Do not promote any struct whose size is too big.
1414    if (AllocaSize > SRThreshold) continue;
1415
1416    // If the alloca looks like a good candidate for scalar replacement, and if
1417    // all its users can be transformed, then split up the aggregate into its
1418    // separate elements.
1419    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1420      DoScalarReplacement(AI, WorkList);
1421      Changed = true;
1422      continue;
1423    }
1424
1425    // If we can turn this aggregate value (potentially with casts) into a
1426    // simple scalar value that can be mem2reg'd into a register value.
1427    // IsNotTrivial tracks whether this is something that mem2reg could have
1428    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1429    // that we can't just check based on the type: the alloca may be of an i32
1430    // but that has pointer arithmetic to set byte 3 of it or something.
1431    if (AllocaInst *NewAI =
1432          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1433      NewAI->takeName(AI);
1434      AI->eraseFromParent();
1435      ++NumConverted;
1436      Changed = true;
1437      continue;
1438    }
1439
1440    // Otherwise, couldn't process this alloca.
1441  }
1442
1443  return Changed;
1444}
1445
1446/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1447/// predicate, do SROA now.
1448void SROA::DoScalarReplacement(AllocaInst *AI,
1449                               std::vector<AllocaInst*> &WorkList) {
1450  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1451  SmallVector<AllocaInst*, 32> ElementAllocas;
1452  if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1453    ElementAllocas.reserve(ST->getNumContainedTypes());
1454    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1455      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1456                                      AI->getAlignment(),
1457                                      AI->getName() + "." + Twine(i), AI);
1458      ElementAllocas.push_back(NA);
1459      WorkList.push_back(NA);  // Add to worklist for recursive processing
1460    }
1461  } else {
1462    ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1463    ElementAllocas.reserve(AT->getNumElements());
1464    Type *ElTy = AT->getElementType();
1465    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1466      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1467                                      AI->getName() + "." + Twine(i), AI);
1468      ElementAllocas.push_back(NA);
1469      WorkList.push_back(NA);  // Add to worklist for recursive processing
1470    }
1471  }
1472
1473  // Now that we have created the new alloca instructions, rewrite all the
1474  // uses of the old alloca.
1475  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1476
1477  // Now erase any instructions that were made dead while rewriting the alloca.
1478  DeleteDeadInstructions();
1479  AI->eraseFromParent();
1480
1481  ++NumReplaced;
1482}
1483
1484/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1485/// recursively including all their operands that become trivially dead.
1486void SROA::DeleteDeadInstructions() {
1487  while (!DeadInsts.empty()) {
1488    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1489
1490    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1491      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1492        // Zero out the operand and see if it becomes trivially dead.
1493        // (But, don't add allocas to the dead instruction list -- they are
1494        // already on the worklist and will be deleted separately.)
1495        *OI = 0;
1496        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1497          DeadInsts.push_back(U);
1498      }
1499
1500    I->eraseFromParent();
1501  }
1502}
1503
1504/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1505/// performing scalar replacement of alloca AI.  The results are flagged in
1506/// the Info parameter.  Offset indicates the position within AI that is
1507/// referenced by this instruction.
1508void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1509                               AllocaInfo &Info) {
1510  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1511    Instruction *User = cast<Instruction>(*UI);
1512
1513    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1514      isSafeForScalarRepl(BC, Offset, Info);
1515    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1516      uint64_t GEPOffset = Offset;
1517      isSafeGEP(GEPI, GEPOffset, Info);
1518      if (!Info.isUnsafe)
1519        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1520    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1521      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1522      if (Length == 0)
1523        return MarkUnsafe(Info, User);
1524      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1525                      UI.getOperandNo() == 0, Info, MI,
1526                      true /*AllowWholeAccess*/);
1527    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1528      if (!LI->isSimple())
1529        return MarkUnsafe(Info, User);
1530      Type *LIType = LI->getType();
1531      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1532                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1533      Info.hasALoadOrStore = true;
1534
1535    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1536      // Store is ok if storing INTO the pointer, not storing the pointer
1537      if (!SI->isSimple() || SI->getOperand(0) == I)
1538        return MarkUnsafe(Info, User);
1539
1540      Type *SIType = SI->getOperand(0)->getType();
1541      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1542                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1543      Info.hasALoadOrStore = true;
1544    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1545      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1546          II->getIntrinsicID() != Intrinsic::lifetime_end)
1547        return MarkUnsafe(Info, User);
1548    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1549      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1550    } else {
1551      return MarkUnsafe(Info, User);
1552    }
1553    if (Info.isUnsafe) return;
1554  }
1555}
1556
1557
1558/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1559/// derived from the alloca, we can often still split the alloca into elements.
1560/// This is useful if we have a large alloca where one element is phi'd
1561/// together somewhere: we can SRoA and promote all the other elements even if
1562/// we end up not being able to promote this one.
1563///
1564/// All we require is that the uses of the PHI do not index into other parts of
1565/// the alloca.  The most important use case for this is single load and stores
1566/// that are PHI'd together, which can happen due to code sinking.
1567void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1568                                           AllocaInfo &Info) {
1569  // If we've already checked this PHI, don't do it again.
1570  if (PHINode *PN = dyn_cast<PHINode>(I))
1571    if (!Info.CheckedPHIs.insert(PN))
1572      return;
1573
1574  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1575    Instruction *User = cast<Instruction>(*UI);
1576
1577    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1578      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1579    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1580      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1581      // but would have to prove that we're staying inside of an element being
1582      // promoted.
1583      if (!GEPI->hasAllZeroIndices())
1584        return MarkUnsafe(Info, User);
1585      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1586    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1587      if (!LI->isSimple())
1588        return MarkUnsafe(Info, User);
1589      Type *LIType = LI->getType();
1590      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1591                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1592      Info.hasALoadOrStore = true;
1593
1594    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1595      // Store is ok if storing INTO the pointer, not storing the pointer
1596      if (!SI->isSimple() || SI->getOperand(0) == I)
1597        return MarkUnsafe(Info, User);
1598
1599      Type *SIType = SI->getOperand(0)->getType();
1600      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1601                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1602      Info.hasALoadOrStore = true;
1603    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1604      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1605    } else {
1606      return MarkUnsafe(Info, User);
1607    }
1608    if (Info.isUnsafe) return;
1609  }
1610}
1611
1612/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1613/// replacement.  It is safe when all the indices are constant, in-bounds
1614/// references, and when the resulting offset corresponds to an element within
1615/// the alloca type.  The results are flagged in the Info parameter.  Upon
1616/// return, Offset is adjusted as specified by the GEP indices.
1617void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1618                     uint64_t &Offset, AllocaInfo &Info) {
1619  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1620  if (GEPIt == E)
1621    return;
1622
1623  // Walk through the GEP type indices, checking the types that this indexes
1624  // into.
1625  for (; GEPIt != E; ++GEPIt) {
1626    // Ignore struct elements, no extra checking needed for these.
1627    if ((*GEPIt)->isStructTy())
1628      continue;
1629
1630    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1631    if (!IdxVal)
1632      return MarkUnsafe(Info, GEPI);
1633  }
1634
1635  // Compute the offset due to this GEP and check if the alloca has a
1636  // component element at that offset.
1637  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1638  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1639  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1640    MarkUnsafe(Info, GEPI);
1641}
1642
1643/// isHomogeneousAggregate - Check if type T is a struct or array containing
1644/// elements of the same type (which is always true for arrays).  If so,
1645/// return true with NumElts and EltTy set to the number of elements and the
1646/// element type, respectively.
1647static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1648                                   Type *&EltTy) {
1649  if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1650    NumElts = AT->getNumElements();
1651    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1652    return true;
1653  }
1654  if (StructType *ST = dyn_cast<StructType>(T)) {
1655    NumElts = ST->getNumContainedTypes();
1656    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1657    for (unsigned n = 1; n < NumElts; ++n) {
1658      if (ST->getContainedType(n) != EltTy)
1659        return false;
1660    }
1661    return true;
1662  }
1663  return false;
1664}
1665
1666/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1667/// "homogeneous" aggregates with the same element type and number of elements.
1668static bool isCompatibleAggregate(Type *T1, Type *T2) {
1669  if (T1 == T2)
1670    return true;
1671
1672  unsigned NumElts1, NumElts2;
1673  Type *EltTy1, *EltTy2;
1674  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1675      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1676      NumElts1 == NumElts2 &&
1677      EltTy1 == EltTy2)
1678    return true;
1679
1680  return false;
1681}
1682
1683/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1684/// alloca or has an offset and size that corresponds to a component element
1685/// within it.  The offset checked here may have been formed from a GEP with a
1686/// pointer bitcasted to a different type.
1687///
1688/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1689/// unit.  If false, it only allows accesses known to be in a single element.
1690void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1691                           Type *MemOpType, bool isStore,
1692                           AllocaInfo &Info, Instruction *TheAccess,
1693                           bool AllowWholeAccess) {
1694  // Check if this is a load/store of the entire alloca.
1695  if (Offset == 0 && AllowWholeAccess &&
1696      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1697    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1698    // loads/stores (which are essentially the same as the MemIntrinsics with
1699    // regard to copying padding between elements).  But, if an alloca is
1700    // flagged as both a source and destination of such operations, we'll need
1701    // to check later for padding between elements.
1702    if (!MemOpType || MemOpType->isIntegerTy()) {
1703      if (isStore)
1704        Info.isMemCpyDst = true;
1705      else
1706        Info.isMemCpySrc = true;
1707      return;
1708    }
1709    // This is also safe for references using a type that is compatible with
1710    // the type of the alloca, so that loads/stores can be rewritten using
1711    // insertvalue/extractvalue.
1712    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1713      Info.hasSubelementAccess = true;
1714      return;
1715    }
1716  }
1717  // Check if the offset/size correspond to a component within the alloca type.
1718  Type *T = Info.AI->getAllocatedType();
1719  if (TypeHasComponent(T, Offset, MemSize)) {
1720    Info.hasSubelementAccess = true;
1721    return;
1722  }
1723
1724  return MarkUnsafe(Info, TheAccess);
1725}
1726
1727/// TypeHasComponent - Return true if T has a component type with the
1728/// specified offset and size.  If Size is zero, do not check the size.
1729bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1730  Type *EltTy;
1731  uint64_t EltSize;
1732  if (StructType *ST = dyn_cast<StructType>(T)) {
1733    const StructLayout *Layout = TD->getStructLayout(ST);
1734    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1735    EltTy = ST->getContainedType(EltIdx);
1736    EltSize = TD->getTypeAllocSize(EltTy);
1737    Offset -= Layout->getElementOffset(EltIdx);
1738  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1739    EltTy = AT->getElementType();
1740    EltSize = TD->getTypeAllocSize(EltTy);
1741    if (Offset >= AT->getNumElements() * EltSize)
1742      return false;
1743    Offset %= EltSize;
1744  } else {
1745    return false;
1746  }
1747  if (Offset == 0 && (Size == 0 || EltSize == Size))
1748    return true;
1749  // Check if the component spans multiple elements.
1750  if (Offset + Size > EltSize)
1751    return false;
1752  return TypeHasComponent(EltTy, Offset, Size);
1753}
1754
1755/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1756/// the instruction I, which references it, to use the separate elements.
1757/// Offset indicates the position within AI that is referenced by this
1758/// instruction.
1759void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1760                                SmallVector<AllocaInst*, 32> &NewElts) {
1761  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1762    Use &TheUse = UI.getUse();
1763    Instruction *User = cast<Instruction>(*UI++);
1764
1765    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1766      RewriteBitCast(BC, AI, Offset, NewElts);
1767      continue;
1768    }
1769
1770    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1771      RewriteGEP(GEPI, AI, Offset, NewElts);
1772      continue;
1773    }
1774
1775    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1776      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1777      uint64_t MemSize = Length->getZExtValue();
1778      if (Offset == 0 &&
1779          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1780        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1781      // Otherwise the intrinsic can only touch a single element and the
1782      // address operand will be updated, so nothing else needs to be done.
1783      continue;
1784    }
1785
1786    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1787      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1788          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1789        RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1790      }
1791      continue;
1792    }
1793
1794    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1795      Type *LIType = LI->getType();
1796
1797      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1798        // Replace:
1799        //   %res = load { i32, i32 }* %alloc
1800        // with:
1801        //   %load.0 = load i32* %alloc.0
1802        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1803        //   %load.1 = load i32* %alloc.1
1804        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1805        // (Also works for arrays instead of structs)
1806        Value *Insert = UndefValue::get(LIType);
1807        IRBuilder<> Builder(LI);
1808        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1809          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1810          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1811        }
1812        LI->replaceAllUsesWith(Insert);
1813        DeadInsts.push_back(LI);
1814      } else if (LIType->isIntegerTy() &&
1815                 TD->getTypeAllocSize(LIType) ==
1816                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1817        // If this is a load of the entire alloca to an integer, rewrite it.
1818        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1819      }
1820      continue;
1821    }
1822
1823    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1824      Value *Val = SI->getOperand(0);
1825      Type *SIType = Val->getType();
1826      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1827        // Replace:
1828        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1829        // with:
1830        //   %val.0 = extractvalue { i32, i32 } %val, 0
1831        //   store i32 %val.0, i32* %alloc.0
1832        //   %val.1 = extractvalue { i32, i32 } %val, 1
1833        //   store i32 %val.1, i32* %alloc.1
1834        // (Also works for arrays instead of structs)
1835        IRBuilder<> Builder(SI);
1836        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1837          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1838          Builder.CreateStore(Extract, NewElts[i]);
1839        }
1840        DeadInsts.push_back(SI);
1841      } else if (SIType->isIntegerTy() &&
1842                 TD->getTypeAllocSize(SIType) ==
1843                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1844        // If this is a store of the entire alloca from an integer, rewrite it.
1845        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1846      }
1847      continue;
1848    }
1849
1850    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1851      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1852      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1853      // the new pointer.
1854      if (!isa<AllocaInst>(I)) continue;
1855
1856      assert(Offset == 0 && NewElts[0] &&
1857             "Direct alloca use should have a zero offset");
1858
1859      // If we have a use of the alloca, we know the derived uses will be
1860      // utilizing just the first element of the scalarized result.  Insert a
1861      // bitcast of the first alloca before the user as required.
1862      AllocaInst *NewAI = NewElts[0];
1863      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1864      NewAI->moveBefore(BCI);
1865      TheUse = BCI;
1866      continue;
1867    }
1868  }
1869}
1870
1871/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1872/// and recursively continue updating all of its uses.
1873void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1874                          SmallVector<AllocaInst*, 32> &NewElts) {
1875  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1876  if (BC->getOperand(0) != AI)
1877    return;
1878
1879  // The bitcast references the original alloca.  Replace its uses with
1880  // references to the alloca containing offset zero (which is normally at
1881  // index zero, but might not be in cases involving structs with elements
1882  // of size zero).
1883  Type *T = AI->getAllocatedType();
1884  uint64_t EltOffset = 0;
1885  Type *IdxTy;
1886  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1887  Instruction *Val = NewElts[Idx];
1888  if (Val->getType() != BC->getDestTy()) {
1889    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1890    Val->takeName(BC);
1891  }
1892  BC->replaceAllUsesWith(Val);
1893  DeadInsts.push_back(BC);
1894}
1895
1896/// FindElementAndOffset - Return the index of the element containing Offset
1897/// within the specified type, which must be either a struct or an array.
1898/// Sets T to the type of the element and Offset to the offset within that
1899/// element.  IdxTy is set to the type of the index result to be used in a
1900/// GEP instruction.
1901uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
1902                                    Type *&IdxTy) {
1903  uint64_t Idx = 0;
1904  if (StructType *ST = dyn_cast<StructType>(T)) {
1905    const StructLayout *Layout = TD->getStructLayout(ST);
1906    Idx = Layout->getElementContainingOffset(Offset);
1907    T = ST->getContainedType(Idx);
1908    Offset -= Layout->getElementOffset(Idx);
1909    IdxTy = Type::getInt32Ty(T->getContext());
1910    return Idx;
1911  }
1912  ArrayType *AT = cast<ArrayType>(T);
1913  T = AT->getElementType();
1914  uint64_t EltSize = TD->getTypeAllocSize(T);
1915  Idx = Offset / EltSize;
1916  Offset -= Idx * EltSize;
1917  IdxTy = Type::getInt64Ty(T->getContext());
1918  return Idx;
1919}
1920
1921/// RewriteGEP - Check if this GEP instruction moves the pointer across
1922/// elements of the alloca that are being split apart, and if so, rewrite
1923/// the GEP to be relative to the new element.
1924void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1925                      SmallVector<AllocaInst*, 32> &NewElts) {
1926  uint64_t OldOffset = Offset;
1927  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1928  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1929
1930  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1931
1932  Type *T = AI->getAllocatedType();
1933  Type *IdxTy;
1934  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1935  if (GEPI->getOperand(0) == AI)
1936    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1937
1938  T = AI->getAllocatedType();
1939  uint64_t EltOffset = Offset;
1940  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1941
1942  // If this GEP does not move the pointer across elements of the alloca
1943  // being split, then it does not needs to be rewritten.
1944  if (Idx == OldIdx)
1945    return;
1946
1947  Type *i32Ty = Type::getInt32Ty(AI->getContext());
1948  SmallVector<Value*, 8> NewArgs;
1949  NewArgs.push_back(Constant::getNullValue(i32Ty));
1950  while (EltOffset != 0) {
1951    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1952    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1953  }
1954  Instruction *Val = NewElts[Idx];
1955  if (NewArgs.size() > 1) {
1956    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
1957    Val->takeName(GEPI);
1958  }
1959  if (Val->getType() != GEPI->getType())
1960    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1961  GEPI->replaceAllUsesWith(Val);
1962  DeadInsts.push_back(GEPI);
1963}
1964
1965/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
1966/// to mark the lifetime of the scalarized memory.
1967void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
1968                                    uint64_t Offset,
1969                                    SmallVector<AllocaInst*, 32> &NewElts) {
1970  ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
1971  // Put matching lifetime markers on everything from Offset up to
1972  // Offset+OldSize.
1973  Type *AIType = AI->getAllocatedType();
1974  uint64_t NewOffset = Offset;
1975  Type *IdxTy;
1976  uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
1977
1978  IRBuilder<> Builder(II);
1979  uint64_t Size = OldSize->getLimitedValue();
1980
1981  if (NewOffset) {
1982    // Splice the first element and index 'NewOffset' bytes in.  SROA will
1983    // split the alloca again later.
1984    Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
1985    V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
1986
1987    IdxTy = NewElts[Idx]->getAllocatedType();
1988    uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
1989    if (EltSize > Size) {
1990      EltSize = Size;
1991      Size = 0;
1992    } else {
1993      Size -= EltSize;
1994    }
1995    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1996      Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
1997    else
1998      Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
1999    ++Idx;
2000  }
2001
2002  for (; Idx != NewElts.size() && Size; ++Idx) {
2003    IdxTy = NewElts[Idx]->getAllocatedType();
2004    uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
2005    if (EltSize > Size) {
2006      EltSize = Size;
2007      Size = 0;
2008    } else {
2009      Size -= EltSize;
2010    }
2011    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2012      Builder.CreateLifetimeStart(NewElts[Idx],
2013                                  Builder.getInt64(EltSize));
2014    else
2015      Builder.CreateLifetimeEnd(NewElts[Idx],
2016                                Builder.getInt64(EltSize));
2017  }
2018  DeadInsts.push_back(II);
2019}
2020
2021/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2022/// Rewrite it to copy or set the elements of the scalarized memory.
2023void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2024                                        AllocaInst *AI,
2025                                        SmallVector<AllocaInst*, 32> &NewElts) {
2026  // If this is a memcpy/memmove, construct the other pointer as the
2027  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2028  // that doesn't have anything to do with the alloca that we are promoting. For
2029  // memset, this Value* stays null.
2030  Value *OtherPtr = 0;
2031  unsigned MemAlignment = MI->getAlignment();
2032  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2033    if (Inst == MTI->getRawDest())
2034      OtherPtr = MTI->getRawSource();
2035    else {
2036      assert(Inst == MTI->getRawSource());
2037      OtherPtr = MTI->getRawDest();
2038    }
2039  }
2040
2041  // If there is an other pointer, we want to convert it to the same pointer
2042  // type as AI has, so we can GEP through it safely.
2043  if (OtherPtr) {
2044    unsigned AddrSpace =
2045      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2046
2047    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2048    // optimization, but it's also required to detect the corner case where
2049    // both pointer operands are referencing the same memory, and where
2050    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2051    // function is only called for mem intrinsics that access the whole
2052    // aggregate, so non-zero GEPs are not an issue here.)
2053    OtherPtr = OtherPtr->stripPointerCasts();
2054
2055    // Copying the alloca to itself is a no-op: just delete it.
2056    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2057      // This code will run twice for a no-op memcpy -- once for each operand.
2058      // Put only one reference to MI on the DeadInsts list.
2059      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2060             E = DeadInsts.end(); I != E; ++I)
2061        if (*I == MI) return;
2062      DeadInsts.push_back(MI);
2063      return;
2064    }
2065
2066    // If the pointer is not the right type, insert a bitcast to the right
2067    // type.
2068    Type *NewTy =
2069      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2070
2071    if (OtherPtr->getType() != NewTy)
2072      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2073  }
2074
2075  // Process each element of the aggregate.
2076  bool SROADest = MI->getRawDest() == Inst;
2077
2078  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2079
2080  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2081    // If this is a memcpy/memmove, emit a GEP of the other element address.
2082    Value *OtherElt = 0;
2083    unsigned OtherEltAlign = MemAlignment;
2084
2085    if (OtherPtr) {
2086      Value *Idx[2] = { Zero,
2087                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2088      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2089                                              OtherPtr->getName()+"."+Twine(i),
2090                                                   MI);
2091      uint64_t EltOffset;
2092      PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2093      Type *OtherTy = OtherPtrTy->getElementType();
2094      if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2095        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2096      } else {
2097        Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2098        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2099      }
2100
2101      // The alignment of the other pointer is the guaranteed alignment of the
2102      // element, which is affected by both the known alignment of the whole
2103      // mem intrinsic and the alignment of the element.  If the alignment of
2104      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2105      // known alignment is just 4 bytes.
2106      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2107    }
2108
2109    Value *EltPtr = NewElts[i];
2110    Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2111
2112    // If we got down to a scalar, insert a load or store as appropriate.
2113    if (EltTy->isSingleValueType()) {
2114      if (isa<MemTransferInst>(MI)) {
2115        if (SROADest) {
2116          // From Other to Alloca.
2117          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2118          new StoreInst(Elt, EltPtr, MI);
2119        } else {
2120          // From Alloca to Other.
2121          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2122          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2123        }
2124        continue;
2125      }
2126      assert(isa<MemSetInst>(MI));
2127
2128      // If the stored element is zero (common case), just store a null
2129      // constant.
2130      Constant *StoreVal;
2131      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2132        if (CI->isZero()) {
2133          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2134        } else {
2135          // If EltTy is a vector type, get the element type.
2136          Type *ValTy = EltTy->getScalarType();
2137
2138          // Construct an integer with the right value.
2139          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2140          APInt OneVal(EltSize, CI->getZExtValue());
2141          APInt TotalVal(OneVal);
2142          // Set each byte.
2143          for (unsigned i = 0; 8*i < EltSize; ++i) {
2144            TotalVal = TotalVal.shl(8);
2145            TotalVal |= OneVal;
2146          }
2147
2148          // Convert the integer value to the appropriate type.
2149          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2150          if (ValTy->isPointerTy())
2151            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2152          else if (ValTy->isFloatingPointTy())
2153            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2154          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2155
2156          // If the requested value was a vector constant, create it.
2157          if (EltTy->isVectorTy()) {
2158            unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2159            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2160            StoreVal = ConstantVector::get(Elts);
2161          }
2162        }
2163        new StoreInst(StoreVal, EltPtr, MI);
2164        continue;
2165      }
2166      // Otherwise, if we're storing a byte variable, use a memset call for
2167      // this element.
2168    }
2169
2170    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2171    if (!EltSize)
2172      continue;
2173
2174    IRBuilder<> Builder(MI);
2175
2176    // Finally, insert the meminst for this element.
2177    if (isa<MemSetInst>(MI)) {
2178      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2179                           MI->isVolatile());
2180    } else {
2181      assert(isa<MemTransferInst>(MI));
2182      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2183      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2184
2185      if (isa<MemCpyInst>(MI))
2186        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2187      else
2188        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2189    }
2190  }
2191  DeadInsts.push_back(MI);
2192}
2193
2194/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2195/// overwrites the entire allocation.  Extract out the pieces of the stored
2196/// integer and store them individually.
2197void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2198                                         SmallVector<AllocaInst*, 32> &NewElts){
2199  // Extract each element out of the integer according to its structure offset
2200  // and store the element value to the individual alloca.
2201  Value *SrcVal = SI->getOperand(0);
2202  Type *AllocaEltTy = AI->getAllocatedType();
2203  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2204
2205  IRBuilder<> Builder(SI);
2206
2207  // Handle tail padding by extending the operand
2208  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2209    SrcVal = Builder.CreateZExt(SrcVal,
2210                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2211
2212  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2213               << '\n');
2214
2215  // There are two forms here: AI could be an array or struct.  Both cases
2216  // have different ways to compute the element offset.
2217  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2218    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2219
2220    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2221      // Get the number of bits to shift SrcVal to get the value.
2222      Type *FieldTy = EltSTy->getElementType(i);
2223      uint64_t Shift = Layout->getElementOffsetInBits(i);
2224
2225      if (TD->isBigEndian())
2226        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2227
2228      Value *EltVal = SrcVal;
2229      if (Shift) {
2230        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2231        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2232      }
2233
2234      // Truncate down to an integer of the right size.
2235      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2236
2237      // Ignore zero sized fields like {}, they obviously contain no data.
2238      if (FieldSizeBits == 0) continue;
2239
2240      if (FieldSizeBits != AllocaSizeBits)
2241        EltVal = Builder.CreateTrunc(EltVal,
2242                             IntegerType::get(SI->getContext(), FieldSizeBits));
2243      Value *DestField = NewElts[i];
2244      if (EltVal->getType() == FieldTy) {
2245        // Storing to an integer field of this size, just do it.
2246      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2247        // Bitcast to the right element type (for fp/vector values).
2248        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2249      } else {
2250        // Otherwise, bitcast the dest pointer (for aggregates).
2251        DestField = Builder.CreateBitCast(DestField,
2252                                     PointerType::getUnqual(EltVal->getType()));
2253      }
2254      new StoreInst(EltVal, DestField, SI);
2255    }
2256
2257  } else {
2258    ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2259    Type *ArrayEltTy = ATy->getElementType();
2260    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2261    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2262
2263    uint64_t Shift;
2264
2265    if (TD->isBigEndian())
2266      Shift = AllocaSizeBits-ElementOffset;
2267    else
2268      Shift = 0;
2269
2270    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2271      // Ignore zero sized fields like {}, they obviously contain no data.
2272      if (ElementSizeBits == 0) continue;
2273
2274      Value *EltVal = SrcVal;
2275      if (Shift) {
2276        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2277        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2278      }
2279
2280      // Truncate down to an integer of the right size.
2281      if (ElementSizeBits != AllocaSizeBits)
2282        EltVal = Builder.CreateTrunc(EltVal,
2283                                     IntegerType::get(SI->getContext(),
2284                                                      ElementSizeBits));
2285      Value *DestField = NewElts[i];
2286      if (EltVal->getType() == ArrayEltTy) {
2287        // Storing to an integer field of this size, just do it.
2288      } else if (ArrayEltTy->isFloatingPointTy() ||
2289                 ArrayEltTy->isVectorTy()) {
2290        // Bitcast to the right element type (for fp/vector values).
2291        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2292      } else {
2293        // Otherwise, bitcast the dest pointer (for aggregates).
2294        DestField = Builder.CreateBitCast(DestField,
2295                                     PointerType::getUnqual(EltVal->getType()));
2296      }
2297      new StoreInst(EltVal, DestField, SI);
2298
2299      if (TD->isBigEndian())
2300        Shift -= ElementOffset;
2301      else
2302        Shift += ElementOffset;
2303    }
2304  }
2305
2306  DeadInsts.push_back(SI);
2307}
2308
2309/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2310/// an integer.  Load the individual pieces to form the aggregate value.
2311void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2312                                        SmallVector<AllocaInst*, 32> &NewElts) {
2313  // Extract each element out of the NewElts according to its structure offset
2314  // and form the result value.
2315  Type *AllocaEltTy = AI->getAllocatedType();
2316  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2317
2318  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2319               << '\n');
2320
2321  // There are two forms here: AI could be an array or struct.  Both cases
2322  // have different ways to compute the element offset.
2323  const StructLayout *Layout = 0;
2324  uint64_t ArrayEltBitOffset = 0;
2325  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2326    Layout = TD->getStructLayout(EltSTy);
2327  } else {
2328    Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2329    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2330  }
2331
2332  Value *ResultVal =
2333    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2334
2335  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2336    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2337    // the pointer to an integer of the same size before doing the load.
2338    Value *SrcField = NewElts[i];
2339    Type *FieldTy =
2340      cast<PointerType>(SrcField->getType())->getElementType();
2341    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2342
2343    // Ignore zero sized fields like {}, they obviously contain no data.
2344    if (FieldSizeBits == 0) continue;
2345
2346    IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2347                                                     FieldSizeBits);
2348    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2349        !FieldTy->isVectorTy())
2350      SrcField = new BitCastInst(SrcField,
2351                                 PointerType::getUnqual(FieldIntTy),
2352                                 "", LI);
2353    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2354
2355    // If SrcField is a fp or vector of the right size but that isn't an
2356    // integer type, bitcast to an integer so we can shift it.
2357    if (SrcField->getType() != FieldIntTy)
2358      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2359
2360    // Zero extend the field to be the same size as the final alloca so that
2361    // we can shift and insert it.
2362    if (SrcField->getType() != ResultVal->getType())
2363      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2364
2365    // Determine the number of bits to shift SrcField.
2366    uint64_t Shift;
2367    if (Layout) // Struct case.
2368      Shift = Layout->getElementOffsetInBits(i);
2369    else  // Array case.
2370      Shift = i*ArrayEltBitOffset;
2371
2372    if (TD->isBigEndian())
2373      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2374
2375    if (Shift) {
2376      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2377      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2378    }
2379
2380    // Don't create an 'or x, 0' on the first iteration.
2381    if (!isa<Constant>(ResultVal) ||
2382        !cast<Constant>(ResultVal)->isNullValue())
2383      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2384    else
2385      ResultVal = SrcField;
2386  }
2387
2388  // Handle tail padding by truncating the result
2389  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2390    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2391
2392  LI->replaceAllUsesWith(ResultVal);
2393  DeadInsts.push_back(LI);
2394}
2395
2396/// HasPadding - Return true if the specified type has any structure or
2397/// alignment padding in between the elements that would be split apart
2398/// by SROA; return false otherwise.
2399static bool HasPadding(Type *Ty, const TargetData &TD) {
2400  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2401    Ty = ATy->getElementType();
2402    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2403  }
2404
2405  // SROA currently handles only Arrays and Structs.
2406  StructType *STy = cast<StructType>(Ty);
2407  const StructLayout *SL = TD.getStructLayout(STy);
2408  unsigned PrevFieldBitOffset = 0;
2409  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2410    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2411
2412    // Check to see if there is any padding between this element and the
2413    // previous one.
2414    if (i) {
2415      unsigned PrevFieldEnd =
2416        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2417      if (PrevFieldEnd < FieldBitOffset)
2418        return true;
2419    }
2420    PrevFieldBitOffset = FieldBitOffset;
2421  }
2422  // Check for tail padding.
2423  if (unsigned EltCount = STy->getNumElements()) {
2424    unsigned PrevFieldEnd = PrevFieldBitOffset +
2425      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2426    if (PrevFieldEnd < SL->getSizeInBits())
2427      return true;
2428  }
2429  return false;
2430}
2431
2432/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2433/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2434/// or 1 if safe after canonicalization has been performed.
2435bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2436  // Loop over the use list of the alloca.  We can only transform it if all of
2437  // the users are safe to transform.
2438  AllocaInfo Info(AI);
2439
2440  isSafeForScalarRepl(AI, 0, Info);
2441  if (Info.isUnsafe) {
2442    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2443    return false;
2444  }
2445
2446  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2447  // source and destination, we have to be careful.  In particular, the memcpy
2448  // could be moving around elements that live in structure padding of the LLVM
2449  // types, but may actually be used.  In these cases, we refuse to promote the
2450  // struct.
2451  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2452      HasPadding(AI->getAllocatedType(), *TD))
2453    return false;
2454
2455  // If the alloca never has an access to just *part* of it, but is accessed
2456  // via loads and stores, then we should use ConvertToScalarInfo to promote
2457  // the alloca instead of promoting each piece at a time and inserting fission
2458  // and fusion code.
2459  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2460    // If the struct/array just has one element, use basic SRoA.
2461    if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2462      if (ST->getNumElements() > 1) return false;
2463    } else {
2464      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2465        return false;
2466    }
2467  }
2468
2469  return true;
2470}
2471
2472
2473
2474/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2475/// some part of a constant global variable.  This intentionally only accepts
2476/// constant expressions because we don't can't rewrite arbitrary instructions.
2477static bool PointsToConstantGlobal(Value *V) {
2478  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2479    return GV->isConstant();
2480  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2481    if (CE->getOpcode() == Instruction::BitCast ||
2482        CE->getOpcode() == Instruction::GetElementPtr)
2483      return PointsToConstantGlobal(CE->getOperand(0));
2484  return false;
2485}
2486
2487/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2488/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2489/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2490/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2491/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2492/// the alloca, and if the source pointer is a pointer to a constant global, we
2493/// can optimize this.
2494static bool
2495isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2496                               bool isOffset,
2497                               SmallVector<Instruction *, 4> &LifetimeMarkers) {
2498  // We track lifetime intrinsics as we encounter them.  If we decide to go
2499  // ahead and replace the value with the global, this lets the caller quickly
2500  // eliminate the markers.
2501
2502  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2503    User *U = cast<Instruction>(*UI);
2504
2505    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2506      // Ignore non-volatile loads, they are always ok.
2507      if (!LI->isSimple()) return false;
2508      continue;
2509    }
2510
2511    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2512      // If uses of the bitcast are ok, we are ok.
2513      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
2514                                          LifetimeMarkers))
2515        return false;
2516      continue;
2517    }
2518    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2519      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2520      // doesn't, it does.
2521      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2522                                          isOffset || !GEP->hasAllZeroIndices(),
2523                                          LifetimeMarkers))
2524        return false;
2525      continue;
2526    }
2527
2528    if (CallSite CS = U) {
2529      // If this is the function being called then we treat it like a load and
2530      // ignore it.
2531      if (CS.isCallee(UI))
2532        continue;
2533
2534      // If this is a readonly/readnone call site, then we know it is just a
2535      // load (but one that potentially returns the value itself), so we can
2536      // ignore it if we know that the value isn't captured.
2537      unsigned ArgNo = CS.getArgumentNo(UI);
2538      if (CS.onlyReadsMemory() &&
2539          (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
2540        continue;
2541
2542      // If this is being passed as a byval argument, the caller is making a
2543      // copy, so it is only a read of the alloca.
2544      if (CS.isByValArgument(ArgNo))
2545        continue;
2546    }
2547
2548    // Lifetime intrinsics can be handled by the caller.
2549    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
2550      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2551          II->getIntrinsicID() == Intrinsic::lifetime_end) {
2552        assert(II->use_empty() && "Lifetime markers have no result to use!");
2553        LifetimeMarkers.push_back(II);
2554        continue;
2555      }
2556    }
2557
2558    // If this is isn't our memcpy/memmove, reject it as something we can't
2559    // handle.
2560    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2561    if (MI == 0)
2562      return false;
2563
2564    // If the transfer is using the alloca as a source of the transfer, then
2565    // ignore it since it is a load (unless the transfer is volatile).
2566    if (UI.getOperandNo() == 1) {
2567      if (MI->isVolatile()) return false;
2568      continue;
2569    }
2570
2571    // If we already have seen a copy, reject the second one.
2572    if (TheCopy) return false;
2573
2574    // If the pointer has been offset from the start of the alloca, we can't
2575    // safely handle this.
2576    if (isOffset) return false;
2577
2578    // If the memintrinsic isn't using the alloca as the dest, reject it.
2579    if (UI.getOperandNo() != 0) return false;
2580
2581    // If the source of the memcpy/move is not a constant global, reject it.
2582    if (!PointsToConstantGlobal(MI->getSource()))
2583      return false;
2584
2585    // Otherwise, the transform is safe.  Remember the copy instruction.
2586    TheCopy = MI;
2587  }
2588  return true;
2589}
2590
2591/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2592/// modified by a copy from a constant global.  If we can prove this, we can
2593/// replace any uses of the alloca with uses of the global directly.
2594MemTransferInst *
2595SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
2596                                     SmallVector<Instruction*, 4> &ToDelete) {
2597  MemTransferInst *TheCopy = 0;
2598  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
2599    return TheCopy;
2600  return 0;
2601}
2602