ScalarReplAggregates.cpp revision 18b0ca854fbeebbc48cf1f4473daa428e68f748c
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced,  "Number of allocas broken up");
44STATISTIC(NumPromoted,  "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
47
48namespace {
49  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50    static char ID; // Pass identification, replacement for typeid
51    explicit SROA(signed T = -1) : FunctionPass((intptr_t)&ID) {
52      if (T == -1)
53        SRThreshold = 128;
54      else
55        SRThreshold = T;
56    }
57
58    bool runOnFunction(Function &F);
59
60    bool performScalarRepl(Function &F);
61    bool performPromotion(Function &F);
62
63    // getAnalysisUsage - This pass does not require any passes, but we know it
64    // will not alter the CFG, so say so.
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<DominatorTree>();
67      AU.addRequired<DominanceFrontier>();
68      AU.addRequired<TargetData>();
69      AU.setPreservesCFG();
70    }
71
72  private:
73    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
74    /// information about the uses.  All these fields are initialized to false
75    /// and set to true when something is learned.
76    struct AllocaInfo {
77      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
78      bool isUnsafe : 1;
79
80      /// needsCanon - This is set to true if there is some use of the alloca
81      /// that requires canonicalization.
82      bool needsCanon : 1;
83
84      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
85      bool isMemCpySrc : 1;
86
87      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
88      bool isMemCpyDst : 1;
89
90      AllocaInfo()
91        : isUnsafe(false), needsCanon(false),
92          isMemCpySrc(false), isMemCpyDst(false) {}
93    };
94
95    unsigned SRThreshold;
96
97    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
98
99    int isSafeAllocaToScalarRepl(AllocationInst *AI);
100
101    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
102                               AllocaInfo &Info);
103    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
104                         AllocaInfo &Info);
105    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
106                                        unsigned OpNo, AllocaInfo &Info);
107    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
108                                        AllocaInfo &Info);
109
110    void DoScalarReplacement(AllocationInst *AI,
111                             std::vector<AllocationInst*> &WorkList);
112    void CanonicalizeAllocaUsers(AllocationInst *AI);
113    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
114
115    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
116                                    SmallVector<AllocaInst*, 32> &NewElts);
117
118    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
119    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
120    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
121    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
122  };
123
124  char SROA::ID = 0;
125  RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
126}
127
128// Public interface to the ScalarReplAggregates pass
129FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
130  return new SROA(Threshold);
131}
132
133
134bool SROA::runOnFunction(Function &F) {
135  bool Changed = performPromotion(F);
136  while (1) {
137    bool LocalChange = performScalarRepl(F);
138    if (!LocalChange) break;   // No need to repromote if no scalarrepl
139    Changed = true;
140    LocalChange = performPromotion(F);
141    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
142  }
143
144  return Changed;
145}
146
147
148bool SROA::performPromotion(Function &F) {
149  std::vector<AllocaInst*> Allocas;
150  DominatorTree         &DT = getAnalysis<DominatorTree>();
151  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
152
153  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
154
155  bool Changed = false;
156
157  while (1) {
158    Allocas.clear();
159
160    // Find allocas that are safe to promote, by looking at all instructions in
161    // the entry node
162    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
163      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
164        if (isAllocaPromotable(AI))
165          Allocas.push_back(AI);
166
167    if (Allocas.empty()) break;
168
169    PromoteMemToReg(Allocas, DT, DF);
170    NumPromoted += Allocas.size();
171    Changed = true;
172  }
173
174  return Changed;
175}
176
177// performScalarRepl - This algorithm is a simple worklist driven algorithm,
178// which runs on all of the malloc/alloca instructions in the function, removing
179// them if they are only used by getelementptr instructions.
180//
181bool SROA::performScalarRepl(Function &F) {
182  std::vector<AllocationInst*> WorkList;
183
184  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
185  BasicBlock &BB = F.getEntryBlock();
186  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
187    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
188      WorkList.push_back(A);
189
190  const TargetData &TD = getAnalysis<TargetData>();
191
192  // Process the worklist
193  bool Changed = false;
194  while (!WorkList.empty()) {
195    AllocationInst *AI = WorkList.back();
196    WorkList.pop_back();
197
198    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
199    // with unused elements.
200    if (AI->use_empty()) {
201      AI->eraseFromParent();
202      continue;
203    }
204
205    // If we can turn this aggregate value (potentially with casts) into a
206    // simple scalar value that can be mem2reg'd into a register value.
207    bool IsNotTrivial = false;
208    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
209      if (IsNotTrivial && ActualType != Type::VoidTy) {
210        ConvertToScalar(AI, ActualType);
211        Changed = true;
212        continue;
213      }
214
215    // Check to see if we can perform the core SROA transformation.  We cannot
216    // transform the allocation instruction if it is an array allocation
217    // (allocations OF arrays are ok though), and an allocation of a scalar
218    // value cannot be decomposed at all.
219    if (!AI->isArrayAllocation() &&
220        (isa<StructType>(AI->getAllocatedType()) ||
221         isa<ArrayType>(AI->getAllocatedType())) &&
222        AI->getAllocatedType()->isSized() &&
223        TD.getABITypeSize(AI->getAllocatedType()) < SRThreshold) {
224      // Check that all of the users of the allocation are capable of being
225      // transformed.
226      switch (isSafeAllocaToScalarRepl(AI)) {
227      default: assert(0 && "Unexpected value!");
228      case 0:  // Not safe to scalar replace.
229        break;
230      case 1:  // Safe, but requires cleanup/canonicalizations first
231        CanonicalizeAllocaUsers(AI);
232        // FALL THROUGH.
233      case 3:  // Safe to scalar replace.
234        DoScalarReplacement(AI, WorkList);
235        Changed = true;
236        continue;
237      }
238    }
239
240    // Check to see if this allocation is only modified by a memcpy/memmove from
241    // a constant global.  If this is the case, we can change all users to use
242    // the constant global instead.  This is commonly produced by the CFE by
243    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
244    // is only subsequently read.
245    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
246      DOUT << "Found alloca equal to global: " << *AI;
247      DOUT << "  memcpy = " << *TheCopy;
248      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
249      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
250      TheCopy->eraseFromParent();  // Don't mutate the global.
251      AI->eraseFromParent();
252      ++NumGlobals;
253      Changed = true;
254      continue;
255    }
256
257    // Otherwise, couldn't process this.
258  }
259
260  return Changed;
261}
262
263/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
264/// predicate, do SROA now.
265void SROA::DoScalarReplacement(AllocationInst *AI,
266                               std::vector<AllocationInst*> &WorkList) {
267  DOUT << "Found inst to SROA: " << *AI;
268  SmallVector<AllocaInst*, 32> ElementAllocas;
269  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
270    ElementAllocas.reserve(ST->getNumContainedTypes());
271    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
272      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
273                                      AI->getAlignment(),
274                                      AI->getName() + "." + utostr(i), AI);
275      ElementAllocas.push_back(NA);
276      WorkList.push_back(NA);  // Add to worklist for recursive processing
277    }
278  } else {
279    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
280    ElementAllocas.reserve(AT->getNumElements());
281    const Type *ElTy = AT->getElementType();
282    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
283      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
284                                      AI->getName() + "." + utostr(i), AI);
285      ElementAllocas.push_back(NA);
286      WorkList.push_back(NA);  // Add to worklist for recursive processing
287    }
288  }
289
290  // Now that we have created the alloca instructions that we want to use,
291  // expand the getelementptr instructions to use them.
292  //
293  while (!AI->use_empty()) {
294    Instruction *User = cast<Instruction>(AI->use_back());
295    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
296      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
297      BCInst->eraseFromParent();
298      continue;
299    }
300
301    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
302    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
303    unsigned Idx =
304       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
305
306    assert(Idx < ElementAllocas.size() && "Index out of range?");
307    AllocaInst *AllocaToUse = ElementAllocas[Idx];
308
309    Value *RepValue;
310    if (GEPI->getNumOperands() == 3) {
311      // Do not insert a new getelementptr instruction with zero indices, only
312      // to have it optimized out later.
313      RepValue = AllocaToUse;
314    } else {
315      // We are indexing deeply into the structure, so we still need a
316      // getelement ptr instruction to finish the indexing.  This may be
317      // expanded itself once the worklist is rerun.
318      //
319      SmallVector<Value*, 8> NewArgs;
320      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
321      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
322      RepValue = new GetElementPtrInst(AllocaToUse, NewArgs.begin(),
323                                       NewArgs.end(), "", GEPI);
324      RepValue->takeName(GEPI);
325    }
326
327    // If this GEP is to the start of the aggregate, check for memcpys.
328    if (Idx == 0) {
329      bool IsStartOfAggregateGEP = true;
330      for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
331        if (!isa<ConstantInt>(GEPI->getOperand(i))) {
332          IsStartOfAggregateGEP = false;
333          break;
334        }
335        if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
336          IsStartOfAggregateGEP = false;
337          break;
338        }
339      }
340
341      if (IsStartOfAggregateGEP)
342        RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
343    }
344
345
346    // Move all of the users over to the new GEP.
347    GEPI->replaceAllUsesWith(RepValue);
348    // Delete the old GEP
349    GEPI->eraseFromParent();
350  }
351
352  // Finally, delete the Alloca instruction
353  AI->eraseFromParent();
354  NumReplaced++;
355}
356
357
358/// isSafeElementUse - Check to see if this use is an allowed use for a
359/// getelementptr instruction of an array aggregate allocation.  isFirstElt
360/// indicates whether Ptr is known to the start of the aggregate.
361///
362void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
363                            AllocaInfo &Info) {
364  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
365       I != E; ++I) {
366    Instruction *User = cast<Instruction>(*I);
367    switch (User->getOpcode()) {
368    case Instruction::Load:  break;
369    case Instruction::Store:
370      // Store is ok if storing INTO the pointer, not storing the pointer
371      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
372      break;
373    case Instruction::GetElementPtr: {
374      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
375      bool AreAllZeroIndices = isFirstElt;
376      if (GEP->getNumOperands() > 1) {
377        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
378            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
379          // Using pointer arithmetic to navigate the array.
380          return MarkUnsafe(Info);
381
382        if (AreAllZeroIndices) {
383          for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
384            if (!isa<ConstantInt>(GEP->getOperand(i)) ||
385                !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
386              AreAllZeroIndices = false;
387              break;
388            }
389          }
390        }
391      }
392      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
393      if (Info.isUnsafe) return;
394      break;
395    }
396    case Instruction::BitCast:
397      if (isFirstElt) {
398        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
399        if (Info.isUnsafe) return;
400        break;
401      }
402      DOUT << "  Transformation preventing inst: " << *User;
403      return MarkUnsafe(Info);
404    case Instruction::Call:
405      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
406        if (isFirstElt) {
407          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
408          if (Info.isUnsafe) return;
409          break;
410        }
411      }
412      DOUT << "  Transformation preventing inst: " << *User;
413      return MarkUnsafe(Info);
414    default:
415      DOUT << "  Transformation preventing inst: " << *User;
416      return MarkUnsafe(Info);
417    }
418  }
419  return;  // All users look ok :)
420}
421
422/// AllUsersAreLoads - Return true if all users of this value are loads.
423static bool AllUsersAreLoads(Value *Ptr) {
424  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
425       I != E; ++I)
426    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
427      return false;
428  return true;
429}
430
431/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
432/// aggregate allocation.
433///
434void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
435                                 AllocaInfo &Info) {
436  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
437    return isSafeUseOfBitCastedAllocation(C, AI, Info);
438
439  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
440  if (GEPI == 0)
441    return MarkUnsafe(Info);
442
443  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
444
445  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
446  if (I == E ||
447      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
448    return MarkUnsafe(Info);
449  }
450
451  ++I;
452  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
453
454  bool IsAllZeroIndices = true;
455
456  // If this is a use of an array allocation, do a bit more checking for sanity.
457  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
458    uint64_t NumElements = AT->getNumElements();
459
460    if (ConstantInt *Idx = dyn_cast<ConstantInt>(I.getOperand())) {
461      IsAllZeroIndices &= Idx->isZero();
462
463      // Check to make sure that index falls within the array.  If not,
464      // something funny is going on, so we won't do the optimization.
465      //
466      if (Idx->getZExtValue() >= NumElements)
467        return MarkUnsafe(Info);
468
469      // We cannot scalar repl this level of the array unless any array
470      // sub-indices are in-range constants.  In particular, consider:
471      // A[0][i].  We cannot know that the user isn't doing invalid things like
472      // allowing i to index an out-of-range subscript that accesses A[1].
473      //
474      // Scalar replacing *just* the outer index of the array is probably not
475      // going to be a win anyway, so just give up.
476      for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
477        uint64_t NumElements;
478        if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
479          NumElements = SubArrayTy->getNumElements();
480        else
481          NumElements = cast<VectorType>(*I)->getNumElements();
482
483        ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
484        if (!IdxVal) return MarkUnsafe(Info);
485        if (IdxVal->getZExtValue() >= NumElements)
486          return MarkUnsafe(Info);
487        IsAllZeroIndices &= IdxVal->isZero();
488      }
489
490    } else {
491      IsAllZeroIndices = 0;
492
493      // If this is an array index and the index is not constant, we cannot
494      // promote... that is unless the array has exactly one or two elements in
495      // it, in which case we CAN promote it, but we have to canonicalize this
496      // out if this is the only problem.
497      if ((NumElements == 1 || NumElements == 2) &&
498          AllUsersAreLoads(GEPI)) {
499        Info.needsCanon = true;
500        return;  // Canonicalization required!
501      }
502      return MarkUnsafe(Info);
503    }
504  }
505
506  // If there are any non-simple uses of this getelementptr, make sure to reject
507  // them.
508  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
509}
510
511/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
512/// intrinsic can be promoted by SROA.  At this point, we know that the operand
513/// of the memintrinsic is a pointer to the beginning of the allocation.
514void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
515                                          unsigned OpNo, AllocaInfo &Info) {
516  // If not constant length, give up.
517  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
518  if (!Length) return MarkUnsafe(Info);
519
520  // If not the whole aggregate, give up.
521  const TargetData &TD = getAnalysis<TargetData>();
522  if (Length->getZExtValue() !=
523      TD.getABITypeSize(AI->getType()->getElementType()))
524    return MarkUnsafe(Info);
525
526  // We only know about memcpy/memset/memmove.
527  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
528    return MarkUnsafe(Info);
529
530  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
531  // into or out of the aggregate.
532  if (OpNo == 1)
533    Info.isMemCpyDst = true;
534  else {
535    assert(OpNo == 2);
536    Info.isMemCpySrc = true;
537  }
538}
539
540/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
541/// are
542void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
543                                          AllocaInfo &Info) {
544  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
545       UI != E; ++UI) {
546    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
547      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
548    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
549      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
550    } else {
551      return MarkUnsafe(Info);
552    }
553    if (Info.isUnsafe) return;
554  }
555}
556
557/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
558/// to its first element.  Transform users of the cast to use the new values
559/// instead.
560void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
561                                      SmallVector<AllocaInst*, 32> &NewElts) {
562  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
563  const TargetData &TD = getAnalysis<TargetData>();
564
565  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
566  while (UI != UE) {
567    if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
568      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
569      ++UI;
570      BCU->eraseFromParent();
571      continue;
572    }
573
574    // Otherwise, must be memcpy/memmove/memset of the entire aggregate.  Split
575    // into one per element.
576    MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
577
578    // If it's not a mem intrinsic, it must be some other user of a gep of the
579    // first pointer.  Just leave these alone.
580    if (!MI) {
581      ++UI;
582      continue;
583    }
584
585    // If this is a memcpy/memmove, construct the other pointer as the
586    // appropriate type.
587    Value *OtherPtr = 0;
588    if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
589      if (BCInst == MCI->getRawDest())
590        OtherPtr = MCI->getRawSource();
591      else {
592        assert(BCInst == MCI->getRawSource());
593        OtherPtr = MCI->getRawDest();
594      }
595    } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
596      if (BCInst == MMI->getRawDest())
597        OtherPtr = MMI->getRawSource();
598      else {
599        assert(BCInst == MMI->getRawSource());
600        OtherPtr = MMI->getRawDest();
601      }
602    }
603
604    // If there is an other pointer, we want to convert it to the same pointer
605    // type as AI has, so we can GEP through it.
606    if (OtherPtr) {
607      // It is likely that OtherPtr is a bitcast, if so, remove it.
608      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
609        OtherPtr = BC->getOperand(0);
610      if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
611        if (BCE->getOpcode() == Instruction::BitCast)
612          OtherPtr = BCE->getOperand(0);
613
614      // If the pointer is not the right type, insert a bitcast to the right
615      // type.
616      if (OtherPtr->getType() != AI->getType())
617        OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
618                                   MI);
619    }
620
621    // Process each element of the aggregate.
622    Value *TheFn = MI->getOperand(0);
623    const Type *BytePtrTy = MI->getRawDest()->getType();
624    bool SROADest = MI->getRawDest() == BCInst;
625
626    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
627      // If this is a memcpy/memmove, emit a GEP of the other element address.
628      Value *OtherElt = 0;
629      if (OtherPtr) {
630        Value *Idx[2];
631        Idx[0] = Zero;
632        Idx[1] = ConstantInt::get(Type::Int32Ty, i);
633        OtherElt = new GetElementPtrInst(OtherPtr, Idx, Idx + 2,
634                                         OtherPtr->getNameStr()+"."+utostr(i),
635                                         MI);
636      }
637
638      Value *EltPtr = NewElts[i];
639      const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
640
641      // If we got down to a scalar, insert a load or store as appropriate.
642      if (EltTy->isFirstClassType()) {
643        if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
644          Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
645                                    MI);
646          new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
647          continue;
648        } else {
649          assert(isa<MemSetInst>(MI));
650
651          // If the stored element is zero (common case), just store a null
652          // constant.
653          Constant *StoreVal;
654          if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
655            if (CI->isZero()) {
656              StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
657            } else {
658              // If EltTy is a vector type, get the element type.
659              const Type *ValTy = EltTy;
660              if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
661                ValTy = VTy->getElementType();
662
663              // Construct an integer with the right value.
664              unsigned EltSize = TD.getTypeSizeInBits(ValTy);
665              APInt OneVal(EltSize, CI->getZExtValue());
666              APInt TotalVal(OneVal);
667              // Set each byte.
668              for (unsigned i = 0; 8*i < EltSize; ++i) {
669                TotalVal = TotalVal.shl(8);
670                TotalVal |= OneVal;
671              }
672
673              // Convert the integer value to the appropriate type.
674              StoreVal = ConstantInt::get(TotalVal);
675              if (isa<PointerType>(ValTy))
676                StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
677              else if (ValTy->isFloatingPoint())
678                StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
679              assert(StoreVal->getType() == ValTy && "Type mismatch!");
680
681              // If the requested value was a vector constant, create it.
682              if (EltTy != ValTy) {
683                unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
684                SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
685                StoreVal = ConstantVector::get(&Elts[0], NumElts);
686              }
687            }
688            new StoreInst(StoreVal, EltPtr, MI);
689            continue;
690          }
691          // Otherwise, if we're storing a byte variable, use a memset call for
692          // this element.
693        }
694      }
695
696      // Cast the element pointer to BytePtrTy.
697      if (EltPtr->getType() != BytePtrTy)
698        EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
699
700      // Cast the other pointer (if we have one) to BytePtrTy.
701      if (OtherElt && OtherElt->getType() != BytePtrTy)
702        OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
703                                   MI);
704
705      unsigned EltSize = TD.getABITypeSize(EltTy);
706
707      // Finally, insert the meminst for this element.
708      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
709        Value *Ops[] = {
710          SROADest ? EltPtr : OtherElt,  // Dest ptr
711          SROADest ? OtherElt : EltPtr,  // Src ptr
712          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
713          Zero  // Align
714        };
715        new CallInst(TheFn, Ops, Ops + 4, "", MI);
716      } else {
717        assert(isa<MemSetInst>(MI));
718        Value *Ops[] = {
719          EltPtr, MI->getOperand(2),  // Dest, Value,
720          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
721          Zero  // Align
722        };
723        new CallInst(TheFn, Ops, Ops + 4, "", MI);
724      }
725    }
726
727    // Finally, MI is now dead, as we've modified its actions to occur on all of
728    // the elements of the aggregate.
729    ++UI;
730    MI->eraseFromParent();
731  }
732}
733
734/// HasPadding - Return true if the specified type has any structure or
735/// alignment padding, false otherwise.
736static bool HasPadding(const Type *Ty, const TargetData &TD,
737                       bool inPacked = false) {
738  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
739    const StructLayout *SL = TD.getStructLayout(STy);
740    unsigned PrevFieldBitOffset = 0;
741    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
742      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
743
744      // Padding in sub-elements?
745      if (HasPadding(STy->getElementType(i), TD, STy->isPacked()))
746        return true;
747
748      // Check to see if there is any padding between this element and the
749      // previous one.
750      if (i) {
751        unsigned PrevFieldEnd =
752        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
753        if (PrevFieldEnd < FieldBitOffset)
754          return true;
755      }
756
757      PrevFieldBitOffset = FieldBitOffset;
758    }
759
760    //  Check for tail padding.
761    if (unsigned EltCount = STy->getNumElements()) {
762      unsigned PrevFieldEnd = PrevFieldBitOffset +
763                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
764      if (PrevFieldEnd < SL->getSizeInBits())
765        return true;
766    }
767
768  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
769    return HasPadding(ATy->getElementType(), TD, false);
770  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
771    return HasPadding(VTy->getElementType(), TD, false);
772  }
773  return inPacked ?
774    false : TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
775}
776
777/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
778/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
779/// or 1 if safe after canonicalization has been performed.
780///
781int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
782  // Loop over the use list of the alloca.  We can only transform it if all of
783  // the users are safe to transform.
784  AllocaInfo Info;
785
786  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
787       I != E; ++I) {
788    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
789    if (Info.isUnsafe) {
790      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
791      return 0;
792    }
793  }
794
795  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
796  // source and destination, we have to be careful.  In particular, the memcpy
797  // could be moving around elements that live in structure padding of the LLVM
798  // types, but may actually be used.  In these cases, we refuse to promote the
799  // struct.
800  if (Info.isMemCpySrc && Info.isMemCpyDst &&
801      HasPadding(AI->getType()->getElementType(), getAnalysis<TargetData>()))
802    return 0;
803
804  // If we require cleanup, return 1, otherwise return 3.
805  return Info.needsCanon ? 1 : 3;
806}
807
808/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
809/// allocation, but only if cleaned up, perform the cleanups required.
810void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
811  // At this point, we know that the end result will be SROA'd and promoted, so
812  // we can insert ugly code if required so long as sroa+mem2reg will clean it
813  // up.
814  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
815       UI != E; ) {
816    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
817    if (!GEPI) continue;
818    gep_type_iterator I = gep_type_begin(GEPI);
819    ++I;
820
821    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
822      uint64_t NumElements = AT->getNumElements();
823
824      if (!isa<ConstantInt>(I.getOperand())) {
825        if (NumElements == 1) {
826          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
827        } else {
828          assert(NumElements == 2 && "Unhandled case!");
829          // All users of the GEP must be loads.  At each use of the GEP, insert
830          // two loads of the appropriate indexed GEP and select between them.
831          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
832                              Constant::getNullValue(I.getOperand()->getType()),
833             "isone", GEPI);
834          // Insert the new GEP instructions, which are properly indexed.
835          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
836          Indices[1] = Constant::getNullValue(Type::Int32Ty);
837          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0),
838                                                 Indices.begin(),
839                                                 Indices.end(),
840                                                 GEPI->getName()+".0", GEPI);
841          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
842          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0),
843                                                Indices.begin(),
844                                                Indices.end(),
845                                                GEPI->getName()+".1", GEPI);
846          // Replace all loads of the variable index GEP with loads from both
847          // indexes and a select.
848          while (!GEPI->use_empty()) {
849            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
850            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
851            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
852            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
853            LI->replaceAllUsesWith(R);
854            LI->eraseFromParent();
855          }
856          GEPI->eraseFromParent();
857        }
858      }
859    }
860  }
861}
862
863/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
864/// types are incompatible, return true, otherwise update Accum and return
865/// false.
866///
867/// There are three cases we handle here:
868///   1) An effectively-integer union, where the pieces are stored into as
869///      smaller integers (common with byte swap and other idioms).
870///   2) A union of vector types of the same size and potentially its elements.
871///      Here we turn element accesses into insert/extract element operations.
872///   3) A union of scalar types, such as int/float or int/pointer.  Here we
873///      merge together into integers, allowing the xform to work with #1 as
874///      well.
875static bool MergeInType(const Type *In, const Type *&Accum,
876                        const TargetData &TD) {
877  // If this is our first type, just use it.
878  const VectorType *PTy;
879  if (Accum == Type::VoidTy || In == Accum) {
880    Accum = In;
881  } else if (In == Type::VoidTy) {
882    // Noop.
883  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
884    // Otherwise pick whichever type is larger.
885    if (cast<IntegerType>(In)->getBitWidth() >
886        cast<IntegerType>(Accum)->getBitWidth())
887      Accum = In;
888  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
889    // Pointer unions just stay as one of the pointers.
890  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
891    if ((PTy = dyn_cast<VectorType>(Accum)) &&
892        PTy->getElementType() == In) {
893      // Accum is a vector, and we are accessing an element: ok.
894    } else if ((PTy = dyn_cast<VectorType>(In)) &&
895               PTy->getElementType() == Accum) {
896      // In is a vector, and accum is an element: ok, remember In.
897      Accum = In;
898    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
899               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
900      // Two vectors of the same size: keep Accum.
901    } else {
902      // Cannot insert an short into a <4 x int> or handle
903      // <2 x int> -> <4 x int>
904      return true;
905    }
906  } else {
907    // Pointer/FP/Integer unions merge together as integers.
908    switch (Accum->getTypeID()) {
909    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
910    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
911    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
912    case Type::X86_FP80TyID:  return true;
913    case Type::FP128TyID: return true;
914    case Type::PPC_FP128TyID: return true;
915    default:
916      assert(Accum->isInteger() && "Unknown FP type!");
917      break;
918    }
919
920    switch (In->getTypeID()) {
921    case Type::PointerTyID: In = TD.getIntPtrType(); break;
922    case Type::FloatTyID:   In = Type::Int32Ty; break;
923    case Type::DoubleTyID:  In = Type::Int64Ty; break;
924    case Type::X86_FP80TyID:  return true;
925    case Type::FP128TyID: return true;
926    case Type::PPC_FP128TyID: return true;
927    default:
928      assert(In->isInteger() && "Unknown FP type!");
929      break;
930    }
931    return MergeInType(In, Accum, TD);
932  }
933  return false;
934}
935
936/// getUIntAtLeastAsBigAs - Return an unsigned integer type that is at least
937/// as big as the specified type.  If there is no suitable type, this returns
938/// null.
939const Type *getUIntAtLeastAsBigAs(unsigned NumBits) {
940  if (NumBits > 64) return 0;
941  if (NumBits > 32) return Type::Int64Ty;
942  if (NumBits > 16) return Type::Int32Ty;
943  if (NumBits > 8) return Type::Int16Ty;
944  return Type::Int8Ty;
945}
946
947/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
948/// single scalar integer type, return that type.  Further, if the use is not
949/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
950/// there are no uses of this pointer, return Type::VoidTy to differentiate from
951/// failure.
952///
953const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
954  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
955  const TargetData &TD = getAnalysis<TargetData>();
956  const PointerType *PTy = cast<PointerType>(V->getType());
957
958  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
959    Instruction *User = cast<Instruction>(*UI);
960
961    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
962      if (MergeInType(LI->getType(), UsedType, TD))
963        return 0;
964
965    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
966      // Storing the pointer, not into the value?
967      if (SI->getOperand(0) == V) return 0;
968
969      // NOTE: We could handle storing of FP imms into integers here!
970
971      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
972        return 0;
973    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
974      IsNotTrivial = true;
975      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
976      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
977    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
978      // Check to see if this is stepping over an element: GEP Ptr, int C
979      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
980        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
981        unsigned ElSize = TD.getABITypeSize(PTy->getElementType());
982        unsigned BitOffset = Idx*ElSize*8;
983        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
984
985        IsNotTrivial = true;
986        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
987        if (SubElt == 0) return 0;
988        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
989          const Type *NewTy =
990            getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(SubElt)+BitOffset);
991          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
992          continue;
993        }
994      } else if (GEP->getNumOperands() == 3 &&
995                 isa<ConstantInt>(GEP->getOperand(1)) &&
996                 isa<ConstantInt>(GEP->getOperand(2)) &&
997                 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
998        // We are stepping into an element, e.g. a structure or an array:
999        // GEP Ptr, int 0, uint C
1000        const Type *AggTy = PTy->getElementType();
1001        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1002
1003        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
1004          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
1005        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
1006          // Getting an element of the vector.
1007          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
1008
1009          // Merge in the vector type.
1010          if (MergeInType(VectorTy, UsedType, TD)) return 0;
1011
1012          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1013          if (SubTy == 0) return 0;
1014
1015          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1016            return 0;
1017
1018          // We'll need to change this to an insert/extract element operation.
1019          IsNotTrivial = true;
1020          continue;    // Everything looks ok
1021
1022        } else if (isa<StructType>(AggTy)) {
1023          // Structs are always ok.
1024        } else {
1025          return 0;
1026        }
1027        const Type *NTy = getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(AggTy));
1028        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
1029        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1030        if (SubTy == 0) return 0;
1031        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1032          return 0;
1033        continue;    // Everything looks ok
1034      }
1035      return 0;
1036    } else {
1037      // Cannot handle this!
1038      return 0;
1039    }
1040  }
1041
1042  return UsedType;
1043}
1044
1045/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1046/// predicate and is non-trivial.  Convert it to something that can be trivially
1047/// promoted into a register by mem2reg.
1048void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1049  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
1050       << *ActualTy << "\n";
1051  ++NumConverted;
1052
1053  BasicBlock *EntryBlock = AI->getParent();
1054  assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
1055         "Not in the entry block!");
1056  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
1057
1058  // Create and insert the alloca.
1059  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1060                                     EntryBlock->begin());
1061  ConvertUsesToScalar(AI, NewAI, 0);
1062  delete AI;
1063}
1064
1065
1066/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1067/// directly.  This happens when we are converting an "integer union" to a
1068/// single integer scalar, or when we are converting a "vector union" to a
1069/// vector with insert/extractelement instructions.
1070///
1071/// Offset is an offset from the original alloca, in bits that need to be
1072/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1073void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
1074  const TargetData &TD = getAnalysis<TargetData>();
1075  while (!Ptr->use_empty()) {
1076    Instruction *User = cast<Instruction>(Ptr->use_back());
1077
1078    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1079      // The load is a bit extract from NewAI shifted right by Offset bits.
1080      Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1081      if (NV->getType() == LI->getType()) {
1082        // We win, no conversion needed.
1083      } else if (const VectorType *PTy = dyn_cast<VectorType>(NV->getType())) {
1084        // If the result alloca is a vector type, this is either an element
1085        // access or a bitcast to another vector type.
1086        if (isa<VectorType>(LI->getType())) {
1087          NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1088        } else {
1089          // Must be an element access.
1090          unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
1091          NV = new ExtractElementInst(
1092                         NV, ConstantInt::get(Type::Int32Ty, Elt), "tmp", LI);
1093        }
1094      } else if (isa<PointerType>(NV->getType())) {
1095        assert(isa<PointerType>(LI->getType()));
1096        // Must be ptr->ptr cast.  Anything else would result in NV being
1097        // an integer.
1098        NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1099      } else {
1100        const IntegerType *NTy = cast<IntegerType>(NV->getType());
1101
1102        // If this is a big-endian system and the load is narrower than the
1103        // full alloca type, we need to do a shift to get the right bits.
1104        int ShAmt = 0;
1105        if (TD.isBigEndian()) {
1106          // On big-endian machines, the lowest bit is stored at the bit offset
1107          // from the pointer given by getTypeStoreSizeInBits.  This matters for
1108          // integers with a bitwidth that is not a multiple of 8.
1109          ShAmt = TD.getTypeStoreSizeInBits(NTy) -
1110            TD.getTypeStoreSizeInBits(LI->getType()) - Offset;
1111        } else {
1112          ShAmt = Offset;
1113        }
1114
1115        // Note: we support negative bitwidths (with shl) which are not defined.
1116        // We do this to support (f.e.) loads off the end of a structure where
1117        // only some bits are used.
1118        if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1119          NV = BinaryOperator::createLShr(NV,
1120                                          ConstantInt::get(NV->getType(),ShAmt),
1121                                          LI->getName(), LI);
1122        else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1123          NV = BinaryOperator::createShl(NV,
1124                                         ConstantInt::get(NV->getType(),-ShAmt),
1125                                         LI->getName(), LI);
1126
1127        // Finally, unconditionally truncate the integer to the right width.
1128        unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
1129        if (LIBitWidth < NTy->getBitWidth())
1130          NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1131                             LI->getName(), LI);
1132
1133        // If the result is an integer, this is a trunc or bitcast.
1134        if (isa<IntegerType>(LI->getType())) {
1135          assert(NV->getType() == LI->getType() && "Truncate wasn't enough?");
1136        } else if (LI->getType()->isFloatingPoint()) {
1137          // Just do a bitcast, we know the sizes match up.
1138          NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1139        } else {
1140          // Otherwise must be a pointer.
1141          NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1142        }
1143      }
1144      LI->replaceAllUsesWith(NV);
1145      LI->eraseFromParent();
1146    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1147      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1148
1149      // Convert the stored type to the actual type, shift it left to insert
1150      // then 'or' into place.
1151      Value *SV = SI->getOperand(0);
1152      const Type *AllocaType = NewAI->getType()->getElementType();
1153      if (SV->getType() == AllocaType) {
1154        // All is well.
1155      } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1156        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1157
1158        // If the result alloca is a vector type, this is either an element
1159        // access or a bitcast to another vector type.
1160        if (isa<VectorType>(SV->getType())) {
1161          SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1162        } else {
1163          // Must be an element insertion.
1164          unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
1165          SV = new InsertElementInst(Old, SV,
1166                                     ConstantInt::get(Type::Int32Ty, Elt),
1167                                     "tmp", SI);
1168        }
1169      } else if (isa<PointerType>(AllocaType)) {
1170        // If the alloca type is a pointer, then all the elements must be
1171        // pointers.
1172        if (SV->getType() != AllocaType)
1173          SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1174      } else {
1175        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1176
1177        // If SV is a float, convert it to the appropriate integer type.
1178        // If it is a pointer, do the same, and also handle ptr->ptr casts
1179        // here.
1180        unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1181        unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
1182        if (SV->getType()->isFloatingPoint())
1183          SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1184                               SV->getName(), SI);
1185        else if (isa<PointerType>(SV->getType()))
1186          SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
1187
1188        // Always zero extend the value if needed.
1189        if (SV->getType() != AllocaType)
1190          SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1191
1192        // If this is a big-endian system and the store is narrower than the
1193        // full alloca type, we need to do a shift to get the right bits.
1194        int ShAmt = 0;
1195        if (TD.isBigEndian()) {
1196          // On big-endian machines, the lowest bit is stored at the bit offset
1197          // from the pointer given by getTypeStoreSizeInBits.  This matters for
1198          // integers with a bitwidth that is not a multiple of 8.
1199          ShAmt = TD.getTypeStoreSizeInBits(AllocaType) -
1200            TD.getTypeStoreSizeInBits(SV->getType()) - Offset;
1201        } else {
1202          ShAmt = Offset;
1203        }
1204
1205        // Note: we support negative bitwidths (with shr) which are not defined.
1206        // We do this to support (f.e.) stores off the end of a structure where
1207        // only some bits in the structure are set.
1208        APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1209        if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1210          SV = BinaryOperator::createShl(SV,
1211                                         ConstantInt::get(SV->getType(), ShAmt),
1212                                         SV->getName(), SI);
1213          Mask <<= ShAmt;
1214        } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1215          SV = BinaryOperator::createLShr(SV,
1216                                         ConstantInt::get(SV->getType(),-ShAmt),
1217                                          SV->getName(), SI);
1218          Mask = Mask.lshr(ShAmt);
1219        }
1220
1221        // Mask out the bits we are about to insert from the old value, and or
1222        // in the new bits.
1223        if (SrcWidth != DestWidth) {
1224          assert(DestWidth > SrcWidth);
1225          Old = BinaryOperator::createAnd(Old, ConstantInt::get(~Mask),
1226                                          Old->getName()+".mask", SI);
1227          SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
1228        }
1229      }
1230      new StoreInst(SV, NewAI, SI);
1231      SI->eraseFromParent();
1232
1233    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1234       ConvertUsesToScalar(CI, NewAI, Offset);
1235      CI->eraseFromParent();
1236    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1237      const PointerType *AggPtrTy =
1238        cast<PointerType>(GEP->getOperand(0)->getType());
1239      const TargetData &TD = getAnalysis<TargetData>();
1240      unsigned AggSizeInBits =
1241        TD.getABITypeSizeInBits(AggPtrTy->getElementType());
1242
1243      // Check to see if this is stepping over an element: GEP Ptr, int C
1244      unsigned NewOffset = Offset;
1245      if (GEP->getNumOperands() == 2) {
1246        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1247        unsigned BitOffset = Idx*AggSizeInBits;
1248
1249        NewOffset += BitOffset;
1250      } else if (GEP->getNumOperands() == 3) {
1251        // We know that operand #2 is zero.
1252        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1253        const Type *AggTy = AggPtrTy->getElementType();
1254        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1255          unsigned ElSizeBits =
1256            TD.getABITypeSizeInBits(SeqTy->getElementType());
1257
1258          NewOffset += ElSizeBits*Idx;
1259        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
1260          unsigned EltBitOffset =
1261            TD.getStructLayout(STy)->getElementOffsetInBits(Idx);
1262
1263          NewOffset += EltBitOffset;
1264        } else {
1265          assert(0 && "Unsupported operation!");
1266          abort();
1267        }
1268      } else {
1269        assert(0 && "Unsupported operation!");
1270        abort();
1271      }
1272      ConvertUsesToScalar(GEP, NewAI, NewOffset);
1273      GEP->eraseFromParent();
1274    } else {
1275      assert(0 && "Unsupported operation!");
1276      abort();
1277    }
1278  }
1279}
1280
1281
1282/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1283/// some part of a constant global variable.  This intentionally only accepts
1284/// constant expressions because we don't can't rewrite arbitrary instructions.
1285static bool PointsToConstantGlobal(Value *V) {
1286  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1287    return GV->isConstant();
1288  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1289    if (CE->getOpcode() == Instruction::BitCast ||
1290        CE->getOpcode() == Instruction::GetElementPtr)
1291      return PointsToConstantGlobal(CE->getOperand(0));
1292  return false;
1293}
1294
1295/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1296/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1297/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1298/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1299/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1300/// the alloca, and if the source pointer is a pointer to a constant  global, we
1301/// can optimize this.
1302static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1303                                           bool isOffset) {
1304  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1305    if (isa<LoadInst>(*UI)) {
1306      // Ignore loads, they are always ok.
1307      continue;
1308    }
1309    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1310      // If uses of the bitcast are ok, we are ok.
1311      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1312        return false;
1313      continue;
1314    }
1315    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1316      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1317      // doesn't, it does.
1318      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1319                                         isOffset || !GEP->hasAllZeroIndices()))
1320        return false;
1321      continue;
1322    }
1323
1324    // If this is isn't our memcpy/memmove, reject it as something we can't
1325    // handle.
1326    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1327      return false;
1328
1329    // If we already have seen a copy, reject the second one.
1330    if (TheCopy) return false;
1331
1332    // If the pointer has been offset from the start of the alloca, we can't
1333    // safely handle this.
1334    if (isOffset) return false;
1335
1336    // If the memintrinsic isn't using the alloca as the dest, reject it.
1337    if (UI.getOperandNo() != 1) return false;
1338
1339    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1340
1341    // If the source of the memcpy/move is not a constant global, reject it.
1342    if (!PointsToConstantGlobal(MI->getOperand(2)))
1343      return false;
1344
1345    // Otherwise, the transform is safe.  Remember the copy instruction.
1346    TheCopy = MI;
1347  }
1348  return true;
1349}
1350
1351/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1352/// modified by a copy from a constant global.  If we can prove this, we can
1353/// replace any uses of the alloca with uses of the global directly.
1354Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1355  Instruction *TheCopy = 0;
1356  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1357    return TheCopy;
1358  return 0;
1359}
1360