ScalarReplAggregates.cpp revision 1a3257bbf53eff4c7cfcbef972dd382f7baa7592
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced,  "Number of allocas broken up");
44STATISTIC(NumPromoted,  "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
47
48namespace {
49  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50    static char ID; // Pass identification, replacement for typeid
51    explicit SROA(signed T = -1) : FunctionPass(&ID) {
52      if (T == -1)
53        SRThreshold = 128;
54      else
55        SRThreshold = T;
56    }
57
58    bool runOnFunction(Function &F);
59
60    bool performScalarRepl(Function &F);
61    bool performPromotion(Function &F);
62
63    // getAnalysisUsage - This pass does not require any passes, but we know it
64    // will not alter the CFG, so say so.
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<DominatorTree>();
67      AU.addRequired<DominanceFrontier>();
68      AU.addRequired<TargetData>();
69      AU.setPreservesCFG();
70    }
71
72  private:
73    TargetData *TD;
74
75    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
76    /// information about the uses.  All these fields are initialized to false
77    /// and set to true when something is learned.
78    struct AllocaInfo {
79      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
80      bool isUnsafe : 1;
81
82      /// needsCanon - This is set to true if there is some use of the alloca
83      /// that requires canonicalization.
84      bool needsCanon : 1;
85
86      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
87      bool isMemCpySrc : 1;
88
89      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
90      bool isMemCpyDst : 1;
91
92      AllocaInfo()
93        : isUnsafe(false), needsCanon(false),
94          isMemCpySrc(false), isMemCpyDst(false) {}
95    };
96
97    unsigned SRThreshold;
98
99    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
100
101    int isSafeAllocaToScalarRepl(AllocationInst *AI);
102
103    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
104                               AllocaInfo &Info);
105    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
106                         AllocaInfo &Info);
107    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
108                                        unsigned OpNo, AllocaInfo &Info);
109    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
110                                        AllocaInfo &Info);
111
112    void DoScalarReplacement(AllocationInst *AI,
113                             std::vector<AllocationInst*> &WorkList);
114    void CanonicalizeAllocaUsers(AllocationInst *AI);
115    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
116
117    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
118                                    SmallVector<AllocaInst*, 32> &NewElts);
119
120    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
121                                      AllocationInst *AI,
122                                      SmallVector<AllocaInst*, 32> &NewElts);
123    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
124                                       SmallVector<AllocaInst*, 32> &NewElts);
125    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
126                                      SmallVector<AllocaInst*, 32> &NewElts);
127
128    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
129                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
130    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
131    Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
132                                     uint64_t Offset);
133    Value *ConvertUsesOfStoreToScalar(Value *StoredVal, AllocaInst *NewAI,
134                                      uint64_t Offset, Instruction *InsertPt);
135    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
136  };
137}
138
139char SROA::ID = 0;
140static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
141
142// Public interface to the ScalarReplAggregates pass
143FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
144  return new SROA(Threshold);
145}
146
147
148bool SROA::runOnFunction(Function &F) {
149  TD = &getAnalysis<TargetData>();
150
151  bool Changed = performPromotion(F);
152  while (1) {
153    bool LocalChange = performScalarRepl(F);
154    if (!LocalChange) break;   // No need to repromote if no scalarrepl
155    Changed = true;
156    LocalChange = performPromotion(F);
157    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
158  }
159
160  return Changed;
161}
162
163
164bool SROA::performPromotion(Function &F) {
165  std::vector<AllocaInst*> Allocas;
166  DominatorTree         &DT = getAnalysis<DominatorTree>();
167  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
168
169  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
170
171  bool Changed = false;
172
173  while (1) {
174    Allocas.clear();
175
176    // Find allocas that are safe to promote, by looking at all instructions in
177    // the entry node
178    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
179      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
180        if (isAllocaPromotable(AI))
181          Allocas.push_back(AI);
182
183    if (Allocas.empty()) break;
184
185    PromoteMemToReg(Allocas, DT, DF);
186    NumPromoted += Allocas.size();
187    Changed = true;
188  }
189
190  return Changed;
191}
192
193/// getNumSAElements - Return the number of elements in the specific struct or
194/// array.
195static uint64_t getNumSAElements(const Type *T) {
196  if (const StructType *ST = dyn_cast<StructType>(T))
197    return ST->getNumElements();
198  return cast<ArrayType>(T)->getNumElements();
199}
200
201// performScalarRepl - This algorithm is a simple worklist driven algorithm,
202// which runs on all of the malloc/alloca instructions in the function, removing
203// them if they are only used by getelementptr instructions.
204//
205bool SROA::performScalarRepl(Function &F) {
206  std::vector<AllocationInst*> WorkList;
207
208  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
209  BasicBlock &BB = F.getEntryBlock();
210  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
211    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
212      WorkList.push_back(A);
213
214  // Process the worklist
215  bool Changed = false;
216  while (!WorkList.empty()) {
217    AllocationInst *AI = WorkList.back();
218    WorkList.pop_back();
219
220    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
221    // with unused elements.
222    if (AI->use_empty()) {
223      AI->eraseFromParent();
224      continue;
225    }
226
227    // If this alloca is impossible for us to promote, reject it early.
228    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
229      continue;
230
231    // Check to see if this allocation is only modified by a memcpy/memmove from
232    // a constant global.  If this is the case, we can change all users to use
233    // the constant global instead.  This is commonly produced by the CFE by
234    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
235    // is only subsequently read.
236    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
237      DOUT << "Found alloca equal to global: " << *AI;
238      DOUT << "  memcpy = " << *TheCopy;
239      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
240      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
241      TheCopy->eraseFromParent();  // Don't mutate the global.
242      AI->eraseFromParent();
243      ++NumGlobals;
244      Changed = true;
245      continue;
246    }
247
248    // Check to see if we can perform the core SROA transformation.  We cannot
249    // transform the allocation instruction if it is an array allocation
250    // (allocations OF arrays are ok though), and an allocation of a scalar
251    // value cannot be decomposed at all.
252    uint64_t AllocaSize = TD->getTypePaddedSize(AI->getAllocatedType());
253
254    if ((isa<StructType>(AI->getAllocatedType()) ||
255         isa<ArrayType>(AI->getAllocatedType())) &&
256        // Do not promote any struct whose size is too big.
257        AllocaSize < SRThreshold &&
258        // Do not promote any struct into more than "32" separate vars.
259        getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
260      // Check that all of the users of the allocation are capable of being
261      // transformed.
262      switch (isSafeAllocaToScalarRepl(AI)) {
263      default: assert(0 && "Unexpected value!");
264      case 0:  // Not safe to scalar replace.
265        break;
266      case 1:  // Safe, but requires cleanup/canonicalizations first
267        CanonicalizeAllocaUsers(AI);
268        // FALL THROUGH.
269      case 3:  // Safe to scalar replace.
270        DoScalarReplacement(AI, WorkList);
271        Changed = true;
272        continue;
273      }
274    }
275
276    // If we can turn this aggregate value (potentially with casts) into a
277    // simple scalar value that can be mem2reg'd into a register value.
278    // IsNotTrivial tracks whether this is something that mem2reg could have
279    // promoted itself.  If so, we don't want to transform it needlessly.  Note
280    // that we can't just check based on the type: the alloca may be of an i32
281    // but that has pointer arithmetic to set byte 3 of it or something.
282    bool IsNotTrivial = false;
283    const Type *VectorTy = 0;
284    bool HadAVector = false;
285    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
286                           0, unsigned(AllocaSize)) && IsNotTrivial) {
287      AllocaInst *NewAI;
288      // If we were able to find a vector type that can handle this with
289      // insert/extract elements, and if there was at least one use that had
290      // a vector type, promote this to a vector.  We don't want to promote
291      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
292      // we just get a lot of insert/extracts.  If at least one vector is
293      // involved, then we probably really do have a union of vector/array.
294      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
295        DOUT << "CONVERT TO VECTOR: " << *AI << "  TYPE = " << *VectorTy <<"\n";
296
297        // Create and insert the vector alloca.
298        NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
299        ConvertUsesToScalar(AI, NewAI, 0);
300      } else {
301        DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
302
303        // Create and insert the integer alloca.
304        const Type *NewTy = IntegerType::get(AllocaSize*8);
305        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
306        ConvertUsesToScalar(AI, NewAI, 0);
307      }
308      NewAI->takeName(AI);
309      AI->eraseFromParent();
310      ++NumConverted;
311      Changed = true;
312      continue;
313    }
314
315    // Otherwise, couldn't process this alloca.
316  }
317
318  return Changed;
319}
320
321/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
322/// predicate, do SROA now.
323void SROA::DoScalarReplacement(AllocationInst *AI,
324                               std::vector<AllocationInst*> &WorkList) {
325  DOUT << "Found inst to SROA: " << *AI;
326  SmallVector<AllocaInst*, 32> ElementAllocas;
327  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
328    ElementAllocas.reserve(ST->getNumContainedTypes());
329    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
330      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
331                                      AI->getAlignment(),
332                                      AI->getName() + "." + utostr(i), AI);
333      ElementAllocas.push_back(NA);
334      WorkList.push_back(NA);  // Add to worklist for recursive processing
335    }
336  } else {
337    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
338    ElementAllocas.reserve(AT->getNumElements());
339    const Type *ElTy = AT->getElementType();
340    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
341      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
342                                      AI->getName() + "." + utostr(i), AI);
343      ElementAllocas.push_back(NA);
344      WorkList.push_back(NA);  // Add to worklist for recursive processing
345    }
346  }
347
348  // Now that we have created the alloca instructions that we want to use,
349  // expand the getelementptr instructions to use them.
350  //
351  while (!AI->use_empty()) {
352    Instruction *User = cast<Instruction>(AI->use_back());
353    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
354      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
355      BCInst->eraseFromParent();
356      continue;
357    }
358
359    // Replace:
360    //   %res = load { i32, i32 }* %alloc
361    // with:
362    //   %load.0 = load i32* %alloc.0
363    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
364    //   %load.1 = load i32* %alloc.1
365    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
366    // (Also works for arrays instead of structs)
367    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
368      Value *Insert = UndefValue::get(LI->getType());
369      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
370        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
371        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
372      }
373      LI->replaceAllUsesWith(Insert);
374      LI->eraseFromParent();
375      continue;
376    }
377
378    // Replace:
379    //   store { i32, i32 } %val, { i32, i32 }* %alloc
380    // with:
381    //   %val.0 = extractvalue { i32, i32 } %val, 0
382    //   store i32 %val.0, i32* %alloc.0
383    //   %val.1 = extractvalue { i32, i32 } %val, 1
384    //   store i32 %val.1, i32* %alloc.1
385    // (Also works for arrays instead of structs)
386    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
387      Value *Val = SI->getOperand(0);
388      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
389        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
390        new StoreInst(Extract, ElementAllocas[i], SI);
391      }
392      SI->eraseFromParent();
393      continue;
394    }
395
396    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
397    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
398    unsigned Idx =
399       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
400
401    assert(Idx < ElementAllocas.size() && "Index out of range?");
402    AllocaInst *AllocaToUse = ElementAllocas[Idx];
403
404    Value *RepValue;
405    if (GEPI->getNumOperands() == 3) {
406      // Do not insert a new getelementptr instruction with zero indices, only
407      // to have it optimized out later.
408      RepValue = AllocaToUse;
409    } else {
410      // We are indexing deeply into the structure, so we still need a
411      // getelement ptr instruction to finish the indexing.  This may be
412      // expanded itself once the worklist is rerun.
413      //
414      SmallVector<Value*, 8> NewArgs;
415      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
416      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
417      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
418                                           NewArgs.end(), "", GEPI);
419      RepValue->takeName(GEPI);
420    }
421
422    // If this GEP is to the start of the aggregate, check for memcpys.
423    if (Idx == 0 && GEPI->hasAllZeroIndices())
424      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
425
426    // Move all of the users over to the new GEP.
427    GEPI->replaceAllUsesWith(RepValue);
428    // Delete the old GEP
429    GEPI->eraseFromParent();
430  }
431
432  // Finally, delete the Alloca instruction
433  AI->eraseFromParent();
434  NumReplaced++;
435}
436
437
438/// isSafeElementUse - Check to see if this use is an allowed use for a
439/// getelementptr instruction of an array aggregate allocation.  isFirstElt
440/// indicates whether Ptr is known to the start of the aggregate.
441///
442void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
443                            AllocaInfo &Info) {
444  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
445       I != E; ++I) {
446    Instruction *User = cast<Instruction>(*I);
447    switch (User->getOpcode()) {
448    case Instruction::Load:  break;
449    case Instruction::Store:
450      // Store is ok if storing INTO the pointer, not storing the pointer
451      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
452      break;
453    case Instruction::GetElementPtr: {
454      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
455      bool AreAllZeroIndices = isFirstElt;
456      if (GEP->getNumOperands() > 1) {
457        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
458            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
459          // Using pointer arithmetic to navigate the array.
460          return MarkUnsafe(Info);
461
462        if (AreAllZeroIndices)
463          AreAllZeroIndices = GEP->hasAllZeroIndices();
464      }
465      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
466      if (Info.isUnsafe) return;
467      break;
468    }
469    case Instruction::BitCast:
470      if (isFirstElt) {
471        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
472        if (Info.isUnsafe) return;
473        break;
474      }
475      DOUT << "  Transformation preventing inst: " << *User;
476      return MarkUnsafe(Info);
477    case Instruction::Call:
478      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
479        if (isFirstElt) {
480          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
481          if (Info.isUnsafe) return;
482          break;
483        }
484      }
485      DOUT << "  Transformation preventing inst: " << *User;
486      return MarkUnsafe(Info);
487    default:
488      DOUT << "  Transformation preventing inst: " << *User;
489      return MarkUnsafe(Info);
490    }
491  }
492  return;  // All users look ok :)
493}
494
495/// AllUsersAreLoads - Return true if all users of this value are loads.
496static bool AllUsersAreLoads(Value *Ptr) {
497  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
498       I != E; ++I)
499    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
500      return false;
501  return true;
502}
503
504/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
505/// aggregate allocation.
506///
507void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
508                                 AllocaInfo &Info) {
509  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
510    return isSafeUseOfBitCastedAllocation(C, AI, Info);
511
512  if (LoadInst *LI = dyn_cast<LoadInst>(User))
513    if (!LI->isVolatile())
514      return;// Loads (returning a first class aggregrate) are always rewritable
515
516  if (StoreInst *SI = dyn_cast<StoreInst>(User))
517    if (!SI->isVolatile() && SI->getOperand(0) != AI)
518      return;// Store is ok if storing INTO the pointer, not storing the pointer
519
520  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
521  if (GEPI == 0)
522    return MarkUnsafe(Info);
523
524  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
525
526  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
527  if (I == E ||
528      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
529    return MarkUnsafe(Info);
530  }
531
532  ++I;
533  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
534
535  bool IsAllZeroIndices = true;
536
537  // If the first index is a non-constant index into an array, see if we can
538  // handle it as a special case.
539  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
540    if (!isa<ConstantInt>(I.getOperand())) {
541      IsAllZeroIndices = 0;
542      uint64_t NumElements = AT->getNumElements();
543
544      // If this is an array index and the index is not constant, we cannot
545      // promote... that is unless the array has exactly one or two elements in
546      // it, in which case we CAN promote it, but we have to canonicalize this
547      // out if this is the only problem.
548      if ((NumElements == 1 || NumElements == 2) &&
549          AllUsersAreLoads(GEPI)) {
550        Info.needsCanon = true;
551        return;  // Canonicalization required!
552      }
553      return MarkUnsafe(Info);
554    }
555  }
556
557  // Walk through the GEP type indices, checking the types that this indexes
558  // into.
559  for (; I != E; ++I) {
560    // Ignore struct elements, no extra checking needed for these.
561    if (isa<StructType>(*I))
562      continue;
563
564    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
565    if (!IdxVal) return MarkUnsafe(Info);
566
567    // Are all indices still zero?
568    IsAllZeroIndices &= IdxVal->isZero();
569
570    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
571      // This GEP indexes an array.  Verify that this is an in-range constant
572      // integer. Specifically, consider A[0][i]. We cannot know that the user
573      // isn't doing invalid things like allowing i to index an out-of-range
574      // subscript that accesses A[1].  Because of this, we have to reject SROA
575      // of any accesses into structs where any of the components are variables.
576      if (IdxVal->getZExtValue() >= AT->getNumElements())
577        return MarkUnsafe(Info);
578    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
579      if (IdxVal->getZExtValue() >= VT->getNumElements())
580        return MarkUnsafe(Info);
581    }
582  }
583
584  // If there are any non-simple uses of this getelementptr, make sure to reject
585  // them.
586  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
587}
588
589/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
590/// intrinsic can be promoted by SROA.  At this point, we know that the operand
591/// of the memintrinsic is a pointer to the beginning of the allocation.
592void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
593                                          unsigned OpNo, AllocaInfo &Info) {
594  // If not constant length, give up.
595  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
596  if (!Length) return MarkUnsafe(Info);
597
598  // If not the whole aggregate, give up.
599  if (Length->getZExtValue() !=
600      TD->getTypePaddedSize(AI->getType()->getElementType()))
601    return MarkUnsafe(Info);
602
603  // We only know about memcpy/memset/memmove.
604  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
605    return MarkUnsafe(Info);
606
607  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
608  // into or out of the aggregate.
609  if (OpNo == 1)
610    Info.isMemCpyDst = true;
611  else {
612    assert(OpNo == 2);
613    Info.isMemCpySrc = true;
614  }
615}
616
617/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
618/// are
619void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
620                                          AllocaInfo &Info) {
621  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
622       UI != E; ++UI) {
623    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
624      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
625    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
626      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
627    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
628      if (SI->isVolatile())
629        return MarkUnsafe(Info);
630
631      // If storing the entire alloca in one chunk through a bitcasted pointer
632      // to integer, we can transform it.  This happens (for example) when you
633      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
634      // memcpy case and occurs in various "byval" cases and emulated memcpys.
635      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
636          TD->getTypePaddedSize(SI->getOperand(0)->getType()) ==
637          TD->getTypePaddedSize(AI->getType()->getElementType())) {
638        Info.isMemCpyDst = true;
639        continue;
640      }
641      return MarkUnsafe(Info);
642    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
643      if (LI->isVolatile())
644        return MarkUnsafe(Info);
645
646      // If loading the entire alloca in one chunk through a bitcasted pointer
647      // to integer, we can transform it.  This happens (for example) when you
648      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
649      // memcpy case and occurs in various "byval" cases and emulated memcpys.
650      if (isa<IntegerType>(LI->getType()) &&
651          TD->getTypePaddedSize(LI->getType()) ==
652          TD->getTypePaddedSize(AI->getType()->getElementType())) {
653        Info.isMemCpySrc = true;
654        continue;
655      }
656      return MarkUnsafe(Info);
657    } else {
658      return MarkUnsafe(Info);
659    }
660    if (Info.isUnsafe) return;
661  }
662}
663
664/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
665/// to its first element.  Transform users of the cast to use the new values
666/// instead.
667void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
668                                      SmallVector<AllocaInst*, 32> &NewElts) {
669  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
670  while (UI != UE) {
671    Instruction *User = cast<Instruction>(*UI++);
672    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
673      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
674      if (BCU->use_empty()) BCU->eraseFromParent();
675      continue;
676    }
677
678    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
679      // This must be memcpy/memmove/memset of the entire aggregate.
680      // Split into one per element.
681      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
682      continue;
683    }
684
685    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
686      // If this is a store of the entire alloca from an integer, rewrite it.
687      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
688      continue;
689    }
690
691    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
692      // If this is a load of the entire alloca to an integer, rewrite it.
693      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
694      continue;
695    }
696
697    // Otherwise it must be some other user of a gep of the first pointer.  Just
698    // leave these alone.
699    continue;
700  }
701}
702
703/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
704/// Rewrite it to copy or set the elements of the scalarized memory.
705void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
706                                        AllocationInst *AI,
707                                        SmallVector<AllocaInst*, 32> &NewElts) {
708
709  // If this is a memcpy/memmove, construct the other pointer as the
710  // appropriate type.
711  Value *OtherPtr = 0;
712  if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
713    if (BCInst == MCI->getRawDest())
714      OtherPtr = MCI->getRawSource();
715    else {
716      assert(BCInst == MCI->getRawSource());
717      OtherPtr = MCI->getRawDest();
718    }
719  } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
720    if (BCInst == MMI->getRawDest())
721      OtherPtr = MMI->getRawSource();
722    else {
723      assert(BCInst == MMI->getRawSource());
724      OtherPtr = MMI->getRawDest();
725    }
726  }
727
728  // If there is an other pointer, we want to convert it to the same pointer
729  // type as AI has, so we can GEP through it safely.
730  if (OtherPtr) {
731    // It is likely that OtherPtr is a bitcast, if so, remove it.
732    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
733      OtherPtr = BC->getOperand(0);
734    // All zero GEPs are effectively bitcasts.
735    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
736      if (GEP->hasAllZeroIndices())
737        OtherPtr = GEP->getOperand(0);
738
739    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
740      if (BCE->getOpcode() == Instruction::BitCast)
741        OtherPtr = BCE->getOperand(0);
742
743    // If the pointer is not the right type, insert a bitcast to the right
744    // type.
745    if (OtherPtr->getType() != AI->getType())
746      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
747                                 MI);
748  }
749
750  // Process each element of the aggregate.
751  Value *TheFn = MI->getOperand(0);
752  const Type *BytePtrTy = MI->getRawDest()->getType();
753  bool SROADest = MI->getRawDest() == BCInst;
754
755  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
756
757  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
758    // If this is a memcpy/memmove, emit a GEP of the other element address.
759    Value *OtherElt = 0;
760    if (OtherPtr) {
761      Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
762      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
763                                           OtherPtr->getNameStr()+"."+utostr(i),
764                                           MI);
765    }
766
767    Value *EltPtr = NewElts[i];
768    const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
769
770    // If we got down to a scalar, insert a load or store as appropriate.
771    if (EltTy->isSingleValueType()) {
772      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
773        Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
774                                  MI);
775        new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
776        continue;
777      }
778      assert(isa<MemSetInst>(MI));
779
780      // If the stored element is zero (common case), just store a null
781      // constant.
782      Constant *StoreVal;
783      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
784        if (CI->isZero()) {
785          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
786        } else {
787          // If EltTy is a vector type, get the element type.
788          const Type *ValTy = EltTy;
789          if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
790            ValTy = VTy->getElementType();
791
792          // Construct an integer with the right value.
793          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
794          APInt OneVal(EltSize, CI->getZExtValue());
795          APInt TotalVal(OneVal);
796          // Set each byte.
797          for (unsigned i = 0; 8*i < EltSize; ++i) {
798            TotalVal = TotalVal.shl(8);
799            TotalVal |= OneVal;
800          }
801
802          // Convert the integer value to the appropriate type.
803          StoreVal = ConstantInt::get(TotalVal);
804          if (isa<PointerType>(ValTy))
805            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
806          else if (ValTy->isFloatingPoint())
807            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
808          assert(StoreVal->getType() == ValTy && "Type mismatch!");
809
810          // If the requested value was a vector constant, create it.
811          if (EltTy != ValTy) {
812            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
813            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
814            StoreVal = ConstantVector::get(&Elts[0], NumElts);
815          }
816        }
817        new StoreInst(StoreVal, EltPtr, MI);
818        continue;
819      }
820      // Otherwise, if we're storing a byte variable, use a memset call for
821      // this element.
822    }
823
824    // Cast the element pointer to BytePtrTy.
825    if (EltPtr->getType() != BytePtrTy)
826      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
827
828    // Cast the other pointer (if we have one) to BytePtrTy.
829    if (OtherElt && OtherElt->getType() != BytePtrTy)
830      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
831                                 MI);
832
833    unsigned EltSize = TD->getTypePaddedSize(EltTy);
834
835    // Finally, insert the meminst for this element.
836    if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
837      Value *Ops[] = {
838        SROADest ? EltPtr : OtherElt,  // Dest ptr
839        SROADest ? OtherElt : EltPtr,  // Src ptr
840        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
841        Zero  // Align
842      };
843      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
844    } else {
845      assert(isa<MemSetInst>(MI));
846      Value *Ops[] = {
847        EltPtr, MI->getOperand(2),  // Dest, Value,
848        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
849        Zero  // Align
850      };
851      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
852    }
853  }
854  MI->eraseFromParent();
855}
856
857/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
858/// overwrites the entire allocation.  Extract out the pieces of the stored
859/// integer and store them individually.
860void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
861                                         AllocationInst *AI,
862                                         SmallVector<AllocaInst*, 32> &NewElts){
863  // Extract each element out of the integer according to its structure offset
864  // and store the element value to the individual alloca.
865  Value *SrcVal = SI->getOperand(0);
866  const Type *AllocaEltTy = AI->getType()->getElementType();
867  uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
868
869  // If this isn't a store of an integer to the whole alloca, it may be a store
870  // to the first element.  Just ignore the store in this case and normal SROA
871  // will handle it.
872  if (!isa<IntegerType>(SrcVal->getType()) ||
873      TD->getTypePaddedSizeInBits(SrcVal->getType()) != AllocaSizeBits)
874    return;
875
876  DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
877
878  // There are two forms here: AI could be an array or struct.  Both cases
879  // have different ways to compute the element offset.
880  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
881    const StructLayout *Layout = TD->getStructLayout(EltSTy);
882
883    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
884      // Get the number of bits to shift SrcVal to get the value.
885      const Type *FieldTy = EltSTy->getElementType(i);
886      uint64_t Shift = Layout->getElementOffsetInBits(i);
887
888      if (TD->isBigEndian())
889        Shift = AllocaSizeBits-Shift-TD->getTypePaddedSizeInBits(FieldTy);
890
891      Value *EltVal = SrcVal;
892      if (Shift) {
893        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
894        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
895                                            "sroa.store.elt", SI);
896      }
897
898      // Truncate down to an integer of the right size.
899      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
900
901      // Ignore zero sized fields like {}, they obviously contain no data.
902      if (FieldSizeBits == 0) continue;
903
904      if (FieldSizeBits != AllocaSizeBits)
905        EltVal = new TruncInst(EltVal, IntegerType::get(FieldSizeBits), "", SI);
906      Value *DestField = NewElts[i];
907      if (EltVal->getType() == FieldTy) {
908        // Storing to an integer field of this size, just do it.
909      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
910        // Bitcast to the right element type (for fp/vector values).
911        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
912      } else {
913        // Otherwise, bitcast the dest pointer (for aggregates).
914        DestField = new BitCastInst(DestField,
915                                    PointerType::getUnqual(EltVal->getType()),
916                                    "", SI);
917      }
918      new StoreInst(EltVal, DestField, SI);
919    }
920
921  } else {
922    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
923    const Type *ArrayEltTy = ATy->getElementType();
924    uint64_t ElementOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
925    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
926
927    uint64_t Shift;
928
929    if (TD->isBigEndian())
930      Shift = AllocaSizeBits-ElementOffset;
931    else
932      Shift = 0;
933
934    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
935      // Ignore zero sized fields like {}, they obviously contain no data.
936      if (ElementSizeBits == 0) continue;
937
938      Value *EltVal = SrcVal;
939      if (Shift) {
940        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
941        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
942                                            "sroa.store.elt", SI);
943      }
944
945      // Truncate down to an integer of the right size.
946      if (ElementSizeBits != AllocaSizeBits)
947        EltVal = new TruncInst(EltVal, IntegerType::get(ElementSizeBits),"",SI);
948      Value *DestField = NewElts[i];
949      if (EltVal->getType() == ArrayEltTy) {
950        // Storing to an integer field of this size, just do it.
951      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
952        // Bitcast to the right element type (for fp/vector values).
953        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
954      } else {
955        // Otherwise, bitcast the dest pointer (for aggregates).
956        DestField = new BitCastInst(DestField,
957                                    PointerType::getUnqual(EltVal->getType()),
958                                    "", SI);
959      }
960      new StoreInst(EltVal, DestField, SI);
961
962      if (TD->isBigEndian())
963        Shift -= ElementOffset;
964      else
965        Shift += ElementOffset;
966    }
967  }
968
969  SI->eraseFromParent();
970}
971
972/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
973/// an integer.  Load the individual pieces to form the aggregate value.
974void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
975                                        SmallVector<AllocaInst*, 32> &NewElts) {
976  // Extract each element out of the NewElts according to its structure offset
977  // and form the result value.
978  const Type *AllocaEltTy = AI->getType()->getElementType();
979  uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
980
981  // If this isn't a load of the whole alloca to an integer, it may be a load
982  // of the first element.  Just ignore the load in this case and normal SROA
983  // will handle it.
984  if (!isa<IntegerType>(LI->getType()) ||
985      TD->getTypePaddedSizeInBits(LI->getType()) != AllocaSizeBits)
986    return;
987
988  DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
989
990  // There are two forms here: AI could be an array or struct.  Both cases
991  // have different ways to compute the element offset.
992  const StructLayout *Layout = 0;
993  uint64_t ArrayEltBitOffset = 0;
994  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
995    Layout = TD->getStructLayout(EltSTy);
996  } else {
997    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
998    ArrayEltBitOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
999  }
1000
1001  Value *ResultVal = Constant::getNullValue(LI->getType());
1002
1003  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1004    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1005    // the pointer to an integer of the same size before doing the load.
1006    Value *SrcField = NewElts[i];
1007    const Type *FieldTy =
1008      cast<PointerType>(SrcField->getType())->getElementType();
1009    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1010
1011    // Ignore zero sized fields like {}, they obviously contain no data.
1012    if (FieldSizeBits == 0) continue;
1013
1014    const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits);
1015    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1016        !isa<VectorType>(FieldTy))
1017      SrcField = new BitCastInst(SrcField, PointerType::getUnqual(FieldIntTy),
1018                                 "", LI);
1019    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1020
1021    // If SrcField is a fp or vector of the right size but that isn't an
1022    // integer type, bitcast to an integer so we can shift it.
1023    if (SrcField->getType() != FieldIntTy)
1024      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1025
1026    // Zero extend the field to be the same size as the final alloca so that
1027    // we can shift and insert it.
1028    if (SrcField->getType() != ResultVal->getType())
1029      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1030
1031    // Determine the number of bits to shift SrcField.
1032    uint64_t Shift;
1033    if (Layout) // Struct case.
1034      Shift = Layout->getElementOffsetInBits(i);
1035    else  // Array case.
1036      Shift = i*ArrayEltBitOffset;
1037
1038    if (TD->isBigEndian())
1039      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1040
1041    if (Shift) {
1042      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1043      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1044    }
1045
1046    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1047  }
1048
1049  LI->replaceAllUsesWith(ResultVal);
1050  LI->eraseFromParent();
1051}
1052
1053
1054/// HasPadding - Return true if the specified type has any structure or
1055/// alignment padding, false otherwise.
1056static bool HasPadding(const Type *Ty, const TargetData &TD) {
1057  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1058    const StructLayout *SL = TD.getStructLayout(STy);
1059    unsigned PrevFieldBitOffset = 0;
1060    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1061      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1062
1063      // Padding in sub-elements?
1064      if (HasPadding(STy->getElementType(i), TD))
1065        return true;
1066
1067      // Check to see if there is any padding between this element and the
1068      // previous one.
1069      if (i) {
1070        unsigned PrevFieldEnd =
1071        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1072        if (PrevFieldEnd < FieldBitOffset)
1073          return true;
1074      }
1075
1076      PrevFieldBitOffset = FieldBitOffset;
1077    }
1078
1079    //  Check for tail padding.
1080    if (unsigned EltCount = STy->getNumElements()) {
1081      unsigned PrevFieldEnd = PrevFieldBitOffset +
1082                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1083      if (PrevFieldEnd < SL->getSizeInBits())
1084        return true;
1085    }
1086
1087  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1088    return HasPadding(ATy->getElementType(), TD);
1089  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1090    return HasPadding(VTy->getElementType(), TD);
1091  }
1092  return TD.getTypeSizeInBits(Ty) != TD.getTypePaddedSizeInBits(Ty);
1093}
1094
1095/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1096/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1097/// or 1 if safe after canonicalization has been performed.
1098///
1099int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1100  // Loop over the use list of the alloca.  We can only transform it if all of
1101  // the users are safe to transform.
1102  AllocaInfo Info;
1103
1104  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1105       I != E; ++I) {
1106    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1107    if (Info.isUnsafe) {
1108      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
1109      return 0;
1110    }
1111  }
1112
1113  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1114  // source and destination, we have to be careful.  In particular, the memcpy
1115  // could be moving around elements that live in structure padding of the LLVM
1116  // types, but may actually be used.  In these cases, we refuse to promote the
1117  // struct.
1118  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1119      HasPadding(AI->getType()->getElementType(), *TD))
1120    return 0;
1121
1122  // If we require cleanup, return 1, otherwise return 3.
1123  return Info.needsCanon ? 1 : 3;
1124}
1125
1126/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
1127/// allocation, but only if cleaned up, perform the cleanups required.
1128void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
1129  // At this point, we know that the end result will be SROA'd and promoted, so
1130  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1131  // up.
1132  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1133       UI != E; ) {
1134    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
1135    if (!GEPI) continue;
1136    gep_type_iterator I = gep_type_begin(GEPI);
1137    ++I;
1138
1139    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
1140      uint64_t NumElements = AT->getNumElements();
1141
1142      if (!isa<ConstantInt>(I.getOperand())) {
1143        if (NumElements == 1) {
1144          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
1145        } else {
1146          assert(NumElements == 2 && "Unhandled case!");
1147          // All users of the GEP must be loads.  At each use of the GEP, insert
1148          // two loads of the appropriate indexed GEP and select between them.
1149          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
1150                              Constant::getNullValue(I.getOperand()->getType()),
1151             "isone", GEPI);
1152          // Insert the new GEP instructions, which are properly indexed.
1153          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1154          Indices[1] = Constant::getNullValue(Type::Int32Ty);
1155          Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1156                                                     Indices.begin(),
1157                                                     Indices.end(),
1158                                                     GEPI->getName()+".0", GEPI);
1159          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
1160          Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1161                                                    Indices.begin(),
1162                                                    Indices.end(),
1163                                                    GEPI->getName()+".1", GEPI);
1164          // Replace all loads of the variable index GEP with loads from both
1165          // indexes and a select.
1166          while (!GEPI->use_empty()) {
1167            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1168            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1169            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1170            Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1171            LI->replaceAllUsesWith(R);
1172            LI->eraseFromParent();
1173          }
1174          GEPI->eraseFromParent();
1175        }
1176      }
1177    }
1178  }
1179}
1180
1181/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1182/// the offset specified by Offset (which is specified in bytes).
1183///
1184/// There are two cases we handle here:
1185///   1) A union of vector types of the same size and potentially its elements.
1186///      Here we turn element accesses into insert/extract element operations.
1187///      This promotes a <4 x float> with a store of float to the third element
1188///      into a <4 x float> that uses insert element.
1189///   2) A fully general blob of memory, which we turn into some (potentially
1190///      large) integer type with extract and insert operations where the loads
1191///      and stores would mutate the memory.
1192static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1193                        unsigned AllocaSize, const TargetData &TD) {
1194  // If this could be contributing to a vector, analyze it.
1195  if (VecTy != Type::VoidTy) { // either null or a vector type.
1196
1197    // If the In type is a vector that is the same size as the alloca, see if it
1198    // matches the existing VecTy.
1199    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1200      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1201        // If we're storing/loading a vector of the right size, allow it as a
1202        // vector.  If this the first vector we see, remember the type so that
1203        // we know the element size.
1204        if (VecTy == 0)
1205          VecTy = VInTy;
1206        return;
1207      }
1208    } else if (In == Type::FloatTy || In == Type::DoubleTy ||
1209               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1210                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1211      // If we're accessing something that could be an element of a vector, see
1212      // if the implied vector agrees with what we already have and if Offset is
1213      // compatible with it.
1214      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1215      if (Offset % EltSize == 0 &&
1216          AllocaSize % EltSize == 0 &&
1217          (VecTy == 0 ||
1218           cast<VectorType>(VecTy)->getElementType()
1219                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1220        if (VecTy == 0)
1221          VecTy = VectorType::get(In, AllocaSize/EltSize);
1222        return;
1223      }
1224    }
1225  }
1226
1227  // Otherwise, we have a case that we can't handle with an optimized vector
1228  // form.  We can still turn this into a large integer.
1229  VecTy = Type::VoidTy;
1230}
1231
1232/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1233/// its accesses to use a to single vector type, return true, and set VecTy to
1234/// the new type.  If we could convert the alloca into a single promotable
1235/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1236/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1237/// is the current offset from the base of the alloca being analyzed.
1238///
1239/// If we see at least one access to the value that is as a vector type, set the
1240/// SawVec flag.
1241///
1242bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1243                              bool &SawVec, uint64_t Offset,
1244                              unsigned AllocaSize) {
1245  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1246    Instruction *User = cast<Instruction>(*UI);
1247
1248    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1249      // Don't break volatile loads.
1250      if (LI->isVolatile())
1251        return false;
1252      MergeInType(LI->getType(), Offset, VecTy, AllocaSize, *TD);
1253      SawVec |= isa<VectorType>(LI->getType());
1254      continue;
1255    }
1256
1257    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1258      // Storing the pointer, not into the value?
1259      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1260      MergeInType(SI->getOperand(0)->getType(), Offset, VecTy, AllocaSize, *TD);
1261      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1262      continue;
1263    }
1264
1265    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1266      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1267                              AllocaSize))
1268        return false;
1269      IsNotTrivial = true;
1270      continue;
1271    }
1272
1273    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1274      // If this is a GEP with a variable indices, we can't handle it.
1275      if (!GEP->hasAllConstantIndices())
1276        return false;
1277
1278      // Compute the offset that this GEP adds to the pointer.
1279      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1280      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1281                                                &Indices[0], Indices.size());
1282      // See if all uses can be converted.
1283      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1284                              AllocaSize))
1285        return false;
1286      IsNotTrivial = true;
1287      continue;
1288    }
1289
1290    // If this is a constant sized memset of a constant value (e.g. 0) we can
1291    // handle it.
1292    if (isa<MemSetInst>(User) &&
1293        // Store of constant value.
1294        isa<ConstantInt>(User->getOperand(2)) &&
1295        // Store with constant size.
1296        isa<ConstantInt>(User->getOperand(3))) {
1297      VecTy = Type::VoidTy;
1298      IsNotTrivial = true;
1299      continue;
1300    }
1301
1302    // Otherwise, we cannot handle this!
1303    return false;
1304  }
1305
1306  return true;
1307}
1308
1309
1310/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1311/// directly.  This happens when we are converting an "integer union" to a
1312/// single integer scalar, or when we are converting a "vector union" to a
1313/// vector with insert/extractelement instructions.
1314///
1315/// Offset is an offset from the original alloca, in bits that need to be
1316/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1317void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1318  while (!Ptr->use_empty()) {
1319    Instruction *User = cast<Instruction>(Ptr->use_back());
1320
1321    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1322      LI->replaceAllUsesWith(ConvertUsesOfLoadToScalar(LI, NewAI, Offset));
1323      LI->eraseFromParent();
1324      continue;
1325    }
1326
1327    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1328      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1329      new StoreInst(ConvertUsesOfStoreToScalar(SI->getOperand(0), NewAI,
1330                                               Offset, SI), NewAI, SI);
1331      SI->eraseFromParent();
1332      continue;
1333    }
1334
1335    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1336      ConvertUsesToScalar(CI, NewAI, Offset);
1337      CI->eraseFromParent();
1338      continue;
1339    }
1340
1341    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1342      // Compute the offset that this GEP adds to the pointer.
1343      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1344      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1345                                                &Indices[0], Indices.size());
1346      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1347      GEP->eraseFromParent();
1348      continue;
1349    }
1350
1351    // If this is a constant sized memset of a constant value (e.g. 0) we can
1352    // transform it into a store of the expanded constant value.
1353    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1354      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1355      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1356      unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1357
1358      // Compute the value replicated the right number of times.
1359      APInt APVal(NumBytes*8, Val);
1360
1361      // Splat the value if non-zero.
1362      if (Val)
1363        for (unsigned i = 1; i != NumBytes; ++i)
1364          APVal |= APVal << 8;
1365
1366      new StoreInst(ConvertUsesOfStoreToScalar(ConstantInt::get(APVal), NewAI,
1367                                               Offset, MSI), NewAI, MSI);
1368      MSI->eraseFromParent();
1369      continue;
1370    }
1371
1372
1373    assert(0 && "Unsupported operation!");
1374    abort();
1375  }
1376}
1377
1378/// ConvertUsesOfLoadToScalar - Convert all of the users of the specified load
1379/// to use the new alloca directly, returning the value that should replace the
1380/// load.  This happens when we are converting an "integer union" to a single
1381/// integer scalar, or when we are converting a "vector union" to a vector with
1382/// insert/extractelement instructions.
1383///
1384/// Offset is an offset from the original alloca, in bits that need to be
1385/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1386Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
1387                                       uint64_t Offset) {
1388  // The load is a bit extract from NewAI shifted right by Offset bits.
1389  Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1390
1391  // If the load is of the whole new alloca, no conversion is needed.
1392  if (NV->getType() == LI->getType() && Offset == 0)
1393    return NV;
1394
1395  // If the result alloca is a vector type, this is either an element
1396  // access or a bitcast to another vector type of the same size.
1397  if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
1398    if (isa<VectorType>(LI->getType()))
1399      return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1400
1401    // Otherwise it must be an element access.
1402    unsigned Elt = 0;
1403    if (Offset) {
1404      unsigned EltSize = TD->getTypePaddedSizeInBits(VTy->getElementType());
1405      Elt = Offset/EltSize;
1406      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1407    }
1408    // Return the element extracted out of it.
1409    Value *V = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
1410                                      "tmp", LI);
1411    if (V->getType() != LI->getType())
1412      V = new BitCastInst(V, LI->getType(), "tmp", LI);
1413    return V;
1414  }
1415
1416  // Otherwise, this must be a union that was converted to an integer value.
1417  const IntegerType *NTy = cast<IntegerType>(NV->getType());
1418
1419  // If this is a big-endian system and the load is narrower than the
1420  // full alloca type, we need to do a shift to get the right bits.
1421  int ShAmt = 0;
1422  if (TD->isBigEndian()) {
1423    // On big-endian machines, the lowest bit is stored at the bit offset
1424    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1425    // integers with a bitwidth that is not a multiple of 8.
1426    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1427            TD->getTypeStoreSizeInBits(LI->getType()) - Offset;
1428  } else {
1429    ShAmt = Offset;
1430  }
1431
1432  // Note: we support negative bitwidths (with shl) which are not defined.
1433  // We do this to support (f.e.) loads off the end of a structure where
1434  // only some bits are used.
1435  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1436    NV = BinaryOperator::CreateLShr(NV,
1437                                    ConstantInt::get(NV->getType(), ShAmt),
1438                                    LI->getName(), LI);
1439  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1440    NV = BinaryOperator::CreateShl(NV,
1441                                   ConstantInt::get(NV->getType(), -ShAmt),
1442                                   LI->getName(), LI);
1443
1444  // Finally, unconditionally truncate the integer to the right width.
1445  unsigned LIBitWidth = TD->getTypeSizeInBits(LI->getType());
1446  if (LIBitWidth < NTy->getBitWidth())
1447    NV = new TruncInst(NV, IntegerType::get(LIBitWidth), LI->getName(), LI);
1448  else if (LIBitWidth > NTy->getBitWidth())
1449    NV = new ZExtInst(NV, IntegerType::get(LIBitWidth), LI->getName(), LI);
1450
1451  // If the result is an integer, this is a trunc or bitcast.
1452  if (isa<IntegerType>(LI->getType())) {
1453    // Should be done.
1454  } else if (LI->getType()->isFloatingPoint() ||
1455             isa<VectorType>(LI->getType())) {
1456    // Just do a bitcast, we know the sizes match up.
1457    NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1458  } else {
1459    // Otherwise must be a pointer.
1460    NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1461  }
1462  assert(NV->getType() == LI->getType() && "Didn't convert right?");
1463  return NV;
1464}
1465
1466
1467/// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
1468/// pair of the new alloca directly, returning the value that should be stored
1469/// to the alloca.  This happens when we are converting an "integer union" to a
1470/// single integer scalar, or when we are converting a "vector union" to a
1471/// vector with insert/extractelement instructions.
1472///
1473/// Offset is an offset from the original alloca, in bits that need to be
1474/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1475Value *SROA::ConvertUsesOfStoreToScalar(Value *SV, AllocaInst *NewAI,
1476                                        uint64_t Offset, Instruction *IP) {
1477
1478  // Convert the stored type to the actual type, shift it left to insert
1479  // then 'or' into place.
1480  const Type *AllocaType = NewAI->getType()->getElementType();
1481  if (SV->getType() == AllocaType && Offset == 0)
1482    return SV;
1483
1484  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1485    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", IP);
1486
1487    // If the result alloca is a vector type, this is either an element
1488    // access or a bitcast to another vector type.
1489    if (isa<VectorType>(SV->getType())) {
1490      SV = new BitCastInst(SV, AllocaType, SV->getName(), IP);
1491    } else {
1492      // Must be an element insertion.
1493      unsigned Elt = Offset/TD->getTypePaddedSizeInBits(VTy->getElementType());
1494
1495      if (SV->getType() != VTy->getElementType())
1496        SV = new BitCastInst(SV, VTy->getElementType(), "tmp", IP);
1497
1498      SV = InsertElementInst::Create(Old, SV,
1499                                     ConstantInt::get(Type::Int32Ty, Elt),
1500                                     "tmp", IP);
1501    }
1502    return SV;
1503  }
1504
1505
1506  Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", IP);
1507
1508  // If SV is a float, convert it to the appropriate integer type.
1509  // If it is a pointer, do the same, and also handle ptr->ptr casts
1510  // here.
1511  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1512  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1513  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1514  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1515  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1516    SV = new BitCastInst(SV, IntegerType::get(SrcWidth), SV->getName(), IP);
1517  else if (isa<PointerType>(SV->getType()))
1518    SV = new PtrToIntInst(SV, TD->getIntPtrType(), SV->getName(), IP);
1519
1520  // Zero extend or truncate the value if needed.
1521  if (SV->getType() != AllocaType) {
1522    if (SV->getType()->getPrimitiveSizeInBits() <
1523             AllocaType->getPrimitiveSizeInBits())
1524      SV = new ZExtInst(SV, AllocaType, SV->getName(), IP);
1525    else {
1526      // Truncation may be needed if storing more than the alloca can hold
1527      // (undefined behavior).
1528      SV = new TruncInst(SV, AllocaType, SV->getName(), IP);
1529      SrcWidth = DestWidth;
1530      SrcStoreWidth = DestStoreWidth;
1531    }
1532  }
1533
1534  // If this is a big-endian system and the store is narrower than the
1535  // full alloca type, we need to do a shift to get the right bits.
1536  int ShAmt = 0;
1537  if (TD->isBigEndian()) {
1538    // On big-endian machines, the lowest bit is stored at the bit offset
1539    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1540    // integers with a bitwidth that is not a multiple of 8.
1541    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1542  } else {
1543    ShAmt = Offset;
1544  }
1545
1546  // Note: we support negative bitwidths (with shr) which are not defined.
1547  // We do this to support (f.e.) stores off the end of a structure where
1548  // only some bits in the structure are set.
1549  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1550  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1551    SV = BinaryOperator::CreateShl(SV,
1552                                   ConstantInt::get(SV->getType(), ShAmt),
1553                                   SV->getName(), IP);
1554    Mask <<= ShAmt;
1555  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1556    SV = BinaryOperator::CreateLShr(SV,
1557                                    ConstantInt::get(SV->getType(), -ShAmt),
1558                                    SV->getName(), IP);
1559    Mask = Mask.lshr(-ShAmt);
1560  }
1561
1562  // Mask out the bits we are about to insert from the old value, and or
1563  // in the new bits.
1564  if (SrcWidth != DestWidth) {
1565    assert(DestWidth > SrcWidth);
1566    Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
1567                                    Old->getName()+".mask", IP);
1568    SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", IP);
1569  }
1570  return SV;
1571}
1572
1573
1574
1575/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1576/// some part of a constant global variable.  This intentionally only accepts
1577/// constant expressions because we don't can't rewrite arbitrary instructions.
1578static bool PointsToConstantGlobal(Value *V) {
1579  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1580    return GV->isConstant();
1581  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1582    if (CE->getOpcode() == Instruction::BitCast ||
1583        CE->getOpcode() == Instruction::GetElementPtr)
1584      return PointsToConstantGlobal(CE->getOperand(0));
1585  return false;
1586}
1587
1588/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1589/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1590/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1591/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1592/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1593/// the alloca, and if the source pointer is a pointer to a constant  global, we
1594/// can optimize this.
1595static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1596                                           bool isOffset) {
1597  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1598    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1599      // Ignore non-volatile loads, they are always ok.
1600      if (!LI->isVolatile())
1601        continue;
1602
1603    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1604      // If uses of the bitcast are ok, we are ok.
1605      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1606        return false;
1607      continue;
1608    }
1609    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1610      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1611      // doesn't, it does.
1612      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1613                                         isOffset || !GEP->hasAllZeroIndices()))
1614        return false;
1615      continue;
1616    }
1617
1618    // If this is isn't our memcpy/memmove, reject it as something we can't
1619    // handle.
1620    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1621      return false;
1622
1623    // If we already have seen a copy, reject the second one.
1624    if (TheCopy) return false;
1625
1626    // If the pointer has been offset from the start of the alloca, we can't
1627    // safely handle this.
1628    if (isOffset) return false;
1629
1630    // If the memintrinsic isn't using the alloca as the dest, reject it.
1631    if (UI.getOperandNo() != 1) return false;
1632
1633    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1634
1635    // If the source of the memcpy/move is not a constant global, reject it.
1636    if (!PointsToConstantGlobal(MI->getOperand(2)))
1637      return false;
1638
1639    // Otherwise, the transform is safe.  Remember the copy instruction.
1640    TheCopy = MI;
1641  }
1642  return true;
1643}
1644
1645/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1646/// modified by a copy from a constant global.  If we can prove this, we can
1647/// replace any uses of the alloca with uses of the global directly.
1648Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1649  Instruction *TheCopy = 0;
1650  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1651    return TheCopy;
1652  return 0;
1653}
1654