ScalarReplAggregates.cpp revision 26d2ca1d134a8deb91f0246b70024ac1032e544c
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3// This transformation implements the well known scalar replacement of
4// aggregates transformation.  This xform breaks up alloca instructions of
5// aggregate type (structure or array) into individual alloca instructions for
6// each member (if possible).
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/Transforms/Scalar.h"
11#include "llvm/Function.h"
12#include "llvm/Pass.h"
13#include "llvm/iMemory.h"
14#include "llvm/DerivedTypes.h"
15#include "llvm/Constants.h"
16#include "Support/StringExtras.h"
17#include "Support/Statistic.h"
18
19namespace {
20  Statistic<> NumReplaced("scalarrepl", "Number of alloca's broken up");
21
22  struct SROA : public FunctionPass {
23    bool runOnFunction(Function &F);
24
25  private:
26    bool isSafeStructElementUse(Value *Ptr);
27    bool isSafeArrayElementUse(Value *Ptr);
28    bool isSafeUseOfAllocation(Instruction *User);
29    bool isSafeStructAllocaToPromote(AllocationInst *AI);
30    bool isSafeArrayAllocaToPromote(AllocationInst *AI);
31    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
32  };
33
34  RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
35}
36
37Pass *createScalarReplAggregatesPass() { return new SROA(); }
38
39
40// runOnFunction - This algorithm is a simple worklist driven algorithm, which
41// runs on all of the malloc/alloca instructions in the function, removing them
42// if they are only used by getelementptr instructions.
43//
44bool SROA::runOnFunction(Function &F) {
45  std::vector<AllocationInst*> WorkList;
46
47  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
48  BasicBlock &BB = F.getEntryNode();
49  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
50    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
51      WorkList.push_back(A);
52
53  // Process the worklist
54  bool Changed = false;
55  while (!WorkList.empty()) {
56    AllocationInst *AI = WorkList.back();
57    WorkList.pop_back();
58
59    // We cannot transform the allocation instruction if it is an array
60    // allocation (allocations OF arrays are ok though), and an allocation of a
61    // scalar value cannot be decomposed at all.
62    //
63    if (AI->isArrayAllocation() ||
64        (!isa<StructType>(AI->getAllocatedType()) &&
65         !isa<ArrayType>(AI->getAllocatedType()))) continue;
66
67    // Check that all of the users of the allocation are capable of being
68    // transformed.
69    if (isa<StructType>(AI->getAllocatedType())) {
70      if (!isSafeStructAllocaToPromote(AI))
71        continue;
72    } else if (!isSafeArrayAllocaToPromote(AI))
73      continue;
74
75    DEBUG(std::cerr << "Found inst to xform: " << *AI);
76    Changed = true;
77
78    std::vector<AllocaInst*> ElementAllocas;
79    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
80      ElementAllocas.reserve(ST->getNumContainedTypes());
81      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
82        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
83                                        AI->getName() + "." + utostr(i), AI);
84        ElementAllocas.push_back(NA);
85        WorkList.push_back(NA);  // Add to worklist for recursive processing
86      }
87    } else {
88      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
89      ElementAllocas.reserve(AT->getNumElements());
90      const Type *ElTy = AT->getElementType();
91      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
92        AllocaInst *NA = new AllocaInst(ElTy, 0,
93                                        AI->getName() + "." + utostr(i), AI);
94        ElementAllocas.push_back(NA);
95        WorkList.push_back(NA);  // Add to worklist for recursive processing
96      }
97    }
98
99    // Now that we have created the alloca instructions that we want to use,
100    // expand the getelementptr instructions to use them.
101    //
102    for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
103         I != E; ++I) {
104      Instruction *User = cast<Instruction>(*I);
105      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
106        // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
107        uint64_t Idx;
108        if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(GEPI->getOperand(2)))
109          Idx = CSI->getValue();
110        else
111          Idx = cast<ConstantUInt>(GEPI->getOperand(2))->getValue();
112
113        assert(Idx < ElementAllocas.size() && "Index out of range?");
114        AllocaInst *AllocaToUse = ElementAllocas[Idx];
115
116        Value *RepValue;
117        if (GEPI->getNumOperands() == 3) {
118          // Do not insert a new getelementptr instruction with zero indices,
119          // only to have it optimized out later.
120          RepValue = AllocaToUse;
121        } else {
122          // We are indexing deeply into the structure, so we still need a
123          // getelement ptr instruction to finish the indexing.  This may be
124          // expanded itself once the worklist is rerun.
125          //
126          std::string OldName = GEPI->getName();  // Steal the old name...
127          std::vector<Value*> NewArgs;
128          NewArgs.push_back(Constant::getNullValue(Type::LongTy));
129          NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
130          GEPI->setName("");
131          RepValue =
132            new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
133        }
134
135        // Move all of the users over to the new GEP.
136        GEPI->replaceAllUsesWith(RepValue);
137        // Delete the old GEP
138        GEPI->getParent()->getInstList().erase(GEPI);
139      } else {
140        assert(0 && "Unexpected instruction type!");
141      }
142    }
143
144    // Finally, delete the Alloca instruction
145    AI->getParent()->getInstList().erase(AI);
146    NumReplaced++;
147  }
148
149  return Changed;
150}
151
152
153/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
154/// aggregate allocation.
155///
156bool SROA::isSafeUseOfAllocation(Instruction *User) {
157  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
158    // The GEP is safe to transform if it is of the form GEP <ptr>, 0, <cst>
159    if (GEPI->getNumOperands() <= 2 ||
160        GEPI->getOperand(1) != Constant::getNullValue(Type::LongTy) ||
161        !isa<Constant>(GEPI->getOperand(2)) ||
162        isa<ConstantExpr>(GEPI->getOperand(2)))
163      return false;
164  } else {
165    return false;
166  }
167  return true;
168}
169
170/// isSafeStructElementUse - It is illegal in C to take the address of a
171/// structure sub-element, and then use pointer arithmetic to access other
172/// elements of the struct.  Despite the fact that this is illegal, some
173/// programs do this, so do at least a simple check to try to avoid breaking
174/// broken programs if possible.
175///
176bool SROA::isSafeStructElementUse(Value *Ptr) {
177  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
178       I != E; ++I)
179    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*I)) {
180      if (GEP->getNumOperands() > 1) {
181        if (!isa<Constant>(GEP->getOperand(1)) ||
182            !cast<Constant>(GEP->getOperand(1))->isNullValue()) {
183          std::cerr << "WARNING: Undefined behavior found: " << *GEP
184                    << "   ... uses pointer arithmetic to access other struct "
185                    << "elements!\n";
186          return false;
187
188          return false;  // Using pointer arithmetic to navigate the array...
189        }
190      }
191    }
192
193  return true;
194}
195
196/// isSafeArrayElementUse - Check to see if this use is an allowed use for a
197/// getelementptr instruction of an array aggregate allocation.
198///
199bool SROA::isSafeArrayElementUse(Value *Ptr) {
200  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
201       I != E; ++I) {
202    Instruction *User = cast<Instruction>(*I);
203    switch (User->getOpcode()) {
204    case Instruction::Load:  return true;
205    case Instruction::Store: return User->getOperand(0) != Ptr;
206    case Instruction::GetElementPtr: {
207      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
208      if (GEP->getNumOperands() > 1) {
209        if (!isa<Constant>(GEP->getOperand(1)) ||
210            !cast<Constant>(GEP->getOperand(1))->isNullValue())
211          return false;  // Using pointer arithmetic to navigate the array...
212
213        // Check to see if there are any structure indexes involved in this GEP.
214        // If so, then we can safely break the array up until at least the
215        // structure.
216        for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
217          if (GEP->getOperand(i)->getType()->isUnsigned())
218            break;
219      }
220      return isSafeArrayElementUse(GEP);
221    }
222    default:
223      DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
224      return false;
225    }
226  }
227  return true;  // All users look ok :)
228}
229
230
231/// isSafeStructAllocaToPromote - Check to see if the specified allocation of a
232/// structure can be broken down into elements.
233///
234bool SROA::isSafeStructAllocaToPromote(AllocationInst *AI) {
235  // Loop over the use list of the alloca.  We can only transform it if all of
236  // the users are safe to transform.
237  //
238  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
239       I != E; ++I) {
240    if (!isSafeUseOfAllocation(cast<Instruction>(*I))) {
241      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
242                      << *I);
243      return false;
244    }
245
246    // Pedantic check to avoid breaking broken programs...
247    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*I))
248      if (GEPI->getNumOperands() == 3 && !isSafeStructElementUse(GEPI))
249        return false;
250  }
251  return true;
252}
253
254
255/// isSafeArrayAllocaToPromote - Check to see if the specified allocation of a
256/// structure can be broken down into elements.
257///
258bool SROA::isSafeArrayAllocaToPromote(AllocationInst *AI) {
259  const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
260  int64_t NumElements = AT->getNumElements();
261
262  // Loop over the use list of the alloca.  We can only transform it if all of
263  // the users are safe to transform.  Array allocas have extra constraints to
264  // meet though.
265  //
266  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
267       I != E; ++I) {
268    Instruction *User = cast<Instruction>(*I);
269    if (!isSafeUseOfAllocation(User)) {
270      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
271                      << User);
272      return false;
273    }
274
275    // Check to make sure that getelementptr follow the extra rules for arrays:
276    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
277      // Check to make sure that index falls within the array.  If not,
278      // something funny is going on, so we won't do the optimization.
279      //
280      if (cast<ConstantSInt>(GEPI->getOperand(2))->getValue() >= NumElements)
281        return false;
282
283      // Check to make sure that the only thing that uses the resultant pointer
284      // is safe for an array access.  For example, code that looks like:
285      //   P = &A[0];  P = P + 1
286      // is legal, and should prevent promotion.
287      //
288      if (!isSafeArrayElementUse(GEPI)) {
289        DEBUG(std::cerr << "Cannot transform: " << *AI
290                        << "  due to uses of user: " << *GEPI);
291        return false;
292      }
293    }
294  }
295  return true;
296}
297
298