ScalarReplAggregates.cpp revision 396a0567cf959d86a8a1ad185e54d84f5dacbacf
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DominanceFrontier.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Transforms/Utils/PromoteMemToReg.h"
37#include "llvm/Transforms/Utils/Local.h"
38#include "llvm/Transforms/Utils/SSAUpdater.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Support/IRBuilder.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/ADT/Statistic.h"
48using namespace llvm;
49
50STATISTIC(NumReplaced,  "Number of allocas broken up");
51STATISTIC(NumPromoted,  "Number of allocas promoted");
52STATISTIC(NumConverted, "Number of aggregates converted to scalar");
53STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
54
55namespace {
56  struct SROA : public FunctionPass {
57    SROA(int T, bool hasDF, char &ID)
58      : FunctionPass(ID), HasDomFrontiers(hasDF) {
59      if (T == -1)
60        SRThreshold = 128;
61      else
62        SRThreshold = T;
63    }
64
65    bool runOnFunction(Function &F);
66
67    bool performScalarRepl(Function &F);
68    bool performPromotion(Function &F);
69
70  private:
71    bool HasDomFrontiers;
72    TargetData *TD;
73
74    /// DeadInsts - Keep track of instructions we have made dead, so that
75    /// we can remove them after we are done working.
76    SmallVector<Value*, 32> DeadInsts;
77
78    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
79    /// information about the uses.  All these fields are initialized to false
80    /// and set to true when something is learned.
81    struct AllocaInfo {
82      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
83      bool isUnsafe : 1;
84
85      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
86      bool isMemCpySrc : 1;
87
88      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
89      bool isMemCpyDst : 1;
90
91      /// hasSubelementAccess - This is true if a subelement of the alloca is
92      /// ever accessed, or false if the alloca is only accessed with mem
93      /// intrinsics or load/store that only access the entire alloca at once.
94      bool hasSubelementAccess : 1;
95
96      /// hasALoadOrStore - This is true if there are any loads or stores to it.
97      /// The alloca may just be accessed with memcpy, for example, which would
98      /// not set this.
99      bool hasALoadOrStore : 1;
100
101      AllocaInfo()
102        : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
103          hasSubelementAccess(false), hasALoadOrStore(false) {}
104    };
105
106    unsigned SRThreshold;
107
108    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
109
110    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
111
112    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
113                             AllocaInfo &Info);
114    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
115                   AllocaInfo &Info);
116    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
117                         const Type *MemOpType, bool isStore, AllocaInfo &Info);
118    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
119    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
120                                  const Type *&IdxTy);
121
122    void DoScalarReplacement(AllocaInst *AI,
123                             std::vector<AllocaInst*> &WorkList);
124    void DeleteDeadInstructions();
125
126    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
127                              SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
129                        SmallVector<AllocaInst*, 32> &NewElts);
130    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
131                    SmallVector<AllocaInst*, 32> &NewElts);
132    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
133                                      AllocaInst *AI,
134                                      SmallVector<AllocaInst*, 32> &NewElts);
135    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
136                                       SmallVector<AllocaInst*, 32> &NewElts);
137    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
138                                      SmallVector<AllocaInst*, 32> &NewElts);
139
140    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
141  };
142
143  // SROA_DF - SROA that uses DominanceFrontier.
144  struct SROA_DF : public SROA {
145    static char ID;
146  public:
147    SROA_DF(int T = -1) : SROA(T, true, ID) {
148      initializeSROA_DFPass(*PassRegistry::getPassRegistry());
149    }
150
151    // getAnalysisUsage - This pass does not require any passes, but we know it
152    // will not alter the CFG, so say so.
153    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
154      AU.addRequired<DominatorTree>();
155      AU.addRequired<DominanceFrontier>();
156      AU.setPreservesCFG();
157    }
158  };
159
160  // SROA_SSAUp - SROA that uses SSAUpdater.
161  struct SROA_SSAUp : public SROA {
162    static char ID;
163  public:
164    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
165      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
166    }
167
168    // getAnalysisUsage - This pass does not require any passes, but we know it
169    // will not alter the CFG, so say so.
170    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
171      AU.setPreservesCFG();
172    }
173  };
174
175}
176
177char SROA_DF::ID = 0;
178char SROA_SSAUp::ID = 0;
179
180INITIALIZE_PASS_BEGIN(SROA_DF, "scalarrepl",
181                "Scalar Replacement of Aggregates (DF)", false, false)
182INITIALIZE_PASS_DEPENDENCY(DominatorTree)
183INITIALIZE_PASS_DEPENDENCY(DominanceFrontier)
184INITIALIZE_PASS_END(SROA_DF, "scalarrepl",
185                "Scalar Replacement of Aggregates (DF)", false, false)
186
187INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
188                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
189INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
190                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
191
192// Public interface to the ScalarReplAggregates pass
193FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
194                                                   bool UseDomFrontier) {
195  if (UseDomFrontier)
196    return new SROA_DF(Threshold);
197  return new SROA_SSAUp(Threshold);
198}
199
200
201//===----------------------------------------------------------------------===//
202// Convert To Scalar Optimization.
203//===----------------------------------------------------------------------===//
204
205namespace {
206/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
207/// optimization, which scans the uses of an alloca and determines if it can
208/// rewrite it in terms of a single new alloca that can be mem2reg'd.
209class ConvertToScalarInfo {
210  /// AllocaSize - The size of the alloca being considered.
211  unsigned AllocaSize;
212  const TargetData &TD;
213
214  /// IsNotTrivial - This is set to true if there is some access to the object
215  /// which means that mem2reg can't promote it.
216  bool IsNotTrivial;
217
218  /// VectorTy - This tracks the type that we should promote the vector to if
219  /// it is possible to turn it into a vector.  This starts out null, and if it
220  /// isn't possible to turn into a vector type, it gets set to VoidTy.
221  const Type *VectorTy;
222
223  /// HadAVector - True if there is at least one vector access to the alloca.
224  /// We don't want to turn random arrays into vectors and use vector element
225  /// insert/extract, but if there are element accesses to something that is
226  /// also declared as a vector, we do want to promote to a vector.
227  bool HadAVector;
228
229public:
230  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
231    : AllocaSize(Size), TD(td) {
232    IsNotTrivial = false;
233    VectorTy = 0;
234    HadAVector = false;
235  }
236
237  AllocaInst *TryConvert(AllocaInst *AI);
238
239private:
240  bool CanConvertToScalar(Value *V, uint64_t Offset);
241  void MergeInType(const Type *In, uint64_t Offset);
242  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
243
244  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
245                                    uint64_t Offset, IRBuilder<> &Builder);
246  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
247                                   uint64_t Offset, IRBuilder<> &Builder);
248};
249} // end anonymous namespace.
250
251
252/// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
253/// allowed to form.  We do this to avoid MMX types, which is a complete hack,
254/// but is required until the backend is fixed.
255static bool IsVerbotenVectorType(const VectorType *VTy, const Instruction *I) {
256  StringRef Triple(I->getParent()->getParent()->getParent()->getTargetTriple());
257  if (!Triple.startswith("i386") &&
258      !Triple.startswith("x86_64"))
259    return false;
260
261  // Reject all the MMX vector types.
262  switch (VTy->getNumElements()) {
263  default: return false;
264  case 1: return VTy->getElementType()->isIntegerTy(64);
265  case 2: return VTy->getElementType()->isIntegerTy(32);
266  case 4: return VTy->getElementType()->isIntegerTy(16);
267  case 8: return VTy->getElementType()->isIntegerTy(8);
268  }
269}
270
271
272/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
273/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
274/// alloca if possible or null if not.
275AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
276  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
277  // out.
278  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
279    return 0;
280
281  // If we were able to find a vector type that can handle this with
282  // insert/extract elements, and if there was at least one use that had
283  // a vector type, promote this to a vector.  We don't want to promote
284  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
285  // we just get a lot of insert/extracts.  If at least one vector is
286  // involved, then we probably really do have a union of vector/array.
287  const Type *NewTy;
288  if (VectorTy && VectorTy->isVectorTy() && HadAVector &&
289      !IsVerbotenVectorType(cast<VectorType>(VectorTy), AI)) {
290    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
291          << *VectorTy << '\n');
292    NewTy = VectorTy;  // Use the vector type.
293  } else {
294    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
295    // Create and insert the integer alloca.
296    NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
297  }
298  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
299  ConvertUsesToScalar(AI, NewAI, 0);
300  return NewAI;
301}
302
303/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
304/// so far at the offset specified by Offset (which is specified in bytes).
305///
306/// There are two cases we handle here:
307///   1) A union of vector types of the same size and potentially its elements.
308///      Here we turn element accesses into insert/extract element operations.
309///      This promotes a <4 x float> with a store of float to the third element
310///      into a <4 x float> that uses insert element.
311///   2) A fully general blob of memory, which we turn into some (potentially
312///      large) integer type with extract and insert operations where the loads
313///      and stores would mutate the memory.  We mark this by setting VectorTy
314///      to VoidTy.
315void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
316  // If we already decided to turn this into a blob of integer memory, there is
317  // nothing to be done.
318  if (VectorTy && VectorTy->isVoidTy())
319    return;
320
321  // If this could be contributing to a vector, analyze it.
322
323  // If the In type is a vector that is the same size as the alloca, see if it
324  // matches the existing VecTy.
325  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
326    // Remember if we saw a vector type.
327    HadAVector = true;
328
329    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
330      // If we're storing/loading a vector of the right size, allow it as a
331      // vector.  If this the first vector we see, remember the type so that
332      // we know the element size.  If this is a subsequent access, ignore it
333      // even if it is a differing type but the same size.  Worst case we can
334      // bitcast the resultant vectors.
335      if (VectorTy == 0)
336        VectorTy = VInTy;
337      return;
338    }
339  } else if (In->isFloatTy() || In->isDoubleTy() ||
340             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
341              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
342    // If we're accessing something that could be an element of a vector, see
343    // if the implied vector agrees with what we already have and if Offset is
344    // compatible with it.
345    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
346    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
347        (VectorTy == 0 ||
348         cast<VectorType>(VectorTy)->getElementType()
349               ->getPrimitiveSizeInBits()/8 == EltSize)) {
350      if (VectorTy == 0)
351        VectorTy = VectorType::get(In, AllocaSize/EltSize);
352      return;
353    }
354  }
355
356  // Otherwise, we have a case that we can't handle with an optimized vector
357  // form.  We can still turn this into a large integer.
358  VectorTy = Type::getVoidTy(In->getContext());
359}
360
361/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
362/// its accesses to a single vector type, return true and set VecTy to
363/// the new type.  If we could convert the alloca into a single promotable
364/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
365/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
366/// is the current offset from the base of the alloca being analyzed.
367///
368/// If we see at least one access to the value that is as a vector type, set the
369/// SawVec flag.
370bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
371  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
372    Instruction *User = cast<Instruction>(*UI);
373
374    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
375      // Don't break volatile loads.
376      if (LI->isVolatile())
377        return false;
378      // Don't touch MMX operations.
379      if (LI->getType()->isX86_MMXTy())
380        return false;
381      MergeInType(LI->getType(), Offset);
382      continue;
383    }
384
385    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
386      // Storing the pointer, not into the value?
387      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
388      // Don't touch MMX operations.
389      if (SI->getOperand(0)->getType()->isX86_MMXTy())
390        return false;
391      MergeInType(SI->getOperand(0)->getType(), Offset);
392      continue;
393    }
394
395    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
396      IsNotTrivial = true;  // Can't be mem2reg'd.
397      if (!CanConvertToScalar(BCI, Offset))
398        return false;
399      continue;
400    }
401
402    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
403      // If this is a GEP with a variable indices, we can't handle it.
404      if (!GEP->hasAllConstantIndices())
405        return false;
406
407      // Compute the offset that this GEP adds to the pointer.
408      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
409      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
410                                               &Indices[0], Indices.size());
411      // See if all uses can be converted.
412      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
413        return false;
414      IsNotTrivial = true;  // Can't be mem2reg'd.
415      continue;
416    }
417
418    // If this is a constant sized memset of a constant value (e.g. 0) we can
419    // handle it.
420    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
421      // Store of constant value and constant size.
422      if (!isa<ConstantInt>(MSI->getValue()) ||
423          !isa<ConstantInt>(MSI->getLength()))
424        return false;
425      IsNotTrivial = true;  // Can't be mem2reg'd.
426      continue;
427    }
428
429    // If this is a memcpy or memmove into or out of the whole allocation, we
430    // can handle it like a load or store of the scalar type.
431    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
432      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
433      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
434        return false;
435
436      IsNotTrivial = true;  // Can't be mem2reg'd.
437      continue;
438    }
439
440    // Otherwise, we cannot handle this!
441    return false;
442  }
443
444  return true;
445}
446
447/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
448/// directly.  This happens when we are converting an "integer union" to a
449/// single integer scalar, or when we are converting a "vector union" to a
450/// vector with insert/extractelement instructions.
451///
452/// Offset is an offset from the original alloca, in bits that need to be
453/// shifted to the right.  By the end of this, there should be no uses of Ptr.
454void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
455                                              uint64_t Offset) {
456  while (!Ptr->use_empty()) {
457    Instruction *User = cast<Instruction>(Ptr->use_back());
458
459    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
460      ConvertUsesToScalar(CI, NewAI, Offset);
461      CI->eraseFromParent();
462      continue;
463    }
464
465    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
466      // Compute the offset that this GEP adds to the pointer.
467      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
468      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
469                                               &Indices[0], Indices.size());
470      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
471      GEP->eraseFromParent();
472      continue;
473    }
474
475    IRBuilder<> Builder(User);
476
477    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
478      // The load is a bit extract from NewAI shifted right by Offset bits.
479      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
480      Value *NewLoadVal
481        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
482      LI->replaceAllUsesWith(NewLoadVal);
483      LI->eraseFromParent();
484      continue;
485    }
486
487    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
488      assert(SI->getOperand(0) != Ptr && "Consistency error!");
489      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
490      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
491                                             Builder);
492      Builder.CreateStore(New, NewAI);
493      SI->eraseFromParent();
494
495      // If the load we just inserted is now dead, then the inserted store
496      // overwrote the entire thing.
497      if (Old->use_empty())
498        Old->eraseFromParent();
499      continue;
500    }
501
502    // If this is a constant sized memset of a constant value (e.g. 0) we can
503    // transform it into a store of the expanded constant value.
504    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
505      assert(MSI->getRawDest() == Ptr && "Consistency error!");
506      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
507      if (NumBytes != 0) {
508        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
509
510        // Compute the value replicated the right number of times.
511        APInt APVal(NumBytes*8, Val);
512
513        // Splat the value if non-zero.
514        if (Val)
515          for (unsigned i = 1; i != NumBytes; ++i)
516            APVal |= APVal << 8;
517
518        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
519        Value *New = ConvertScalar_InsertValue(
520                                    ConstantInt::get(User->getContext(), APVal),
521                                               Old, Offset, Builder);
522        Builder.CreateStore(New, NewAI);
523
524        // If the load we just inserted is now dead, then the memset overwrote
525        // the entire thing.
526        if (Old->use_empty())
527          Old->eraseFromParent();
528      }
529      MSI->eraseFromParent();
530      continue;
531    }
532
533    // If this is a memcpy or memmove into or out of the whole allocation, we
534    // can handle it like a load or store of the scalar type.
535    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
536      assert(Offset == 0 && "must be store to start of alloca");
537
538      // If the source and destination are both to the same alloca, then this is
539      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
540      // as appropriate.
541      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, 0));
542
543      if (GetUnderlyingObject(MTI->getSource(), 0) != OrigAI) {
544        // Dest must be OrigAI, change this to be a load from the original
545        // pointer (bitcasted), then a store to our new alloca.
546        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
547        Value *SrcPtr = MTI->getSource();
548        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
549        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
550        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
551          AIPTy = PointerType::get(AIPTy->getElementType(),
552                                   SPTy->getAddressSpace());
553        }
554        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
555
556        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
557        SrcVal->setAlignment(MTI->getAlignment());
558        Builder.CreateStore(SrcVal, NewAI);
559      } else if (GetUnderlyingObject(MTI->getDest(), 0) != OrigAI) {
560        // Src must be OrigAI, change this to be a load from NewAI then a store
561        // through the original dest pointer (bitcasted).
562        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
563        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
564
565        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
566        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
567        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
568          AIPTy = PointerType::get(AIPTy->getElementType(),
569                                   DPTy->getAddressSpace());
570        }
571        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
572
573        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
574        NewStore->setAlignment(MTI->getAlignment());
575      } else {
576        // Noop transfer. Src == Dst
577      }
578
579      MTI->eraseFromParent();
580      continue;
581    }
582
583    llvm_unreachable("Unsupported operation!");
584  }
585}
586
587/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
588/// or vector value FromVal, extracting the bits from the offset specified by
589/// Offset.  This returns the value, which is of type ToType.
590///
591/// This happens when we are converting an "integer union" to a single
592/// integer scalar, or when we are converting a "vector union" to a vector with
593/// insert/extractelement instructions.
594///
595/// Offset is an offset from the original alloca, in bits that need to be
596/// shifted to the right.
597Value *ConvertToScalarInfo::
598ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
599                           uint64_t Offset, IRBuilder<> &Builder) {
600  // If the load is of the whole new alloca, no conversion is needed.
601  if (FromVal->getType() == ToType && Offset == 0)
602    return FromVal;
603
604  // If the result alloca is a vector type, this is either an element
605  // access or a bitcast to another vector type of the same size.
606  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
607    if (ToType->isVectorTy())
608      return Builder.CreateBitCast(FromVal, ToType, "tmp");
609
610    // Otherwise it must be an element access.
611    unsigned Elt = 0;
612    if (Offset) {
613      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
614      Elt = Offset/EltSize;
615      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
616    }
617    // Return the element extracted out of it.
618    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
619                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
620    if (V->getType() != ToType)
621      V = Builder.CreateBitCast(V, ToType, "tmp");
622    return V;
623  }
624
625  // If ToType is a first class aggregate, extract out each of the pieces and
626  // use insertvalue's to form the FCA.
627  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
628    const StructLayout &Layout = *TD.getStructLayout(ST);
629    Value *Res = UndefValue::get(ST);
630    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
631      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
632                                        Offset+Layout.getElementOffsetInBits(i),
633                                              Builder);
634      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
635    }
636    return Res;
637  }
638
639  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
640    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
641    Value *Res = UndefValue::get(AT);
642    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
643      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
644                                              Offset+i*EltSize, Builder);
645      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
646    }
647    return Res;
648  }
649
650  // Otherwise, this must be a union that was converted to an integer value.
651  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
652
653  // If this is a big-endian system and the load is narrower than the
654  // full alloca type, we need to do a shift to get the right bits.
655  int ShAmt = 0;
656  if (TD.isBigEndian()) {
657    // On big-endian machines, the lowest bit is stored at the bit offset
658    // from the pointer given by getTypeStoreSizeInBits.  This matters for
659    // integers with a bitwidth that is not a multiple of 8.
660    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
661            TD.getTypeStoreSizeInBits(ToType) - Offset;
662  } else {
663    ShAmt = Offset;
664  }
665
666  // Note: we support negative bitwidths (with shl) which are not defined.
667  // We do this to support (f.e.) loads off the end of a structure where
668  // only some bits are used.
669  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
670    FromVal = Builder.CreateLShr(FromVal,
671                                 ConstantInt::get(FromVal->getType(),
672                                                           ShAmt), "tmp");
673  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
674    FromVal = Builder.CreateShl(FromVal,
675                                ConstantInt::get(FromVal->getType(),
676                                                          -ShAmt), "tmp");
677
678  // Finally, unconditionally truncate the integer to the right width.
679  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
680  if (LIBitWidth < NTy->getBitWidth())
681    FromVal =
682      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
683                                                    LIBitWidth), "tmp");
684  else if (LIBitWidth > NTy->getBitWidth())
685    FromVal =
686       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
687                                                    LIBitWidth), "tmp");
688
689  // If the result is an integer, this is a trunc or bitcast.
690  if (ToType->isIntegerTy()) {
691    // Should be done.
692  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
693    // Just do a bitcast, we know the sizes match up.
694    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
695  } else {
696    // Otherwise must be a pointer.
697    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
698  }
699  assert(FromVal->getType() == ToType && "Didn't convert right?");
700  return FromVal;
701}
702
703/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
704/// or vector value "Old" at the offset specified by Offset.
705///
706/// This happens when we are converting an "integer union" to a
707/// single integer scalar, or when we are converting a "vector union" to a
708/// vector with insert/extractelement instructions.
709///
710/// Offset is an offset from the original alloca, in bits that need to be
711/// shifted to the right.
712Value *ConvertToScalarInfo::
713ConvertScalar_InsertValue(Value *SV, Value *Old,
714                          uint64_t Offset, IRBuilder<> &Builder) {
715  // Convert the stored type to the actual type, shift it left to insert
716  // then 'or' into place.
717  const Type *AllocaType = Old->getType();
718  LLVMContext &Context = Old->getContext();
719
720  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
721    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
722    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
723
724    // Changing the whole vector with memset or with an access of a different
725    // vector type?
726    if (ValSize == VecSize)
727      return Builder.CreateBitCast(SV, AllocaType, "tmp");
728
729    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
730
731    // Must be an element insertion.
732    unsigned Elt = Offset/EltSize;
733
734    if (SV->getType() != VTy->getElementType())
735      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
736
737    SV = Builder.CreateInsertElement(Old, SV,
738                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
739                                     "tmp");
740    return SV;
741  }
742
743  // If SV is a first-class aggregate value, insert each value recursively.
744  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
745    const StructLayout &Layout = *TD.getStructLayout(ST);
746    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
747      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
748      Old = ConvertScalar_InsertValue(Elt, Old,
749                                      Offset+Layout.getElementOffsetInBits(i),
750                                      Builder);
751    }
752    return Old;
753  }
754
755  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
756    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
757    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
758      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
759      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
760    }
761    return Old;
762  }
763
764  // If SV is a float, convert it to the appropriate integer type.
765  // If it is a pointer, do the same.
766  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
767  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
768  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
769  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
770  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
771    SV = Builder.CreateBitCast(SV,
772                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
773  else if (SV->getType()->isPointerTy())
774    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
775
776  // Zero extend or truncate the value if needed.
777  if (SV->getType() != AllocaType) {
778    if (SV->getType()->getPrimitiveSizeInBits() <
779             AllocaType->getPrimitiveSizeInBits())
780      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
781    else {
782      // Truncation may be needed if storing more than the alloca can hold
783      // (undefined behavior).
784      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
785      SrcWidth = DestWidth;
786      SrcStoreWidth = DestStoreWidth;
787    }
788  }
789
790  // If this is a big-endian system and the store is narrower than the
791  // full alloca type, we need to do a shift to get the right bits.
792  int ShAmt = 0;
793  if (TD.isBigEndian()) {
794    // On big-endian machines, the lowest bit is stored at the bit offset
795    // from the pointer given by getTypeStoreSizeInBits.  This matters for
796    // integers with a bitwidth that is not a multiple of 8.
797    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
798  } else {
799    ShAmt = Offset;
800  }
801
802  // Note: we support negative bitwidths (with shr) which are not defined.
803  // We do this to support (f.e.) stores off the end of a structure where
804  // only some bits in the structure are set.
805  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
806  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
807    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
808                           ShAmt), "tmp");
809    Mask <<= ShAmt;
810  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
811    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
812                            -ShAmt), "tmp");
813    Mask = Mask.lshr(-ShAmt);
814  }
815
816  // Mask out the bits we are about to insert from the old value, and or
817  // in the new bits.
818  if (SrcWidth != DestWidth) {
819    assert(DestWidth > SrcWidth);
820    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
821    SV = Builder.CreateOr(Old, SV, "ins");
822  }
823  return SV;
824}
825
826
827//===----------------------------------------------------------------------===//
828// SRoA Driver
829//===----------------------------------------------------------------------===//
830
831
832bool SROA::runOnFunction(Function &F) {
833  TD = getAnalysisIfAvailable<TargetData>();
834
835  bool Changed = performPromotion(F);
836
837  // FIXME: ScalarRepl currently depends on TargetData more than it
838  // theoretically needs to. It should be refactored in order to support
839  // target-independent IR. Until this is done, just skip the actual
840  // scalar-replacement portion of this pass.
841  if (!TD) return Changed;
842
843  while (1) {
844    bool LocalChange = performScalarRepl(F);
845    if (!LocalChange) break;   // No need to repromote if no scalarrepl
846    Changed = true;
847    LocalChange = performPromotion(F);
848    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
849  }
850
851  return Changed;
852}
853
854namespace {
855class AllocaPromoter : public LoadAndStorePromoter {
856  AllocaInst *AI;
857public:
858  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
859    : LoadAndStorePromoter(Insts, S), AI(0) {}
860
861  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
862    // Remember which alloca we're promoting (for isInstInList).
863    this->AI = AI;
864    LoadAndStorePromoter::run(Insts);
865    AI->eraseFromParent();
866  }
867
868  virtual bool isInstInList(Instruction *I,
869                            const SmallVectorImpl<Instruction*> &Insts) const {
870    if (LoadInst *LI = dyn_cast<LoadInst>(I))
871      return LI->getOperand(0) == AI;
872    return cast<StoreInst>(I)->getPointerOperand() == AI;
873  }
874};
875} // end anon namespace
876
877bool SROA::performPromotion(Function &F) {
878  std::vector<AllocaInst*> Allocas;
879  DominatorTree *DT = 0;
880  DominanceFrontier *DF = 0;
881  if (HasDomFrontiers) {
882    DT = &getAnalysis<DominatorTree>();
883    DF = &getAnalysis<DominanceFrontier>();
884  }
885
886  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
887
888  bool Changed = false;
889  SmallVector<Instruction*, 64> Insts;
890  while (1) {
891    Allocas.clear();
892
893    // Find allocas that are safe to promote, by looking at all instructions in
894    // the entry node
895    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
896      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
897        if (isAllocaPromotable(AI))
898          Allocas.push_back(AI);
899
900    if (Allocas.empty()) break;
901
902    if (HasDomFrontiers)
903      PromoteMemToReg(Allocas, *DT, *DF);
904    else {
905      SSAUpdater SSA;
906      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
907        AllocaInst *AI = Allocas[i];
908
909        // Build list of instructions to promote.
910        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
911             UI != E; ++UI)
912          Insts.push_back(cast<Instruction>(*UI));
913
914        AllocaPromoter(Insts, SSA).run(AI, Insts);
915        Insts.clear();
916      }
917    }
918    NumPromoted += Allocas.size();
919    Changed = true;
920  }
921
922  return Changed;
923}
924
925
926/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
927/// SROA.  It must be a struct or array type with a small number of elements.
928static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
929  const Type *T = AI->getAllocatedType();
930  // Do not promote any struct into more than 32 separate vars.
931  if (const StructType *ST = dyn_cast<StructType>(T))
932    return ST->getNumElements() <= 32;
933  // Arrays are much less likely to be safe for SROA; only consider
934  // them if they are very small.
935  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
936    return AT->getNumElements() <= 8;
937  return false;
938}
939
940
941// performScalarRepl - This algorithm is a simple worklist driven algorithm,
942// which runs on all of the malloc/alloca instructions in the function, removing
943// them if they are only used by getelementptr instructions.
944//
945bool SROA::performScalarRepl(Function &F) {
946  std::vector<AllocaInst*> WorkList;
947
948  // Scan the entry basic block, adding allocas to the worklist.
949  BasicBlock &BB = F.getEntryBlock();
950  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
951    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
952      WorkList.push_back(A);
953
954  // Process the worklist
955  bool Changed = false;
956  while (!WorkList.empty()) {
957    AllocaInst *AI = WorkList.back();
958    WorkList.pop_back();
959
960    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
961    // with unused elements.
962    if (AI->use_empty()) {
963      AI->eraseFromParent();
964      Changed = true;
965      continue;
966    }
967
968    // If this alloca is impossible for us to promote, reject it early.
969    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
970      continue;
971
972    // Check to see if this allocation is only modified by a memcpy/memmove from
973    // a constant global.  If this is the case, we can change all users to use
974    // the constant global instead.  This is commonly produced by the CFE by
975    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
976    // is only subsequently read.
977    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
978      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
979      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
980      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
981      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
982      TheCopy->eraseFromParent();  // Don't mutate the global.
983      AI->eraseFromParent();
984      ++NumGlobals;
985      Changed = true;
986      continue;
987    }
988
989    // Check to see if we can perform the core SROA transformation.  We cannot
990    // transform the allocation instruction if it is an array allocation
991    // (allocations OF arrays are ok though), and an allocation of a scalar
992    // value cannot be decomposed at all.
993    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
994
995    // Do not promote [0 x %struct].
996    if (AllocaSize == 0) continue;
997
998    // Do not promote any struct whose size is too big.
999    if (AllocaSize > SRThreshold) continue;
1000
1001    // If the alloca looks like a good candidate for scalar replacement, and if
1002    // all its users can be transformed, then split up the aggregate into its
1003    // separate elements.
1004    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1005      DoScalarReplacement(AI, WorkList);
1006      Changed = true;
1007      continue;
1008    }
1009
1010    // If we can turn this aggregate value (potentially with casts) into a
1011    // simple scalar value that can be mem2reg'd into a register value.
1012    // IsNotTrivial tracks whether this is something that mem2reg could have
1013    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1014    // that we can't just check based on the type: the alloca may be of an i32
1015    // but that has pointer arithmetic to set byte 3 of it or something.
1016    if (AllocaInst *NewAI =
1017          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1018      NewAI->takeName(AI);
1019      AI->eraseFromParent();
1020      ++NumConverted;
1021      Changed = true;
1022      continue;
1023    }
1024
1025    // Otherwise, couldn't process this alloca.
1026  }
1027
1028  return Changed;
1029}
1030
1031/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1032/// predicate, do SROA now.
1033void SROA::DoScalarReplacement(AllocaInst *AI,
1034                               std::vector<AllocaInst*> &WorkList) {
1035  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1036  SmallVector<AllocaInst*, 32> ElementAllocas;
1037  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1038    ElementAllocas.reserve(ST->getNumContainedTypes());
1039    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1040      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1041                                      AI->getAlignment(),
1042                                      AI->getName() + "." + Twine(i), AI);
1043      ElementAllocas.push_back(NA);
1044      WorkList.push_back(NA);  // Add to worklist for recursive processing
1045    }
1046  } else {
1047    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1048    ElementAllocas.reserve(AT->getNumElements());
1049    const Type *ElTy = AT->getElementType();
1050    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1051      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1052                                      AI->getName() + "." + Twine(i), AI);
1053      ElementAllocas.push_back(NA);
1054      WorkList.push_back(NA);  // Add to worklist for recursive processing
1055    }
1056  }
1057
1058  // Now that we have created the new alloca instructions, rewrite all the
1059  // uses of the old alloca.
1060  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1061
1062  // Now erase any instructions that were made dead while rewriting the alloca.
1063  DeleteDeadInstructions();
1064  AI->eraseFromParent();
1065
1066  ++NumReplaced;
1067}
1068
1069/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1070/// recursively including all their operands that become trivially dead.
1071void SROA::DeleteDeadInstructions() {
1072  while (!DeadInsts.empty()) {
1073    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1074
1075    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1076      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1077        // Zero out the operand and see if it becomes trivially dead.
1078        // (But, don't add allocas to the dead instruction list -- they are
1079        // already on the worklist and will be deleted separately.)
1080        *OI = 0;
1081        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1082          DeadInsts.push_back(U);
1083      }
1084
1085    I->eraseFromParent();
1086  }
1087}
1088
1089/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1090/// performing scalar replacement of alloca AI.  The results are flagged in
1091/// the Info parameter.  Offset indicates the position within AI that is
1092/// referenced by this instruction.
1093void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1094                               AllocaInfo &Info) {
1095  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1096    Instruction *User = cast<Instruction>(*UI);
1097
1098    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1099      isSafeForScalarRepl(BC, AI, Offset, Info);
1100    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1101      uint64_t GEPOffset = Offset;
1102      isSafeGEP(GEPI, AI, GEPOffset, Info);
1103      if (!Info.isUnsafe)
1104        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
1105    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1106      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1107      if (Length)
1108        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
1109                        UI.getOperandNo() == 0, Info);
1110      else
1111        MarkUnsafe(Info);
1112    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1113      if (!LI->isVolatile()) {
1114        const Type *LIType = LI->getType();
1115        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
1116                        LIType, false, Info);
1117        Info.hasALoadOrStore = true;
1118      } else
1119        MarkUnsafe(Info);
1120    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1121      // Store is ok if storing INTO the pointer, not storing the pointer
1122      if (!SI->isVolatile() && SI->getOperand(0) != I) {
1123        const Type *SIType = SI->getOperand(0)->getType();
1124        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
1125                        SIType, true, Info);
1126        Info.hasALoadOrStore = true;
1127      } else
1128        MarkUnsafe(Info);
1129    } else {
1130      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
1131      MarkUnsafe(Info);
1132    }
1133    if (Info.isUnsafe) return;
1134  }
1135}
1136
1137/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1138/// replacement.  It is safe when all the indices are constant, in-bounds
1139/// references, and when the resulting offset corresponds to an element within
1140/// the alloca type.  The results are flagged in the Info parameter.  Upon
1141/// return, Offset is adjusted as specified by the GEP indices.
1142void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
1143                     uint64_t &Offset, AllocaInfo &Info) {
1144  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1145  if (GEPIt == E)
1146    return;
1147
1148  // Walk through the GEP type indices, checking the types that this indexes
1149  // into.
1150  for (; GEPIt != E; ++GEPIt) {
1151    // Ignore struct elements, no extra checking needed for these.
1152    if ((*GEPIt)->isStructTy())
1153      continue;
1154
1155    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1156    if (!IdxVal)
1157      return MarkUnsafe(Info);
1158  }
1159
1160  // Compute the offset due to this GEP and check if the alloca has a
1161  // component element at that offset.
1162  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1163  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1164                                 &Indices[0], Indices.size());
1165  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
1166    MarkUnsafe(Info);
1167}
1168
1169/// isHomogeneousAggregate - Check if type T is a struct or array containing
1170/// elements of the same type (which is always true for arrays).  If so,
1171/// return true with NumElts and EltTy set to the number of elements and the
1172/// element type, respectively.
1173static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1174                                   const Type *&EltTy) {
1175  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1176    NumElts = AT->getNumElements();
1177    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1178    return true;
1179  }
1180  if (const StructType *ST = dyn_cast<StructType>(T)) {
1181    NumElts = ST->getNumContainedTypes();
1182    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1183    for (unsigned n = 1; n < NumElts; ++n) {
1184      if (ST->getContainedType(n) != EltTy)
1185        return false;
1186    }
1187    return true;
1188  }
1189  return false;
1190}
1191
1192/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1193/// "homogeneous" aggregates with the same element type and number of elements.
1194static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1195  if (T1 == T2)
1196    return true;
1197
1198  unsigned NumElts1, NumElts2;
1199  const Type *EltTy1, *EltTy2;
1200  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1201      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1202      NumElts1 == NumElts2 &&
1203      EltTy1 == EltTy2)
1204    return true;
1205
1206  return false;
1207}
1208
1209/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1210/// alloca or has an offset and size that corresponds to a component element
1211/// within it.  The offset checked here may have been formed from a GEP with a
1212/// pointer bitcasted to a different type.
1213void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
1214                           const Type *MemOpType, bool isStore,
1215                           AllocaInfo &Info) {
1216  // Check if this is a load/store of the entire alloca.
1217  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
1218    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1219    // loads/stores (which are essentially the same as the MemIntrinsics with
1220    // regard to copying padding between elements).  But, if an alloca is
1221    // flagged as both a source and destination of such operations, we'll need
1222    // to check later for padding between elements.
1223    if (!MemOpType || MemOpType->isIntegerTy()) {
1224      if (isStore)
1225        Info.isMemCpyDst = true;
1226      else
1227        Info.isMemCpySrc = true;
1228      return;
1229    }
1230    // This is also safe for references using a type that is compatible with
1231    // the type of the alloca, so that loads/stores can be rewritten using
1232    // insertvalue/extractvalue.
1233    if (isCompatibleAggregate(MemOpType, AI->getAllocatedType())) {
1234      Info.hasSubelementAccess = true;
1235      return;
1236    }
1237  }
1238  // Check if the offset/size correspond to a component within the alloca type.
1239  const Type *T = AI->getAllocatedType();
1240  if (TypeHasComponent(T, Offset, MemSize)) {
1241    Info.hasSubelementAccess = true;
1242    return;
1243  }
1244
1245  return MarkUnsafe(Info);
1246}
1247
1248/// TypeHasComponent - Return true if T has a component type with the
1249/// specified offset and size.  If Size is zero, do not check the size.
1250bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1251  const Type *EltTy;
1252  uint64_t EltSize;
1253  if (const StructType *ST = dyn_cast<StructType>(T)) {
1254    const StructLayout *Layout = TD->getStructLayout(ST);
1255    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1256    EltTy = ST->getContainedType(EltIdx);
1257    EltSize = TD->getTypeAllocSize(EltTy);
1258    Offset -= Layout->getElementOffset(EltIdx);
1259  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1260    EltTy = AT->getElementType();
1261    EltSize = TD->getTypeAllocSize(EltTy);
1262    if (Offset >= AT->getNumElements() * EltSize)
1263      return false;
1264    Offset %= EltSize;
1265  } else {
1266    return false;
1267  }
1268  if (Offset == 0 && (Size == 0 || EltSize == Size))
1269    return true;
1270  // Check if the component spans multiple elements.
1271  if (Offset + Size > EltSize)
1272    return false;
1273  return TypeHasComponent(EltTy, Offset, Size);
1274}
1275
1276/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1277/// the instruction I, which references it, to use the separate elements.
1278/// Offset indicates the position within AI that is referenced by this
1279/// instruction.
1280void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1281                                SmallVector<AllocaInst*, 32> &NewElts) {
1282  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1283    Instruction *User = cast<Instruction>(*UI);
1284
1285    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1286      RewriteBitCast(BC, AI, Offset, NewElts);
1287    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1288      RewriteGEP(GEPI, AI, Offset, NewElts);
1289    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1290      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1291      uint64_t MemSize = Length->getZExtValue();
1292      if (Offset == 0 &&
1293          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1294        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1295      // Otherwise the intrinsic can only touch a single element and the
1296      // address operand will be updated, so nothing else needs to be done.
1297    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1298      const Type *LIType = LI->getType();
1299
1300      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1301        // Replace:
1302        //   %res = load { i32, i32 }* %alloc
1303        // with:
1304        //   %load.0 = load i32* %alloc.0
1305        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1306        //   %load.1 = load i32* %alloc.1
1307        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1308        // (Also works for arrays instead of structs)
1309        Value *Insert = UndefValue::get(LIType);
1310        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1311          Value *Load = new LoadInst(NewElts[i], "load", LI);
1312          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1313        }
1314        LI->replaceAllUsesWith(Insert);
1315        DeadInsts.push_back(LI);
1316      } else if (LIType->isIntegerTy() &&
1317                 TD->getTypeAllocSize(LIType) ==
1318                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1319        // If this is a load of the entire alloca to an integer, rewrite it.
1320        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1321      }
1322    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1323      Value *Val = SI->getOperand(0);
1324      const Type *SIType = Val->getType();
1325      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1326        // Replace:
1327        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1328        // with:
1329        //   %val.0 = extractvalue { i32, i32 } %val, 0
1330        //   store i32 %val.0, i32* %alloc.0
1331        //   %val.1 = extractvalue { i32, i32 } %val, 1
1332        //   store i32 %val.1, i32* %alloc.1
1333        // (Also works for arrays instead of structs)
1334        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1335          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1336          new StoreInst(Extract, NewElts[i], SI);
1337        }
1338        DeadInsts.push_back(SI);
1339      } else if (SIType->isIntegerTy() &&
1340                 TD->getTypeAllocSize(SIType) ==
1341                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1342        // If this is a store of the entire alloca from an integer, rewrite it.
1343        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1344      }
1345    }
1346  }
1347}
1348
1349/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1350/// and recursively continue updating all of its uses.
1351void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1352                          SmallVector<AllocaInst*, 32> &NewElts) {
1353  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1354  if (BC->getOperand(0) != AI)
1355    return;
1356
1357  // The bitcast references the original alloca.  Replace its uses with
1358  // references to the first new element alloca.
1359  Instruction *Val = NewElts[0];
1360  if (Val->getType() != BC->getDestTy()) {
1361    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1362    Val->takeName(BC);
1363  }
1364  BC->replaceAllUsesWith(Val);
1365  DeadInsts.push_back(BC);
1366}
1367
1368/// FindElementAndOffset - Return the index of the element containing Offset
1369/// within the specified type, which must be either a struct or an array.
1370/// Sets T to the type of the element and Offset to the offset within that
1371/// element.  IdxTy is set to the type of the index result to be used in a
1372/// GEP instruction.
1373uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1374                                    const Type *&IdxTy) {
1375  uint64_t Idx = 0;
1376  if (const StructType *ST = dyn_cast<StructType>(T)) {
1377    const StructLayout *Layout = TD->getStructLayout(ST);
1378    Idx = Layout->getElementContainingOffset(Offset);
1379    T = ST->getContainedType(Idx);
1380    Offset -= Layout->getElementOffset(Idx);
1381    IdxTy = Type::getInt32Ty(T->getContext());
1382    return Idx;
1383  }
1384  const ArrayType *AT = cast<ArrayType>(T);
1385  T = AT->getElementType();
1386  uint64_t EltSize = TD->getTypeAllocSize(T);
1387  Idx = Offset / EltSize;
1388  Offset -= Idx * EltSize;
1389  IdxTy = Type::getInt64Ty(T->getContext());
1390  return Idx;
1391}
1392
1393/// RewriteGEP - Check if this GEP instruction moves the pointer across
1394/// elements of the alloca that are being split apart, and if so, rewrite
1395/// the GEP to be relative to the new element.
1396void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1397                      SmallVector<AllocaInst*, 32> &NewElts) {
1398  uint64_t OldOffset = Offset;
1399  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1400  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1401                                 &Indices[0], Indices.size());
1402
1403  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1404
1405  const Type *T = AI->getAllocatedType();
1406  const Type *IdxTy;
1407  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1408  if (GEPI->getOperand(0) == AI)
1409    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1410
1411  T = AI->getAllocatedType();
1412  uint64_t EltOffset = Offset;
1413  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1414
1415  // If this GEP does not move the pointer across elements of the alloca
1416  // being split, then it does not needs to be rewritten.
1417  if (Idx == OldIdx)
1418    return;
1419
1420  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1421  SmallVector<Value*, 8> NewArgs;
1422  NewArgs.push_back(Constant::getNullValue(i32Ty));
1423  while (EltOffset != 0) {
1424    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1425    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1426  }
1427  Instruction *Val = NewElts[Idx];
1428  if (NewArgs.size() > 1) {
1429    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1430                                            NewArgs.end(), "", GEPI);
1431    Val->takeName(GEPI);
1432  }
1433  if (Val->getType() != GEPI->getType())
1434    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1435  GEPI->replaceAllUsesWith(Val);
1436  DeadInsts.push_back(GEPI);
1437}
1438
1439/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1440/// Rewrite it to copy or set the elements of the scalarized memory.
1441void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1442                                        AllocaInst *AI,
1443                                        SmallVector<AllocaInst*, 32> &NewElts) {
1444  // If this is a memcpy/memmove, construct the other pointer as the
1445  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1446  // that doesn't have anything to do with the alloca that we are promoting. For
1447  // memset, this Value* stays null.
1448  Value *OtherPtr = 0;
1449  unsigned MemAlignment = MI->getAlignment();
1450  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1451    if (Inst == MTI->getRawDest())
1452      OtherPtr = MTI->getRawSource();
1453    else {
1454      assert(Inst == MTI->getRawSource());
1455      OtherPtr = MTI->getRawDest();
1456    }
1457  }
1458
1459  // If there is an other pointer, we want to convert it to the same pointer
1460  // type as AI has, so we can GEP through it safely.
1461  if (OtherPtr) {
1462    unsigned AddrSpace =
1463      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1464
1465    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
1466    // optimization, but it's also required to detect the corner case where
1467    // both pointer operands are referencing the same memory, and where
1468    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
1469    // function is only called for mem intrinsics that access the whole
1470    // aggregate, so non-zero GEPs are not an issue here.)
1471    OtherPtr = OtherPtr->stripPointerCasts();
1472
1473    // Copying the alloca to itself is a no-op: just delete it.
1474    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1475      // This code will run twice for a no-op memcpy -- once for each operand.
1476      // Put only one reference to MI on the DeadInsts list.
1477      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1478             E = DeadInsts.end(); I != E; ++I)
1479        if (*I == MI) return;
1480      DeadInsts.push_back(MI);
1481      return;
1482    }
1483
1484    // If the pointer is not the right type, insert a bitcast to the right
1485    // type.
1486    const Type *NewTy =
1487      PointerType::get(AI->getType()->getElementType(), AddrSpace);
1488
1489    if (OtherPtr->getType() != NewTy)
1490      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1491  }
1492
1493  // Process each element of the aggregate.
1494  bool SROADest = MI->getRawDest() == Inst;
1495
1496  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1497
1498  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1499    // If this is a memcpy/memmove, emit a GEP of the other element address.
1500    Value *OtherElt = 0;
1501    unsigned OtherEltAlign = MemAlignment;
1502
1503    if (OtherPtr) {
1504      Value *Idx[2] = { Zero,
1505                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1506      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1507                                              OtherPtr->getName()+"."+Twine(i),
1508                                                   MI);
1509      uint64_t EltOffset;
1510      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1511      const Type *OtherTy = OtherPtrTy->getElementType();
1512      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1513        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1514      } else {
1515        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
1516        EltOffset = TD->getTypeAllocSize(EltTy)*i;
1517      }
1518
1519      // The alignment of the other pointer is the guaranteed alignment of the
1520      // element, which is affected by both the known alignment of the whole
1521      // mem intrinsic and the alignment of the element.  If the alignment of
1522      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1523      // known alignment is just 4 bytes.
1524      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
1525    }
1526
1527    Value *EltPtr = NewElts[i];
1528    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
1529
1530    // If we got down to a scalar, insert a load or store as appropriate.
1531    if (EltTy->isSingleValueType()) {
1532      if (isa<MemTransferInst>(MI)) {
1533        if (SROADest) {
1534          // From Other to Alloca.
1535          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
1536          new StoreInst(Elt, EltPtr, MI);
1537        } else {
1538          // From Alloca to Other.
1539          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
1540          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
1541        }
1542        continue;
1543      }
1544      assert(isa<MemSetInst>(MI));
1545
1546      // If the stored element is zero (common case), just store a null
1547      // constant.
1548      Constant *StoreVal;
1549      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
1550        if (CI->isZero()) {
1551          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
1552        } else {
1553          // If EltTy is a vector type, get the element type.
1554          const Type *ValTy = EltTy->getScalarType();
1555
1556          // Construct an integer with the right value.
1557          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
1558          APInt OneVal(EltSize, CI->getZExtValue());
1559          APInt TotalVal(OneVal);
1560          // Set each byte.
1561          for (unsigned i = 0; 8*i < EltSize; ++i) {
1562            TotalVal = TotalVal.shl(8);
1563            TotalVal |= OneVal;
1564          }
1565
1566          // Convert the integer value to the appropriate type.
1567          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
1568          if (ValTy->isPointerTy())
1569            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
1570          else if (ValTy->isFloatingPointTy())
1571            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
1572          assert(StoreVal->getType() == ValTy && "Type mismatch!");
1573
1574          // If the requested value was a vector constant, create it.
1575          if (EltTy != ValTy) {
1576            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
1577            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
1578            StoreVal = ConstantVector::get(&Elts[0], NumElts);
1579          }
1580        }
1581        new StoreInst(StoreVal, EltPtr, MI);
1582        continue;
1583      }
1584      // Otherwise, if we're storing a byte variable, use a memset call for
1585      // this element.
1586    }
1587
1588    unsigned EltSize = TD->getTypeAllocSize(EltTy);
1589
1590    IRBuilder<> Builder(MI);
1591
1592    // Finally, insert the meminst for this element.
1593    if (isa<MemSetInst>(MI)) {
1594      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
1595                           MI->isVolatile());
1596    } else {
1597      assert(isa<MemTransferInst>(MI));
1598      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
1599      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
1600
1601      if (isa<MemCpyInst>(MI))
1602        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
1603      else
1604        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
1605    }
1606  }
1607  DeadInsts.push_back(MI);
1608}
1609
1610/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
1611/// overwrites the entire allocation.  Extract out the pieces of the stored
1612/// integer and store them individually.
1613void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
1614                                         SmallVector<AllocaInst*, 32> &NewElts){
1615  // Extract each element out of the integer according to its structure offset
1616  // and store the element value to the individual alloca.
1617  Value *SrcVal = SI->getOperand(0);
1618  const Type *AllocaEltTy = AI->getAllocatedType();
1619  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1620
1621  IRBuilder<> Builder(SI);
1622
1623  // Handle tail padding by extending the operand
1624  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
1625    SrcVal = Builder.CreateZExt(SrcVal,
1626                            IntegerType::get(SI->getContext(), AllocaSizeBits));
1627
1628  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
1629               << '\n');
1630
1631  // There are two forms here: AI could be an array or struct.  Both cases
1632  // have different ways to compute the element offset.
1633  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1634    const StructLayout *Layout = TD->getStructLayout(EltSTy);
1635
1636    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1637      // Get the number of bits to shift SrcVal to get the value.
1638      const Type *FieldTy = EltSTy->getElementType(i);
1639      uint64_t Shift = Layout->getElementOffsetInBits(i);
1640
1641      if (TD->isBigEndian())
1642        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
1643
1644      Value *EltVal = SrcVal;
1645      if (Shift) {
1646        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1647        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
1648      }
1649
1650      // Truncate down to an integer of the right size.
1651      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1652
1653      // Ignore zero sized fields like {}, they obviously contain no data.
1654      if (FieldSizeBits == 0) continue;
1655
1656      if (FieldSizeBits != AllocaSizeBits)
1657        EltVal = Builder.CreateTrunc(EltVal,
1658                             IntegerType::get(SI->getContext(), FieldSizeBits));
1659      Value *DestField = NewElts[i];
1660      if (EltVal->getType() == FieldTy) {
1661        // Storing to an integer field of this size, just do it.
1662      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
1663        // Bitcast to the right element type (for fp/vector values).
1664        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
1665      } else {
1666        // Otherwise, bitcast the dest pointer (for aggregates).
1667        DestField = Builder.CreateBitCast(DestField,
1668                                     PointerType::getUnqual(EltVal->getType()));
1669      }
1670      new StoreInst(EltVal, DestField, SI);
1671    }
1672
1673  } else {
1674    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1675    const Type *ArrayEltTy = ATy->getElementType();
1676    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1677    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1678
1679    uint64_t Shift;
1680
1681    if (TD->isBigEndian())
1682      Shift = AllocaSizeBits-ElementOffset;
1683    else
1684      Shift = 0;
1685
1686    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1687      // Ignore zero sized fields like {}, they obviously contain no data.
1688      if (ElementSizeBits == 0) continue;
1689
1690      Value *EltVal = SrcVal;
1691      if (Shift) {
1692        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1693        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
1694      }
1695
1696      // Truncate down to an integer of the right size.
1697      if (ElementSizeBits != AllocaSizeBits)
1698        EltVal = Builder.CreateTrunc(EltVal,
1699                                     IntegerType::get(SI->getContext(),
1700                                                      ElementSizeBits));
1701      Value *DestField = NewElts[i];
1702      if (EltVal->getType() == ArrayEltTy) {
1703        // Storing to an integer field of this size, just do it.
1704      } else if (ArrayEltTy->isFloatingPointTy() ||
1705                 ArrayEltTy->isVectorTy()) {
1706        // Bitcast to the right element type (for fp/vector values).
1707        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
1708      } else {
1709        // Otherwise, bitcast the dest pointer (for aggregates).
1710        DestField = Builder.CreateBitCast(DestField,
1711                                     PointerType::getUnqual(EltVal->getType()));
1712      }
1713      new StoreInst(EltVal, DestField, SI);
1714
1715      if (TD->isBigEndian())
1716        Shift -= ElementOffset;
1717      else
1718        Shift += ElementOffset;
1719    }
1720  }
1721
1722  DeadInsts.push_back(SI);
1723}
1724
1725/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1726/// an integer.  Load the individual pieces to form the aggregate value.
1727void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1728                                        SmallVector<AllocaInst*, 32> &NewElts) {
1729  // Extract each element out of the NewElts according to its structure offset
1730  // and form the result value.
1731  const Type *AllocaEltTy = AI->getAllocatedType();
1732  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1733
1734  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1735               << '\n');
1736
1737  // There are two forms here: AI could be an array or struct.  Both cases
1738  // have different ways to compute the element offset.
1739  const StructLayout *Layout = 0;
1740  uint64_t ArrayEltBitOffset = 0;
1741  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1742    Layout = TD->getStructLayout(EltSTy);
1743  } else {
1744    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1745    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1746  }
1747
1748  Value *ResultVal =
1749    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1750
1751  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1752    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1753    // the pointer to an integer of the same size before doing the load.
1754    Value *SrcField = NewElts[i];
1755    const Type *FieldTy =
1756      cast<PointerType>(SrcField->getType())->getElementType();
1757    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1758
1759    // Ignore zero sized fields like {}, they obviously contain no data.
1760    if (FieldSizeBits == 0) continue;
1761
1762    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1763                                                     FieldSizeBits);
1764    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
1765        !FieldTy->isVectorTy())
1766      SrcField = new BitCastInst(SrcField,
1767                                 PointerType::getUnqual(FieldIntTy),
1768                                 "", LI);
1769    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1770
1771    // If SrcField is a fp or vector of the right size but that isn't an
1772    // integer type, bitcast to an integer so we can shift it.
1773    if (SrcField->getType() != FieldIntTy)
1774      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1775
1776    // Zero extend the field to be the same size as the final alloca so that
1777    // we can shift and insert it.
1778    if (SrcField->getType() != ResultVal->getType())
1779      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1780
1781    // Determine the number of bits to shift SrcField.
1782    uint64_t Shift;
1783    if (Layout) // Struct case.
1784      Shift = Layout->getElementOffsetInBits(i);
1785    else  // Array case.
1786      Shift = i*ArrayEltBitOffset;
1787
1788    if (TD->isBigEndian())
1789      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1790
1791    if (Shift) {
1792      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1793      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1794    }
1795
1796    // Don't create an 'or x, 0' on the first iteration.
1797    if (!isa<Constant>(ResultVal) ||
1798        !cast<Constant>(ResultVal)->isNullValue())
1799      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1800    else
1801      ResultVal = SrcField;
1802  }
1803
1804  // Handle tail padding by truncating the result
1805  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1806    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1807
1808  LI->replaceAllUsesWith(ResultVal);
1809  DeadInsts.push_back(LI);
1810}
1811
1812/// HasPadding - Return true if the specified type has any structure or
1813/// alignment padding in between the elements that would be split apart
1814/// by SROA; return false otherwise.
1815static bool HasPadding(const Type *Ty, const TargetData &TD) {
1816  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1817    Ty = ATy->getElementType();
1818    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1819  }
1820
1821  // SROA currently handles only Arrays and Structs.
1822  const StructType *STy = cast<StructType>(Ty);
1823  const StructLayout *SL = TD.getStructLayout(STy);
1824  unsigned PrevFieldBitOffset = 0;
1825  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1826    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1827
1828    // Check to see if there is any padding between this element and the
1829    // previous one.
1830    if (i) {
1831      unsigned PrevFieldEnd =
1832        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1833      if (PrevFieldEnd < FieldBitOffset)
1834        return true;
1835    }
1836    PrevFieldBitOffset = FieldBitOffset;
1837  }
1838  // Check for tail padding.
1839  if (unsigned EltCount = STy->getNumElements()) {
1840    unsigned PrevFieldEnd = PrevFieldBitOffset +
1841      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1842    if (PrevFieldEnd < SL->getSizeInBits())
1843      return true;
1844  }
1845  return false;
1846}
1847
1848/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1849/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1850/// or 1 if safe after canonicalization has been performed.
1851bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1852  // Loop over the use list of the alloca.  We can only transform it if all of
1853  // the users are safe to transform.
1854  AllocaInfo Info;
1855
1856  isSafeForScalarRepl(AI, AI, 0, Info);
1857  if (Info.isUnsafe) {
1858    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
1859    return false;
1860  }
1861
1862  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1863  // source and destination, we have to be careful.  In particular, the memcpy
1864  // could be moving around elements that live in structure padding of the LLVM
1865  // types, but may actually be used.  In these cases, we refuse to promote the
1866  // struct.
1867  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1868      HasPadding(AI->getAllocatedType(), *TD))
1869    return false;
1870
1871  // If the alloca never has an access to just *part* of it, but is accessed
1872  // via loads and stores, then we should use ConvertToScalarInfo to promote
1873  // the alloca instead of promoting each piece at a time and inserting fission
1874  // and fusion code.
1875  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
1876    // If the struct/array just has one element, use basic SRoA.
1877    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1878      if (ST->getNumElements() > 1) return false;
1879    } else {
1880      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
1881        return false;
1882    }
1883  }
1884  return true;
1885}
1886
1887
1888
1889/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1890/// some part of a constant global variable.  This intentionally only accepts
1891/// constant expressions because we don't can't rewrite arbitrary instructions.
1892static bool PointsToConstantGlobal(Value *V) {
1893  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1894    return GV->isConstant();
1895  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1896    if (CE->getOpcode() == Instruction::BitCast ||
1897        CE->getOpcode() == Instruction::GetElementPtr)
1898      return PointsToConstantGlobal(CE->getOperand(0));
1899  return false;
1900}
1901
1902/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1903/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1904/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1905/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1906/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1907/// the alloca, and if the source pointer is a pointer to a constant global, we
1908/// can optimize this.
1909static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
1910                                           bool isOffset) {
1911  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1912    User *U = cast<Instruction>(*UI);
1913
1914    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1915      // Ignore non-volatile loads, they are always ok.
1916      if (LI->isVolatile()) return false;
1917      continue;
1918    }
1919
1920    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1921      // If uses of the bitcast are ok, we are ok.
1922      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1923        return false;
1924      continue;
1925    }
1926    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
1927      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1928      // doesn't, it does.
1929      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1930                                         isOffset || !GEP->hasAllZeroIndices()))
1931        return false;
1932      continue;
1933    }
1934
1935    if (CallSite CS = U) {
1936      // If this is a readonly/readnone call site, then we know it is just a
1937      // load and we can ignore it.
1938      if (CS.onlyReadsMemory())
1939        continue;
1940
1941      // If this is the function being called then we treat it like a load and
1942      // ignore it.
1943      if (CS.isCallee(UI))
1944        continue;
1945
1946      // If this is being passed as a byval argument, the caller is making a
1947      // copy, so it is only a read of the alloca.
1948      unsigned ArgNo = CS.getArgumentNo(UI);
1949      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
1950        continue;
1951    }
1952
1953    // If this is isn't our memcpy/memmove, reject it as something we can't
1954    // handle.
1955    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
1956    if (MI == 0)
1957      return false;
1958
1959    // If the transfer is using the alloca as a source of the transfer, then
1960    // ignore it since it is a load (unless the transfer is volatile).
1961    if (UI.getOperandNo() == 1) {
1962      if (MI->isVolatile()) return false;
1963      continue;
1964    }
1965
1966    // If we already have seen a copy, reject the second one.
1967    if (TheCopy) return false;
1968
1969    // If the pointer has been offset from the start of the alloca, we can't
1970    // safely handle this.
1971    if (isOffset) return false;
1972
1973    // If the memintrinsic isn't using the alloca as the dest, reject it.
1974    if (UI.getOperandNo() != 0) return false;
1975
1976    // If the source of the memcpy/move is not a constant global, reject it.
1977    if (!PointsToConstantGlobal(MI->getSource()))
1978      return false;
1979
1980    // Otherwise, the transform is safe.  Remember the copy instruction.
1981    TheCopy = MI;
1982  }
1983  return true;
1984}
1985
1986/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1987/// modified by a copy from a constant global.  If we can prove this, we can
1988/// replace any uses of the alloca with uses of the global directly.
1989MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1990  MemTransferInst *TheCopy = 0;
1991  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1992    return TheCopy;
1993  return 0;
1994}
1995