ScalarReplAggregates.cpp revision 3cfb6b13c0e1d9dee0e35449aa1ac6bd8a0ee906
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3// This transformation implements the well known scalar replacement of
4// aggregates transformation.  This xform breaks up alloca instructions of
5// aggregate type (structure or array) into individual alloca instructions for
6// each member (if possible).  Then, if possible, it transforms the individual
7// alloca instructions into nice clean scalar SSA form.
8//
9// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
10// often interact, especially for C++ programs.  As such, iterating between
11// SRoA, then Mem2Reg until we run out of things to promote works well.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Scalar.h"
16#include "llvm/Constants.h"
17#include "llvm/DerivedTypes.h"
18#include "llvm/Function.h"
19#include "llvm/Pass.h"
20#include "llvm/iMemory.h"
21#include "llvm/Analysis/Dominators.h"
22#include "llvm/Target/TargetData.h"
23#include "llvm/Transforms/Utils/PromoteMemToReg.h"
24#include "Support/Debug.h"
25#include "Support/Statistic.h"
26#include "Support/StringExtras.h"
27
28namespace {
29  Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
30  Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");
31
32  struct SROA : public FunctionPass {
33    bool runOnFunction(Function &F);
34
35    bool performScalarRepl(Function &F);
36    bool performPromotion(Function &F);
37
38    // getAnalysisUsage - This pass does not require any passes, but we know it
39    // will not alter the CFG, so say so.
40    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
41      AU.addRequired<DominanceFrontier>();
42      AU.addRequired<TargetData>();
43      AU.setPreservesCFG();
44    }
45
46  private:
47    bool isSafeElementUse(Value *Ptr);
48    bool isSafeUseOfAllocation(Instruction *User);
49    bool isSafeStructAllocaToPromote(AllocationInst *AI);
50    bool isSafeArrayAllocaToPromote(AllocationInst *AI);
51    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
52  };
53
54  RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
55}
56
57Pass *createScalarReplAggregatesPass() { return new SROA(); }
58
59
60bool SROA::runOnFunction(Function &F) {
61  bool Changed = false, LocalChange;
62  do {
63    LocalChange = performScalarRepl(F);
64    LocalChange |= performPromotion(F);
65    Changed |= LocalChange;
66  } while (LocalChange);
67
68  return Changed;
69}
70
71
72bool SROA::performPromotion(Function &F) {
73  std::vector<AllocaInst*> Allocas;
74  const TargetData &TD = getAnalysis<TargetData>();
75
76  BasicBlock &BB = F.getEntryNode();  // Get the entry node for the function
77
78  bool Changed  = false;
79
80  while (1) {
81    Allocas.clear();
82
83    // Find allocas that are safe to promote, by looking at all instructions in
84    // the entry node
85    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
86      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
87        if (isAllocaPromotable(AI, TD))
88          Allocas.push_back(AI);
89
90    if (Allocas.empty()) break;
91
92    PromoteMemToReg(Allocas, getAnalysis<DominanceFrontier>(), TD);
93    NumPromoted += Allocas.size();
94    Changed = true;
95  }
96
97  return Changed;
98}
99
100
101// performScalarRepl - This algorithm is a simple worklist driven algorithm,
102// which runs on all of the malloc/alloca instructions in the function, removing
103// them if they are only used by getelementptr instructions.
104//
105bool SROA::performScalarRepl(Function &F) {
106  std::vector<AllocationInst*> WorkList;
107
108  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
109  BasicBlock &BB = F.getEntryNode();
110  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
111    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
112      WorkList.push_back(A);
113
114  // Process the worklist
115  bool Changed = false;
116  while (!WorkList.empty()) {
117    AllocationInst *AI = WorkList.back();
118    WorkList.pop_back();
119
120    // We cannot transform the allocation instruction if it is an array
121    // allocation (allocations OF arrays are ok though), and an allocation of a
122    // scalar value cannot be decomposed at all.
123    //
124    if (AI->isArrayAllocation() ||
125        (!isa<StructType>(AI->getAllocatedType()) &&
126         !isa<ArrayType>(AI->getAllocatedType()))) continue;
127
128    // Check that all of the users of the allocation are capable of being
129    // transformed.
130    if (isa<StructType>(AI->getAllocatedType())) {
131      if (!isSafeStructAllocaToPromote(AI))
132        continue;
133    } else if (!isSafeArrayAllocaToPromote(AI))
134      continue;
135
136    DEBUG(std::cerr << "Found inst to xform: " << *AI);
137    Changed = true;
138
139    std::vector<AllocaInst*> ElementAllocas;
140    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
141      ElementAllocas.reserve(ST->getNumContainedTypes());
142      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
143        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
144                                        AI->getName() + "." + utostr(i), AI);
145        ElementAllocas.push_back(NA);
146        WorkList.push_back(NA);  // Add to worklist for recursive processing
147      }
148    } else {
149      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
150      ElementAllocas.reserve(AT->getNumElements());
151      const Type *ElTy = AT->getElementType();
152      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
153        AllocaInst *NA = new AllocaInst(ElTy, 0,
154                                        AI->getName() + "." + utostr(i), AI);
155        ElementAllocas.push_back(NA);
156        WorkList.push_back(NA);  // Add to worklist for recursive processing
157      }
158    }
159
160    // Now that we have created the alloca instructions that we want to use,
161    // expand the getelementptr instructions to use them.
162    //
163    for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
164         I != E; ++I) {
165      Instruction *User = cast<Instruction>(*I);
166      if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
167        // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
168        uint64_t Idx = cast<ConstantInt>(GEPI->getOperand(2))->getRawValue();
169
170        assert(Idx < ElementAllocas.size() && "Index out of range?");
171        AllocaInst *AllocaToUse = ElementAllocas[Idx];
172
173        Value *RepValue;
174        if (GEPI->getNumOperands() == 3) {
175          // Do not insert a new getelementptr instruction with zero indices,
176          // only to have it optimized out later.
177          RepValue = AllocaToUse;
178        } else {
179          // We are indexing deeply into the structure, so we still need a
180          // getelement ptr instruction to finish the indexing.  This may be
181          // expanded itself once the worklist is rerun.
182          //
183          std::string OldName = GEPI->getName();  // Steal the old name...
184          std::vector<Value*> NewArgs;
185          NewArgs.push_back(Constant::getNullValue(Type::LongTy));
186          NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
187          GEPI->setName("");
188          RepValue =
189            new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
190        }
191
192        // Move all of the users over to the new GEP.
193        GEPI->replaceAllUsesWith(RepValue);
194        // Delete the old GEP
195        GEPI->getParent()->getInstList().erase(GEPI);
196      } else {
197        assert(0 && "Unexpected instruction type!");
198      }
199    }
200
201    // Finally, delete the Alloca instruction
202    AI->getParent()->getInstList().erase(AI);
203    NumReplaced++;
204  }
205
206  return Changed;
207}
208
209
210/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
211/// aggregate allocation.
212///
213bool SROA::isSafeUseOfAllocation(Instruction *User) {
214  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
215    // The GEP is safe to transform if it is of the form GEP <ptr>, 0, <cst>
216    if (GEPI->getNumOperands() <= 2 ||
217        GEPI->getOperand(1) != Constant::getNullValue(Type::LongTy) ||
218        !isa<Constant>(GEPI->getOperand(2)) ||
219        isa<ConstantExpr>(GEPI->getOperand(2)))
220      return false;
221  } else {
222    return false;
223  }
224  return true;
225}
226
227/// isSafeElementUse - Check to see if this use is an allowed use for a
228/// getelementptr instruction of an array aggregate allocation.
229///
230bool SROA::isSafeElementUse(Value *Ptr) {
231  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
232       I != E; ++I) {
233    Instruction *User = cast<Instruction>(*I);
234    switch (User->getOpcode()) {
235    case Instruction::Load:  return true;
236    case Instruction::Store: return User->getOperand(0) != Ptr;
237    case Instruction::GetElementPtr: {
238      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
239      if (GEP->getNumOperands() > 1) {
240        if (!isa<Constant>(GEP->getOperand(1)) ||
241            !cast<Constant>(GEP->getOperand(1))->isNullValue())
242          return false;  // Using pointer arithmetic to navigate the array...
243      }
244      return isSafeElementUse(GEP);
245    }
246    default:
247      DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
248      return false;
249    }
250  }
251  return true;  // All users look ok :)
252}
253
254
255/// isSafeStructAllocaToPromote - Check to see if the specified allocation of a
256/// structure can be broken down into elements.
257///
258bool SROA::isSafeStructAllocaToPromote(AllocationInst *AI) {
259  // Loop over the use list of the alloca.  We can only transform it if all of
260  // the users are safe to transform.
261  //
262  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
263       I != E; ++I) {
264    if (!isSafeUseOfAllocation(cast<Instruction>(*I))) {
265      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
266                      << *I);
267      return false;
268    }
269
270    // Pedantic check to avoid breaking broken programs...
271    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*I))
272      if (GEPI->getNumOperands() == 3 && !isSafeElementUse(GEPI))
273        return false;
274  }
275  return true;
276}
277
278
279/// isSafeArrayAllocaToPromote - Check to see if the specified allocation of a
280/// structure can be broken down into elements.
281///
282bool SROA::isSafeArrayAllocaToPromote(AllocationInst *AI) {
283  const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
284  int64_t NumElements = AT->getNumElements();
285
286  // Loop over the use list of the alloca.  We can only transform it if all of
287  // the users are safe to transform.  Array allocas have extra constraints to
288  // meet though.
289  //
290  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
291       I != E; ++I) {
292    Instruction *User = cast<Instruction>(*I);
293    if (!isSafeUseOfAllocation(User)) {
294      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
295                      << User);
296      return false;
297    }
298
299    // Check to make sure that getelementptr follow the extra rules for arrays:
300    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
301      // Check to make sure that index falls within the array.  If not,
302      // something funny is going on, so we won't do the optimization.
303      //
304      if (cast<ConstantSInt>(GEPI->getOperand(2))->getValue() >= NumElements)
305        return false;
306
307      // Check to make sure that the only thing that uses the resultant pointer
308      // is safe for an array access.  For example, code that looks like:
309      //   P = &A[0];  P = P + 1
310      // is legal, and should prevent promotion.
311      //
312      if (!isSafeElementUse(GEPI)) {
313        DEBUG(std::cerr << "Cannot transform: " << *AI
314                        << "  due to uses of user: " << *GEPI);
315        return false;
316      }
317    }
318  }
319  return true;
320}
321
322