ScalarReplAggregates.cpp revision 3eeba88631db6da7d45df67f677556297bd93f75
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because they
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DIBuilder.h"
26#include "llvm/DebugInfo.h"
27#include "llvm/DerivedTypes.h"
28#include "llvm/Function.h"
29#include "llvm/GlobalVariable.h"
30#include "llvm/IRBuilder.h"
31#include "llvm/Instructions.h"
32#include "llvm/IntrinsicInst.h"
33#include "llvm/LLVMContext.h"
34#include "llvm/Module.h"
35#include "llvm/Operator.h"
36#include "llvm/Pass.h"
37#include "llvm/ADT/SetVector.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/Analysis/Dominators.h"
41#include "llvm/Analysis/Loads.h"
42#include "llvm/Analysis/ValueTracking.h"
43#include "llvm/Support/CallSite.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/GetElementPtrTypeIterator.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/Target/TargetData.h"
50#include "llvm/Transforms/Utils/Local.h"
51#include "llvm/Transforms/Utils/PromoteMemToReg.h"
52#include "llvm/Transforms/Utils/SSAUpdater.h"
53using namespace llvm;
54
55STATISTIC(NumReplaced,  "Number of allocas broken up");
56STATISTIC(NumPromoted,  "Number of allocas promoted");
57STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
58STATISTIC(NumConverted, "Number of aggregates converted to scalar");
59STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
60
61namespace {
62  struct SROA : public FunctionPass {
63    SROA(int T, bool hasDT, char &ID, int ST, int AT, int SLT)
64      : FunctionPass(ID), HasDomTree(hasDT) {
65      if (T == -1)
66        SRThreshold = 128;
67      else
68        SRThreshold = T;
69      if (ST == -1)
70        StructMemberThreshold = 32;
71      else
72        StructMemberThreshold = ST;
73      if (AT == -1)
74        ArrayElementThreshold = 8;
75      else
76        ArrayElementThreshold = AT;
77      if (SLT == -1)
78        // Do not limit the scalar integer load size if no threshold is given.
79        ScalarLoadThreshold = -1;
80      else
81        ScalarLoadThreshold = SLT;
82    }
83
84    bool runOnFunction(Function &F);
85
86    bool performScalarRepl(Function &F);
87    bool performPromotion(Function &F);
88
89  private:
90    bool HasDomTree;
91    TargetData *TD;
92
93    /// DeadInsts - Keep track of instructions we have made dead, so that
94    /// we can remove them after we are done working.
95    SmallVector<Value*, 32> DeadInsts;
96
97    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
98    /// information about the uses.  All these fields are initialized to false
99    /// and set to true when something is learned.
100    struct AllocaInfo {
101      /// The alloca to promote.
102      AllocaInst *AI;
103
104      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
105      /// looping and avoid redundant work.
106      SmallPtrSet<PHINode*, 8> CheckedPHIs;
107
108      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
109      bool isUnsafe : 1;
110
111      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
112      bool isMemCpySrc : 1;
113
114      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
115      bool isMemCpyDst : 1;
116
117      /// hasSubelementAccess - This is true if a subelement of the alloca is
118      /// ever accessed, or false if the alloca is only accessed with mem
119      /// intrinsics or load/store that only access the entire alloca at once.
120      bool hasSubelementAccess : 1;
121
122      /// hasALoadOrStore - This is true if there are any loads or stores to it.
123      /// The alloca may just be accessed with memcpy, for example, which would
124      /// not set this.
125      bool hasALoadOrStore : 1;
126
127      explicit AllocaInfo(AllocaInst *ai)
128        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
129          hasSubelementAccess(false), hasALoadOrStore(false) {}
130    };
131
132    /// SRThreshold - The maximum alloca size to considered for SROA.
133    unsigned SRThreshold;
134
135    /// StructMemberThreshold - The maximum number of members a struct can
136    /// contain to be considered for SROA.
137    unsigned StructMemberThreshold;
138
139    /// ArrayElementThreshold - The maximum number of elements an array can
140    /// have to be considered for SROA.
141    unsigned ArrayElementThreshold;
142
143    /// ScalarLoadThreshold - The maximum size in bits of scalars to load when
144    /// converting to scalar
145    unsigned ScalarLoadThreshold;
146
147    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
148      I.isUnsafe = true;
149      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
150    }
151
152    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
153
154    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
155    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
156                                         AllocaInfo &Info);
157    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
158    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
159                         Type *MemOpType, bool isStore, AllocaInfo &Info,
160                         Instruction *TheAccess, bool AllowWholeAccess);
161    bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
162    uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
163                                  Type *&IdxTy);
164
165    void DoScalarReplacement(AllocaInst *AI,
166                             std::vector<AllocaInst*> &WorkList);
167    void DeleteDeadInstructions();
168
169    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
170                              SmallVector<AllocaInst*, 32> &NewElts);
171    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
172                        SmallVector<AllocaInst*, 32> &NewElts);
173    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
174                    SmallVector<AllocaInst*, 32> &NewElts);
175    void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
176                                  uint64_t Offset,
177                                  SmallVector<AllocaInst*, 32> &NewElts);
178    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
179                                      AllocaInst *AI,
180                                      SmallVector<AllocaInst*, 32> &NewElts);
181    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
182                                       SmallVector<AllocaInst*, 32> &NewElts);
183    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
184                                      SmallVector<AllocaInst*, 32> &NewElts);
185    bool ShouldAttemptScalarRepl(AllocaInst *AI);
186
187    static MemTransferInst *isOnlyCopiedFromConstantGlobal(
188        AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
189  };
190
191  // SROA_DT - SROA that uses DominatorTree.
192  struct SROA_DT : public SROA {
193    static char ID;
194  public:
195    SROA_DT(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
196        SROA(T, true, ID, ST, AT, SLT) {
197      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
198    }
199
200    // getAnalysisUsage - This pass does not require any passes, but we know it
201    // will not alter the CFG, so say so.
202    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
203      AU.addRequired<DominatorTree>();
204      AU.setPreservesCFG();
205    }
206  };
207
208  // SROA_SSAUp - SROA that uses SSAUpdater.
209  struct SROA_SSAUp : public SROA {
210    static char ID;
211  public:
212    SROA_SSAUp(int T = -1, int ST = -1, int AT = -1, int SLT = -1) :
213        SROA(T, false, ID, ST, AT, SLT) {
214      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
215    }
216
217    // getAnalysisUsage - This pass does not require any passes, but we know it
218    // will not alter the CFG, so say so.
219    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
220      AU.setPreservesCFG();
221    }
222  };
223
224}
225
226char SROA_DT::ID = 0;
227char SROA_SSAUp::ID = 0;
228
229INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
230                "Scalar Replacement of Aggregates (DT)", false, false)
231INITIALIZE_PASS_DEPENDENCY(DominatorTree)
232INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
233                "Scalar Replacement of Aggregates (DT)", false, false)
234
235INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
236                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
237INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
238                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
239
240// Public interface to the ScalarReplAggregates pass
241FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
242                                                   bool UseDomTree,
243                                                   int StructMemberThreshold,
244                                                   int ArrayElementThreshold,
245                                                   int ScalarLoadThreshold) {
246  if (UseDomTree)
247    return new SROA_DT(Threshold, StructMemberThreshold, ArrayElementThreshold,
248                       ScalarLoadThreshold);
249  return new SROA_SSAUp(Threshold, StructMemberThreshold,
250                        ArrayElementThreshold, ScalarLoadThreshold);
251}
252
253
254//===----------------------------------------------------------------------===//
255// Convert To Scalar Optimization.
256//===----------------------------------------------------------------------===//
257
258namespace {
259/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
260/// optimization, which scans the uses of an alloca and determines if it can
261/// rewrite it in terms of a single new alloca that can be mem2reg'd.
262class ConvertToScalarInfo {
263  /// AllocaSize - The size of the alloca being considered in bytes.
264  unsigned AllocaSize;
265  const TargetData &TD;
266  unsigned ScalarLoadThreshold;
267
268  /// IsNotTrivial - This is set to true if there is some access to the object
269  /// which means that mem2reg can't promote it.
270  bool IsNotTrivial;
271
272  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
273  /// computed based on the uses of the alloca rather than the LLVM type system.
274  enum {
275    Unknown,
276
277    // Accesses via GEPs that are consistent with element access of a vector
278    // type. This will not be converted into a vector unless there is a later
279    // access using an actual vector type.
280    ImplicitVector,
281
282    // Accesses via vector operations and GEPs that are consistent with the
283    // layout of a vector type.
284    Vector,
285
286    // An integer bag-of-bits with bitwise operations for insertion and
287    // extraction. Any combination of types can be converted into this kind
288    // of scalar.
289    Integer
290  } ScalarKind;
291
292  /// VectorTy - This tracks the type that we should promote the vector to if
293  /// it is possible to turn it into a vector.  This starts out null, and if it
294  /// isn't possible to turn into a vector type, it gets set to VoidTy.
295  VectorType *VectorTy;
296
297  /// HadNonMemTransferAccess - True if there is at least one access to the
298  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
299  /// large integers unless there is some potential for optimization.
300  bool HadNonMemTransferAccess;
301
302  /// HadDynamicAccess - True if some element of this alloca was dynamic.
303  /// We don't yet have support for turning a dynamic access into a large
304  /// integer.
305  bool HadDynamicAccess;
306
307public:
308  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td,
309                               unsigned SLT)
310    : AllocaSize(Size), TD(td), ScalarLoadThreshold(SLT), IsNotTrivial(false),
311    ScalarKind(Unknown), VectorTy(0), HadNonMemTransferAccess(false),
312    HadDynamicAccess(false) { }
313
314  AllocaInst *TryConvert(AllocaInst *AI);
315
316private:
317  bool CanConvertToScalar(Value *V, uint64_t Offset, Value* NonConstantIdx);
318  void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
319  bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
320  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset,
321                           Value *NonConstantIdx);
322
323  Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
324                                    uint64_t Offset, Value* NonConstantIdx,
325                                    IRBuilder<> &Builder);
326  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
327                                   uint64_t Offset, Value* NonConstantIdx,
328                                   IRBuilder<> &Builder);
329};
330} // end anonymous namespace.
331
332
333/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
334/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
335/// alloca if possible or null if not.
336AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
337  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
338  // out.
339  if (!CanConvertToScalar(AI, 0, 0) || !IsNotTrivial)
340    return 0;
341
342  // If an alloca has only memset / memcpy uses, it may still have an Unknown
343  // ScalarKind. Treat it as an Integer below.
344  if (ScalarKind == Unknown)
345    ScalarKind = Integer;
346
347  if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
348    ScalarKind = Integer;
349
350  // If we were able to find a vector type that can handle this with
351  // insert/extract elements, and if there was at least one use that had
352  // a vector type, promote this to a vector.  We don't want to promote
353  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
354  // we just get a lot of insert/extracts.  If at least one vector is
355  // involved, then we probably really do have a union of vector/array.
356  Type *NewTy;
357  if (ScalarKind == Vector) {
358    assert(VectorTy && "Missing type for vector scalar.");
359    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
360          << *VectorTy << '\n');
361    NewTy = VectorTy;  // Use the vector type.
362  } else {
363    unsigned BitWidth = AllocaSize * 8;
364
365    // Do not convert to scalar integer if the alloca size exceeds the
366    // scalar load threshold.
367    if (BitWidth > ScalarLoadThreshold)
368      return 0;
369
370    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
371        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
372      return 0;
373    // Dynamic accesses on integers aren't yet supported.  They need us to shift
374    // by a dynamic amount which could be difficult to work out as we might not
375    // know whether to use a left or right shift.
376    if (ScalarKind == Integer && HadDynamicAccess)
377      return 0;
378
379    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
380    // Create and insert the integer alloca.
381    NewTy = IntegerType::get(AI->getContext(), BitWidth);
382  }
383  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
384  ConvertUsesToScalar(AI, NewAI, 0, 0);
385  return NewAI;
386}
387
388/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
389/// (VectorTy) so far at the offset specified by Offset (which is specified in
390/// bytes).
391///
392/// There are two cases we handle here:
393///   1) A union of vector types of the same size and potentially its elements.
394///      Here we turn element accesses into insert/extract element operations.
395///      This promotes a <4 x float> with a store of float to the third element
396///      into a <4 x float> that uses insert element.
397///   2) A fully general blob of memory, which we turn into some (potentially
398///      large) integer type with extract and insert operations where the loads
399///      and stores would mutate the memory.  We mark this by setting VectorTy
400///      to VoidTy.
401void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
402                                                    uint64_t Offset) {
403  // If we already decided to turn this into a blob of integer memory, there is
404  // nothing to be done.
405  if (ScalarKind == Integer)
406    return;
407
408  // If this could be contributing to a vector, analyze it.
409
410  // If the In type is a vector that is the same size as the alloca, see if it
411  // matches the existing VecTy.
412  if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
413    if (MergeInVectorType(VInTy, Offset))
414      return;
415  } else if (In->isFloatTy() || In->isDoubleTy() ||
416             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
417              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
418    // Full width accesses can be ignored, because they can always be turned
419    // into bitcasts.
420    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
421    if (EltSize == AllocaSize)
422      return;
423
424    // If we're accessing something that could be an element of a vector, see
425    // if the implied vector agrees with what we already have and if Offset is
426    // compatible with it.
427    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
428        (!VectorTy || EltSize == VectorTy->getElementType()
429                                         ->getPrimitiveSizeInBits()/8)) {
430      if (!VectorTy) {
431        ScalarKind = ImplicitVector;
432        VectorTy = VectorType::get(In, AllocaSize/EltSize);
433      }
434      return;
435    }
436  }
437
438  // Otherwise, we have a case that we can't handle with an optimized vector
439  // form.  We can still turn this into a large integer.
440  ScalarKind = Integer;
441}
442
443/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
444/// returning true if the type was successfully merged and false otherwise.
445bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
446                                            uint64_t Offset) {
447  if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
448    // If we're storing/loading a vector of the right size, allow it as a
449    // vector.  If this the first vector we see, remember the type so that
450    // we know the element size. If this is a subsequent access, ignore it
451    // even if it is a differing type but the same size. Worst case we can
452    // bitcast the resultant vectors.
453    if (!VectorTy)
454      VectorTy = VInTy;
455    ScalarKind = Vector;
456    return true;
457  }
458
459  return false;
460}
461
462/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
463/// its accesses to a single vector type, return true and set VecTy to
464/// the new type.  If we could convert the alloca into a single promotable
465/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
466/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
467/// is the current offset from the base of the alloca being analyzed.
468///
469/// If we see at least one access to the value that is as a vector type, set the
470/// SawVec flag.
471bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset,
472                                             Value* NonConstantIdx) {
473  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
474    Instruction *User = cast<Instruction>(*UI);
475
476    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
477      // Don't break volatile loads.
478      if (!LI->isSimple())
479        return false;
480      // Don't touch MMX operations.
481      if (LI->getType()->isX86_MMXTy())
482        return false;
483      HadNonMemTransferAccess = true;
484      MergeInTypeForLoadOrStore(LI->getType(), Offset);
485      continue;
486    }
487
488    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
489      // Storing the pointer, not into the value?
490      if (SI->getOperand(0) == V || !SI->isSimple()) return false;
491      // Don't touch MMX operations.
492      if (SI->getOperand(0)->getType()->isX86_MMXTy())
493        return false;
494      HadNonMemTransferAccess = true;
495      MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
496      continue;
497    }
498
499    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
500      if (!onlyUsedByLifetimeMarkers(BCI))
501        IsNotTrivial = true;  // Can't be mem2reg'd.
502      if (!CanConvertToScalar(BCI, Offset, NonConstantIdx))
503        return false;
504      continue;
505    }
506
507    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
508      // If this is a GEP with a variable indices, we can't handle it.
509      PointerType* PtrTy = dyn_cast<PointerType>(GEP->getPointerOperandType());
510      if (!PtrTy)
511        return false;
512
513      // Compute the offset that this GEP adds to the pointer.
514      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
515      Value *GEPNonConstantIdx = 0;
516      if (!GEP->hasAllConstantIndices()) {
517        if (!isa<VectorType>(PtrTy->getElementType()))
518          return false;
519        if (NonConstantIdx)
520          return false;
521        GEPNonConstantIdx = Indices.pop_back_val();
522        if (!GEPNonConstantIdx->getType()->isIntegerTy(32))
523          return false;
524        HadDynamicAccess = true;
525      } else
526        GEPNonConstantIdx = NonConstantIdx;
527      uint64_t GEPOffset = TD.getIndexedOffset(PtrTy,
528                                               Indices);
529      // See if all uses can be converted.
530      if (!CanConvertToScalar(GEP, Offset+GEPOffset, GEPNonConstantIdx))
531        return false;
532      IsNotTrivial = true;  // Can't be mem2reg'd.
533      HadNonMemTransferAccess = true;
534      continue;
535    }
536
537    // If this is a constant sized memset of a constant value (e.g. 0) we can
538    // handle it.
539    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
540      // Store to dynamic index.
541      if (NonConstantIdx)
542        return false;
543      // Store of constant value.
544      if (!isa<ConstantInt>(MSI->getValue()))
545        return false;
546
547      // Store of constant size.
548      ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
549      if (!Len)
550        return false;
551
552      // If the size differs from the alloca, we can only convert the alloca to
553      // an integer bag-of-bits.
554      // FIXME: This should handle all of the cases that are currently accepted
555      // as vector element insertions.
556      if (Len->getZExtValue() != AllocaSize || Offset != 0)
557        ScalarKind = Integer;
558
559      IsNotTrivial = true;  // Can't be mem2reg'd.
560      HadNonMemTransferAccess = true;
561      continue;
562    }
563
564    // If this is a memcpy or memmove into or out of the whole allocation, we
565    // can handle it like a load or store of the scalar type.
566    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
567      // Store to dynamic index.
568      if (NonConstantIdx)
569        return false;
570      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
571      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
572        return false;
573
574      IsNotTrivial = true;  // Can't be mem2reg'd.
575      continue;
576    }
577
578    // If this is a lifetime intrinsic, we can handle it.
579    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
580      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
581          II->getIntrinsicID() == Intrinsic::lifetime_end) {
582        continue;
583      }
584    }
585
586    // Otherwise, we cannot handle this!
587    return false;
588  }
589
590  return true;
591}
592
593/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
594/// directly.  This happens when we are converting an "integer union" to a
595/// single integer scalar, or when we are converting a "vector union" to a
596/// vector with insert/extractelement instructions.
597///
598/// Offset is an offset from the original alloca, in bits that need to be
599/// shifted to the right.  By the end of this, there should be no uses of Ptr.
600void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
601                                              uint64_t Offset,
602                                              Value* NonConstantIdx) {
603  while (!Ptr->use_empty()) {
604    Instruction *User = cast<Instruction>(Ptr->use_back());
605
606    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
607      ConvertUsesToScalar(CI, NewAI, Offset, NonConstantIdx);
608      CI->eraseFromParent();
609      continue;
610    }
611
612    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
613      // Compute the offset that this GEP adds to the pointer.
614      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
615      Value* GEPNonConstantIdx = 0;
616      if (!GEP->hasAllConstantIndices()) {
617        assert(!NonConstantIdx &&
618               "Dynamic GEP reading from dynamic GEP unsupported");
619        GEPNonConstantIdx = Indices.pop_back_val();
620      } else
621        GEPNonConstantIdx = NonConstantIdx;
622      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
623                                               Indices);
624      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8, GEPNonConstantIdx);
625      GEP->eraseFromParent();
626      continue;
627    }
628
629    IRBuilder<> Builder(User);
630
631    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
632      // The load is a bit extract from NewAI shifted right by Offset bits.
633      Value *LoadedVal = Builder.CreateLoad(NewAI);
634      Value *NewLoadVal
635        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset,
636                                     NonConstantIdx, Builder);
637      LI->replaceAllUsesWith(NewLoadVal);
638      LI->eraseFromParent();
639      continue;
640    }
641
642    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
643      assert(SI->getOperand(0) != Ptr && "Consistency error!");
644      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
645      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
646                                             NonConstantIdx, Builder);
647      Builder.CreateStore(New, NewAI);
648      SI->eraseFromParent();
649
650      // If the load we just inserted is now dead, then the inserted store
651      // overwrote the entire thing.
652      if (Old->use_empty())
653        Old->eraseFromParent();
654      continue;
655    }
656
657    // If this is a constant sized memset of a constant value (e.g. 0) we can
658    // transform it into a store of the expanded constant value.
659    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
660      assert(MSI->getRawDest() == Ptr && "Consistency error!");
661      assert(!NonConstantIdx && "Cannot replace dynamic memset with insert");
662      int64_t SNumBytes = cast<ConstantInt>(MSI->getLength())->getSExtValue();
663      if (SNumBytes > 0 && (SNumBytes >> 32) == 0) {
664        unsigned NumBytes = static_cast<unsigned>(SNumBytes);
665        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
666
667        // Compute the value replicated the right number of times.
668        APInt APVal(NumBytes*8, Val);
669
670        // Splat the value if non-zero.
671        if (Val)
672          for (unsigned i = 1; i != NumBytes; ++i)
673            APVal |= APVal << 8;
674
675        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
676        Value *New = ConvertScalar_InsertValue(
677                                    ConstantInt::get(User->getContext(), APVal),
678                                               Old, Offset, 0, Builder);
679        Builder.CreateStore(New, NewAI);
680
681        // If the load we just inserted is now dead, then the memset overwrote
682        // the entire thing.
683        if (Old->use_empty())
684          Old->eraseFromParent();
685      }
686      MSI->eraseFromParent();
687      continue;
688    }
689
690    // If this is a memcpy or memmove into or out of the whole allocation, we
691    // can handle it like a load or store of the scalar type.
692    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
693      assert(Offset == 0 && "must be store to start of alloca");
694      assert(!NonConstantIdx && "Cannot replace dynamic transfer with insert");
695
696      // If the source and destination are both to the same alloca, then this is
697      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
698      // as appropriate.
699      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
700
701      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
702        // Dest must be OrigAI, change this to be a load from the original
703        // pointer (bitcasted), then a store to our new alloca.
704        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
705        Value *SrcPtr = MTI->getSource();
706        PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
707        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
708        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
709          AIPTy = PointerType::get(AIPTy->getElementType(),
710                                   SPTy->getAddressSpace());
711        }
712        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
713
714        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
715        SrcVal->setAlignment(MTI->getAlignment());
716        Builder.CreateStore(SrcVal, NewAI);
717      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
718        // Src must be OrigAI, change this to be a load from NewAI then a store
719        // through the original dest pointer (bitcasted).
720        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
721        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
722
723        PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
724        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
725        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
726          AIPTy = PointerType::get(AIPTy->getElementType(),
727                                   DPTy->getAddressSpace());
728        }
729        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
730
731        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
732        NewStore->setAlignment(MTI->getAlignment());
733      } else {
734        // Noop transfer. Src == Dst
735      }
736
737      MTI->eraseFromParent();
738      continue;
739    }
740
741    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
742      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
743          II->getIntrinsicID() == Intrinsic::lifetime_end) {
744        // There's no need to preserve these, as the resulting alloca will be
745        // converted to a register anyways.
746        II->eraseFromParent();
747        continue;
748      }
749    }
750
751    llvm_unreachable("Unsupported operation!");
752  }
753}
754
755/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
756/// or vector value FromVal, extracting the bits from the offset specified by
757/// Offset.  This returns the value, which is of type ToType.
758///
759/// This happens when we are converting an "integer union" to a single
760/// integer scalar, or when we are converting a "vector union" to a vector with
761/// insert/extractelement instructions.
762///
763/// Offset is an offset from the original alloca, in bits that need to be
764/// shifted to the right.
765Value *ConvertToScalarInfo::
766ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
767                           uint64_t Offset, Value* NonConstantIdx,
768                           IRBuilder<> &Builder) {
769  // If the load is of the whole new alloca, no conversion is needed.
770  Type *FromType = FromVal->getType();
771  if (FromType == ToType && Offset == 0)
772    return FromVal;
773
774  // If the result alloca is a vector type, this is either an element
775  // access or a bitcast to another vector type of the same size.
776  if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
777    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
778    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
779    if (FromTypeSize == ToTypeSize)
780        return Builder.CreateBitCast(FromVal, ToType);
781
782    // Otherwise it must be an element access.
783    unsigned Elt = 0;
784    if (Offset) {
785      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
786      Elt = Offset/EltSize;
787      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
788    }
789    // Return the element extracted out of it.
790    Value *Idx;
791    if (NonConstantIdx) {
792      if (Elt)
793        Idx = Builder.CreateAdd(NonConstantIdx,
794                                Builder.getInt32(Elt),
795                                "dyn.offset");
796      else
797        Idx = NonConstantIdx;
798    } else
799      Idx = Builder.getInt32(Elt);
800    Value *V = Builder.CreateExtractElement(FromVal, Idx);
801    if (V->getType() != ToType)
802      V = Builder.CreateBitCast(V, ToType);
803    return V;
804  }
805
806  // If ToType is a first class aggregate, extract out each of the pieces and
807  // use insertvalue's to form the FCA.
808  if (StructType *ST = dyn_cast<StructType>(ToType)) {
809    assert(!NonConstantIdx &&
810           "Dynamic indexing into struct types not supported");
811    const StructLayout &Layout = *TD.getStructLayout(ST);
812    Value *Res = UndefValue::get(ST);
813    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
814      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
815                                        Offset+Layout.getElementOffsetInBits(i),
816                                              0, Builder);
817      Res = Builder.CreateInsertValue(Res, Elt, i);
818    }
819    return Res;
820  }
821
822  if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
823    assert(!NonConstantIdx &&
824           "Dynamic indexing into array types not supported");
825    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
826    Value *Res = UndefValue::get(AT);
827    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
828      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
829                                              Offset+i*EltSize, 0, Builder);
830      Res = Builder.CreateInsertValue(Res, Elt, i);
831    }
832    return Res;
833  }
834
835  // Otherwise, this must be a union that was converted to an integer value.
836  IntegerType *NTy = cast<IntegerType>(FromVal->getType());
837
838  // If this is a big-endian system and the load is narrower than the
839  // full alloca type, we need to do a shift to get the right bits.
840  int ShAmt = 0;
841  if (TD.isBigEndian()) {
842    // On big-endian machines, the lowest bit is stored at the bit offset
843    // from the pointer given by getTypeStoreSizeInBits.  This matters for
844    // integers with a bitwidth that is not a multiple of 8.
845    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
846            TD.getTypeStoreSizeInBits(ToType) - Offset;
847  } else {
848    ShAmt = Offset;
849  }
850
851  // Note: we support negative bitwidths (with shl) which are not defined.
852  // We do this to support (f.e.) loads off the end of a structure where
853  // only some bits are used.
854  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
855    FromVal = Builder.CreateLShr(FromVal,
856                                 ConstantInt::get(FromVal->getType(), ShAmt));
857  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
858    FromVal = Builder.CreateShl(FromVal,
859                                ConstantInt::get(FromVal->getType(), -ShAmt));
860
861  // Finally, unconditionally truncate the integer to the right width.
862  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
863  if (LIBitWidth < NTy->getBitWidth())
864    FromVal =
865      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
866                                                    LIBitWidth));
867  else if (LIBitWidth > NTy->getBitWidth())
868    FromVal =
869       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
870                                                    LIBitWidth));
871
872  // If the result is an integer, this is a trunc or bitcast.
873  if (ToType->isIntegerTy()) {
874    // Should be done.
875  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
876    // Just do a bitcast, we know the sizes match up.
877    FromVal = Builder.CreateBitCast(FromVal, ToType);
878  } else {
879    // Otherwise must be a pointer.
880    FromVal = Builder.CreateIntToPtr(FromVal, ToType);
881  }
882  assert(FromVal->getType() == ToType && "Didn't convert right?");
883  return FromVal;
884}
885
886/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
887/// or vector value "Old" at the offset specified by Offset.
888///
889/// This happens when we are converting an "integer union" to a
890/// single integer scalar, or when we are converting a "vector union" to a
891/// vector with insert/extractelement instructions.
892///
893/// Offset is an offset from the original alloca, in bits that need to be
894/// shifted to the right.
895///
896/// NonConstantIdx is an index value if there was a GEP with a non-constant
897/// index value.  If this is 0 then all GEPs used to find this insert address
898/// are constant.
899Value *ConvertToScalarInfo::
900ConvertScalar_InsertValue(Value *SV, Value *Old,
901                          uint64_t Offset, Value* NonConstantIdx,
902                          IRBuilder<> &Builder) {
903  // Convert the stored type to the actual type, shift it left to insert
904  // then 'or' into place.
905  Type *AllocaType = Old->getType();
906  LLVMContext &Context = Old->getContext();
907
908  if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
909    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
910    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
911
912    // Changing the whole vector with memset or with an access of a different
913    // vector type?
914    if (ValSize == VecSize)
915        return Builder.CreateBitCast(SV, AllocaType);
916
917    // Must be an element insertion.
918    Type *EltTy = VTy->getElementType();
919    if (SV->getType() != EltTy)
920      SV = Builder.CreateBitCast(SV, EltTy);
921    uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
922    unsigned Elt = Offset/EltSize;
923    Value *Idx;
924    if (NonConstantIdx) {
925      if (Elt)
926        Idx = Builder.CreateAdd(NonConstantIdx,
927                                Builder.getInt32(Elt),
928                                "dyn.offset");
929      else
930        Idx = NonConstantIdx;
931    } else
932      Idx = Builder.getInt32(Elt);
933    return Builder.CreateInsertElement(Old, SV, Idx);
934  }
935
936  // If SV is a first-class aggregate value, insert each value recursively.
937  if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
938    assert(!NonConstantIdx &&
939           "Dynamic indexing into struct types not supported");
940    const StructLayout &Layout = *TD.getStructLayout(ST);
941    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
942      Value *Elt = Builder.CreateExtractValue(SV, i);
943      Old = ConvertScalar_InsertValue(Elt, Old,
944                                      Offset+Layout.getElementOffsetInBits(i),
945                                      0, Builder);
946    }
947    return Old;
948  }
949
950  if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
951    assert(!NonConstantIdx &&
952           "Dynamic indexing into array types not supported");
953    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
954    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
955      Value *Elt = Builder.CreateExtractValue(SV, i);
956      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, 0, Builder);
957    }
958    return Old;
959  }
960
961  // If SV is a float, convert it to the appropriate integer type.
962  // If it is a pointer, do the same.
963  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
964  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
965  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
966  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
967  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
968    SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
969  else if (SV->getType()->isPointerTy())
970    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
971
972  // Zero extend or truncate the value if needed.
973  if (SV->getType() != AllocaType) {
974    if (SV->getType()->getPrimitiveSizeInBits() <
975             AllocaType->getPrimitiveSizeInBits())
976      SV = Builder.CreateZExt(SV, AllocaType);
977    else {
978      // Truncation may be needed if storing more than the alloca can hold
979      // (undefined behavior).
980      SV = Builder.CreateTrunc(SV, AllocaType);
981      SrcWidth = DestWidth;
982      SrcStoreWidth = DestStoreWidth;
983    }
984  }
985
986  // If this is a big-endian system and the store is narrower than the
987  // full alloca type, we need to do a shift to get the right bits.
988  int ShAmt = 0;
989  if (TD.isBigEndian()) {
990    // On big-endian machines, the lowest bit is stored at the bit offset
991    // from the pointer given by getTypeStoreSizeInBits.  This matters for
992    // integers with a bitwidth that is not a multiple of 8.
993    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
994  } else {
995    ShAmt = Offset;
996  }
997
998  // Note: we support negative bitwidths (with shr) which are not defined.
999  // We do this to support (f.e.) stores off the end of a structure where
1000  // only some bits in the structure are set.
1001  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1002  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1003    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
1004    Mask <<= ShAmt;
1005  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1006    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
1007    Mask = Mask.lshr(-ShAmt);
1008  }
1009
1010  // Mask out the bits we are about to insert from the old value, and or
1011  // in the new bits.
1012  if (SrcWidth != DestWidth) {
1013    assert(DestWidth > SrcWidth);
1014    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1015    SV = Builder.CreateOr(Old, SV, "ins");
1016  }
1017  return SV;
1018}
1019
1020
1021//===----------------------------------------------------------------------===//
1022// SRoA Driver
1023//===----------------------------------------------------------------------===//
1024
1025
1026bool SROA::runOnFunction(Function &F) {
1027  TD = getAnalysisIfAvailable<TargetData>();
1028
1029  bool Changed = performPromotion(F);
1030
1031  // FIXME: ScalarRepl currently depends on TargetData more than it
1032  // theoretically needs to. It should be refactored in order to support
1033  // target-independent IR. Until this is done, just skip the actual
1034  // scalar-replacement portion of this pass.
1035  if (!TD) return Changed;
1036
1037  while (1) {
1038    bool LocalChange = performScalarRepl(F);
1039    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1040    Changed = true;
1041    LocalChange = performPromotion(F);
1042    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1043  }
1044
1045  return Changed;
1046}
1047
1048namespace {
1049class AllocaPromoter : public LoadAndStorePromoter {
1050  AllocaInst *AI;
1051  DIBuilder *DIB;
1052  SmallVector<DbgDeclareInst *, 4> DDIs;
1053  SmallVector<DbgValueInst *, 4> DVIs;
1054public:
1055  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1056                 DIBuilder *DB)
1057    : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
1058
1059  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1060    // Remember which alloca we're promoting (for isInstInList).
1061    this->AI = AI;
1062    if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI)) {
1063      for (Value::use_iterator UI = DebugNode->use_begin(),
1064             E = DebugNode->use_end(); UI != E; ++UI)
1065        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1066          DDIs.push_back(DDI);
1067        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1068          DVIs.push_back(DVI);
1069    }
1070
1071    LoadAndStorePromoter::run(Insts);
1072    AI->eraseFromParent();
1073    for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
1074           E = DDIs.end(); I != E; ++I) {
1075      DbgDeclareInst *DDI = *I;
1076      DDI->eraseFromParent();
1077    }
1078    for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
1079           E = DVIs.end(); I != E; ++I) {
1080      DbgValueInst *DVI = *I;
1081      DVI->eraseFromParent();
1082    }
1083  }
1084
1085  virtual bool isInstInList(Instruction *I,
1086                            const SmallVectorImpl<Instruction*> &Insts) const {
1087    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1088      return LI->getOperand(0) == AI;
1089    return cast<StoreInst>(I)->getPointerOperand() == AI;
1090  }
1091
1092  virtual void updateDebugInfo(Instruction *Inst) const {
1093    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1094           E = DDIs.end(); I != E; ++I) {
1095      DbgDeclareInst *DDI = *I;
1096      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1097        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1098      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1099        ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
1100    }
1101    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1102           E = DVIs.end(); I != E; ++I) {
1103      DbgValueInst *DVI = *I;
1104      Value *Arg = NULL;
1105      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1106        // If an argument is zero extended then use argument directly. The ZExt
1107        // may be zapped by an optimization pass in future.
1108        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1109          Arg = dyn_cast<Argument>(ZExt->getOperand(0));
1110        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1111          Arg = dyn_cast<Argument>(SExt->getOperand(0));
1112        if (!Arg)
1113          Arg = SI->getOperand(0);
1114      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1115        Arg = LI->getOperand(0);
1116      } else {
1117        continue;
1118      }
1119      Instruction *DbgVal =
1120        DIB->insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()),
1121                                     Inst);
1122      DbgVal->setDebugLoc(DVI->getDebugLoc());
1123    }
1124  }
1125};
1126} // end anon namespace
1127
1128/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1129/// subsequently loaded can be rewritten to load both input pointers and then
1130/// select between the result, allowing the load of the alloca to be promoted.
1131/// From this:
1132///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1133///   %V = load i32* %P2
1134/// to:
1135///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1136///   %V2 = load i32* %Other
1137///   %V = select i1 %cond, i32 %V1, i32 %V2
1138///
1139/// We can do this to a select if its only uses are loads and if the operand to
1140/// the select can be loaded unconditionally.
1141static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1142  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1143  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1144
1145  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1146       UI != UE; ++UI) {
1147    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1148    if (LI == 0 || !LI->isSimple()) return false;
1149
1150    // Both operands to the select need to be dereferencable, either absolutely
1151    // (e.g. allocas) or at this point because we can see other accesses to it.
1152    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1153                                                    LI->getAlignment(), TD))
1154      return false;
1155    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1156                                                    LI->getAlignment(), TD))
1157      return false;
1158  }
1159
1160  return true;
1161}
1162
1163/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1164/// subsequently loaded can be rewritten to load both input pointers in the pred
1165/// blocks and then PHI the results, allowing the load of the alloca to be
1166/// promoted.
1167/// From this:
1168///   %P2 = phi [i32* %Alloca, i32* %Other]
1169///   %V = load i32* %P2
1170/// to:
1171///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1172///   ...
1173///   %V2 = load i32* %Other
1174///   ...
1175///   %V = phi [i32 %V1, i32 %V2]
1176///
1177/// We can do this to a select if its only uses are loads and if the operand to
1178/// the select can be loaded unconditionally.
1179static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1180  // For now, we can only do this promotion if the load is in the same block as
1181  // the PHI, and if there are no stores between the phi and load.
1182  // TODO: Allow recursive phi users.
1183  // TODO: Allow stores.
1184  BasicBlock *BB = PN->getParent();
1185  unsigned MaxAlign = 0;
1186  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1187       UI != UE; ++UI) {
1188    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1189    if (LI == 0 || !LI->isSimple()) return false;
1190
1191    // For now we only allow loads in the same block as the PHI.  This is a
1192    // common case that happens when instcombine merges two loads through a PHI.
1193    if (LI->getParent() != BB) return false;
1194
1195    // Ensure that there are no instructions between the PHI and the load that
1196    // could store.
1197    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1198      if (BBI->mayWriteToMemory())
1199        return false;
1200
1201    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1202  }
1203
1204  // Okay, we know that we have one or more loads in the same block as the PHI.
1205  // We can transform this if it is safe to push the loads into the predecessor
1206  // blocks.  The only thing to watch out for is that we can't put a possibly
1207  // trapping load in the predecessor if it is a critical edge.
1208  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1209    BasicBlock *Pred = PN->getIncomingBlock(i);
1210    Value *InVal = PN->getIncomingValue(i);
1211
1212    // If the terminator of the predecessor has side-effects (an invoke),
1213    // there is no safe place to put a load in the predecessor.
1214    if (Pred->getTerminator()->mayHaveSideEffects())
1215      return false;
1216
1217    // If the value is produced by the terminator of the predecessor
1218    // (an invoke), there is no valid place to put a load in the predecessor.
1219    if (Pred->getTerminator() == InVal)
1220      return false;
1221
1222    // If the predecessor has a single successor, then the edge isn't critical.
1223    if (Pred->getTerminator()->getNumSuccessors() == 1)
1224      continue;
1225
1226    // If this pointer is always safe to load, or if we can prove that there is
1227    // already a load in the block, then we can move the load to the pred block.
1228    if (InVal->isDereferenceablePointer() ||
1229        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1230      continue;
1231
1232    return false;
1233  }
1234
1235  return true;
1236}
1237
1238
1239/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1240/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1241/// not quite there, this will transform the code to allow promotion.  As such,
1242/// it is a non-pure predicate.
1243static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1244  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1245            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1246
1247  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1248       UI != UE; ++UI) {
1249    User *U = *UI;
1250    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1251      if (!LI->isSimple())
1252        return false;
1253      continue;
1254    }
1255
1256    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1257      if (SI->getOperand(0) == AI || !SI->isSimple())
1258        return false;   // Don't allow a store OF the AI, only INTO the AI.
1259      continue;
1260    }
1261
1262    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1263      // If the condition being selected on is a constant, fold the select, yes
1264      // this does (rarely) happen early on.
1265      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1266        Value *Result = SI->getOperand(1+CI->isZero());
1267        SI->replaceAllUsesWith(Result);
1268        SI->eraseFromParent();
1269
1270        // This is very rare and we just scrambled the use list of AI, start
1271        // over completely.
1272        return tryToMakeAllocaBePromotable(AI, TD);
1273      }
1274
1275      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1276      // loads, then we can transform this by rewriting the select.
1277      if (!isSafeSelectToSpeculate(SI, TD))
1278        return false;
1279
1280      InstsToRewrite.insert(SI);
1281      continue;
1282    }
1283
1284    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1285      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1286        InstsToRewrite.insert(PN);
1287        continue;
1288      }
1289
1290      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1291      // in the pred blocks, then we can transform this by rewriting the PHI.
1292      if (!isSafePHIToSpeculate(PN, TD))
1293        return false;
1294
1295      InstsToRewrite.insert(PN);
1296      continue;
1297    }
1298
1299    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1300      if (onlyUsedByLifetimeMarkers(BCI)) {
1301        InstsToRewrite.insert(BCI);
1302        continue;
1303      }
1304    }
1305
1306    return false;
1307  }
1308
1309  // If there are no instructions to rewrite, then all uses are load/stores and
1310  // we're done!
1311  if (InstsToRewrite.empty())
1312    return true;
1313
1314  // If we have instructions that need to be rewritten for this to be promotable
1315  // take care of it now.
1316  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1317    if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1318      // This could only be a bitcast used by nothing but lifetime intrinsics.
1319      for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
1320           I != E;) {
1321        Use &U = I.getUse();
1322        ++I;
1323        cast<Instruction>(U.getUser())->eraseFromParent();
1324      }
1325      BCI->eraseFromParent();
1326      continue;
1327    }
1328
1329    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1330      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1331      // loads with a new select.
1332      while (!SI->use_empty()) {
1333        LoadInst *LI = cast<LoadInst>(SI->use_back());
1334
1335        IRBuilder<> Builder(LI);
1336        LoadInst *TrueLoad =
1337          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1338        LoadInst *FalseLoad =
1339          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1340
1341        // Transfer alignment and TBAA info if present.
1342        TrueLoad->setAlignment(LI->getAlignment());
1343        FalseLoad->setAlignment(LI->getAlignment());
1344        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1345          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1346          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1347        }
1348
1349        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1350        V->takeName(LI);
1351        LI->replaceAllUsesWith(V);
1352        LI->eraseFromParent();
1353      }
1354
1355      // Now that all the loads are gone, the select is gone too.
1356      SI->eraseFromParent();
1357      continue;
1358    }
1359
1360    // Otherwise, we have a PHI node which allows us to push the loads into the
1361    // predecessors.
1362    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1363    if (PN->use_empty()) {
1364      PN->eraseFromParent();
1365      continue;
1366    }
1367
1368    Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1369    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1370                                     PN->getName()+".ld", PN);
1371
1372    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1373    // matter which one we get and if any differ, it doesn't matter.
1374    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1375    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1376    unsigned Align = SomeLoad->getAlignment();
1377
1378    // Rewrite all loads of the PN to use the new PHI.
1379    while (!PN->use_empty()) {
1380      LoadInst *LI = cast<LoadInst>(PN->use_back());
1381      LI->replaceAllUsesWith(NewPN);
1382      LI->eraseFromParent();
1383    }
1384
1385    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1386    // insert them into in case we have multiple edges from the same block.
1387    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1388
1389    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1390      BasicBlock *Pred = PN->getIncomingBlock(i);
1391      LoadInst *&Load = InsertedLoads[Pred];
1392      if (Load == 0) {
1393        Load = new LoadInst(PN->getIncomingValue(i),
1394                            PN->getName() + "." + Pred->getName(),
1395                            Pred->getTerminator());
1396        Load->setAlignment(Align);
1397        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1398      }
1399
1400      NewPN->addIncoming(Load, Pred);
1401    }
1402
1403    PN->eraseFromParent();
1404  }
1405
1406  ++NumAdjusted;
1407  return true;
1408}
1409
1410bool SROA::performPromotion(Function &F) {
1411  std::vector<AllocaInst*> Allocas;
1412  DominatorTree *DT = 0;
1413  if (HasDomTree)
1414    DT = &getAnalysis<DominatorTree>();
1415
1416  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1417  DIBuilder DIB(*F.getParent());
1418  bool Changed = false;
1419  SmallVector<Instruction*, 64> Insts;
1420  while (1) {
1421    Allocas.clear();
1422
1423    // Find allocas that are safe to promote, by looking at all instructions in
1424    // the entry node
1425    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1426      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1427        if (tryToMakeAllocaBePromotable(AI, TD))
1428          Allocas.push_back(AI);
1429
1430    if (Allocas.empty()) break;
1431
1432    if (HasDomTree)
1433      PromoteMemToReg(Allocas, *DT);
1434    else {
1435      SSAUpdater SSA;
1436      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1437        AllocaInst *AI = Allocas[i];
1438
1439        // Build list of instructions to promote.
1440        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1441             UI != E; ++UI)
1442          Insts.push_back(cast<Instruction>(*UI));
1443        AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1444        Insts.clear();
1445      }
1446    }
1447    NumPromoted += Allocas.size();
1448    Changed = true;
1449  }
1450
1451  return Changed;
1452}
1453
1454
1455/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1456/// SROA.  It must be a struct or array type with a small number of elements.
1457bool SROA::ShouldAttemptScalarRepl(AllocaInst *AI) {
1458  Type *T = AI->getAllocatedType();
1459  // Do not promote any struct that has too many members.
1460  if (StructType *ST = dyn_cast<StructType>(T))
1461    return ST->getNumElements() <= StructMemberThreshold;
1462  // Do not promote any array that has too many elements.
1463  if (ArrayType *AT = dyn_cast<ArrayType>(T))
1464    return AT->getNumElements() <= ArrayElementThreshold;
1465  return false;
1466}
1467
1468/// getPointeeAlignment - Compute the minimum alignment of the value pointed
1469/// to by the given pointer.
1470static unsigned getPointeeAlignment(Value *V, const TargetData &TD) {
1471  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1472    if (CE->getOpcode() == Instruction::BitCast ||
1473        (CE->getOpcode() == Instruction::GetElementPtr &&
1474         cast<GEPOperator>(CE)->hasAllZeroIndices()))
1475      return getPointeeAlignment(CE->getOperand(0), TD);
1476
1477  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1478    if (!GV->isDeclaration())
1479      return TD.getPreferredAlignment(GV);
1480
1481  if (PointerType *PT = dyn_cast<PointerType>(V->getType()))
1482    return TD.getABITypeAlignment(PT->getElementType());
1483
1484  return 0;
1485}
1486
1487
1488// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1489// which runs on all of the alloca instructions in the function, removing them
1490// if they are only used by getelementptr instructions.
1491//
1492bool SROA::performScalarRepl(Function &F) {
1493  std::vector<AllocaInst*> WorkList;
1494
1495  // Scan the entry basic block, adding allocas to the worklist.
1496  BasicBlock &BB = F.getEntryBlock();
1497  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1498    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1499      WorkList.push_back(A);
1500
1501  // Process the worklist
1502  bool Changed = false;
1503  while (!WorkList.empty()) {
1504    AllocaInst *AI = WorkList.back();
1505    WorkList.pop_back();
1506
1507    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1508    // with unused elements.
1509    if (AI->use_empty()) {
1510      AI->eraseFromParent();
1511      Changed = true;
1512      continue;
1513    }
1514
1515    // If this alloca is impossible for us to promote, reject it early.
1516    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1517      continue;
1518
1519    // Check to see if this allocation is only modified by a memcpy/memmove from
1520    // a constant global whose alignment is equal to or exceeds that of the
1521    // allocation.  If this is the case, we can change all users to use
1522    // the constant global instead.  This is commonly produced by the CFE by
1523    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1524    // is only subsequently read.
1525    SmallVector<Instruction *, 4> ToDelete;
1526    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
1527      if (AI->getAlignment() <= getPointeeAlignment(Copy->getSource(), *TD)) {
1528        DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1529        DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
1530        for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
1531          ToDelete[i]->eraseFromParent();
1532        Constant *TheSrc = cast<Constant>(Copy->getSource());
1533        AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1534        Copy->eraseFromParent();  // Don't mutate the global.
1535        AI->eraseFromParent();
1536        ++NumGlobals;
1537        Changed = true;
1538        continue;
1539      }
1540    }
1541
1542    // Check to see if we can perform the core SROA transformation.  We cannot
1543    // transform the allocation instruction if it is an array allocation
1544    // (allocations OF arrays are ok though), and an allocation of a scalar
1545    // value cannot be decomposed at all.
1546    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1547
1548    // Do not promote [0 x %struct].
1549    if (AllocaSize == 0) continue;
1550
1551    // Do not promote any struct whose size is too big.
1552    if (AllocaSize > SRThreshold) continue;
1553
1554    // If the alloca looks like a good candidate for scalar replacement, and if
1555    // all its users can be transformed, then split up the aggregate into its
1556    // separate elements.
1557    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1558      DoScalarReplacement(AI, WorkList);
1559      Changed = true;
1560      continue;
1561    }
1562
1563    // If we can turn this aggregate value (potentially with casts) into a
1564    // simple scalar value that can be mem2reg'd into a register value.
1565    // IsNotTrivial tracks whether this is something that mem2reg could have
1566    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1567    // that we can't just check based on the type: the alloca may be of an i32
1568    // but that has pointer arithmetic to set byte 3 of it or something.
1569    if (AllocaInst *NewAI = ConvertToScalarInfo(
1570              (unsigned)AllocaSize, *TD, ScalarLoadThreshold).TryConvert(AI)) {
1571      NewAI->takeName(AI);
1572      AI->eraseFromParent();
1573      ++NumConverted;
1574      Changed = true;
1575      continue;
1576    }
1577
1578    // Otherwise, couldn't process this alloca.
1579  }
1580
1581  return Changed;
1582}
1583
1584/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1585/// predicate, do SROA now.
1586void SROA::DoScalarReplacement(AllocaInst *AI,
1587                               std::vector<AllocaInst*> &WorkList) {
1588  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1589  SmallVector<AllocaInst*, 32> ElementAllocas;
1590  if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1591    ElementAllocas.reserve(ST->getNumContainedTypes());
1592    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1593      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1594                                      AI->getAlignment(),
1595                                      AI->getName() + "." + Twine(i), AI);
1596      ElementAllocas.push_back(NA);
1597      WorkList.push_back(NA);  // Add to worklist for recursive processing
1598    }
1599  } else {
1600    ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1601    ElementAllocas.reserve(AT->getNumElements());
1602    Type *ElTy = AT->getElementType();
1603    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1604      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1605                                      AI->getName() + "." + Twine(i), AI);
1606      ElementAllocas.push_back(NA);
1607      WorkList.push_back(NA);  // Add to worklist for recursive processing
1608    }
1609  }
1610
1611  // Now that we have created the new alloca instructions, rewrite all the
1612  // uses of the old alloca.
1613  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1614
1615  // Now erase any instructions that were made dead while rewriting the alloca.
1616  DeleteDeadInstructions();
1617  AI->eraseFromParent();
1618
1619  ++NumReplaced;
1620}
1621
1622/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1623/// recursively including all their operands that become trivially dead.
1624void SROA::DeleteDeadInstructions() {
1625  while (!DeadInsts.empty()) {
1626    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1627
1628    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1629      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1630        // Zero out the operand and see if it becomes trivially dead.
1631        // (But, don't add allocas to the dead instruction list -- they are
1632        // already on the worklist and will be deleted separately.)
1633        *OI = 0;
1634        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1635          DeadInsts.push_back(U);
1636      }
1637
1638    I->eraseFromParent();
1639  }
1640}
1641
1642/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1643/// performing scalar replacement of alloca AI.  The results are flagged in
1644/// the Info parameter.  Offset indicates the position within AI that is
1645/// referenced by this instruction.
1646void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1647                               AllocaInfo &Info) {
1648  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1649    Instruction *User = cast<Instruction>(*UI);
1650
1651    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1652      isSafeForScalarRepl(BC, Offset, Info);
1653    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1654      uint64_t GEPOffset = Offset;
1655      isSafeGEP(GEPI, GEPOffset, Info);
1656      if (!Info.isUnsafe)
1657        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1658    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1659      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1660      if (Length == 0)
1661        return MarkUnsafe(Info, User);
1662      if (Length->isNegative())
1663        return MarkUnsafe(Info, User);
1664
1665      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1666                      UI.getOperandNo() == 0, Info, MI,
1667                      true /*AllowWholeAccess*/);
1668    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1669      if (!LI->isSimple())
1670        return MarkUnsafe(Info, User);
1671      Type *LIType = LI->getType();
1672      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1673                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1674      Info.hasALoadOrStore = true;
1675
1676    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1677      // Store is ok if storing INTO the pointer, not storing the pointer
1678      if (!SI->isSimple() || SI->getOperand(0) == I)
1679        return MarkUnsafe(Info, User);
1680
1681      Type *SIType = SI->getOperand(0)->getType();
1682      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1683                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1684      Info.hasALoadOrStore = true;
1685    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1686      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1687          II->getIntrinsicID() != Intrinsic::lifetime_end)
1688        return MarkUnsafe(Info, User);
1689    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1690      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1691    } else {
1692      return MarkUnsafe(Info, User);
1693    }
1694    if (Info.isUnsafe) return;
1695  }
1696}
1697
1698
1699/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1700/// derived from the alloca, we can often still split the alloca into elements.
1701/// This is useful if we have a large alloca where one element is phi'd
1702/// together somewhere: we can SRoA and promote all the other elements even if
1703/// we end up not being able to promote this one.
1704///
1705/// All we require is that the uses of the PHI do not index into other parts of
1706/// the alloca.  The most important use case for this is single load and stores
1707/// that are PHI'd together, which can happen due to code sinking.
1708void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1709                                           AllocaInfo &Info) {
1710  // If we've already checked this PHI, don't do it again.
1711  if (PHINode *PN = dyn_cast<PHINode>(I))
1712    if (!Info.CheckedPHIs.insert(PN))
1713      return;
1714
1715  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1716    Instruction *User = cast<Instruction>(*UI);
1717
1718    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1719      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1720    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1721      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1722      // but would have to prove that we're staying inside of an element being
1723      // promoted.
1724      if (!GEPI->hasAllZeroIndices())
1725        return MarkUnsafe(Info, User);
1726      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1727    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1728      if (!LI->isSimple())
1729        return MarkUnsafe(Info, User);
1730      Type *LIType = LI->getType();
1731      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1732                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1733      Info.hasALoadOrStore = true;
1734
1735    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1736      // Store is ok if storing INTO the pointer, not storing the pointer
1737      if (!SI->isSimple() || SI->getOperand(0) == I)
1738        return MarkUnsafe(Info, User);
1739
1740      Type *SIType = SI->getOperand(0)->getType();
1741      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1742                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1743      Info.hasALoadOrStore = true;
1744    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1745      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1746    } else {
1747      return MarkUnsafe(Info, User);
1748    }
1749    if (Info.isUnsafe) return;
1750  }
1751}
1752
1753/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1754/// replacement.  It is safe when all the indices are constant, in-bounds
1755/// references, and when the resulting offset corresponds to an element within
1756/// the alloca type.  The results are flagged in the Info parameter.  Upon
1757/// return, Offset is adjusted as specified by the GEP indices.
1758void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1759                     uint64_t &Offset, AllocaInfo &Info) {
1760  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1761  if (GEPIt == E)
1762    return;
1763  bool NonConstant = false;
1764  unsigned NonConstantIdxSize = 0;
1765
1766  // Walk through the GEP type indices, checking the types that this indexes
1767  // into.
1768  for (; GEPIt != E; ++GEPIt) {
1769    // Ignore struct elements, no extra checking needed for these.
1770    if ((*GEPIt)->isStructTy())
1771      continue;
1772
1773    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1774    if (!IdxVal) {
1775      // Non constant GEPs are only a problem on arrays, structs, and pointers
1776      // Vectors can be dynamically indexed.
1777      // FIXME: Add support for dynamic indexing on arrays.  This should be
1778      // ok on any subarrays of the alloca array, eg, a[0][i] is ok, but a[i][0]
1779      // isn't.
1780      if (!(*GEPIt)->isVectorTy())
1781        return MarkUnsafe(Info, GEPI);
1782      NonConstant = true;
1783      NonConstantIdxSize = TD->getTypeAllocSize(*GEPIt);
1784    }
1785  }
1786
1787  // Compute the offset due to this GEP and check if the alloca has a
1788  // component element at that offset.
1789  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1790  // If this GEP is non constant then the last operand must have been a
1791  // dynamic index into a vector.  Pop this now as it has no impact on the
1792  // constant part of the offset.
1793  if (NonConstant)
1794    Indices.pop_back();
1795  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1796  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset,
1797                        NonConstantIdxSize))
1798    MarkUnsafe(Info, GEPI);
1799}
1800
1801/// isHomogeneousAggregate - Check if type T is a struct or array containing
1802/// elements of the same type (which is always true for arrays).  If so,
1803/// return true with NumElts and EltTy set to the number of elements and the
1804/// element type, respectively.
1805static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1806                                   Type *&EltTy) {
1807  if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1808    NumElts = AT->getNumElements();
1809    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1810    return true;
1811  }
1812  if (StructType *ST = dyn_cast<StructType>(T)) {
1813    NumElts = ST->getNumContainedTypes();
1814    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1815    for (unsigned n = 1; n < NumElts; ++n) {
1816      if (ST->getContainedType(n) != EltTy)
1817        return false;
1818    }
1819    return true;
1820  }
1821  return false;
1822}
1823
1824/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1825/// "homogeneous" aggregates with the same element type and number of elements.
1826static bool isCompatibleAggregate(Type *T1, Type *T2) {
1827  if (T1 == T2)
1828    return true;
1829
1830  unsigned NumElts1, NumElts2;
1831  Type *EltTy1, *EltTy2;
1832  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1833      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1834      NumElts1 == NumElts2 &&
1835      EltTy1 == EltTy2)
1836    return true;
1837
1838  return false;
1839}
1840
1841/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1842/// alloca or has an offset and size that corresponds to a component element
1843/// within it.  The offset checked here may have been formed from a GEP with a
1844/// pointer bitcasted to a different type.
1845///
1846/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1847/// unit.  If false, it only allows accesses known to be in a single element.
1848void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1849                           Type *MemOpType, bool isStore,
1850                           AllocaInfo &Info, Instruction *TheAccess,
1851                           bool AllowWholeAccess) {
1852  // Check if this is a load/store of the entire alloca.
1853  if (Offset == 0 && AllowWholeAccess &&
1854      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1855    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1856    // loads/stores (which are essentially the same as the MemIntrinsics with
1857    // regard to copying padding between elements).  But, if an alloca is
1858    // flagged as both a source and destination of such operations, we'll need
1859    // to check later for padding between elements.
1860    if (!MemOpType || MemOpType->isIntegerTy()) {
1861      if (isStore)
1862        Info.isMemCpyDst = true;
1863      else
1864        Info.isMemCpySrc = true;
1865      return;
1866    }
1867    // This is also safe for references using a type that is compatible with
1868    // the type of the alloca, so that loads/stores can be rewritten using
1869    // insertvalue/extractvalue.
1870    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1871      Info.hasSubelementAccess = true;
1872      return;
1873    }
1874  }
1875  // Check if the offset/size correspond to a component within the alloca type.
1876  Type *T = Info.AI->getAllocatedType();
1877  if (TypeHasComponent(T, Offset, MemSize)) {
1878    Info.hasSubelementAccess = true;
1879    return;
1880  }
1881
1882  return MarkUnsafe(Info, TheAccess);
1883}
1884
1885/// TypeHasComponent - Return true if T has a component type with the
1886/// specified offset and size.  If Size is zero, do not check the size.
1887bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1888  Type *EltTy;
1889  uint64_t EltSize;
1890  if (StructType *ST = dyn_cast<StructType>(T)) {
1891    const StructLayout *Layout = TD->getStructLayout(ST);
1892    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1893    EltTy = ST->getContainedType(EltIdx);
1894    EltSize = TD->getTypeAllocSize(EltTy);
1895    Offset -= Layout->getElementOffset(EltIdx);
1896  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1897    EltTy = AT->getElementType();
1898    EltSize = TD->getTypeAllocSize(EltTy);
1899    if (Offset >= AT->getNumElements() * EltSize)
1900      return false;
1901    Offset %= EltSize;
1902  } else if (VectorType *VT = dyn_cast<VectorType>(T)) {
1903    EltTy = VT->getElementType();
1904    EltSize = TD->getTypeAllocSize(EltTy);
1905    if (Offset >= VT->getNumElements() * EltSize)
1906      return false;
1907    Offset %= EltSize;
1908  } else {
1909    return false;
1910  }
1911  if (Offset == 0 && (Size == 0 || EltSize == Size))
1912    return true;
1913  // Check if the component spans multiple elements.
1914  if (Offset + Size > EltSize)
1915    return false;
1916  return TypeHasComponent(EltTy, Offset, Size);
1917}
1918
1919/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1920/// the instruction I, which references it, to use the separate elements.
1921/// Offset indicates the position within AI that is referenced by this
1922/// instruction.
1923void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1924                                SmallVector<AllocaInst*, 32> &NewElts) {
1925  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1926    Use &TheUse = UI.getUse();
1927    Instruction *User = cast<Instruction>(*UI++);
1928
1929    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1930      RewriteBitCast(BC, AI, Offset, NewElts);
1931      continue;
1932    }
1933
1934    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1935      RewriteGEP(GEPI, AI, Offset, NewElts);
1936      continue;
1937    }
1938
1939    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1940      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1941      uint64_t MemSize = Length->getZExtValue();
1942      if (Offset == 0 &&
1943          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1944        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1945      // Otherwise the intrinsic can only touch a single element and the
1946      // address operand will be updated, so nothing else needs to be done.
1947      continue;
1948    }
1949
1950    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1951      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1952          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1953        RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1954      }
1955      continue;
1956    }
1957
1958    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1959      Type *LIType = LI->getType();
1960
1961      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1962        // Replace:
1963        //   %res = load { i32, i32 }* %alloc
1964        // with:
1965        //   %load.0 = load i32* %alloc.0
1966        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1967        //   %load.1 = load i32* %alloc.1
1968        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1969        // (Also works for arrays instead of structs)
1970        Value *Insert = UndefValue::get(LIType);
1971        IRBuilder<> Builder(LI);
1972        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1973          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1974          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1975        }
1976        LI->replaceAllUsesWith(Insert);
1977        DeadInsts.push_back(LI);
1978      } else if (LIType->isIntegerTy() &&
1979                 TD->getTypeAllocSize(LIType) ==
1980                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1981        // If this is a load of the entire alloca to an integer, rewrite it.
1982        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1983      }
1984      continue;
1985    }
1986
1987    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1988      Value *Val = SI->getOperand(0);
1989      Type *SIType = Val->getType();
1990      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1991        // Replace:
1992        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1993        // with:
1994        //   %val.0 = extractvalue { i32, i32 } %val, 0
1995        //   store i32 %val.0, i32* %alloc.0
1996        //   %val.1 = extractvalue { i32, i32 } %val, 1
1997        //   store i32 %val.1, i32* %alloc.1
1998        // (Also works for arrays instead of structs)
1999        IRBuilder<> Builder(SI);
2000        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2001          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
2002          Builder.CreateStore(Extract, NewElts[i]);
2003        }
2004        DeadInsts.push_back(SI);
2005      } else if (SIType->isIntegerTy() &&
2006                 TD->getTypeAllocSize(SIType) ==
2007                 TD->getTypeAllocSize(AI->getAllocatedType())) {
2008        // If this is a store of the entire alloca from an integer, rewrite it.
2009        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
2010      }
2011      continue;
2012    }
2013
2014    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
2015      // If we have a PHI user of the alloca itself (as opposed to a GEP or
2016      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
2017      // the new pointer.
2018      if (!isa<AllocaInst>(I)) continue;
2019
2020      assert(Offset == 0 && NewElts[0] &&
2021             "Direct alloca use should have a zero offset");
2022
2023      // If we have a use of the alloca, we know the derived uses will be
2024      // utilizing just the first element of the scalarized result.  Insert a
2025      // bitcast of the first alloca before the user as required.
2026      AllocaInst *NewAI = NewElts[0];
2027      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
2028      NewAI->moveBefore(BCI);
2029      TheUse = BCI;
2030      continue;
2031    }
2032  }
2033}
2034
2035/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
2036/// and recursively continue updating all of its uses.
2037void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
2038                          SmallVector<AllocaInst*, 32> &NewElts) {
2039  RewriteForScalarRepl(BC, AI, Offset, NewElts);
2040  if (BC->getOperand(0) != AI)
2041    return;
2042
2043  // The bitcast references the original alloca.  Replace its uses with
2044  // references to the alloca containing offset zero (which is normally at
2045  // index zero, but might not be in cases involving structs with elements
2046  // of size zero).
2047  Type *T = AI->getAllocatedType();
2048  uint64_t EltOffset = 0;
2049  Type *IdxTy;
2050  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
2051  Instruction *Val = NewElts[Idx];
2052  if (Val->getType() != BC->getDestTy()) {
2053    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
2054    Val->takeName(BC);
2055  }
2056  BC->replaceAllUsesWith(Val);
2057  DeadInsts.push_back(BC);
2058}
2059
2060/// FindElementAndOffset - Return the index of the element containing Offset
2061/// within the specified type, which must be either a struct or an array.
2062/// Sets T to the type of the element and Offset to the offset within that
2063/// element.  IdxTy is set to the type of the index result to be used in a
2064/// GEP instruction.
2065uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
2066                                    Type *&IdxTy) {
2067  uint64_t Idx = 0;
2068  if (StructType *ST = dyn_cast<StructType>(T)) {
2069    const StructLayout *Layout = TD->getStructLayout(ST);
2070    Idx = Layout->getElementContainingOffset(Offset);
2071    T = ST->getContainedType(Idx);
2072    Offset -= Layout->getElementOffset(Idx);
2073    IdxTy = Type::getInt32Ty(T->getContext());
2074    return Idx;
2075  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
2076    T = AT->getElementType();
2077    uint64_t EltSize = TD->getTypeAllocSize(T);
2078    Idx = Offset / EltSize;
2079    Offset -= Idx * EltSize;
2080    IdxTy = Type::getInt64Ty(T->getContext());
2081    return Idx;
2082  }
2083  VectorType *VT = cast<VectorType>(T);
2084  T = VT->getElementType();
2085  uint64_t EltSize = TD->getTypeAllocSize(T);
2086  Idx = Offset / EltSize;
2087  Offset -= Idx * EltSize;
2088  IdxTy = Type::getInt64Ty(T->getContext());
2089  return Idx;
2090}
2091
2092/// RewriteGEP - Check if this GEP instruction moves the pointer across
2093/// elements of the alloca that are being split apart, and if so, rewrite
2094/// the GEP to be relative to the new element.
2095void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
2096                      SmallVector<AllocaInst*, 32> &NewElts) {
2097  uint64_t OldOffset = Offset;
2098  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
2099  // If the GEP was dynamic then it must have been a dynamic vector lookup.
2100  // In this case, it must be the last GEP operand which is dynamic so keep that
2101  // aside until we've found the constant GEP offset then add it back in at the
2102  // end.
2103  Value* NonConstantIdx = 0;
2104  if (!GEPI->hasAllConstantIndices())
2105    NonConstantIdx = Indices.pop_back_val();
2106  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
2107
2108  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
2109
2110  Type *T = AI->getAllocatedType();
2111  Type *IdxTy;
2112  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
2113  if (GEPI->getOperand(0) == AI)
2114    OldIdx = ~0ULL; // Force the GEP to be rewritten.
2115
2116  T = AI->getAllocatedType();
2117  uint64_t EltOffset = Offset;
2118  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
2119
2120  // If this GEP does not move the pointer across elements of the alloca
2121  // being split, then it does not needs to be rewritten.
2122  if (Idx == OldIdx)
2123    return;
2124
2125  Type *i32Ty = Type::getInt32Ty(AI->getContext());
2126  SmallVector<Value*, 8> NewArgs;
2127  NewArgs.push_back(Constant::getNullValue(i32Ty));
2128  while (EltOffset != 0) {
2129    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
2130    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2131  }
2132  if (NonConstantIdx) {
2133    Type* GepTy = T;
2134    // This GEP has a dynamic index.  We need to add "i32 0" to index through
2135    // any structs or arrays in the original type until we get to the vector
2136    // to index.
2137    while (!isa<VectorType>(GepTy)) {
2138      NewArgs.push_back(Constant::getNullValue(i32Ty));
2139      GepTy = cast<CompositeType>(GepTy)->getTypeAtIndex(0U);
2140    }
2141    NewArgs.push_back(NonConstantIdx);
2142  }
2143  Instruction *Val = NewElts[Idx];
2144  if (NewArgs.size() > 1) {
2145    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
2146    Val->takeName(GEPI);
2147  }
2148  if (Val->getType() != GEPI->getType())
2149    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2150  GEPI->replaceAllUsesWith(Val);
2151  DeadInsts.push_back(GEPI);
2152}
2153
2154/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
2155/// to mark the lifetime of the scalarized memory.
2156void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
2157                                    uint64_t Offset,
2158                                    SmallVector<AllocaInst*, 32> &NewElts) {
2159  ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
2160  // Put matching lifetime markers on everything from Offset up to
2161  // Offset+OldSize.
2162  Type *AIType = AI->getAllocatedType();
2163  uint64_t NewOffset = Offset;
2164  Type *IdxTy;
2165  uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
2166
2167  IRBuilder<> Builder(II);
2168  uint64_t Size = OldSize->getLimitedValue();
2169
2170  if (NewOffset) {
2171    // Splice the first element and index 'NewOffset' bytes in.  SROA will
2172    // split the alloca again later.
2173    Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
2174    V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
2175
2176    IdxTy = NewElts[Idx]->getAllocatedType();
2177    uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
2178    if (EltSize > Size) {
2179      EltSize = Size;
2180      Size = 0;
2181    } else {
2182      Size -= EltSize;
2183    }
2184    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2185      Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
2186    else
2187      Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
2188    ++Idx;
2189  }
2190
2191  for (; Idx != NewElts.size() && Size; ++Idx) {
2192    IdxTy = NewElts[Idx]->getAllocatedType();
2193    uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
2194    if (EltSize > Size) {
2195      EltSize = Size;
2196      Size = 0;
2197    } else {
2198      Size -= EltSize;
2199    }
2200    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2201      Builder.CreateLifetimeStart(NewElts[Idx],
2202                                  Builder.getInt64(EltSize));
2203    else
2204      Builder.CreateLifetimeEnd(NewElts[Idx],
2205                                Builder.getInt64(EltSize));
2206  }
2207  DeadInsts.push_back(II);
2208}
2209
2210/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2211/// Rewrite it to copy or set the elements of the scalarized memory.
2212void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2213                                        AllocaInst *AI,
2214                                        SmallVector<AllocaInst*, 32> &NewElts) {
2215  // If this is a memcpy/memmove, construct the other pointer as the
2216  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2217  // that doesn't have anything to do with the alloca that we are promoting. For
2218  // memset, this Value* stays null.
2219  Value *OtherPtr = 0;
2220  unsigned MemAlignment = MI->getAlignment();
2221  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2222    if (Inst == MTI->getRawDest())
2223      OtherPtr = MTI->getRawSource();
2224    else {
2225      assert(Inst == MTI->getRawSource());
2226      OtherPtr = MTI->getRawDest();
2227    }
2228  }
2229
2230  // If there is an other pointer, we want to convert it to the same pointer
2231  // type as AI has, so we can GEP through it safely.
2232  if (OtherPtr) {
2233    unsigned AddrSpace =
2234      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2235
2236    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2237    // optimization, but it's also required to detect the corner case where
2238    // both pointer operands are referencing the same memory, and where
2239    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2240    // function is only called for mem intrinsics that access the whole
2241    // aggregate, so non-zero GEPs are not an issue here.)
2242    OtherPtr = OtherPtr->stripPointerCasts();
2243
2244    // Copying the alloca to itself is a no-op: just delete it.
2245    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2246      // This code will run twice for a no-op memcpy -- once for each operand.
2247      // Put only one reference to MI on the DeadInsts list.
2248      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2249             E = DeadInsts.end(); I != E; ++I)
2250        if (*I == MI) return;
2251      DeadInsts.push_back(MI);
2252      return;
2253    }
2254
2255    // If the pointer is not the right type, insert a bitcast to the right
2256    // type.
2257    Type *NewTy =
2258      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2259
2260    if (OtherPtr->getType() != NewTy)
2261      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2262  }
2263
2264  // Process each element of the aggregate.
2265  bool SROADest = MI->getRawDest() == Inst;
2266
2267  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2268
2269  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2270    // If this is a memcpy/memmove, emit a GEP of the other element address.
2271    Value *OtherElt = 0;
2272    unsigned OtherEltAlign = MemAlignment;
2273
2274    if (OtherPtr) {
2275      Value *Idx[2] = { Zero,
2276                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2277      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2278                                              OtherPtr->getName()+"."+Twine(i),
2279                                                   MI);
2280      uint64_t EltOffset;
2281      PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2282      Type *OtherTy = OtherPtrTy->getElementType();
2283      if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2284        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2285      } else {
2286        Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2287        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2288      }
2289
2290      // The alignment of the other pointer is the guaranteed alignment of the
2291      // element, which is affected by both the known alignment of the whole
2292      // mem intrinsic and the alignment of the element.  If the alignment of
2293      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2294      // known alignment is just 4 bytes.
2295      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2296    }
2297
2298    Value *EltPtr = NewElts[i];
2299    Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2300
2301    // If we got down to a scalar, insert a load or store as appropriate.
2302    if (EltTy->isSingleValueType()) {
2303      if (isa<MemTransferInst>(MI)) {
2304        if (SROADest) {
2305          // From Other to Alloca.
2306          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2307          new StoreInst(Elt, EltPtr, MI);
2308        } else {
2309          // From Alloca to Other.
2310          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2311          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2312        }
2313        continue;
2314      }
2315      assert(isa<MemSetInst>(MI));
2316
2317      // If the stored element is zero (common case), just store a null
2318      // constant.
2319      Constant *StoreVal;
2320      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2321        if (CI->isZero()) {
2322          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2323        } else {
2324          // If EltTy is a vector type, get the element type.
2325          Type *ValTy = EltTy->getScalarType();
2326
2327          // Construct an integer with the right value.
2328          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2329          APInt OneVal(EltSize, CI->getZExtValue());
2330          APInt TotalVal(OneVal);
2331          // Set each byte.
2332          for (unsigned i = 0; 8*i < EltSize; ++i) {
2333            TotalVal = TotalVal.shl(8);
2334            TotalVal |= OneVal;
2335          }
2336
2337          // Convert the integer value to the appropriate type.
2338          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2339          if (ValTy->isPointerTy())
2340            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2341          else if (ValTy->isFloatingPointTy())
2342            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2343          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2344
2345          // If the requested value was a vector constant, create it.
2346          if (EltTy->isVectorTy()) {
2347            unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2348            StoreVal = ConstantVector::getSplat(NumElts, StoreVal);
2349          }
2350        }
2351        new StoreInst(StoreVal, EltPtr, MI);
2352        continue;
2353      }
2354      // Otherwise, if we're storing a byte variable, use a memset call for
2355      // this element.
2356    }
2357
2358    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2359    if (!EltSize)
2360      continue;
2361
2362    IRBuilder<> Builder(MI);
2363
2364    // Finally, insert the meminst for this element.
2365    if (isa<MemSetInst>(MI)) {
2366      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2367                           MI->isVolatile());
2368    } else {
2369      assert(isa<MemTransferInst>(MI));
2370      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2371      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2372
2373      if (isa<MemCpyInst>(MI))
2374        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2375      else
2376        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2377    }
2378  }
2379  DeadInsts.push_back(MI);
2380}
2381
2382/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2383/// overwrites the entire allocation.  Extract out the pieces of the stored
2384/// integer and store them individually.
2385void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2386                                         SmallVector<AllocaInst*, 32> &NewElts){
2387  // Extract each element out of the integer according to its structure offset
2388  // and store the element value to the individual alloca.
2389  Value *SrcVal = SI->getOperand(0);
2390  Type *AllocaEltTy = AI->getAllocatedType();
2391  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2392
2393  IRBuilder<> Builder(SI);
2394
2395  // Handle tail padding by extending the operand
2396  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2397    SrcVal = Builder.CreateZExt(SrcVal,
2398                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2399
2400  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2401               << '\n');
2402
2403  // There are two forms here: AI could be an array or struct.  Both cases
2404  // have different ways to compute the element offset.
2405  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2406    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2407
2408    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2409      // Get the number of bits to shift SrcVal to get the value.
2410      Type *FieldTy = EltSTy->getElementType(i);
2411      uint64_t Shift = Layout->getElementOffsetInBits(i);
2412
2413      if (TD->isBigEndian())
2414        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2415
2416      Value *EltVal = SrcVal;
2417      if (Shift) {
2418        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2419        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2420      }
2421
2422      // Truncate down to an integer of the right size.
2423      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2424
2425      // Ignore zero sized fields like {}, they obviously contain no data.
2426      if (FieldSizeBits == 0) continue;
2427
2428      if (FieldSizeBits != AllocaSizeBits)
2429        EltVal = Builder.CreateTrunc(EltVal,
2430                             IntegerType::get(SI->getContext(), FieldSizeBits));
2431      Value *DestField = NewElts[i];
2432      if (EltVal->getType() == FieldTy) {
2433        // Storing to an integer field of this size, just do it.
2434      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2435        // Bitcast to the right element type (for fp/vector values).
2436        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2437      } else {
2438        // Otherwise, bitcast the dest pointer (for aggregates).
2439        DestField = Builder.CreateBitCast(DestField,
2440                                     PointerType::getUnqual(EltVal->getType()));
2441      }
2442      new StoreInst(EltVal, DestField, SI);
2443    }
2444
2445  } else {
2446    ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2447    Type *ArrayEltTy = ATy->getElementType();
2448    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2449    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2450
2451    uint64_t Shift;
2452
2453    if (TD->isBigEndian())
2454      Shift = AllocaSizeBits-ElementOffset;
2455    else
2456      Shift = 0;
2457
2458    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2459      // Ignore zero sized fields like {}, they obviously contain no data.
2460      if (ElementSizeBits == 0) continue;
2461
2462      Value *EltVal = SrcVal;
2463      if (Shift) {
2464        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2465        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2466      }
2467
2468      // Truncate down to an integer of the right size.
2469      if (ElementSizeBits != AllocaSizeBits)
2470        EltVal = Builder.CreateTrunc(EltVal,
2471                                     IntegerType::get(SI->getContext(),
2472                                                      ElementSizeBits));
2473      Value *DestField = NewElts[i];
2474      if (EltVal->getType() == ArrayEltTy) {
2475        // Storing to an integer field of this size, just do it.
2476      } else if (ArrayEltTy->isFloatingPointTy() ||
2477                 ArrayEltTy->isVectorTy()) {
2478        // Bitcast to the right element type (for fp/vector values).
2479        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2480      } else {
2481        // Otherwise, bitcast the dest pointer (for aggregates).
2482        DestField = Builder.CreateBitCast(DestField,
2483                                     PointerType::getUnqual(EltVal->getType()));
2484      }
2485      new StoreInst(EltVal, DestField, SI);
2486
2487      if (TD->isBigEndian())
2488        Shift -= ElementOffset;
2489      else
2490        Shift += ElementOffset;
2491    }
2492  }
2493
2494  DeadInsts.push_back(SI);
2495}
2496
2497/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2498/// an integer.  Load the individual pieces to form the aggregate value.
2499void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2500                                        SmallVector<AllocaInst*, 32> &NewElts) {
2501  // Extract each element out of the NewElts according to its structure offset
2502  // and form the result value.
2503  Type *AllocaEltTy = AI->getAllocatedType();
2504  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2505
2506  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2507               << '\n');
2508
2509  // There are two forms here: AI could be an array or struct.  Both cases
2510  // have different ways to compute the element offset.
2511  const StructLayout *Layout = 0;
2512  uint64_t ArrayEltBitOffset = 0;
2513  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2514    Layout = TD->getStructLayout(EltSTy);
2515  } else {
2516    Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2517    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2518  }
2519
2520  Value *ResultVal =
2521    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2522
2523  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2524    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2525    // the pointer to an integer of the same size before doing the load.
2526    Value *SrcField = NewElts[i];
2527    Type *FieldTy =
2528      cast<PointerType>(SrcField->getType())->getElementType();
2529    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2530
2531    // Ignore zero sized fields like {}, they obviously contain no data.
2532    if (FieldSizeBits == 0) continue;
2533
2534    IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2535                                                     FieldSizeBits);
2536    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2537        !FieldTy->isVectorTy())
2538      SrcField = new BitCastInst(SrcField,
2539                                 PointerType::getUnqual(FieldIntTy),
2540                                 "", LI);
2541    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2542
2543    // If SrcField is a fp or vector of the right size but that isn't an
2544    // integer type, bitcast to an integer so we can shift it.
2545    if (SrcField->getType() != FieldIntTy)
2546      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2547
2548    // Zero extend the field to be the same size as the final alloca so that
2549    // we can shift and insert it.
2550    if (SrcField->getType() != ResultVal->getType())
2551      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2552
2553    // Determine the number of bits to shift SrcField.
2554    uint64_t Shift;
2555    if (Layout) // Struct case.
2556      Shift = Layout->getElementOffsetInBits(i);
2557    else  // Array case.
2558      Shift = i*ArrayEltBitOffset;
2559
2560    if (TD->isBigEndian())
2561      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2562
2563    if (Shift) {
2564      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2565      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2566    }
2567
2568    // Don't create an 'or x, 0' on the first iteration.
2569    if (!isa<Constant>(ResultVal) ||
2570        !cast<Constant>(ResultVal)->isNullValue())
2571      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2572    else
2573      ResultVal = SrcField;
2574  }
2575
2576  // Handle tail padding by truncating the result
2577  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2578    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2579
2580  LI->replaceAllUsesWith(ResultVal);
2581  DeadInsts.push_back(LI);
2582}
2583
2584/// HasPadding - Return true if the specified type has any structure or
2585/// alignment padding in between the elements that would be split apart
2586/// by SROA; return false otherwise.
2587static bool HasPadding(Type *Ty, const TargetData &TD) {
2588  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2589    Ty = ATy->getElementType();
2590    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2591  }
2592
2593  // SROA currently handles only Arrays and Structs.
2594  StructType *STy = cast<StructType>(Ty);
2595  const StructLayout *SL = TD.getStructLayout(STy);
2596  unsigned PrevFieldBitOffset = 0;
2597  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2598    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2599
2600    // Check to see if there is any padding between this element and the
2601    // previous one.
2602    if (i) {
2603      unsigned PrevFieldEnd =
2604        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2605      if (PrevFieldEnd < FieldBitOffset)
2606        return true;
2607    }
2608    PrevFieldBitOffset = FieldBitOffset;
2609  }
2610  // Check for tail padding.
2611  if (unsigned EltCount = STy->getNumElements()) {
2612    unsigned PrevFieldEnd = PrevFieldBitOffset +
2613      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2614    if (PrevFieldEnd < SL->getSizeInBits())
2615      return true;
2616  }
2617  return false;
2618}
2619
2620/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2621/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2622/// or 1 if safe after canonicalization has been performed.
2623bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2624  // Loop over the use list of the alloca.  We can only transform it if all of
2625  // the users are safe to transform.
2626  AllocaInfo Info(AI);
2627
2628  isSafeForScalarRepl(AI, 0, Info);
2629  if (Info.isUnsafe) {
2630    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2631    return false;
2632  }
2633
2634  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2635  // source and destination, we have to be careful.  In particular, the memcpy
2636  // could be moving around elements that live in structure padding of the LLVM
2637  // types, but may actually be used.  In these cases, we refuse to promote the
2638  // struct.
2639  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2640      HasPadding(AI->getAllocatedType(), *TD))
2641    return false;
2642
2643  // If the alloca never has an access to just *part* of it, but is accessed
2644  // via loads and stores, then we should use ConvertToScalarInfo to promote
2645  // the alloca instead of promoting each piece at a time and inserting fission
2646  // and fusion code.
2647  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2648    // If the struct/array just has one element, use basic SRoA.
2649    if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2650      if (ST->getNumElements() > 1) return false;
2651    } else {
2652      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2653        return false;
2654    }
2655  }
2656
2657  return true;
2658}
2659
2660
2661
2662/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2663/// some part of a constant global variable.  This intentionally only accepts
2664/// constant expressions because we don't can't rewrite arbitrary instructions.
2665static bool PointsToConstantGlobal(Value *V) {
2666  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2667    return GV->isConstant();
2668  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2669    if (CE->getOpcode() == Instruction::BitCast ||
2670        CE->getOpcode() == Instruction::GetElementPtr)
2671      return PointsToConstantGlobal(CE->getOperand(0));
2672  return false;
2673}
2674
2675/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2676/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2677/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2678/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2679/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2680/// the alloca, and if the source pointer is a pointer to a constant global, we
2681/// can optimize this.
2682static bool
2683isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2684                               bool isOffset,
2685                               SmallVector<Instruction *, 4> &LifetimeMarkers) {
2686  // We track lifetime intrinsics as we encounter them.  If we decide to go
2687  // ahead and replace the value with the global, this lets the caller quickly
2688  // eliminate the markers.
2689
2690  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2691    User *U = cast<Instruction>(*UI);
2692
2693    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2694      // Ignore non-volatile loads, they are always ok.
2695      if (!LI->isSimple()) return false;
2696      continue;
2697    }
2698
2699    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2700      // If uses of the bitcast are ok, we are ok.
2701      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
2702                                          LifetimeMarkers))
2703        return false;
2704      continue;
2705    }
2706    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2707      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2708      // doesn't, it does.
2709      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2710                                          isOffset || !GEP->hasAllZeroIndices(),
2711                                          LifetimeMarkers))
2712        return false;
2713      continue;
2714    }
2715
2716    if (CallSite CS = U) {
2717      // If this is the function being called then we treat it like a load and
2718      // ignore it.
2719      if (CS.isCallee(UI))
2720        continue;
2721
2722      // If this is a readonly/readnone call site, then we know it is just a
2723      // load (but one that potentially returns the value itself), so we can
2724      // ignore it if we know that the value isn't captured.
2725      unsigned ArgNo = CS.getArgumentNo(UI);
2726      if (CS.onlyReadsMemory() &&
2727          (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo)))
2728        continue;
2729
2730      // If this is being passed as a byval argument, the caller is making a
2731      // copy, so it is only a read of the alloca.
2732      if (CS.isByValArgument(ArgNo))
2733        continue;
2734    }
2735
2736    // Lifetime intrinsics can be handled by the caller.
2737    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
2738      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2739          II->getIntrinsicID() == Intrinsic::lifetime_end) {
2740        assert(II->use_empty() && "Lifetime markers have no result to use!");
2741        LifetimeMarkers.push_back(II);
2742        continue;
2743      }
2744    }
2745
2746    // If this is isn't our memcpy/memmove, reject it as something we can't
2747    // handle.
2748    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2749    if (MI == 0)
2750      return false;
2751
2752    // If the transfer is using the alloca as a source of the transfer, then
2753    // ignore it since it is a load (unless the transfer is volatile).
2754    if (UI.getOperandNo() == 1) {
2755      if (MI->isVolatile()) return false;
2756      continue;
2757    }
2758
2759    // If we already have seen a copy, reject the second one.
2760    if (TheCopy) return false;
2761
2762    // If the pointer has been offset from the start of the alloca, we can't
2763    // safely handle this.
2764    if (isOffset) return false;
2765
2766    // If the memintrinsic isn't using the alloca as the dest, reject it.
2767    if (UI.getOperandNo() != 0) return false;
2768
2769    // If the source of the memcpy/move is not a constant global, reject it.
2770    if (!PointsToConstantGlobal(MI->getSource()))
2771      return false;
2772
2773    // Otherwise, the transform is safe.  Remember the copy instruction.
2774    TheCopy = MI;
2775  }
2776  return true;
2777}
2778
2779/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2780/// modified by a copy from a constant global.  If we can prove this, we can
2781/// replace any uses of the alloca with uses of the global directly.
2782MemTransferInst *
2783SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
2784                                     SmallVector<Instruction*, 4> &ToDelete) {
2785  MemTransferInst *TheCopy = 0;
2786  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
2787    return TheCopy;
2788  return 0;
2789}
2790