ScalarReplAggregates.cpp revision 4aac07e8983d31c6bbbcd100ad119859fb4bb968
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/PromoteMemToReg.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/IRBuilder.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/raw_ostream.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44using namespace llvm;
45
46STATISTIC(NumReplaced,  "Number of allocas broken up");
47STATISTIC(NumPromoted,  "Number of allocas promoted");
48STATISTIC(NumConverted, "Number of aggregates converted to scalar");
49STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
50
51namespace {
52  struct SROA : public FunctionPass {
53    static char ID; // Pass identification, replacement for typeid
54    explicit SROA(signed T = -1) : FunctionPass(&ID) {
55      if (T == -1)
56        SRThreshold = 128;
57      else
58        SRThreshold = T;
59    }
60
61    bool runOnFunction(Function &F);
62
63    bool performScalarRepl(Function &F);
64    bool performPromotion(Function &F);
65
66    // getAnalysisUsage - This pass does not require any passes, but we know it
67    // will not alter the CFG, so say so.
68    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
69      AU.addRequired<DominatorTree>();
70      AU.addRequired<DominanceFrontier>();
71      AU.setPreservesCFG();
72    }
73
74  private:
75    TargetData *TD;
76
77    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
78    /// information about the uses.  All these fields are initialized to false
79    /// and set to true when something is learned.
80    struct AllocaInfo {
81      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
82      bool isUnsafe : 1;
83
84      /// needsCleanup - This is set to true if there is some use of the alloca
85      /// that requires cleanup.
86      bool needsCleanup : 1;
87
88      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
89      bool isMemCpySrc : 1;
90
91      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
92      bool isMemCpyDst : 1;
93
94      AllocaInfo()
95        : isUnsafe(false), needsCleanup(false),
96          isMemCpySrc(false), isMemCpyDst(false) {}
97    };
98
99    unsigned SRThreshold;
100
101    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
102
103    int isSafeAllocaToScalarRepl(AllocaInst *AI);
104
105    void isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
106                               AllocaInfo &Info);
107    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
108                         AllocaInfo &Info);
109    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
110                                        unsigned OpNo, AllocaInfo &Info);
111    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocaInst *AI,
112                                        AllocaInfo &Info);
113
114    void DoScalarReplacement(AllocaInst *AI,
115                             std::vector<AllocaInst*> &WorkList);
116    void CleanupGEP(GetElementPtrInst *GEP);
117    void CleanupAllocaUsers(AllocaInst *AI);
118    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
119
120    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
121                                    SmallVector<AllocaInst*, 32> &NewElts);
122
123    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
124                                      AllocaInst *AI,
125                                      SmallVector<AllocaInst*, 32> &NewElts);
126    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
127                                       SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
129                                      SmallVector<AllocaInst*, 32> &NewElts);
130
131    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
132                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
133    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
134    Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
135                                     uint64_t Offset, IRBuilder<> &Builder);
136    Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
137                                     uint64_t Offset, IRBuilder<> &Builder);
138    static Instruction *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
139  };
140}
141
142char SROA::ID = 0;
143static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
144
145// Public interface to the ScalarReplAggregates pass
146FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
147  return new SROA(Threshold);
148}
149
150
151bool SROA::runOnFunction(Function &F) {
152  TD = getAnalysisIfAvailable<TargetData>();
153
154  bool Changed = performPromotion(F);
155
156  // FIXME: ScalarRepl currently depends on TargetData more than it
157  // theoretically needs to. It should be refactored in order to support
158  // target-independent IR. Until this is done, just skip the actual
159  // scalar-replacement portion of this pass.
160  if (!TD) return Changed;
161
162  while (1) {
163    bool LocalChange = performScalarRepl(F);
164    if (!LocalChange) break;   // No need to repromote if no scalarrepl
165    Changed = true;
166    LocalChange = performPromotion(F);
167    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
168  }
169
170  return Changed;
171}
172
173
174bool SROA::performPromotion(Function &F) {
175  std::vector<AllocaInst*> Allocas;
176  DominatorTree         &DT = getAnalysis<DominatorTree>();
177  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
178
179  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
180
181  bool Changed = false;
182
183  while (1) {
184    Allocas.clear();
185
186    // Find allocas that are safe to promote, by looking at all instructions in
187    // the entry node
188    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
189      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
190        if (isAllocaPromotable(AI))
191          Allocas.push_back(AI);
192
193    if (Allocas.empty()) break;
194
195    PromoteMemToReg(Allocas, DT, DF);
196    NumPromoted += Allocas.size();
197    Changed = true;
198  }
199
200  return Changed;
201}
202
203/// getNumSAElements - Return the number of elements in the specific struct or
204/// array.
205static uint64_t getNumSAElements(const Type *T) {
206  if (const StructType *ST = dyn_cast<StructType>(T))
207    return ST->getNumElements();
208  return cast<ArrayType>(T)->getNumElements();
209}
210
211// performScalarRepl - This algorithm is a simple worklist driven algorithm,
212// which runs on all of the malloc/alloca instructions in the function, removing
213// them if they are only used by getelementptr instructions.
214//
215bool SROA::performScalarRepl(Function &F) {
216  std::vector<AllocaInst*> WorkList;
217
218  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
219  BasicBlock &BB = F.getEntryBlock();
220  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
221    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
222      WorkList.push_back(A);
223
224  // Process the worklist
225  bool Changed = false;
226  while (!WorkList.empty()) {
227    AllocaInst *AI = WorkList.back();
228    WorkList.pop_back();
229
230    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
231    // with unused elements.
232    if (AI->use_empty()) {
233      AI->eraseFromParent();
234      continue;
235    }
236
237    // If this alloca is impossible for us to promote, reject it early.
238    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
239      continue;
240
241    // Check to see if this allocation is only modified by a memcpy/memmove from
242    // a constant global.  If this is the case, we can change all users to use
243    // the constant global instead.  This is commonly produced by the CFE by
244    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
245    // is only subsequently read.
246    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
247      DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
248      DEBUG(errs() << "  memcpy = " << *TheCopy << '\n');
249      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
250      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
251      TheCopy->eraseFromParent();  // Don't mutate the global.
252      AI->eraseFromParent();
253      ++NumGlobals;
254      Changed = true;
255      continue;
256    }
257
258    // Check to see if we can perform the core SROA transformation.  We cannot
259    // transform the allocation instruction if it is an array allocation
260    // (allocations OF arrays are ok though), and an allocation of a scalar
261    // value cannot be decomposed at all.
262    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
263
264    // Do not promote [0 x %struct].
265    if (AllocaSize == 0) continue;
266
267    // Do not promote any struct whose size is too big.
268    if (AllocaSize > SRThreshold) continue;
269
270    if ((isa<StructType>(AI->getAllocatedType()) ||
271         isa<ArrayType>(AI->getAllocatedType())) &&
272        // Do not promote any struct into more than "32" separate vars.
273        getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
274      // Check that all of the users of the allocation are capable of being
275      // transformed.
276      switch (isSafeAllocaToScalarRepl(AI)) {
277      default: llvm_unreachable("Unexpected value!");
278      case 0:  // Not safe to scalar replace.
279        break;
280      case 1:  // Safe, but requires cleanup/canonicalizations first
281        CleanupAllocaUsers(AI);
282        // FALL THROUGH.
283      case 3:  // Safe to scalar replace.
284        DoScalarReplacement(AI, WorkList);
285        Changed = true;
286        continue;
287      }
288    }
289
290    // If we can turn this aggregate value (potentially with casts) into a
291    // simple scalar value that can be mem2reg'd into a register value.
292    // IsNotTrivial tracks whether this is something that mem2reg could have
293    // promoted itself.  If so, we don't want to transform it needlessly.  Note
294    // that we can't just check based on the type: the alloca may be of an i32
295    // but that has pointer arithmetic to set byte 3 of it or something.
296    bool IsNotTrivial = false;
297    const Type *VectorTy = 0;
298    bool HadAVector = false;
299    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
300                           0, unsigned(AllocaSize)) && IsNotTrivial) {
301      AllocaInst *NewAI;
302      // If we were able to find a vector type that can handle this with
303      // insert/extract elements, and if there was at least one use that had
304      // a vector type, promote this to a vector.  We don't want to promote
305      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
306      // we just get a lot of insert/extracts.  If at least one vector is
307      // involved, then we probably really do have a union of vector/array.
308      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
309        DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
310                     << *VectorTy << '\n');
311
312        // Create and insert the vector alloca.
313        NewAI = new AllocaInst(VectorTy, 0, "",  AI->getParent()->begin());
314        ConvertUsesToScalar(AI, NewAI, 0);
315      } else {
316        DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
317
318        // Create and insert the integer alloca.
319        const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
320        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
321        ConvertUsesToScalar(AI, NewAI, 0);
322      }
323      NewAI->takeName(AI);
324      AI->eraseFromParent();
325      ++NumConverted;
326      Changed = true;
327      continue;
328    }
329
330    // Otherwise, couldn't process this alloca.
331  }
332
333  return Changed;
334}
335
336/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
337/// predicate, do SROA now.
338void SROA::DoScalarReplacement(AllocaInst *AI,
339                               std::vector<AllocaInst*> &WorkList) {
340  DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
341  SmallVector<AllocaInst*, 32> ElementAllocas;
342  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
343    ElementAllocas.reserve(ST->getNumContainedTypes());
344    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
345      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
346                                      AI->getAlignment(),
347                                      AI->getName() + "." + Twine(i), AI);
348      ElementAllocas.push_back(NA);
349      WorkList.push_back(NA);  // Add to worklist for recursive processing
350    }
351  } else {
352    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
353    ElementAllocas.reserve(AT->getNumElements());
354    const Type *ElTy = AT->getElementType();
355    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
356      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
357                                      AI->getName() + "." + Twine(i), AI);
358      ElementAllocas.push_back(NA);
359      WorkList.push_back(NA);  // Add to worklist for recursive processing
360    }
361  }
362
363  // Now that we have created the alloca instructions that we want to use,
364  // expand the getelementptr instructions to use them.
365  //
366  while (!AI->use_empty()) {
367    Instruction *User = cast<Instruction>(AI->use_back());
368    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
369      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
370      BCInst->eraseFromParent();
371      continue;
372    }
373
374    // Replace:
375    //   %res = load { i32, i32 }* %alloc
376    // with:
377    //   %load.0 = load i32* %alloc.0
378    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
379    //   %load.1 = load i32* %alloc.1
380    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
381    // (Also works for arrays instead of structs)
382    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
383      Value *Insert = UndefValue::get(LI->getType());
384      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
385        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
386        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
387      }
388      LI->replaceAllUsesWith(Insert);
389      LI->eraseFromParent();
390      continue;
391    }
392
393    // Replace:
394    //   store { i32, i32 } %val, { i32, i32 }* %alloc
395    // with:
396    //   %val.0 = extractvalue { i32, i32 } %val, 0
397    //   store i32 %val.0, i32* %alloc.0
398    //   %val.1 = extractvalue { i32, i32 } %val, 1
399    //   store i32 %val.1, i32* %alloc.1
400    // (Also works for arrays instead of structs)
401    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
402      Value *Val = SI->getOperand(0);
403      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
404        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
405        new StoreInst(Extract, ElementAllocas[i], SI);
406      }
407      SI->eraseFromParent();
408      continue;
409    }
410
411    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
412    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
413    unsigned Idx =
414       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
415
416    assert(Idx < ElementAllocas.size() && "Index out of range?");
417    AllocaInst *AllocaToUse = ElementAllocas[Idx];
418
419    Value *RepValue;
420    if (GEPI->getNumOperands() == 3) {
421      // Do not insert a new getelementptr instruction with zero indices, only
422      // to have it optimized out later.
423      RepValue = AllocaToUse;
424    } else {
425      // We are indexing deeply into the structure, so we still need a
426      // getelement ptr instruction to finish the indexing.  This may be
427      // expanded itself once the worklist is rerun.
428      //
429      SmallVector<Value*, 8> NewArgs;
430      NewArgs.push_back(Constant::getNullValue(
431                                           Type::getInt32Ty(AI->getContext())));
432      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
433      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
434                                           NewArgs.end(), "", GEPI);
435      RepValue->takeName(GEPI);
436    }
437
438    // If this GEP is to the start of the aggregate, check for memcpys.
439    if (Idx == 0 && GEPI->hasAllZeroIndices())
440      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
441
442    // Move all of the users over to the new GEP.
443    GEPI->replaceAllUsesWith(RepValue);
444    // Delete the old GEP
445    GEPI->eraseFromParent();
446  }
447
448  // Finally, delete the Alloca instruction
449  AI->eraseFromParent();
450  NumReplaced++;
451}
452
453
454/// isSafeElementUse - Check to see if this use is an allowed use for a
455/// getelementptr instruction of an array aggregate allocation.  isFirstElt
456/// indicates whether Ptr is known to the start of the aggregate.
457///
458void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocaInst *AI,
459                            AllocaInfo &Info) {
460  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
461       I != E; ++I) {
462    Instruction *User = cast<Instruction>(*I);
463    switch (User->getOpcode()) {
464    case Instruction::Load:  break;
465    case Instruction::Store:
466      // Store is ok if storing INTO the pointer, not storing the pointer
467      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
468      break;
469    case Instruction::GetElementPtr: {
470      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
471      bool AreAllZeroIndices = isFirstElt;
472      if (GEP->getNumOperands() > 1 &&
473          (!isa<ConstantInt>(GEP->getOperand(1)) ||
474           !cast<ConstantInt>(GEP->getOperand(1))->isZero()))
475        // Using pointer arithmetic to navigate the array.
476        return MarkUnsafe(Info);
477
478      // Verify that any array subscripts are in range.
479      for (gep_type_iterator GEPIt = gep_type_begin(GEP),
480           E = gep_type_end(GEP); GEPIt != E; ++GEPIt) {
481        // Ignore struct elements, no extra checking needed for these.
482        if (isa<StructType>(*GEPIt))
483          continue;
484
485        // This GEP indexes an array.  Verify that this is an in-range
486        // constant integer. Specifically, consider A[0][i]. We cannot know that
487        // the user isn't doing invalid things like allowing i to index an
488        // out-of-range subscript that accesses A[1].  Because of this, we have
489        // to reject SROA of any accesses into structs where any of the
490        // components are variables.
491        ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
492        if (!IdxVal) return MarkUnsafe(Info);
493
494        // Are all indices still zero?
495        AreAllZeroIndices &= IdxVal->isZero();
496
497        if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
498          if (IdxVal->getZExtValue() >= AT->getNumElements())
499            return MarkUnsafe(Info);
500        } else if (const VectorType *VT = dyn_cast<VectorType>(*GEPIt)) {
501          if (IdxVal->getZExtValue() >= VT->getNumElements())
502            return MarkUnsafe(Info);
503        }
504      }
505
506
507      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
508      if (Info.isUnsafe) return;
509      break;
510    }
511    case Instruction::BitCast:
512      if (isFirstElt) {
513        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
514        if (Info.isUnsafe) return;
515        break;
516      }
517      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
518      return MarkUnsafe(Info);
519    case Instruction::Call:
520      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
521        if (isFirstElt) {
522          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
523          if (Info.isUnsafe) return;
524          break;
525        }
526      }
527      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
528      return MarkUnsafe(Info);
529    default:
530      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
531      return MarkUnsafe(Info);
532    }
533  }
534  return;  // All users look ok :)
535}
536
537/// AllUsersAreLoads - Return true if all users of this value are loads.
538static bool AllUsersAreLoads(Value *Ptr) {
539  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
540       I != E; ++I)
541    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
542      return false;
543  return true;
544}
545
546/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
547/// aggregate allocation.
548///
549void SROA::isSafeUseOfAllocation(Instruction *User, AllocaInst *AI,
550                                 AllocaInfo &Info) {
551  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
552    return isSafeUseOfBitCastedAllocation(C, AI, Info);
553
554  if (LoadInst *LI = dyn_cast<LoadInst>(User))
555    if (!LI->isVolatile())
556      return;// Loads (returning a first class aggregrate) are always rewritable
557
558  if (StoreInst *SI = dyn_cast<StoreInst>(User))
559    if (!SI->isVolatile() && SI->getOperand(0) != AI)
560      return;// Store is ok if storing INTO the pointer, not storing the pointer
561
562  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
563  if (GEPI == 0)
564    return MarkUnsafe(Info);
565
566  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
567
568  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
569  if (I == E ||
570      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
571    return MarkUnsafe(Info);
572  }
573
574  ++I;
575  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
576
577  bool IsAllZeroIndices = true;
578
579  // If the first index is a non-constant index into an array, see if we can
580  // handle it as a special case.
581  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
582    if (!isa<ConstantInt>(I.getOperand())) {
583      IsAllZeroIndices = 0;
584      uint64_t NumElements = AT->getNumElements();
585
586      // If this is an array index and the index is not constant, we cannot
587      // promote... that is unless the array has exactly one or two elements in
588      // it, in which case we CAN promote it, but we have to canonicalize this
589      // out if this is the only problem.
590      if ((NumElements == 1 || NumElements == 2) &&
591          AllUsersAreLoads(GEPI)) {
592        Info.needsCleanup = true;
593        return;  // Canonicalization required!
594      }
595      return MarkUnsafe(Info);
596    }
597  }
598
599  // Walk through the GEP type indices, checking the types that this indexes
600  // into.
601  for (; I != E; ++I) {
602    // Ignore struct elements, no extra checking needed for these.
603    if (isa<StructType>(*I))
604      continue;
605
606    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
607    if (!IdxVal) return MarkUnsafe(Info);
608
609    // Are all indices still zero?
610    IsAllZeroIndices &= IdxVal->isZero();
611
612    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
613      // This GEP indexes an array.  Verify that this is an in-range constant
614      // integer. Specifically, consider A[0][i]. We cannot know that the user
615      // isn't doing invalid things like allowing i to index an out-of-range
616      // subscript that accesses A[1].  Because of this, we have to reject SROA
617      // of any accesses into structs where any of the components are variables.
618      if (IdxVal->getZExtValue() >= AT->getNumElements())
619        return MarkUnsafe(Info);
620    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
621      if (IdxVal->getZExtValue() >= VT->getNumElements())
622        return MarkUnsafe(Info);
623    }
624  }
625
626  // If there are any non-simple uses of this getelementptr, make sure to reject
627  // them.
628  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
629}
630
631/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
632/// intrinsic can be promoted by SROA.  At this point, we know that the operand
633/// of the memintrinsic is a pointer to the beginning of the allocation.
634void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocaInst *AI,
635                                          unsigned OpNo, AllocaInfo &Info) {
636  // If not constant length, give up.
637  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
638  if (!Length) return MarkUnsafe(Info);
639
640  // If not the whole aggregate, give up.
641  if (Length->getZExtValue() !=
642      TD->getTypeAllocSize(AI->getType()->getElementType()))
643    return MarkUnsafe(Info);
644
645  // We only know about memcpy/memset/memmove.
646  if (!isa<MemIntrinsic>(MI))
647    return MarkUnsafe(Info);
648
649  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
650  // into or out of the aggregate.
651  if (OpNo == 1)
652    Info.isMemCpyDst = true;
653  else {
654    assert(OpNo == 2);
655    Info.isMemCpySrc = true;
656  }
657}
658
659/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
660/// are
661void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocaInst *AI,
662                                          AllocaInfo &Info) {
663  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
664       UI != E; ++UI) {
665    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
666      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
667    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
668      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
669    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
670      if (SI->isVolatile())
671        return MarkUnsafe(Info);
672
673      // If storing the entire alloca in one chunk through a bitcasted pointer
674      // to integer, we can transform it.  This happens (for example) when you
675      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
676      // memcpy case and occurs in various "byval" cases and emulated memcpys.
677      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
678          TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
679          TD->getTypeAllocSize(AI->getType()->getElementType())) {
680        Info.isMemCpyDst = true;
681        continue;
682      }
683      return MarkUnsafe(Info);
684    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
685      if (LI->isVolatile())
686        return MarkUnsafe(Info);
687
688      // If loading the entire alloca in one chunk through a bitcasted pointer
689      // to integer, we can transform it.  This happens (for example) when you
690      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
691      // memcpy case and occurs in various "byval" cases and emulated memcpys.
692      if (isa<IntegerType>(LI->getType()) &&
693          TD->getTypeAllocSize(LI->getType()) ==
694          TD->getTypeAllocSize(AI->getType()->getElementType())) {
695        Info.isMemCpySrc = true;
696        continue;
697      }
698      return MarkUnsafe(Info);
699    } else if (isa<DbgInfoIntrinsic>(UI)) {
700      // If one user is DbgInfoIntrinsic then check if all users are
701      // DbgInfoIntrinsics.
702      if (OnlyUsedByDbgInfoIntrinsics(BC)) {
703        Info.needsCleanup = true;
704        return;
705      }
706      else
707        MarkUnsafe(Info);
708    }
709    else {
710      return MarkUnsafe(Info);
711    }
712    if (Info.isUnsafe) return;
713  }
714}
715
716/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
717/// to its first element.  Transform users of the cast to use the new values
718/// instead.
719void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocaInst *AI,
720                                      SmallVector<AllocaInst*, 32> &NewElts) {
721  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
722  while (UI != UE) {
723    Instruction *User = cast<Instruction>(*UI++);
724    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
725      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
726      if (BCU->use_empty()) BCU->eraseFromParent();
727      continue;
728    }
729
730    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
731      // This must be memcpy/memmove/memset of the entire aggregate.
732      // Split into one per element.
733      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
734      continue;
735    }
736
737    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
738      // If this is a store of the entire alloca from an integer, rewrite it.
739      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
740      continue;
741    }
742
743    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
744      // If this is a load of the entire alloca to an integer, rewrite it.
745      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
746      continue;
747    }
748
749    // Otherwise it must be some other user of a gep of the first pointer.  Just
750    // leave these alone.
751    continue;
752  }
753}
754
755/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
756/// Rewrite it to copy or set the elements of the scalarized memory.
757void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
758                                        AllocaInst *AI,
759                                        SmallVector<AllocaInst*, 32> &NewElts) {
760
761  // If this is a memcpy/memmove, construct the other pointer as the
762  // appropriate type.  The "Other" pointer is the pointer that goes to memory
763  // that doesn't have anything to do with the alloca that we are promoting. For
764  // memset, this Value* stays null.
765  Value *OtherPtr = 0;
766  LLVMContext &Context = MI->getContext();
767  unsigned MemAlignment = MI->getAlignment();
768  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
769    if (BCInst == MTI->getRawDest())
770      OtherPtr = MTI->getRawSource();
771    else {
772      assert(BCInst == MTI->getRawSource());
773      OtherPtr = MTI->getRawDest();
774    }
775  }
776
777  // If there is an other pointer, we want to convert it to the same pointer
778  // type as AI has, so we can GEP through it safely.
779  if (OtherPtr) {
780    // It is likely that OtherPtr is a bitcast, if so, remove it.
781    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
782      OtherPtr = BC->getOperand(0);
783    // All zero GEPs are effectively bitcasts.
784    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
785      if (GEP->hasAllZeroIndices())
786        OtherPtr = GEP->getOperand(0);
787
788    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
789      if (BCE->getOpcode() == Instruction::BitCast)
790        OtherPtr = BCE->getOperand(0);
791
792    // If the pointer is not the right type, insert a bitcast to the right
793    // type.
794    if (OtherPtr->getType() != AI->getType())
795      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
796                                 MI);
797  }
798
799  // Process each element of the aggregate.
800  Value *TheFn = MI->getOperand(0);
801  const Type *BytePtrTy = MI->getRawDest()->getType();
802  bool SROADest = MI->getRawDest() == BCInst;
803
804  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
805
806  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
807    // If this is a memcpy/memmove, emit a GEP of the other element address.
808    Value *OtherElt = 0;
809    unsigned OtherEltAlign = MemAlignment;
810
811    if (OtherPtr) {
812      Value *Idx[2] = { Zero,
813                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
814      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
815                                           OtherPtr->getNameStr()+"."+Twine(i),
816                                           MI);
817      uint64_t EltOffset;
818      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
819      if (const StructType *ST =
820            dyn_cast<StructType>(OtherPtrTy->getElementType())) {
821        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
822      } else {
823        const Type *EltTy =
824          cast<SequentialType>(OtherPtr->getType())->getElementType();
825        EltOffset = TD->getTypeAllocSize(EltTy)*i;
826      }
827
828      // The alignment of the other pointer is the guaranteed alignment of the
829      // element, which is affected by both the known alignment of the whole
830      // mem intrinsic and the alignment of the element.  If the alignment of
831      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
832      // known alignment is just 4 bytes.
833      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
834    }
835
836    Value *EltPtr = NewElts[i];
837    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
838
839    // If we got down to a scalar, insert a load or store as appropriate.
840    if (EltTy->isSingleValueType()) {
841      if (isa<MemTransferInst>(MI)) {
842        if (SROADest) {
843          // From Other to Alloca.
844          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
845          new StoreInst(Elt, EltPtr, MI);
846        } else {
847          // From Alloca to Other.
848          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
849          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
850        }
851        continue;
852      }
853      assert(isa<MemSetInst>(MI));
854
855      // If the stored element is zero (common case), just store a null
856      // constant.
857      Constant *StoreVal;
858      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
859        if (CI->isZero()) {
860          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
861        } else {
862          // If EltTy is a vector type, get the element type.
863          const Type *ValTy = EltTy->getScalarType();
864
865          // Construct an integer with the right value.
866          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
867          APInt OneVal(EltSize, CI->getZExtValue());
868          APInt TotalVal(OneVal);
869          // Set each byte.
870          for (unsigned i = 0; 8*i < EltSize; ++i) {
871            TotalVal = TotalVal.shl(8);
872            TotalVal |= OneVal;
873          }
874
875          // Convert the integer value to the appropriate type.
876          StoreVal = ConstantInt::get(Context, TotalVal);
877          if (isa<PointerType>(ValTy))
878            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
879          else if (ValTy->isFloatingPoint())
880            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
881          assert(StoreVal->getType() == ValTy && "Type mismatch!");
882
883          // If the requested value was a vector constant, create it.
884          if (EltTy != ValTy) {
885            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
886            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
887            StoreVal = ConstantVector::get(&Elts[0], NumElts);
888          }
889        }
890        new StoreInst(StoreVal, EltPtr, MI);
891        continue;
892      }
893      // Otherwise, if we're storing a byte variable, use a memset call for
894      // this element.
895    }
896
897    // Cast the element pointer to BytePtrTy.
898    if (EltPtr->getType() != BytePtrTy)
899      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
900
901    // Cast the other pointer (if we have one) to BytePtrTy.
902    if (OtherElt && OtherElt->getType() != BytePtrTy)
903      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
904                                 MI);
905
906    unsigned EltSize = TD->getTypeAllocSize(EltTy);
907
908    // Finally, insert the meminst for this element.
909    if (isa<MemTransferInst>(MI)) {
910      Value *Ops[] = {
911        SROADest ? EltPtr : OtherElt,  // Dest ptr
912        SROADest ? OtherElt : EltPtr,  // Src ptr
913        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
914        // Align
915        ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign)
916      };
917      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
918    } else {
919      assert(isa<MemSetInst>(MI));
920      Value *Ops[] = {
921        EltPtr, MI->getOperand(2),  // Dest, Value,
922        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
923        Zero  // Align
924      };
925      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
926    }
927  }
928  MI->eraseFromParent();
929}
930
931/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
932/// overwrites the entire allocation.  Extract out the pieces of the stored
933/// integer and store them individually.
934void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
935                                         SmallVector<AllocaInst*, 32> &NewElts){
936  // Extract each element out of the integer according to its structure offset
937  // and store the element value to the individual alloca.
938  Value *SrcVal = SI->getOperand(0);
939  const Type *AllocaEltTy = AI->getType()->getElementType();
940  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
941
942  // If this isn't a store of an integer to the whole alloca, it may be a store
943  // to the first element.  Just ignore the store in this case and normal SROA
944  // will handle it.
945  if (!isa<IntegerType>(SrcVal->getType()) ||
946      TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
947    return;
948  // Handle tail padding by extending the operand
949  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
950    SrcVal = new ZExtInst(SrcVal,
951                          IntegerType::get(SI->getContext(), AllocaSizeBits),
952                          "", SI);
953
954  DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
955               << '\n');
956
957  // There are two forms here: AI could be an array or struct.  Both cases
958  // have different ways to compute the element offset.
959  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
960    const StructLayout *Layout = TD->getStructLayout(EltSTy);
961
962    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
963      // Get the number of bits to shift SrcVal to get the value.
964      const Type *FieldTy = EltSTy->getElementType(i);
965      uint64_t Shift = Layout->getElementOffsetInBits(i);
966
967      if (TD->isBigEndian())
968        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
969
970      Value *EltVal = SrcVal;
971      if (Shift) {
972        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
973        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
974                                            "sroa.store.elt", SI);
975      }
976
977      // Truncate down to an integer of the right size.
978      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
979
980      // Ignore zero sized fields like {}, they obviously contain no data.
981      if (FieldSizeBits == 0) continue;
982
983      if (FieldSizeBits != AllocaSizeBits)
984        EltVal = new TruncInst(EltVal,
985                             IntegerType::get(SI->getContext(), FieldSizeBits),
986                              "", SI);
987      Value *DestField = NewElts[i];
988      if (EltVal->getType() == FieldTy) {
989        // Storing to an integer field of this size, just do it.
990      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
991        // Bitcast to the right element type (for fp/vector values).
992        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
993      } else {
994        // Otherwise, bitcast the dest pointer (for aggregates).
995        DestField = new BitCastInst(DestField,
996                              PointerType::getUnqual(EltVal->getType()),
997                                    "", SI);
998      }
999      new StoreInst(EltVal, DestField, SI);
1000    }
1001
1002  } else {
1003    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1004    const Type *ArrayEltTy = ATy->getElementType();
1005    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1006    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1007
1008    uint64_t Shift;
1009
1010    if (TD->isBigEndian())
1011      Shift = AllocaSizeBits-ElementOffset;
1012    else
1013      Shift = 0;
1014
1015    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1016      // Ignore zero sized fields like {}, they obviously contain no data.
1017      if (ElementSizeBits == 0) continue;
1018
1019      Value *EltVal = SrcVal;
1020      if (Shift) {
1021        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1022        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1023                                            "sroa.store.elt", SI);
1024      }
1025
1026      // Truncate down to an integer of the right size.
1027      if (ElementSizeBits != AllocaSizeBits)
1028        EltVal = new TruncInst(EltVal,
1029                               IntegerType::get(SI->getContext(),
1030                                                ElementSizeBits),"",SI);
1031      Value *DestField = NewElts[i];
1032      if (EltVal->getType() == ArrayEltTy) {
1033        // Storing to an integer field of this size, just do it.
1034      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
1035        // Bitcast to the right element type (for fp/vector values).
1036        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1037      } else {
1038        // Otherwise, bitcast the dest pointer (for aggregates).
1039        DestField = new BitCastInst(DestField,
1040                              PointerType::getUnqual(EltVal->getType()),
1041                                    "", SI);
1042      }
1043      new StoreInst(EltVal, DestField, SI);
1044
1045      if (TD->isBigEndian())
1046        Shift -= ElementOffset;
1047      else
1048        Shift += ElementOffset;
1049    }
1050  }
1051
1052  SI->eraseFromParent();
1053}
1054
1055/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
1056/// an integer.  Load the individual pieces to form the aggregate value.
1057void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1058                                        SmallVector<AllocaInst*, 32> &NewElts) {
1059  // Extract each element out of the NewElts according to its structure offset
1060  // and form the result value.
1061  const Type *AllocaEltTy = AI->getType()->getElementType();
1062  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1063
1064  // If this isn't a load of the whole alloca to an integer, it may be a load
1065  // of the first element.  Just ignore the load in this case and normal SROA
1066  // will handle it.
1067  if (!isa<IntegerType>(LI->getType()) ||
1068      TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
1069    return;
1070
1071  DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1072               << '\n');
1073
1074  // There are two forms here: AI could be an array or struct.  Both cases
1075  // have different ways to compute the element offset.
1076  const StructLayout *Layout = 0;
1077  uint64_t ArrayEltBitOffset = 0;
1078  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1079    Layout = TD->getStructLayout(EltSTy);
1080  } else {
1081    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1082    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1083  }
1084
1085  Value *ResultVal =
1086    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1087
1088  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1089    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1090    // the pointer to an integer of the same size before doing the load.
1091    Value *SrcField = NewElts[i];
1092    const Type *FieldTy =
1093      cast<PointerType>(SrcField->getType())->getElementType();
1094    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1095
1096    // Ignore zero sized fields like {}, they obviously contain no data.
1097    if (FieldSizeBits == 0) continue;
1098
1099    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1100                                                     FieldSizeBits);
1101    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1102        !isa<VectorType>(FieldTy))
1103      SrcField = new BitCastInst(SrcField,
1104                                 PointerType::getUnqual(FieldIntTy),
1105                                 "", LI);
1106    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1107
1108    // If SrcField is a fp or vector of the right size but that isn't an
1109    // integer type, bitcast to an integer so we can shift it.
1110    if (SrcField->getType() != FieldIntTy)
1111      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1112
1113    // Zero extend the field to be the same size as the final alloca so that
1114    // we can shift and insert it.
1115    if (SrcField->getType() != ResultVal->getType())
1116      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1117
1118    // Determine the number of bits to shift SrcField.
1119    uint64_t Shift;
1120    if (Layout) // Struct case.
1121      Shift = Layout->getElementOffsetInBits(i);
1122    else  // Array case.
1123      Shift = i*ArrayEltBitOffset;
1124
1125    if (TD->isBigEndian())
1126      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1127
1128    if (Shift) {
1129      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1130      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1131    }
1132
1133    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1134  }
1135
1136  // Handle tail padding by truncating the result
1137  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1138    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1139
1140  LI->replaceAllUsesWith(ResultVal);
1141  LI->eraseFromParent();
1142}
1143
1144
1145/// HasPadding - Return true if the specified type has any structure or
1146/// alignment padding, false otherwise.
1147static bool HasPadding(const Type *Ty, const TargetData &TD) {
1148  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1149    const StructLayout *SL = TD.getStructLayout(STy);
1150    unsigned PrevFieldBitOffset = 0;
1151    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1152      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1153
1154      // Padding in sub-elements?
1155      if (HasPadding(STy->getElementType(i), TD))
1156        return true;
1157
1158      // Check to see if there is any padding between this element and the
1159      // previous one.
1160      if (i) {
1161        unsigned PrevFieldEnd =
1162        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1163        if (PrevFieldEnd < FieldBitOffset)
1164          return true;
1165      }
1166
1167      PrevFieldBitOffset = FieldBitOffset;
1168    }
1169
1170    //  Check for tail padding.
1171    if (unsigned EltCount = STy->getNumElements()) {
1172      unsigned PrevFieldEnd = PrevFieldBitOffset +
1173                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1174      if (PrevFieldEnd < SL->getSizeInBits())
1175        return true;
1176    }
1177
1178  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1179    return HasPadding(ATy->getElementType(), TD);
1180  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1181    return HasPadding(VTy->getElementType(), TD);
1182  }
1183  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1184}
1185
1186/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1187/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1188/// or 1 if safe after canonicalization has been performed.
1189///
1190int SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1191  // Loop over the use list of the alloca.  We can only transform it if all of
1192  // the users are safe to transform.
1193  AllocaInfo Info;
1194
1195  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1196       I != E; ++I) {
1197    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1198    if (Info.isUnsafe) {
1199      DEBUG(errs() << "Cannot transform: " << *AI << "\n  due to user: "
1200                   << **I << '\n');
1201      return 0;
1202    }
1203  }
1204
1205  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1206  // source and destination, we have to be careful.  In particular, the memcpy
1207  // could be moving around elements that live in structure padding of the LLVM
1208  // types, but may actually be used.  In these cases, we refuse to promote the
1209  // struct.
1210  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1211      HasPadding(AI->getType()->getElementType(), *TD))
1212    return 0;
1213
1214  // If we require cleanup, return 1, otherwise return 3.
1215  return Info.needsCleanup ? 1 : 3;
1216}
1217
1218/// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1219/// is canonicalized here.
1220void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1221  gep_type_iterator I = gep_type_begin(GEPI);
1222  ++I;
1223
1224  const ArrayType *AT = dyn_cast<ArrayType>(*I);
1225  if (!AT)
1226    return;
1227
1228  uint64_t NumElements = AT->getNumElements();
1229
1230  if (isa<ConstantInt>(I.getOperand()))
1231    return;
1232
1233  if (NumElements == 1) {
1234    GEPI->setOperand(2,
1235                  Constant::getNullValue(Type::getInt32Ty(GEPI->getContext())));
1236    return;
1237  }
1238
1239  assert(NumElements == 2 && "Unhandled case!");
1240  // All users of the GEP must be loads.  At each use of the GEP, insert
1241  // two loads of the appropriate indexed GEP and select between them.
1242  Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
1243                              Constant::getNullValue(I.getOperand()->getType()),
1244                              "isone");
1245  // Insert the new GEP instructions, which are properly indexed.
1246  SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1247  Indices[1] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
1248  Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1249                                             Indices.begin(),
1250                                             Indices.end(),
1251                                             GEPI->getName()+".0", GEPI);
1252  Indices[1] = ConstantInt::get(Type::getInt32Ty(GEPI->getContext()), 1);
1253  Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1254                                            Indices.begin(),
1255                                            Indices.end(),
1256                                            GEPI->getName()+".1", GEPI);
1257  // Replace all loads of the variable index GEP with loads from both
1258  // indexes and a select.
1259  while (!GEPI->use_empty()) {
1260    LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1261    Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1262    Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1263    Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1264    LI->replaceAllUsesWith(R);
1265    LI->eraseFromParent();
1266  }
1267  GEPI->eraseFromParent();
1268}
1269
1270
1271/// CleanupAllocaUsers - If SROA reported that it can promote the specified
1272/// allocation, but only if cleaned up, perform the cleanups required.
1273void SROA::CleanupAllocaUsers(AllocaInst *AI) {
1274  // At this point, we know that the end result will be SROA'd and promoted, so
1275  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1276  // up.
1277  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1278       UI != E; ) {
1279    User *U = *UI++;
1280    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1281      CleanupGEP(GEPI);
1282    else {
1283      Instruction *I = cast<Instruction>(U);
1284      SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1285      if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1286        // Safe to remove debug info uses.
1287        while (!DbgInUses.empty()) {
1288          DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1289          DI->eraseFromParent();
1290        }
1291        I->eraseFromParent();
1292      }
1293    }
1294  }
1295}
1296
1297/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1298/// the offset specified by Offset (which is specified in bytes).
1299///
1300/// There are two cases we handle here:
1301///   1) A union of vector types of the same size and potentially its elements.
1302///      Here we turn element accesses into insert/extract element operations.
1303///      This promotes a <4 x float> with a store of float to the third element
1304///      into a <4 x float> that uses insert element.
1305///   2) A fully general blob of memory, which we turn into some (potentially
1306///      large) integer type with extract and insert operations where the loads
1307///      and stores would mutate the memory.
1308static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1309                        unsigned AllocaSize, const TargetData &TD,
1310                        LLVMContext &Context) {
1311  // If this could be contributing to a vector, analyze it.
1312  if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
1313
1314    // If the In type is a vector that is the same size as the alloca, see if it
1315    // matches the existing VecTy.
1316    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1317      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1318        // If we're storing/loading a vector of the right size, allow it as a
1319        // vector.  If this the first vector we see, remember the type so that
1320        // we know the element size.
1321        if (VecTy == 0)
1322          VecTy = VInTy;
1323        return;
1324      }
1325    } else if (In->isFloatTy() || In->isDoubleTy() ||
1326               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1327                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1328      // If we're accessing something that could be an element of a vector, see
1329      // if the implied vector agrees with what we already have and if Offset is
1330      // compatible with it.
1331      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1332      if (Offset % EltSize == 0 &&
1333          AllocaSize % EltSize == 0 &&
1334          (VecTy == 0 ||
1335           cast<VectorType>(VecTy)->getElementType()
1336                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1337        if (VecTy == 0)
1338          VecTy = VectorType::get(In, AllocaSize/EltSize);
1339        return;
1340      }
1341    }
1342  }
1343
1344  // Otherwise, we have a case that we can't handle with an optimized vector
1345  // form.  We can still turn this into a large integer.
1346  VecTy = Type::getVoidTy(Context);
1347}
1348
1349/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1350/// its accesses to use a to single vector type, return true, and set VecTy to
1351/// the new type.  If we could convert the alloca into a single promotable
1352/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1353/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1354/// is the current offset from the base of the alloca being analyzed.
1355///
1356/// If we see at least one access to the value that is as a vector type, set the
1357/// SawVec flag.
1358///
1359bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1360                              bool &SawVec, uint64_t Offset,
1361                              unsigned AllocaSize) {
1362  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1363    Instruction *User = cast<Instruction>(*UI);
1364
1365    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1366      // Don't break volatile loads.
1367      if (LI->isVolatile())
1368        return false;
1369      MergeInType(LI->getType(), Offset, VecTy,
1370                  AllocaSize, *TD, V->getContext());
1371      SawVec |= isa<VectorType>(LI->getType());
1372      continue;
1373    }
1374
1375    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1376      // Storing the pointer, not into the value?
1377      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1378      MergeInType(SI->getOperand(0)->getType(), Offset,
1379                  VecTy, AllocaSize, *TD, V->getContext());
1380      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1381      continue;
1382    }
1383
1384    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1385      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1386                              AllocaSize))
1387        return false;
1388      IsNotTrivial = true;
1389      continue;
1390    }
1391
1392    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1393      // If this is a GEP with a variable indices, we can't handle it.
1394      if (!GEP->hasAllConstantIndices())
1395        return false;
1396
1397      // Compute the offset that this GEP adds to the pointer.
1398      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1399      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1400                                                &Indices[0], Indices.size());
1401      // See if all uses can be converted.
1402      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1403                              AllocaSize))
1404        return false;
1405      IsNotTrivial = true;
1406      continue;
1407    }
1408
1409    // If this is a constant sized memset of a constant value (e.g. 0) we can
1410    // handle it.
1411    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1412      // Store of constant value and constant size.
1413      if (isa<ConstantInt>(MSI->getValue()) &&
1414          isa<ConstantInt>(MSI->getLength())) {
1415        IsNotTrivial = true;
1416        continue;
1417      }
1418    }
1419
1420    // If this is a memcpy or memmove into or out of the whole allocation, we
1421    // can handle it like a load or store of the scalar type.
1422    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1423      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1424        if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1425          IsNotTrivial = true;
1426          continue;
1427        }
1428    }
1429
1430    // Ignore dbg intrinsic.
1431    if (isa<DbgInfoIntrinsic>(User))
1432      continue;
1433
1434    // Otherwise, we cannot handle this!
1435    return false;
1436  }
1437
1438  return true;
1439}
1440
1441
1442/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1443/// directly.  This happens when we are converting an "integer union" to a
1444/// single integer scalar, or when we are converting a "vector union" to a
1445/// vector with insert/extractelement instructions.
1446///
1447/// Offset is an offset from the original alloca, in bits that need to be
1448/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1449void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1450  while (!Ptr->use_empty()) {
1451    Instruction *User = cast<Instruction>(Ptr->use_back());
1452
1453    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1454      ConvertUsesToScalar(CI, NewAI, Offset);
1455      CI->eraseFromParent();
1456      continue;
1457    }
1458
1459    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1460      // Compute the offset that this GEP adds to the pointer.
1461      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1462      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1463                                                &Indices[0], Indices.size());
1464      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1465      GEP->eraseFromParent();
1466      continue;
1467    }
1468
1469    IRBuilder<> Builder(User->getParent(), User);
1470
1471    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1472      // The load is a bit extract from NewAI shifted right by Offset bits.
1473      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1474      Value *NewLoadVal
1475        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1476      LI->replaceAllUsesWith(NewLoadVal);
1477      LI->eraseFromParent();
1478      continue;
1479    }
1480
1481    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1482      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1483      Value *Old = Builder.CreateLoad(NewAI, NewAI->getName() + ".in");
1484      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1485                                             Builder);
1486      Builder.CreateStore(New, NewAI);
1487      SI->eraseFromParent();
1488      continue;
1489    }
1490
1491    // If this is a constant sized memset of a constant value (e.g. 0) we can
1492    // transform it into a store of the expanded constant value.
1493    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1494      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1495      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1496      if (NumBytes != 0) {
1497        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1498
1499        // Compute the value replicated the right number of times.
1500        APInt APVal(NumBytes*8, Val);
1501
1502        // Splat the value if non-zero.
1503        if (Val)
1504          for (unsigned i = 1; i != NumBytes; ++i)
1505            APVal |= APVal << 8;
1506
1507        Value *Old = Builder.CreateLoad(NewAI, NewAI->getName() + ".in");
1508        Value *New = ConvertScalar_InsertValue(
1509                                    ConstantInt::get(User->getContext(), APVal),
1510                                               Old, Offset, Builder);
1511        Builder.CreateStore(New, NewAI);
1512      }
1513      MSI->eraseFromParent();
1514      continue;
1515    }
1516
1517    // If this is a memcpy or memmove into or out of the whole allocation, we
1518    // can handle it like a load or store of the scalar type.
1519    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1520      assert(Offset == 0 && "must be store to start of alloca");
1521
1522      // If the source and destination are both to the same alloca, then this is
1523      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
1524      // as appropriate.
1525      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1526
1527      if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1528        // Dest must be OrigAI, change this to be a load from the original
1529        // pointer (bitcasted), then a store to our new alloca.
1530        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1531        Value *SrcPtr = MTI->getSource();
1532        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1533
1534        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1535        SrcVal->setAlignment(MTI->getAlignment());
1536        Builder.CreateStore(SrcVal, NewAI);
1537      } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1538        // Src must be OrigAI, change this to be a load from NewAI then a store
1539        // through the original dest pointer (bitcasted).
1540        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1541        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1542
1543        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1544        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1545        NewStore->setAlignment(MTI->getAlignment());
1546      } else {
1547        // Noop transfer. Src == Dst
1548      }
1549
1550
1551      MTI->eraseFromParent();
1552      continue;
1553    }
1554
1555    // If user is a dbg info intrinsic then it is safe to remove it.
1556    if (isa<DbgInfoIntrinsic>(User)) {
1557      User->eraseFromParent();
1558      continue;
1559    }
1560
1561    llvm_unreachable("Unsupported operation!");
1562  }
1563}
1564
1565/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1566/// or vector value FromVal, extracting the bits from the offset specified by
1567/// Offset.  This returns the value, which is of type ToType.
1568///
1569/// This happens when we are converting an "integer union" to a single
1570/// integer scalar, or when we are converting a "vector union" to a vector with
1571/// insert/extractelement instructions.
1572///
1573/// Offset is an offset from the original alloca, in bits that need to be
1574/// shifted to the right.
1575Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1576                                        uint64_t Offset, IRBuilder<> &Builder) {
1577  // If the load is of the whole new alloca, no conversion is needed.
1578  if (FromVal->getType() == ToType && Offset == 0)
1579    return FromVal;
1580
1581  // If the result alloca is a vector type, this is either an element
1582  // access or a bitcast to another vector type of the same size.
1583  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1584    if (isa<VectorType>(ToType))
1585      return Builder.CreateBitCast(FromVal, ToType, "tmp");
1586
1587    // Otherwise it must be an element access.
1588    unsigned Elt = 0;
1589    if (Offset) {
1590      unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1591      Elt = Offset/EltSize;
1592      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1593    }
1594    // Return the element extracted out of it.
1595    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
1596                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
1597    if (V->getType() != ToType)
1598      V = Builder.CreateBitCast(V, ToType, "tmp");
1599    return V;
1600  }
1601
1602  // If ToType is a first class aggregate, extract out each of the pieces and
1603  // use insertvalue's to form the FCA.
1604  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1605    const StructLayout &Layout = *TD->getStructLayout(ST);
1606    Value *Res = UndefValue::get(ST);
1607    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1608      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1609                                        Offset+Layout.getElementOffsetInBits(i),
1610                                              Builder);
1611      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1612    }
1613    return Res;
1614  }
1615
1616  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1617    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1618    Value *Res = UndefValue::get(AT);
1619    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1620      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1621                                              Offset+i*EltSize, Builder);
1622      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1623    }
1624    return Res;
1625  }
1626
1627  // Otherwise, this must be a union that was converted to an integer value.
1628  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1629
1630  // If this is a big-endian system and the load is narrower than the
1631  // full alloca type, we need to do a shift to get the right bits.
1632  int ShAmt = 0;
1633  if (TD->isBigEndian()) {
1634    // On big-endian machines, the lowest bit is stored at the bit offset
1635    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1636    // integers with a bitwidth that is not a multiple of 8.
1637    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1638            TD->getTypeStoreSizeInBits(ToType) - Offset;
1639  } else {
1640    ShAmt = Offset;
1641  }
1642
1643  // Note: we support negative bitwidths (with shl) which are not defined.
1644  // We do this to support (f.e.) loads off the end of a structure where
1645  // only some bits are used.
1646  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1647    FromVal = Builder.CreateLShr(FromVal,
1648                                 ConstantInt::get(FromVal->getType(),
1649                                                           ShAmt), "tmp");
1650  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1651    FromVal = Builder.CreateShl(FromVal,
1652                                ConstantInt::get(FromVal->getType(),
1653                                                          -ShAmt), "tmp");
1654
1655  // Finally, unconditionally truncate the integer to the right width.
1656  unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1657  if (LIBitWidth < NTy->getBitWidth())
1658    FromVal =
1659      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
1660                                                    LIBitWidth), "tmp");
1661  else if (LIBitWidth > NTy->getBitWidth())
1662    FromVal =
1663       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
1664                                                    LIBitWidth), "tmp");
1665
1666  // If the result is an integer, this is a trunc or bitcast.
1667  if (isa<IntegerType>(ToType)) {
1668    // Should be done.
1669  } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1670    // Just do a bitcast, we know the sizes match up.
1671    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1672  } else {
1673    // Otherwise must be a pointer.
1674    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1675  }
1676  assert(FromVal->getType() == ToType && "Didn't convert right?");
1677  return FromVal;
1678}
1679
1680
1681/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1682/// or vector value "Old" at the offset specified by Offset.
1683///
1684/// This happens when we are converting an "integer union" to a
1685/// single integer scalar, or when we are converting a "vector union" to a
1686/// vector with insert/extractelement instructions.
1687///
1688/// Offset is an offset from the original alloca, in bits that need to be
1689/// shifted to the right.
1690Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1691                                       uint64_t Offset, IRBuilder<> &Builder) {
1692
1693  // Convert the stored type to the actual type, shift it left to insert
1694  // then 'or' into place.
1695  const Type *AllocaType = Old->getType();
1696  LLVMContext &Context = Old->getContext();
1697
1698  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1699    uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1700    uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1701
1702    // Changing the whole vector with memset or with an access of a different
1703    // vector type?
1704    if (ValSize == VecSize)
1705      return Builder.CreateBitCast(SV, AllocaType, "tmp");
1706
1707    uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1708
1709    // Must be an element insertion.
1710    unsigned Elt = Offset/EltSize;
1711
1712    if (SV->getType() != VTy->getElementType())
1713      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1714
1715    SV = Builder.CreateInsertElement(Old, SV,
1716                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
1717                                     "tmp");
1718    return SV;
1719  }
1720
1721  // If SV is a first-class aggregate value, insert each value recursively.
1722  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1723    const StructLayout &Layout = *TD->getStructLayout(ST);
1724    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1725      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1726      Old = ConvertScalar_InsertValue(Elt, Old,
1727                                      Offset+Layout.getElementOffsetInBits(i),
1728                                      Builder);
1729    }
1730    return Old;
1731  }
1732
1733  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1734    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1735    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1736      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1737      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1738    }
1739    return Old;
1740  }
1741
1742  // If SV is a float, convert it to the appropriate integer type.
1743  // If it is a pointer, do the same.
1744  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1745  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1746  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1747  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1748  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1749    SV = Builder.CreateBitCast(SV,
1750                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
1751  else if (isa<PointerType>(SV->getType()))
1752    SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(SV->getContext()), "tmp");
1753
1754  // Zero extend or truncate the value if needed.
1755  if (SV->getType() != AllocaType) {
1756    if (SV->getType()->getPrimitiveSizeInBits() <
1757             AllocaType->getPrimitiveSizeInBits())
1758      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1759    else {
1760      // Truncation may be needed if storing more than the alloca can hold
1761      // (undefined behavior).
1762      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1763      SrcWidth = DestWidth;
1764      SrcStoreWidth = DestStoreWidth;
1765    }
1766  }
1767
1768  // If this is a big-endian system and the store is narrower than the
1769  // full alloca type, we need to do a shift to get the right bits.
1770  int ShAmt = 0;
1771  if (TD->isBigEndian()) {
1772    // On big-endian machines, the lowest bit is stored at the bit offset
1773    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1774    // integers with a bitwidth that is not a multiple of 8.
1775    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1776  } else {
1777    ShAmt = Offset;
1778  }
1779
1780  // Note: we support negative bitwidths (with shr) which are not defined.
1781  // We do this to support (f.e.) stores off the end of a structure where
1782  // only some bits in the structure are set.
1783  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1784  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1785    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1786                           ShAmt), "tmp");
1787    Mask <<= ShAmt;
1788  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1789    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1790                            -ShAmt), "tmp");
1791    Mask = Mask.lshr(-ShAmt);
1792  }
1793
1794  // Mask out the bits we are about to insert from the old value, and or
1795  // in the new bits.
1796  if (SrcWidth != DestWidth) {
1797    assert(DestWidth > SrcWidth);
1798    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1799    SV = Builder.CreateOr(Old, SV, "ins");
1800  }
1801  return SV;
1802}
1803
1804
1805
1806/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1807/// some part of a constant global variable.  This intentionally only accepts
1808/// constant expressions because we don't can't rewrite arbitrary instructions.
1809static bool PointsToConstantGlobal(Value *V) {
1810  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1811    return GV->isConstant();
1812  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1813    if (CE->getOpcode() == Instruction::BitCast ||
1814        CE->getOpcode() == Instruction::GetElementPtr)
1815      return PointsToConstantGlobal(CE->getOperand(0));
1816  return false;
1817}
1818
1819/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1820/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1821/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1822/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1823/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1824/// the alloca, and if the source pointer is a pointer to a constant  global, we
1825/// can optimize this.
1826static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1827                                           bool isOffset) {
1828  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1829    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1830      // Ignore non-volatile loads, they are always ok.
1831      if (!LI->isVolatile())
1832        continue;
1833
1834    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1835      // If uses of the bitcast are ok, we are ok.
1836      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1837        return false;
1838      continue;
1839    }
1840    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1841      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1842      // doesn't, it does.
1843      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1844                                         isOffset || !GEP->hasAllZeroIndices()))
1845        return false;
1846      continue;
1847    }
1848
1849    // If this is isn't our memcpy/memmove, reject it as something we can't
1850    // handle.
1851    if (!isa<MemTransferInst>(*UI))
1852      return false;
1853
1854    // If we already have seen a copy, reject the second one.
1855    if (TheCopy) return false;
1856
1857    // If the pointer has been offset from the start of the alloca, we can't
1858    // safely handle this.
1859    if (isOffset) return false;
1860
1861    // If the memintrinsic isn't using the alloca as the dest, reject it.
1862    if (UI.getOperandNo() != 1) return false;
1863
1864    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1865
1866    // If the source of the memcpy/move is not a constant global, reject it.
1867    if (!PointsToConstantGlobal(MI->getOperand(2)))
1868      return false;
1869
1870    // Otherwise, the transform is safe.  Remember the copy instruction.
1871    TheCopy = MI;
1872  }
1873  return true;
1874}
1875
1876/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1877/// modified by a copy from a constant global.  If we can prove this, we can
1878/// replace any uses of the alloca with uses of the global directly.
1879Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1880  Instruction *TheCopy = 0;
1881  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1882    return TheCopy;
1883  return 0;
1884}
1885