ScalarReplAggregates.cpp revision 5179782cf03cfabfe89df71677e0ffc772b5fdd5
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DIBuilder.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/Loads.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Transforms/Utils/PromoteMemToReg.h"
39#include "llvm/Transforms/Utils/Local.h"
40#include "llvm/Transforms/Utils/SSAUpdater.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/MathExtras.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/Statistic.h"
51using namespace llvm;
52
53STATISTIC(NumReplaced,  "Number of allocas broken up");
54STATISTIC(NumPromoted,  "Number of allocas promoted");
55STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
56STATISTIC(NumConverted, "Number of aggregates converted to scalar");
57STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
58
59namespace {
60  struct SROA : public FunctionPass {
61    SROA(int T, bool hasDT, char &ID)
62      : FunctionPass(ID), HasDomTree(hasDT) {
63      if (T == -1)
64        SRThreshold = 128;
65      else
66        SRThreshold = T;
67    }
68
69    bool runOnFunction(Function &F);
70
71    bool performScalarRepl(Function &F);
72    bool performPromotion(Function &F);
73
74  private:
75    bool HasDomTree;
76    TargetData *TD;
77
78    /// DeadInsts - Keep track of instructions we have made dead, so that
79    /// we can remove them after we are done working.
80    SmallVector<Value*, 32> DeadInsts;
81
82    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
83    /// information about the uses.  All these fields are initialized to false
84    /// and set to true when something is learned.
85    struct AllocaInfo {
86      /// The alloca to promote.
87      AllocaInst *AI;
88
89      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
90      /// looping and avoid redundant work.
91      SmallPtrSet<PHINode*, 8> CheckedPHIs;
92
93      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
94      bool isUnsafe : 1;
95
96      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
97      bool isMemCpySrc : 1;
98
99      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
100      bool isMemCpyDst : 1;
101
102      /// hasSubelementAccess - This is true if a subelement of the alloca is
103      /// ever accessed, or false if the alloca is only accessed with mem
104      /// intrinsics or load/store that only access the entire alloca at once.
105      bool hasSubelementAccess : 1;
106
107      /// hasALoadOrStore - This is true if there are any loads or stores to it.
108      /// The alloca may just be accessed with memcpy, for example, which would
109      /// not set this.
110      bool hasALoadOrStore : 1;
111
112      explicit AllocaInfo(AllocaInst *ai)
113        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
114          hasSubelementAccess(false), hasALoadOrStore(false) {}
115    };
116
117    unsigned SRThreshold;
118
119    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
120      I.isUnsafe = true;
121      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
122    }
123
124    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
125
126    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
127    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
128                                         AllocaInfo &Info);
129    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
130    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
131                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
132                         Instruction *TheAccess, bool AllowWholeAccess);
133    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
134    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
135                                  const Type *&IdxTy);
136
137    void DoScalarReplacement(AllocaInst *AI,
138                             std::vector<AllocaInst*> &WorkList);
139    void DeleteDeadInstructions();
140
141    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
142                              SmallVector<AllocaInst*, 32> &NewElts);
143    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
144                        SmallVector<AllocaInst*, 32> &NewElts);
145    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
146                    SmallVector<AllocaInst*, 32> &NewElts);
147    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
148                                      AllocaInst *AI,
149                                      SmallVector<AllocaInst*, 32> &NewElts);
150    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
151                                       SmallVector<AllocaInst*, 32> &NewElts);
152    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
153                                      SmallVector<AllocaInst*, 32> &NewElts);
154
155    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
156  };
157
158  // SROA_DT - SROA that uses DominatorTree.
159  struct SROA_DT : public SROA {
160    static char ID;
161  public:
162    SROA_DT(int T = -1) : SROA(T, true, ID) {
163      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
164    }
165
166    // getAnalysisUsage - This pass does not require any passes, but we know it
167    // will not alter the CFG, so say so.
168    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
169      AU.addRequired<DominatorTree>();
170      AU.setPreservesCFG();
171    }
172  };
173
174  // SROA_SSAUp - SROA that uses SSAUpdater.
175  struct SROA_SSAUp : public SROA {
176    static char ID;
177  public:
178    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
179      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
180    }
181
182    // getAnalysisUsage - This pass does not require any passes, but we know it
183    // will not alter the CFG, so say so.
184    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
185      AU.setPreservesCFG();
186    }
187  };
188
189}
190
191char SROA_DT::ID = 0;
192char SROA_SSAUp::ID = 0;
193
194INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
195                "Scalar Replacement of Aggregates (DT)", false, false)
196INITIALIZE_PASS_DEPENDENCY(DominatorTree)
197INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
198                "Scalar Replacement of Aggregates (DT)", false, false)
199
200INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
201                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
202INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
203                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
204
205// Public interface to the ScalarReplAggregates pass
206FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
207                                                   bool UseDomTree) {
208  if (UseDomTree)
209    return new SROA_DT(Threshold);
210  return new SROA_SSAUp(Threshold);
211}
212
213
214//===----------------------------------------------------------------------===//
215// Convert To Scalar Optimization.
216//===----------------------------------------------------------------------===//
217
218namespace {
219/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
220/// optimization, which scans the uses of an alloca and determines if it can
221/// rewrite it in terms of a single new alloca that can be mem2reg'd.
222class ConvertToScalarInfo {
223  /// AllocaSize - The size of the alloca being considered in bytes.
224  unsigned AllocaSize;
225  const TargetData &TD;
226
227  /// IsNotTrivial - This is set to true if there is some access to the object
228  /// which means that mem2reg can't promote it.
229  bool IsNotTrivial;
230
231  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
232  /// computed based on the uses of the alloca rather than the LLVM type system.
233  enum {
234    Unknown,
235
236    // An access via GEPs that is consistent with element access of a vector
237    // type. This will not be converted into a vector unless there is a later
238    // access using an actual vector type.
239    ImplicitVector,
240
241    // An access via vector operations and possibly GEPs that are consistent
242    // with the layout of the vector type.
243    Vector,
244
245    // An integer bag-of-bits with bitwise operations for insertion and
246    // extraction. Any combination of types can be converted into this kind
247    // of scalar.
248    Integer
249  } ScalarKind;
250
251  /// VectorTy - This tracks the type that we should promote the vector to if
252  /// it is possible to turn it into a vector.  This starts out null, and if it
253  /// isn't possible to turn into a vector type, it gets set to VoidTy.
254  const VectorType *VectorTy;
255
256  /// HadNonMemTransferAccess - True if there is at least one access to the
257  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
258  /// large integers unless there is some potential for optimization.
259  bool HadNonMemTransferAccess;
260
261public:
262  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
263    : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
264      VectorTy(0), HadNonMemTransferAccess(false) { }
265
266  AllocaInst *TryConvert(AllocaInst *AI);
267
268private:
269  bool CanConvertToScalar(Value *V, uint64_t Offset);
270  void MergeInType(const Type *In, uint64_t Offset);
271  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
272  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
273
274  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
275                                    uint64_t Offset, IRBuilder<> &Builder);
276  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
277                                   uint64_t Offset, IRBuilder<> &Builder);
278};
279} // end anonymous namespace.
280
281
282/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
283/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
284/// alloca if possible or null if not.
285AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
286  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
287  // out.
288  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
289    return 0;
290
291  // If an alloca has only memset / memcpy uses, it may still have an Unknown
292  // ScalarKind. Treat it as an Integer below.
293  if (ScalarKind == Unknown)
294    ScalarKind = Integer;
295
296  // If we were able to find a vector type that can handle this with
297  // insert/extract elements, and if there was at least one use that had
298  // a vector type, promote this to a vector.  We don't want to promote
299  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
300  // we just get a lot of insert/extracts.  If at least one vector is
301  // involved, then we probably really do have a union of vector/array.
302  const Type *NewTy;
303  if (VectorTy && ScalarKind != ImplicitVector) {
304    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
305          << *VectorTy << '\n');
306    NewTy = VectorTy;  // Use the vector type.
307  } else {
308    unsigned BitWidth = AllocaSize * 8;
309    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
310        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
311      return 0;
312
313    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
314    // Create and insert the integer alloca.
315    NewTy = IntegerType::get(AI->getContext(), BitWidth);
316  }
317  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
318  ConvertUsesToScalar(AI, NewAI, 0);
319  return NewAI;
320}
321
322/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
323/// so far at the offset specified by Offset (which is specified in bytes).
324///
325/// There are three cases we handle here:
326///   1) A union of vector types of the same size and potentially its elements.
327///      Here we turn element accesses into insert/extract element operations.
328///      This promotes a <4 x float> with a store of float to the third element
329///      into a <4 x float> that uses insert element.
330///   2) A union of vector types with power-of-2 size differences, e.g. a float,
331///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
332///      and extract element operations, and <2 x float> accesses into a cast to
333///      <2 x double>, an extract, and a cast back to <2 x float>.
334///   3) A fully general blob of memory, which we turn into some (potentially
335///      large) integer type with extract and insert operations where the loads
336///      and stores would mutate the memory.  We mark this by setting VectorTy
337///      to VoidTy.
338void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
339  // If we already decided to turn this into a blob of integer memory, there is
340  // nothing to be done.
341  if (ScalarKind == Integer)
342    return;
343
344  // If this could be contributing to a vector, analyze it.
345
346  // If the In type is a vector that is the same size as the alloca, see if it
347  // matches the existing VecTy.
348  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
349    if (MergeInVectorType(VInTy, Offset))
350      return;
351  } else if (In->isFloatTy() || In->isDoubleTy() ||
352             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
353              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
354    // Full width accesses can be ignored, because they can always be turned
355    // into bitcasts.
356    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
357    if (EltSize == AllocaSize)
358      return;
359
360    // If we're accessing something that could be an element of a vector, see
361    // if the implied vector agrees with what we already have and if Offset is
362    // compatible with it.
363    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
364        (!VectorTy || Offset * 8 < VectorTy->getPrimitiveSizeInBits())) {
365      if (!VectorTy) {
366        ScalarKind = ImplicitVector;
367        VectorTy = VectorType::get(In, AllocaSize/EltSize);
368        return;
369      }
370
371      unsigned CurrentEltSize = VectorTy->getElementType()
372                                ->getPrimitiveSizeInBits()/8;
373      if (EltSize == CurrentEltSize)
374        return;
375
376      if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
377        return;
378    }
379  }
380
381  // Otherwise, we have a case that we can't handle with an optimized vector
382  // form.  We can still turn this into a large integer.
383  ScalarKind = Integer;
384  VectorTy = 0;
385}
386
387/// MergeInVectorType - Handles the vector case of MergeInType, returning true
388/// if the type was successfully merged and false otherwise.
389bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
390                                            uint64_t Offset) {
391  // TODO: Support nonzero offsets?
392  if (Offset != 0)
393    return false;
394
395  // Only allow vectors that are a power-of-2 away from the size of the alloca.
396  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
397    return false;
398
399  // If this the first vector we see, remember the type so that we know the
400  // element size.
401  if (!VectorTy) {
402    ScalarKind = Vector;
403    VectorTy = VInTy;
404    return true;
405  }
406
407  unsigned BitWidth = VectorTy->getBitWidth();
408  unsigned InBitWidth = VInTy->getBitWidth();
409
410  // Vectors of the same size can be converted using a simple bitcast.
411  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8)) {
412    ScalarKind = Vector;
413    return true;
414  }
415
416  const Type *ElementTy = VectorTy->getElementType();
417  const Type *InElementTy = VInTy->getElementType();
418
419  // Do not allow mixed integer and floating-point accesses from vectors of
420  // different sizes.
421  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
422    return false;
423
424  if (ElementTy->isFloatingPointTy()) {
425    // Only allow floating-point vectors of different sizes if they have the
426    // same element type.
427    // TODO: This could be loosened a bit, but would anything benefit?
428    if (ElementTy != InElementTy)
429      return false;
430
431    // There are no arbitrary-precision floating-point types, which limits the
432    // number of legal vector types with larger element types that we can form
433    // to bitcast and extract a subvector.
434    // TODO: We could support some more cases with mixed fp128 and double here.
435    if (!(BitWidth == 64 || BitWidth == 128) ||
436        !(InBitWidth == 64 || InBitWidth == 128))
437      return false;
438  } else {
439    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
440                                       "or floating-point.");
441    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
442    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
443
444    // Do not allow integer types smaller than a byte or types whose widths are
445    // not a multiple of a byte.
446    if (BitWidth < 8 || InBitWidth < 8 ||
447        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
448      return false;
449  }
450
451  // Pick the largest of the two vector types.
452  ScalarKind = Vector;
453  if (InBitWidth > BitWidth)
454    VectorTy = VInTy;
455
456  return true;
457}
458
459/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
460/// its accesses to a single vector type, return true and set VecTy to
461/// the new type.  If we could convert the alloca into a single promotable
462/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
463/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
464/// is the current offset from the base of the alloca being analyzed.
465///
466/// If we see at least one access to the value that is as a vector type, set the
467/// SawVec flag.
468bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
469  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
470    Instruction *User = cast<Instruction>(*UI);
471
472    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
473      // Don't break volatile loads.
474      if (LI->isVolatile())
475        return false;
476      // Don't touch MMX operations.
477      if (LI->getType()->isX86_MMXTy())
478        return false;
479      HadNonMemTransferAccess = true;
480      MergeInType(LI->getType(), Offset);
481      continue;
482    }
483
484    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
485      // Storing the pointer, not into the value?
486      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
487      // Don't touch MMX operations.
488      if (SI->getOperand(0)->getType()->isX86_MMXTy())
489        return false;
490      HadNonMemTransferAccess = true;
491      MergeInType(SI->getOperand(0)->getType(), Offset);
492      continue;
493    }
494
495    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
496      IsNotTrivial = true;  // Can't be mem2reg'd.
497      if (!CanConvertToScalar(BCI, Offset))
498        return false;
499      continue;
500    }
501
502    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
503      // If this is a GEP with a variable indices, we can't handle it.
504      if (!GEP->hasAllConstantIndices())
505        return false;
506
507      // Compute the offset that this GEP adds to the pointer.
508      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
509      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
510                                               &Indices[0], Indices.size());
511      // See if all uses can be converted.
512      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
513        return false;
514      IsNotTrivial = true;  // Can't be mem2reg'd.
515      HadNonMemTransferAccess = true;
516      continue;
517    }
518
519    // If this is a constant sized memset of a constant value (e.g. 0) we can
520    // handle it.
521    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
522      // Store of constant value and constant size.
523      if (!isa<ConstantInt>(MSI->getValue()) ||
524          !isa<ConstantInt>(MSI->getLength()))
525        return false;
526      IsNotTrivial = true;  // Can't be mem2reg'd.
527      HadNonMemTransferAccess = true;
528      continue;
529    }
530
531    // If this is a memcpy or memmove into or out of the whole allocation, we
532    // can handle it like a load or store of the scalar type.
533    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
534      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
535      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
536        return false;
537
538      IsNotTrivial = true;  // Can't be mem2reg'd.
539      continue;
540    }
541
542    // Otherwise, we cannot handle this!
543    return false;
544  }
545
546  return true;
547}
548
549/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
550/// directly.  This happens when we are converting an "integer union" to a
551/// single integer scalar, or when we are converting a "vector union" to a
552/// vector with insert/extractelement instructions.
553///
554/// Offset is an offset from the original alloca, in bits that need to be
555/// shifted to the right.  By the end of this, there should be no uses of Ptr.
556void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
557                                              uint64_t Offset) {
558  while (!Ptr->use_empty()) {
559    Instruction *User = cast<Instruction>(Ptr->use_back());
560
561    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
562      ConvertUsesToScalar(CI, NewAI, Offset);
563      CI->eraseFromParent();
564      continue;
565    }
566
567    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
568      // Compute the offset that this GEP adds to the pointer.
569      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
570      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
571                                               &Indices[0], Indices.size());
572      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
573      GEP->eraseFromParent();
574      continue;
575    }
576
577    IRBuilder<> Builder(User);
578
579    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
580      // The load is a bit extract from NewAI shifted right by Offset bits.
581      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
582      Value *NewLoadVal
583        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
584      LI->replaceAllUsesWith(NewLoadVal);
585      LI->eraseFromParent();
586      continue;
587    }
588
589    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
590      assert(SI->getOperand(0) != Ptr && "Consistency error!");
591      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
592      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
593                                             Builder);
594      Builder.CreateStore(New, NewAI);
595      SI->eraseFromParent();
596
597      // If the load we just inserted is now dead, then the inserted store
598      // overwrote the entire thing.
599      if (Old->use_empty())
600        Old->eraseFromParent();
601      continue;
602    }
603
604    // If this is a constant sized memset of a constant value (e.g. 0) we can
605    // transform it into a store of the expanded constant value.
606    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
607      assert(MSI->getRawDest() == Ptr && "Consistency error!");
608      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
609      if (NumBytes != 0) {
610        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
611
612        // Compute the value replicated the right number of times.
613        APInt APVal(NumBytes*8, Val);
614
615        // Splat the value if non-zero.
616        if (Val)
617          for (unsigned i = 1; i != NumBytes; ++i)
618            APVal |= APVal << 8;
619
620        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
621        Value *New = ConvertScalar_InsertValue(
622                                    ConstantInt::get(User->getContext(), APVal),
623                                               Old, Offset, Builder);
624        Builder.CreateStore(New, NewAI);
625
626        // If the load we just inserted is now dead, then the memset overwrote
627        // the entire thing.
628        if (Old->use_empty())
629          Old->eraseFromParent();
630      }
631      MSI->eraseFromParent();
632      continue;
633    }
634
635    // If this is a memcpy or memmove into or out of the whole allocation, we
636    // can handle it like a load or store of the scalar type.
637    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
638      assert(Offset == 0 && "must be store to start of alloca");
639
640      // If the source and destination are both to the same alloca, then this is
641      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
642      // as appropriate.
643      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
644
645      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
646        // Dest must be OrigAI, change this to be a load from the original
647        // pointer (bitcasted), then a store to our new alloca.
648        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
649        Value *SrcPtr = MTI->getSource();
650        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
651        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
652        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
653          AIPTy = PointerType::get(AIPTy->getElementType(),
654                                   SPTy->getAddressSpace());
655        }
656        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
657
658        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
659        SrcVal->setAlignment(MTI->getAlignment());
660        Builder.CreateStore(SrcVal, NewAI);
661      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
662        // Src must be OrigAI, change this to be a load from NewAI then a store
663        // through the original dest pointer (bitcasted).
664        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
665        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
666
667        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
668        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
669        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
670          AIPTy = PointerType::get(AIPTy->getElementType(),
671                                   DPTy->getAddressSpace());
672        }
673        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
674
675        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
676        NewStore->setAlignment(MTI->getAlignment());
677      } else {
678        // Noop transfer. Src == Dst
679      }
680
681      MTI->eraseFromParent();
682      continue;
683    }
684
685    llvm_unreachable("Unsupported operation!");
686  }
687}
688
689/// getScaledElementType - Gets a scaled element type for a partial vector
690/// access of an alloca. The input types must be integer or floating-point
691/// scalar or vector types, and the resulting type is an integer, float or
692/// double.
693static const Type *getScaledElementType(const Type *Ty1, const Type *Ty2,
694                                        unsigned NewBitWidth) {
695  bool IsFP1 = Ty1->isFloatingPointTy() ||
696               (Ty1->isVectorTy() &&
697                cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
698  bool IsFP2 = Ty2->isFloatingPointTy() ||
699               (Ty2->isVectorTy() &&
700                cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
701
702  LLVMContext &Context = Ty1->getContext();
703
704  // Prefer floating-point types over integer types, as integer types may have
705  // been created by earlier scalar replacement.
706  if (IsFP1 || IsFP2) {
707    if (NewBitWidth == 32)
708      return Type::getFloatTy(Context);
709    if (NewBitWidth == 64)
710      return Type::getDoubleTy(Context);
711  }
712
713  return Type::getIntNTy(Context, NewBitWidth);
714}
715
716/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
717/// to another vector of the same element type which has the same allocation
718/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
719static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
720                                      IRBuilder<> &Builder) {
721  const Type *FromType = FromVal->getType();
722  const VectorType *FromVTy = cast<VectorType>(FromType);
723  const VectorType *ToVTy = cast<VectorType>(ToType);
724  assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
725         "Vectors must have the same element type");
726   Value *UnV = UndefValue::get(FromType);
727   unsigned numEltsFrom = FromVTy->getNumElements();
728   unsigned numEltsTo = ToVTy->getNumElements();
729
730   SmallVector<Constant*, 3> Args;
731   const Type* Int32Ty = Builder.getInt32Ty();
732   unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
733   unsigned i;
734   for (i=0; i != minNumElts; ++i)
735     Args.push_back(ConstantInt::get(Int32Ty, i));
736
737   if (i < numEltsTo) {
738     Constant* UnC = UndefValue::get(Int32Ty);
739     for (; i != numEltsTo; ++i)
740       Args.push_back(UnC);
741   }
742   Constant *Mask = ConstantVector::get(Args);
743   return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
744}
745
746/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
747/// or vector value FromVal, extracting the bits from the offset specified by
748/// Offset.  This returns the value, which is of type ToType.
749///
750/// This happens when we are converting an "integer union" to a single
751/// integer scalar, or when we are converting a "vector union" to a vector with
752/// insert/extractelement instructions.
753///
754/// Offset is an offset from the original alloca, in bits that need to be
755/// shifted to the right.
756Value *ConvertToScalarInfo::
757ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
758                           uint64_t Offset, IRBuilder<> &Builder) {
759  // If the load is of the whole new alloca, no conversion is needed.
760  const Type *FromType = FromVal->getType();
761  if (FromType == ToType && Offset == 0)
762    return FromVal;
763
764  // If the result alloca is a vector type, this is either an element
765  // access or a bitcast to another vector type of the same size.
766  if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
767    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
768    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
769    if (FromTypeSize == ToTypeSize) {
770      // If the two types have the same primitive size, use a bit cast.
771      // Otherwise, it is two vectors with the same element type that has
772      // the same allocation size but different number of elements so use
773      // a shuffle vector.
774      if (FromType->getPrimitiveSizeInBits() ==
775          ToType->getPrimitiveSizeInBits())
776        return Builder.CreateBitCast(FromVal, ToType, "tmp");
777      else
778        return CreateShuffleVectorCast(FromVal, ToType, Builder);
779    }
780
781    if (isPowerOf2_64(FromTypeSize / ToTypeSize)) {
782      assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
783             "of a smaller vector type at a nonzero offset.");
784
785      const Type *CastElementTy = getScaledElementType(FromType, ToType,
786                                                       ToTypeSize * 8);
787      unsigned NumCastVectorElements = FromTypeSize / ToTypeSize;
788
789      LLVMContext &Context = FromVal->getContext();
790      const Type *CastTy = VectorType::get(CastElementTy,
791                                           NumCastVectorElements);
792      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
793
794      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
795      unsigned Elt = Offset/EltSize;
796      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
797      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
798                                        Type::getInt32Ty(Context), Elt), "tmp");
799      return Builder.CreateBitCast(Extract, ToType, "tmp");
800    }
801
802    // Otherwise it must be an element access.
803    unsigned Elt = 0;
804    if (Offset) {
805      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
806      Elt = Offset/EltSize;
807      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
808    }
809    // Return the element extracted out of it.
810    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
811                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
812    if (V->getType() != ToType)
813      V = Builder.CreateBitCast(V, ToType, "tmp");
814    return V;
815  }
816
817  // If ToType is a first class aggregate, extract out each of the pieces and
818  // use insertvalue's to form the FCA.
819  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
820    const StructLayout &Layout = *TD.getStructLayout(ST);
821    Value *Res = UndefValue::get(ST);
822    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
823      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
824                                        Offset+Layout.getElementOffsetInBits(i),
825                                              Builder);
826      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
827    }
828    return Res;
829  }
830
831  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
832    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
833    Value *Res = UndefValue::get(AT);
834    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
835      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
836                                              Offset+i*EltSize, Builder);
837      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
838    }
839    return Res;
840  }
841
842  // Otherwise, this must be a union that was converted to an integer value.
843  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
844
845  // If this is a big-endian system and the load is narrower than the
846  // full alloca type, we need to do a shift to get the right bits.
847  int ShAmt = 0;
848  if (TD.isBigEndian()) {
849    // On big-endian machines, the lowest bit is stored at the bit offset
850    // from the pointer given by getTypeStoreSizeInBits.  This matters for
851    // integers with a bitwidth that is not a multiple of 8.
852    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
853            TD.getTypeStoreSizeInBits(ToType) - Offset;
854  } else {
855    ShAmt = Offset;
856  }
857
858  // Note: we support negative bitwidths (with shl) which are not defined.
859  // We do this to support (f.e.) loads off the end of a structure where
860  // only some bits are used.
861  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
862    FromVal = Builder.CreateLShr(FromVal,
863                                 ConstantInt::get(FromVal->getType(),
864                                                           ShAmt), "tmp");
865  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
866    FromVal = Builder.CreateShl(FromVal,
867                                ConstantInt::get(FromVal->getType(),
868                                                          -ShAmt), "tmp");
869
870  // Finally, unconditionally truncate the integer to the right width.
871  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
872  if (LIBitWidth < NTy->getBitWidth())
873    FromVal =
874      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
875                                                    LIBitWidth), "tmp");
876  else if (LIBitWidth > NTy->getBitWidth())
877    FromVal =
878       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
879                                                    LIBitWidth), "tmp");
880
881  // If the result is an integer, this is a trunc or bitcast.
882  if (ToType->isIntegerTy()) {
883    // Should be done.
884  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
885    // Just do a bitcast, we know the sizes match up.
886    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
887  } else {
888    // Otherwise must be a pointer.
889    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
890  }
891  assert(FromVal->getType() == ToType && "Didn't convert right?");
892  return FromVal;
893}
894
895/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
896/// or vector value "Old" at the offset specified by Offset.
897///
898/// This happens when we are converting an "integer union" to a
899/// single integer scalar, or when we are converting a "vector union" to a
900/// vector with insert/extractelement instructions.
901///
902/// Offset is an offset from the original alloca, in bits that need to be
903/// shifted to the right.
904Value *ConvertToScalarInfo::
905ConvertScalar_InsertValue(Value *SV, Value *Old,
906                          uint64_t Offset, IRBuilder<> &Builder) {
907  // Convert the stored type to the actual type, shift it left to insert
908  // then 'or' into place.
909  const Type *AllocaType = Old->getType();
910  LLVMContext &Context = Old->getContext();
911
912  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
913    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
914    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
915
916    // Changing the whole vector with memset or with an access of a different
917    // vector type?
918    if (ValSize == VecSize) {
919      // If the two types have the same primitive size, use a bit cast.
920      // Otherwise, it is two vectors with the same element type that has
921      // the same allocation size but different number of elements so use
922      // a shuffle vector.
923      if (VTy->getPrimitiveSizeInBits() ==
924          SV->getType()->getPrimitiveSizeInBits())
925        return Builder.CreateBitCast(SV, AllocaType, "tmp");
926      else
927        return CreateShuffleVectorCast(SV, VTy, Builder);
928    }
929
930    if (isPowerOf2_64(VecSize / ValSize)) {
931      assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
932             "value of a smaller vector type at a nonzero offset.");
933
934      const Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
935                                                       ValSize);
936      unsigned NumCastVectorElements = VecSize / ValSize;
937
938      LLVMContext &Context = SV->getContext();
939      const Type *OldCastTy = VectorType::get(CastElementTy,
940                                              NumCastVectorElements);
941      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
942
943      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
944
945      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
946      unsigned Elt = Offset/EltSize;
947      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
948      Value *Insert =
949        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
950                                        Type::getInt32Ty(Context), Elt), "tmp");
951      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
952    }
953
954    // Must be an element insertion.
955    assert(SV->getType() == VTy->getElementType());
956    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
957    unsigned Elt = Offset/EltSize;
958    return Builder.CreateInsertElement(Old, SV,
959                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
960                                     "tmp");
961  }
962
963  // If SV is a first-class aggregate value, insert each value recursively.
964  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
965    const StructLayout &Layout = *TD.getStructLayout(ST);
966    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
967      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
968      Old = ConvertScalar_InsertValue(Elt, Old,
969                                      Offset+Layout.getElementOffsetInBits(i),
970                                      Builder);
971    }
972    return Old;
973  }
974
975  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
976    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
977    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
978      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
979      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
980    }
981    return Old;
982  }
983
984  // If SV is a float, convert it to the appropriate integer type.
985  // If it is a pointer, do the same.
986  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
987  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
988  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
989  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
990  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
991    SV = Builder.CreateBitCast(SV,
992                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
993  else if (SV->getType()->isPointerTy())
994    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
995
996  // Zero extend or truncate the value if needed.
997  if (SV->getType() != AllocaType) {
998    if (SV->getType()->getPrimitiveSizeInBits() <
999             AllocaType->getPrimitiveSizeInBits())
1000      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1001    else {
1002      // Truncation may be needed if storing more than the alloca can hold
1003      // (undefined behavior).
1004      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1005      SrcWidth = DestWidth;
1006      SrcStoreWidth = DestStoreWidth;
1007    }
1008  }
1009
1010  // If this is a big-endian system and the store is narrower than the
1011  // full alloca type, we need to do a shift to get the right bits.
1012  int ShAmt = 0;
1013  if (TD.isBigEndian()) {
1014    // On big-endian machines, the lowest bit is stored at the bit offset
1015    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1016    // integers with a bitwidth that is not a multiple of 8.
1017    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1018  } else {
1019    ShAmt = Offset;
1020  }
1021
1022  // Note: we support negative bitwidths (with shr) which are not defined.
1023  // We do this to support (f.e.) stores off the end of a structure where
1024  // only some bits in the structure are set.
1025  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1026  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1027    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1028                           ShAmt), "tmp");
1029    Mask <<= ShAmt;
1030  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1031    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1032                            -ShAmt), "tmp");
1033    Mask = Mask.lshr(-ShAmt);
1034  }
1035
1036  // Mask out the bits we are about to insert from the old value, and or
1037  // in the new bits.
1038  if (SrcWidth != DestWidth) {
1039    assert(DestWidth > SrcWidth);
1040    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1041    SV = Builder.CreateOr(Old, SV, "ins");
1042  }
1043  return SV;
1044}
1045
1046
1047//===----------------------------------------------------------------------===//
1048// SRoA Driver
1049//===----------------------------------------------------------------------===//
1050
1051
1052bool SROA::runOnFunction(Function &F) {
1053  TD = getAnalysisIfAvailable<TargetData>();
1054
1055  bool Changed = performPromotion(F);
1056
1057  // FIXME: ScalarRepl currently depends on TargetData more than it
1058  // theoretically needs to. It should be refactored in order to support
1059  // target-independent IR. Until this is done, just skip the actual
1060  // scalar-replacement portion of this pass.
1061  if (!TD) return Changed;
1062
1063  while (1) {
1064    bool LocalChange = performScalarRepl(F);
1065    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1066    Changed = true;
1067    LocalChange = performPromotion(F);
1068    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1069  }
1070
1071  return Changed;
1072}
1073
1074namespace {
1075class AllocaPromoter : public LoadAndStorePromoter {
1076  AllocaInst *AI;
1077public:
1078  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1079                 DbgDeclareInst *DD, DIBuilder *&DB)
1080    : LoadAndStorePromoter(Insts, S, DD, DB), AI(0) {}
1081
1082  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1083    // Remember which alloca we're promoting (for isInstInList).
1084    this->AI = AI;
1085    LoadAndStorePromoter::run(Insts);
1086    AI->eraseFromParent();
1087  }
1088
1089  virtual bool isInstInList(Instruction *I,
1090                            const SmallVectorImpl<Instruction*> &Insts) const {
1091    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1092      return LI->getOperand(0) == AI;
1093    return cast<StoreInst>(I)->getPointerOperand() == AI;
1094  }
1095};
1096} // end anon namespace
1097
1098/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1099/// subsequently loaded can be rewritten to load both input pointers and then
1100/// select between the result, allowing the load of the alloca to be promoted.
1101/// From this:
1102///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1103///   %V = load i32* %P2
1104/// to:
1105///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1106///   %V2 = load i32* %Other
1107///   %V = select i1 %cond, i32 %V1, i32 %V2
1108///
1109/// We can do this to a select if its only uses are loads and if the operand to
1110/// the select can be loaded unconditionally.
1111static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1112  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1113  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1114
1115  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1116       UI != UE; ++UI) {
1117    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1118    if (LI == 0 || LI->isVolatile()) return false;
1119
1120    // Both operands to the select need to be dereferencable, either absolutely
1121    // (e.g. allocas) or at this point because we can see other accesses to it.
1122    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1123                                                    LI->getAlignment(), TD))
1124      return false;
1125    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1126                                                    LI->getAlignment(), TD))
1127      return false;
1128  }
1129
1130  return true;
1131}
1132
1133/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1134/// subsequently loaded can be rewritten to load both input pointers in the pred
1135/// blocks and then PHI the results, allowing the load of the alloca to be
1136/// promoted.
1137/// From this:
1138///   %P2 = phi [i32* %Alloca, i32* %Other]
1139///   %V = load i32* %P2
1140/// to:
1141///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1142///   ...
1143///   %V2 = load i32* %Other
1144///   ...
1145///   %V = phi [i32 %V1, i32 %V2]
1146///
1147/// We can do this to a select if its only uses are loads and if the operand to
1148/// the select can be loaded unconditionally.
1149static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1150  // For now, we can only do this promotion if the load is in the same block as
1151  // the PHI, and if there are no stores between the phi and load.
1152  // TODO: Allow recursive phi users.
1153  // TODO: Allow stores.
1154  BasicBlock *BB = PN->getParent();
1155  unsigned MaxAlign = 0;
1156  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1157       UI != UE; ++UI) {
1158    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1159    if (LI == 0 || LI->isVolatile()) return false;
1160
1161    // For now we only allow loads in the same block as the PHI.  This is a
1162    // common case that happens when instcombine merges two loads through a PHI.
1163    if (LI->getParent() != BB) return false;
1164
1165    // Ensure that there are no instructions between the PHI and the load that
1166    // could store.
1167    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1168      if (BBI->mayWriteToMemory())
1169        return false;
1170
1171    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1172  }
1173
1174  // Okay, we know that we have one or more loads in the same block as the PHI.
1175  // We can transform this if it is safe to push the loads into the predecessor
1176  // blocks.  The only thing to watch out for is that we can't put a possibly
1177  // trapping load in the predecessor if it is a critical edge.
1178  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1179    BasicBlock *Pred = PN->getIncomingBlock(i);
1180
1181    // If the predecessor has a single successor, then the edge isn't critical.
1182    if (Pred->getTerminator()->getNumSuccessors() == 1)
1183      continue;
1184
1185    Value *InVal = PN->getIncomingValue(i);
1186
1187    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1188    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1189      if (II->getParent() == Pred)
1190        return false;
1191
1192    // If this pointer is always safe to load, or if we can prove that there is
1193    // already a load in the block, then we can move the load to the pred block.
1194    if (InVal->isDereferenceablePointer() ||
1195        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1196      continue;
1197
1198    return false;
1199  }
1200
1201  return true;
1202}
1203
1204
1205/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1206/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1207/// not quite there, this will transform the code to allow promotion.  As such,
1208/// it is a non-pure predicate.
1209static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1210  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1211            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1212
1213  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1214       UI != UE; ++UI) {
1215    User *U = *UI;
1216    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1217      if (LI->isVolatile())
1218        return false;
1219      continue;
1220    }
1221
1222    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1223      if (SI->getOperand(0) == AI || SI->isVolatile())
1224        return false;   // Don't allow a store OF the AI, only INTO the AI.
1225      continue;
1226    }
1227
1228    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1229      // If the condition being selected on is a constant, fold the select, yes
1230      // this does (rarely) happen early on.
1231      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1232        Value *Result = SI->getOperand(1+CI->isZero());
1233        SI->replaceAllUsesWith(Result);
1234        SI->eraseFromParent();
1235
1236        // This is very rare and we just scrambled the use list of AI, start
1237        // over completely.
1238        return tryToMakeAllocaBePromotable(AI, TD);
1239      }
1240
1241      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1242      // loads, then we can transform this by rewriting the select.
1243      if (!isSafeSelectToSpeculate(SI, TD))
1244        return false;
1245
1246      InstsToRewrite.insert(SI);
1247      continue;
1248    }
1249
1250    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1251      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1252        InstsToRewrite.insert(PN);
1253        continue;
1254      }
1255
1256      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1257      // in the pred blocks, then we can transform this by rewriting the PHI.
1258      if (!isSafePHIToSpeculate(PN, TD))
1259        return false;
1260
1261      InstsToRewrite.insert(PN);
1262      continue;
1263    }
1264
1265    return false;
1266  }
1267
1268  // If there are no instructions to rewrite, then all uses are load/stores and
1269  // we're done!
1270  if (InstsToRewrite.empty())
1271    return true;
1272
1273  // If we have instructions that need to be rewritten for this to be promotable
1274  // take care of it now.
1275  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1276    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1277      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1278      // loads with a new select.
1279      while (!SI->use_empty()) {
1280        LoadInst *LI = cast<LoadInst>(SI->use_back());
1281
1282        IRBuilder<> Builder(LI);
1283        LoadInst *TrueLoad =
1284          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1285        LoadInst *FalseLoad =
1286          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1287
1288        // Transfer alignment and TBAA info if present.
1289        TrueLoad->setAlignment(LI->getAlignment());
1290        FalseLoad->setAlignment(LI->getAlignment());
1291        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1292          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1293          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1294        }
1295
1296        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1297        V->takeName(LI);
1298        LI->replaceAllUsesWith(V);
1299        LI->eraseFromParent();
1300      }
1301
1302      // Now that all the loads are gone, the select is gone too.
1303      SI->eraseFromParent();
1304      continue;
1305    }
1306
1307    // Otherwise, we have a PHI node which allows us to push the loads into the
1308    // predecessors.
1309    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1310    if (PN->use_empty()) {
1311      PN->eraseFromParent();
1312      continue;
1313    }
1314
1315    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1316    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1317                                     PN->getName()+".ld", PN);
1318
1319    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1320    // matter which one we get and if any differ, it doesn't matter.
1321    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1322    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1323    unsigned Align = SomeLoad->getAlignment();
1324
1325    // Rewrite all loads of the PN to use the new PHI.
1326    while (!PN->use_empty()) {
1327      LoadInst *LI = cast<LoadInst>(PN->use_back());
1328      LI->replaceAllUsesWith(NewPN);
1329      LI->eraseFromParent();
1330    }
1331
1332    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1333    // insert them into in case we have multiple edges from the same block.
1334    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1335
1336    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1337      BasicBlock *Pred = PN->getIncomingBlock(i);
1338      LoadInst *&Load = InsertedLoads[Pred];
1339      if (Load == 0) {
1340        Load = new LoadInst(PN->getIncomingValue(i),
1341                            PN->getName() + "." + Pred->getName(),
1342                            Pred->getTerminator());
1343        Load->setAlignment(Align);
1344        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1345      }
1346
1347      NewPN->addIncoming(Load, Pred);
1348    }
1349
1350    PN->eraseFromParent();
1351  }
1352
1353  ++NumAdjusted;
1354  return true;
1355}
1356
1357bool SROA::performPromotion(Function &F) {
1358  std::vector<AllocaInst*> Allocas;
1359  DominatorTree *DT = 0;
1360  if (HasDomTree)
1361    DT = &getAnalysis<DominatorTree>();
1362
1363  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1364
1365  bool Changed = false;
1366  SmallVector<Instruction*, 64> Insts;
1367  DIBuilder *DIB = 0;
1368  while (1) {
1369    Allocas.clear();
1370
1371    // Find allocas that are safe to promote, by looking at all instructions in
1372    // the entry node
1373    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1374      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1375        if (tryToMakeAllocaBePromotable(AI, TD))
1376          Allocas.push_back(AI);
1377
1378    if (Allocas.empty()) break;
1379
1380    if (HasDomTree)
1381      PromoteMemToReg(Allocas, *DT);
1382    else {
1383      SSAUpdater SSA;
1384      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1385        AllocaInst *AI = Allocas[i];
1386
1387        // Build list of instructions to promote.
1388        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1389             UI != E; ++UI)
1390          Insts.push_back(cast<Instruction>(*UI));
1391
1392        DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
1393        if (DDI && !DIB)
1394          DIB = new DIBuilder(*AI->getParent()->getParent()->getParent());
1395        AllocaPromoter(Insts, SSA, DDI, DIB).run(AI, Insts);
1396        Insts.clear();
1397      }
1398    }
1399    NumPromoted += Allocas.size();
1400    Changed = true;
1401  }
1402
1403  // FIXME: Is there a better way to handle the lazy initialization of DIB
1404  // so that there doesn't need to be an explicit delete?
1405  delete DIB;
1406
1407  return Changed;
1408}
1409
1410
1411/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1412/// SROA.  It must be a struct or array type with a small number of elements.
1413static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1414  const Type *T = AI->getAllocatedType();
1415  // Do not promote any struct into more than 32 separate vars.
1416  if (const StructType *ST = dyn_cast<StructType>(T))
1417    return ST->getNumElements() <= 32;
1418  // Arrays are much less likely to be safe for SROA; only consider
1419  // them if they are very small.
1420  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1421    return AT->getNumElements() <= 8;
1422  return false;
1423}
1424
1425
1426// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1427// which runs on all of the malloc/alloca instructions in the function, removing
1428// them if they are only used by getelementptr instructions.
1429//
1430bool SROA::performScalarRepl(Function &F) {
1431  std::vector<AllocaInst*> WorkList;
1432
1433  // Scan the entry basic block, adding allocas to the worklist.
1434  BasicBlock &BB = F.getEntryBlock();
1435  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1436    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1437      WorkList.push_back(A);
1438
1439  // Process the worklist
1440  bool Changed = false;
1441  while (!WorkList.empty()) {
1442    AllocaInst *AI = WorkList.back();
1443    WorkList.pop_back();
1444
1445    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1446    // with unused elements.
1447    if (AI->use_empty()) {
1448      AI->eraseFromParent();
1449      Changed = true;
1450      continue;
1451    }
1452
1453    // If this alloca is impossible for us to promote, reject it early.
1454    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1455      continue;
1456
1457    // Check to see if this allocation is only modified by a memcpy/memmove from
1458    // a constant global.  If this is the case, we can change all users to use
1459    // the constant global instead.  This is commonly produced by the CFE by
1460    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1461    // is only subsequently read.
1462    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1463      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1464      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1465      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1466      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1467      TheCopy->eraseFromParent();  // Don't mutate the global.
1468      AI->eraseFromParent();
1469      ++NumGlobals;
1470      Changed = true;
1471      continue;
1472    }
1473
1474    // Check to see if we can perform the core SROA transformation.  We cannot
1475    // transform the allocation instruction if it is an array allocation
1476    // (allocations OF arrays are ok though), and an allocation of a scalar
1477    // value cannot be decomposed at all.
1478    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1479
1480    // Do not promote [0 x %struct].
1481    if (AllocaSize == 0) continue;
1482
1483    // Do not promote any struct whose size is too big.
1484    if (AllocaSize > SRThreshold) continue;
1485
1486    // If the alloca looks like a good candidate for scalar replacement, and if
1487    // all its users can be transformed, then split up the aggregate into its
1488    // separate elements.
1489    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1490      DoScalarReplacement(AI, WorkList);
1491      Changed = true;
1492      continue;
1493    }
1494
1495    // If we can turn this aggregate value (potentially with casts) into a
1496    // simple scalar value that can be mem2reg'd into a register value.
1497    // IsNotTrivial tracks whether this is something that mem2reg could have
1498    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1499    // that we can't just check based on the type: the alloca may be of an i32
1500    // but that has pointer arithmetic to set byte 3 of it or something.
1501    if (AllocaInst *NewAI =
1502          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1503      NewAI->takeName(AI);
1504      AI->eraseFromParent();
1505      ++NumConverted;
1506      Changed = true;
1507      continue;
1508    }
1509
1510    // Otherwise, couldn't process this alloca.
1511  }
1512
1513  return Changed;
1514}
1515
1516/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1517/// predicate, do SROA now.
1518void SROA::DoScalarReplacement(AllocaInst *AI,
1519                               std::vector<AllocaInst*> &WorkList) {
1520  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1521  SmallVector<AllocaInst*, 32> ElementAllocas;
1522  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1523    ElementAllocas.reserve(ST->getNumContainedTypes());
1524    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1525      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1526                                      AI->getAlignment(),
1527                                      AI->getName() + "." + Twine(i), AI);
1528      ElementAllocas.push_back(NA);
1529      WorkList.push_back(NA);  // Add to worklist for recursive processing
1530    }
1531  } else {
1532    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1533    ElementAllocas.reserve(AT->getNumElements());
1534    const Type *ElTy = AT->getElementType();
1535    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1536      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1537                                      AI->getName() + "." + Twine(i), AI);
1538      ElementAllocas.push_back(NA);
1539      WorkList.push_back(NA);  // Add to worklist for recursive processing
1540    }
1541  }
1542
1543  // Now that we have created the new alloca instructions, rewrite all the
1544  // uses of the old alloca.
1545  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1546
1547  // Now erase any instructions that were made dead while rewriting the alloca.
1548  DeleteDeadInstructions();
1549  AI->eraseFromParent();
1550
1551  ++NumReplaced;
1552}
1553
1554/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1555/// recursively including all their operands that become trivially dead.
1556void SROA::DeleteDeadInstructions() {
1557  while (!DeadInsts.empty()) {
1558    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1559
1560    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1561      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1562        // Zero out the operand and see if it becomes trivially dead.
1563        // (But, don't add allocas to the dead instruction list -- they are
1564        // already on the worklist and will be deleted separately.)
1565        *OI = 0;
1566        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1567          DeadInsts.push_back(U);
1568      }
1569
1570    I->eraseFromParent();
1571  }
1572}
1573
1574/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1575/// performing scalar replacement of alloca AI.  The results are flagged in
1576/// the Info parameter.  Offset indicates the position within AI that is
1577/// referenced by this instruction.
1578void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1579                               AllocaInfo &Info) {
1580  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1581    Instruction *User = cast<Instruction>(*UI);
1582
1583    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1584      isSafeForScalarRepl(BC, Offset, Info);
1585    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1586      uint64_t GEPOffset = Offset;
1587      isSafeGEP(GEPI, GEPOffset, Info);
1588      if (!Info.isUnsafe)
1589        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1590    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1591      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1592      if (Length == 0)
1593        return MarkUnsafe(Info, User);
1594      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1595                      UI.getOperandNo() == 0, Info, MI,
1596                      true /*AllowWholeAccess*/);
1597    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1598      if (LI->isVolatile())
1599        return MarkUnsafe(Info, User);
1600      const Type *LIType = LI->getType();
1601      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1602                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1603      Info.hasALoadOrStore = true;
1604
1605    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1606      // Store is ok if storing INTO the pointer, not storing the pointer
1607      if (SI->isVolatile() || SI->getOperand(0) == I)
1608        return MarkUnsafe(Info, User);
1609
1610      const Type *SIType = SI->getOperand(0)->getType();
1611      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1612                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1613      Info.hasALoadOrStore = true;
1614    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1615      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1616    } else {
1617      return MarkUnsafe(Info, User);
1618    }
1619    if (Info.isUnsafe) return;
1620  }
1621}
1622
1623
1624/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1625/// derived from the alloca, we can often still split the alloca into elements.
1626/// This is useful if we have a large alloca where one element is phi'd
1627/// together somewhere: we can SRoA and promote all the other elements even if
1628/// we end up not being able to promote this one.
1629///
1630/// All we require is that the uses of the PHI do not index into other parts of
1631/// the alloca.  The most important use case for this is single load and stores
1632/// that are PHI'd together, which can happen due to code sinking.
1633void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1634                                           AllocaInfo &Info) {
1635  // If we've already checked this PHI, don't do it again.
1636  if (PHINode *PN = dyn_cast<PHINode>(I))
1637    if (!Info.CheckedPHIs.insert(PN))
1638      return;
1639
1640  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1641    Instruction *User = cast<Instruction>(*UI);
1642
1643    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1644      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1645    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1646      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1647      // but would have to prove that we're staying inside of an element being
1648      // promoted.
1649      if (!GEPI->hasAllZeroIndices())
1650        return MarkUnsafe(Info, User);
1651      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1652    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1653      if (LI->isVolatile())
1654        return MarkUnsafe(Info, User);
1655      const Type *LIType = LI->getType();
1656      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1657                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1658      Info.hasALoadOrStore = true;
1659
1660    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1661      // Store is ok if storing INTO the pointer, not storing the pointer
1662      if (SI->isVolatile() || SI->getOperand(0) == I)
1663        return MarkUnsafe(Info, User);
1664
1665      const Type *SIType = SI->getOperand(0)->getType();
1666      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1667                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1668      Info.hasALoadOrStore = true;
1669    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1670      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1671    } else {
1672      return MarkUnsafe(Info, User);
1673    }
1674    if (Info.isUnsafe) return;
1675  }
1676}
1677
1678/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1679/// replacement.  It is safe when all the indices are constant, in-bounds
1680/// references, and when the resulting offset corresponds to an element within
1681/// the alloca type.  The results are flagged in the Info parameter.  Upon
1682/// return, Offset is adjusted as specified by the GEP indices.
1683void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1684                     uint64_t &Offset, AllocaInfo &Info) {
1685  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1686  if (GEPIt == E)
1687    return;
1688
1689  // Walk through the GEP type indices, checking the types that this indexes
1690  // into.
1691  for (; GEPIt != E; ++GEPIt) {
1692    // Ignore struct elements, no extra checking needed for these.
1693    if ((*GEPIt)->isStructTy())
1694      continue;
1695
1696    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1697    if (!IdxVal)
1698      return MarkUnsafe(Info, GEPI);
1699  }
1700
1701  // Compute the offset due to this GEP and check if the alloca has a
1702  // component element at that offset.
1703  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1704  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1705                                 &Indices[0], Indices.size());
1706  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1707    MarkUnsafe(Info, GEPI);
1708}
1709
1710/// isHomogeneousAggregate - Check if type T is a struct or array containing
1711/// elements of the same type (which is always true for arrays).  If so,
1712/// return true with NumElts and EltTy set to the number of elements and the
1713/// element type, respectively.
1714static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1715                                   const Type *&EltTy) {
1716  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1717    NumElts = AT->getNumElements();
1718    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1719    return true;
1720  }
1721  if (const StructType *ST = dyn_cast<StructType>(T)) {
1722    NumElts = ST->getNumContainedTypes();
1723    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1724    for (unsigned n = 1; n < NumElts; ++n) {
1725      if (ST->getContainedType(n) != EltTy)
1726        return false;
1727    }
1728    return true;
1729  }
1730  return false;
1731}
1732
1733/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1734/// "homogeneous" aggregates with the same element type and number of elements.
1735static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1736  if (T1 == T2)
1737    return true;
1738
1739  unsigned NumElts1, NumElts2;
1740  const Type *EltTy1, *EltTy2;
1741  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1742      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1743      NumElts1 == NumElts2 &&
1744      EltTy1 == EltTy2)
1745    return true;
1746
1747  return false;
1748}
1749
1750/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1751/// alloca or has an offset and size that corresponds to a component element
1752/// within it.  The offset checked here may have been formed from a GEP with a
1753/// pointer bitcasted to a different type.
1754///
1755/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1756/// unit.  If false, it only allows accesses known to be in a single element.
1757void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1758                           const Type *MemOpType, bool isStore,
1759                           AllocaInfo &Info, Instruction *TheAccess,
1760                           bool AllowWholeAccess) {
1761  // Check if this is a load/store of the entire alloca.
1762  if (Offset == 0 && AllowWholeAccess &&
1763      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1764    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1765    // loads/stores (which are essentially the same as the MemIntrinsics with
1766    // regard to copying padding between elements).  But, if an alloca is
1767    // flagged as both a source and destination of such operations, we'll need
1768    // to check later for padding between elements.
1769    if (!MemOpType || MemOpType->isIntegerTy()) {
1770      if (isStore)
1771        Info.isMemCpyDst = true;
1772      else
1773        Info.isMemCpySrc = true;
1774      return;
1775    }
1776    // This is also safe for references using a type that is compatible with
1777    // the type of the alloca, so that loads/stores can be rewritten using
1778    // insertvalue/extractvalue.
1779    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1780      Info.hasSubelementAccess = true;
1781      return;
1782    }
1783  }
1784  // Check if the offset/size correspond to a component within the alloca type.
1785  const Type *T = Info.AI->getAllocatedType();
1786  if (TypeHasComponent(T, Offset, MemSize)) {
1787    Info.hasSubelementAccess = true;
1788    return;
1789  }
1790
1791  return MarkUnsafe(Info, TheAccess);
1792}
1793
1794/// TypeHasComponent - Return true if T has a component type with the
1795/// specified offset and size.  If Size is zero, do not check the size.
1796bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1797  const Type *EltTy;
1798  uint64_t EltSize;
1799  if (const StructType *ST = dyn_cast<StructType>(T)) {
1800    const StructLayout *Layout = TD->getStructLayout(ST);
1801    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1802    EltTy = ST->getContainedType(EltIdx);
1803    EltSize = TD->getTypeAllocSize(EltTy);
1804    Offset -= Layout->getElementOffset(EltIdx);
1805  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1806    EltTy = AT->getElementType();
1807    EltSize = TD->getTypeAllocSize(EltTy);
1808    if (Offset >= AT->getNumElements() * EltSize)
1809      return false;
1810    Offset %= EltSize;
1811  } else {
1812    return false;
1813  }
1814  if (Offset == 0 && (Size == 0 || EltSize == Size))
1815    return true;
1816  // Check if the component spans multiple elements.
1817  if (Offset + Size > EltSize)
1818    return false;
1819  return TypeHasComponent(EltTy, Offset, Size);
1820}
1821
1822/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1823/// the instruction I, which references it, to use the separate elements.
1824/// Offset indicates the position within AI that is referenced by this
1825/// instruction.
1826void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1827                                SmallVector<AllocaInst*, 32> &NewElts) {
1828  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1829    Use &TheUse = UI.getUse();
1830    Instruction *User = cast<Instruction>(*UI++);
1831
1832    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1833      RewriteBitCast(BC, AI, Offset, NewElts);
1834      continue;
1835    }
1836
1837    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1838      RewriteGEP(GEPI, AI, Offset, NewElts);
1839      continue;
1840    }
1841
1842    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1843      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1844      uint64_t MemSize = Length->getZExtValue();
1845      if (Offset == 0 &&
1846          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1847        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1848      // Otherwise the intrinsic can only touch a single element and the
1849      // address operand will be updated, so nothing else needs to be done.
1850      continue;
1851    }
1852
1853    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1854      const Type *LIType = LI->getType();
1855
1856      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1857        // Replace:
1858        //   %res = load { i32, i32 }* %alloc
1859        // with:
1860        //   %load.0 = load i32* %alloc.0
1861        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1862        //   %load.1 = load i32* %alloc.1
1863        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1864        // (Also works for arrays instead of structs)
1865        Value *Insert = UndefValue::get(LIType);
1866        IRBuilder<> Builder(LI);
1867        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1868          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1869          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1870        }
1871        LI->replaceAllUsesWith(Insert);
1872        DeadInsts.push_back(LI);
1873      } else if (LIType->isIntegerTy() &&
1874                 TD->getTypeAllocSize(LIType) ==
1875                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1876        // If this is a load of the entire alloca to an integer, rewrite it.
1877        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1878      }
1879      continue;
1880    }
1881
1882    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1883      Value *Val = SI->getOperand(0);
1884      const Type *SIType = Val->getType();
1885      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1886        // Replace:
1887        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1888        // with:
1889        //   %val.0 = extractvalue { i32, i32 } %val, 0
1890        //   store i32 %val.0, i32* %alloc.0
1891        //   %val.1 = extractvalue { i32, i32 } %val, 1
1892        //   store i32 %val.1, i32* %alloc.1
1893        // (Also works for arrays instead of structs)
1894        IRBuilder<> Builder(SI);
1895        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1896          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1897          Builder.CreateStore(Extract, NewElts[i]);
1898        }
1899        DeadInsts.push_back(SI);
1900      } else if (SIType->isIntegerTy() &&
1901                 TD->getTypeAllocSize(SIType) ==
1902                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1903        // If this is a store of the entire alloca from an integer, rewrite it.
1904        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1905      }
1906      continue;
1907    }
1908
1909    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1910      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1911      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1912      // the new pointer.
1913      if (!isa<AllocaInst>(I)) continue;
1914
1915      assert(Offset == 0 && NewElts[0] &&
1916             "Direct alloca use should have a zero offset");
1917
1918      // If we have a use of the alloca, we know the derived uses will be
1919      // utilizing just the first element of the scalarized result.  Insert a
1920      // bitcast of the first alloca before the user as required.
1921      AllocaInst *NewAI = NewElts[0];
1922      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1923      NewAI->moveBefore(BCI);
1924      TheUse = BCI;
1925      continue;
1926    }
1927  }
1928}
1929
1930/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1931/// and recursively continue updating all of its uses.
1932void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1933                          SmallVector<AllocaInst*, 32> &NewElts) {
1934  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1935  if (BC->getOperand(0) != AI)
1936    return;
1937
1938  // The bitcast references the original alloca.  Replace its uses with
1939  // references to the first new element alloca.
1940  Instruction *Val = NewElts[0];
1941  if (Val->getType() != BC->getDestTy()) {
1942    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1943    Val->takeName(BC);
1944  }
1945  BC->replaceAllUsesWith(Val);
1946  DeadInsts.push_back(BC);
1947}
1948
1949/// FindElementAndOffset - Return the index of the element containing Offset
1950/// within the specified type, which must be either a struct or an array.
1951/// Sets T to the type of the element and Offset to the offset within that
1952/// element.  IdxTy is set to the type of the index result to be used in a
1953/// GEP instruction.
1954uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1955                                    const Type *&IdxTy) {
1956  uint64_t Idx = 0;
1957  if (const StructType *ST = dyn_cast<StructType>(T)) {
1958    const StructLayout *Layout = TD->getStructLayout(ST);
1959    Idx = Layout->getElementContainingOffset(Offset);
1960    T = ST->getContainedType(Idx);
1961    Offset -= Layout->getElementOffset(Idx);
1962    IdxTy = Type::getInt32Ty(T->getContext());
1963    return Idx;
1964  }
1965  const ArrayType *AT = cast<ArrayType>(T);
1966  T = AT->getElementType();
1967  uint64_t EltSize = TD->getTypeAllocSize(T);
1968  Idx = Offset / EltSize;
1969  Offset -= Idx * EltSize;
1970  IdxTy = Type::getInt64Ty(T->getContext());
1971  return Idx;
1972}
1973
1974/// RewriteGEP - Check if this GEP instruction moves the pointer across
1975/// elements of the alloca that are being split apart, and if so, rewrite
1976/// the GEP to be relative to the new element.
1977void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1978                      SmallVector<AllocaInst*, 32> &NewElts) {
1979  uint64_t OldOffset = Offset;
1980  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1981  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1982                                 &Indices[0], Indices.size());
1983
1984  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1985
1986  const Type *T = AI->getAllocatedType();
1987  const Type *IdxTy;
1988  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1989  if (GEPI->getOperand(0) == AI)
1990    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1991
1992  T = AI->getAllocatedType();
1993  uint64_t EltOffset = Offset;
1994  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1995
1996  // If this GEP does not move the pointer across elements of the alloca
1997  // being split, then it does not needs to be rewritten.
1998  if (Idx == OldIdx)
1999    return;
2000
2001  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
2002  SmallVector<Value*, 8> NewArgs;
2003  NewArgs.push_back(Constant::getNullValue(i32Ty));
2004  while (EltOffset != 0) {
2005    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
2006    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2007  }
2008  Instruction *Val = NewElts[Idx];
2009  if (NewArgs.size() > 1) {
2010    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
2011                                            NewArgs.end(), "", GEPI);
2012    Val->takeName(GEPI);
2013  }
2014  if (Val->getType() != GEPI->getType())
2015    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2016  GEPI->replaceAllUsesWith(Val);
2017  DeadInsts.push_back(GEPI);
2018}
2019
2020/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2021/// Rewrite it to copy or set the elements of the scalarized memory.
2022void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2023                                        AllocaInst *AI,
2024                                        SmallVector<AllocaInst*, 32> &NewElts) {
2025  // If this is a memcpy/memmove, construct the other pointer as the
2026  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2027  // that doesn't have anything to do with the alloca that we are promoting. For
2028  // memset, this Value* stays null.
2029  Value *OtherPtr = 0;
2030  unsigned MemAlignment = MI->getAlignment();
2031  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2032    if (Inst == MTI->getRawDest())
2033      OtherPtr = MTI->getRawSource();
2034    else {
2035      assert(Inst == MTI->getRawSource());
2036      OtherPtr = MTI->getRawDest();
2037    }
2038  }
2039
2040  // If there is an other pointer, we want to convert it to the same pointer
2041  // type as AI has, so we can GEP through it safely.
2042  if (OtherPtr) {
2043    unsigned AddrSpace =
2044      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2045
2046    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2047    // optimization, but it's also required to detect the corner case where
2048    // both pointer operands are referencing the same memory, and where
2049    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2050    // function is only called for mem intrinsics that access the whole
2051    // aggregate, so non-zero GEPs are not an issue here.)
2052    OtherPtr = OtherPtr->stripPointerCasts();
2053
2054    // Copying the alloca to itself is a no-op: just delete it.
2055    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2056      // This code will run twice for a no-op memcpy -- once for each operand.
2057      // Put only one reference to MI on the DeadInsts list.
2058      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2059             E = DeadInsts.end(); I != E; ++I)
2060        if (*I == MI) return;
2061      DeadInsts.push_back(MI);
2062      return;
2063    }
2064
2065    // If the pointer is not the right type, insert a bitcast to the right
2066    // type.
2067    const Type *NewTy =
2068      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2069
2070    if (OtherPtr->getType() != NewTy)
2071      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2072  }
2073
2074  // Process each element of the aggregate.
2075  bool SROADest = MI->getRawDest() == Inst;
2076
2077  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2078
2079  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2080    // If this is a memcpy/memmove, emit a GEP of the other element address.
2081    Value *OtherElt = 0;
2082    unsigned OtherEltAlign = MemAlignment;
2083
2084    if (OtherPtr) {
2085      Value *Idx[2] = { Zero,
2086                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2087      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
2088                                              OtherPtr->getName()+"."+Twine(i),
2089                                                   MI);
2090      uint64_t EltOffset;
2091      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2092      const Type *OtherTy = OtherPtrTy->getElementType();
2093      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
2094        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2095      } else {
2096        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2097        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2098      }
2099
2100      // The alignment of the other pointer is the guaranteed alignment of the
2101      // element, which is affected by both the known alignment of the whole
2102      // mem intrinsic and the alignment of the element.  If the alignment of
2103      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2104      // known alignment is just 4 bytes.
2105      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2106    }
2107
2108    Value *EltPtr = NewElts[i];
2109    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2110
2111    // If we got down to a scalar, insert a load or store as appropriate.
2112    if (EltTy->isSingleValueType()) {
2113      if (isa<MemTransferInst>(MI)) {
2114        if (SROADest) {
2115          // From Other to Alloca.
2116          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2117          new StoreInst(Elt, EltPtr, MI);
2118        } else {
2119          // From Alloca to Other.
2120          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2121          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2122        }
2123        continue;
2124      }
2125      assert(isa<MemSetInst>(MI));
2126
2127      // If the stored element is zero (common case), just store a null
2128      // constant.
2129      Constant *StoreVal;
2130      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2131        if (CI->isZero()) {
2132          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2133        } else {
2134          // If EltTy is a vector type, get the element type.
2135          const Type *ValTy = EltTy->getScalarType();
2136
2137          // Construct an integer with the right value.
2138          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2139          APInt OneVal(EltSize, CI->getZExtValue());
2140          APInt TotalVal(OneVal);
2141          // Set each byte.
2142          for (unsigned i = 0; 8*i < EltSize; ++i) {
2143            TotalVal = TotalVal.shl(8);
2144            TotalVal |= OneVal;
2145          }
2146
2147          // Convert the integer value to the appropriate type.
2148          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2149          if (ValTy->isPointerTy())
2150            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2151          else if (ValTy->isFloatingPointTy())
2152            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2153          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2154
2155          // If the requested value was a vector constant, create it.
2156          if (EltTy != ValTy) {
2157            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2158            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2159            StoreVal = ConstantVector::get(Elts);
2160          }
2161        }
2162        new StoreInst(StoreVal, EltPtr, MI);
2163        continue;
2164      }
2165      // Otherwise, if we're storing a byte variable, use a memset call for
2166      // this element.
2167    }
2168
2169    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2170
2171    IRBuilder<> Builder(MI);
2172
2173    // Finally, insert the meminst for this element.
2174    if (isa<MemSetInst>(MI)) {
2175      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2176                           MI->isVolatile());
2177    } else {
2178      assert(isa<MemTransferInst>(MI));
2179      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2180      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2181
2182      if (isa<MemCpyInst>(MI))
2183        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2184      else
2185        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2186    }
2187  }
2188  DeadInsts.push_back(MI);
2189}
2190
2191/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2192/// overwrites the entire allocation.  Extract out the pieces of the stored
2193/// integer and store them individually.
2194void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2195                                         SmallVector<AllocaInst*, 32> &NewElts){
2196  // Extract each element out of the integer according to its structure offset
2197  // and store the element value to the individual alloca.
2198  Value *SrcVal = SI->getOperand(0);
2199  const Type *AllocaEltTy = AI->getAllocatedType();
2200  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2201
2202  IRBuilder<> Builder(SI);
2203
2204  // Handle tail padding by extending the operand
2205  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2206    SrcVal = Builder.CreateZExt(SrcVal,
2207                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2208
2209  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2210               << '\n');
2211
2212  // There are two forms here: AI could be an array or struct.  Both cases
2213  // have different ways to compute the element offset.
2214  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2215    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2216
2217    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2218      // Get the number of bits to shift SrcVal to get the value.
2219      const Type *FieldTy = EltSTy->getElementType(i);
2220      uint64_t Shift = Layout->getElementOffsetInBits(i);
2221
2222      if (TD->isBigEndian())
2223        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2224
2225      Value *EltVal = SrcVal;
2226      if (Shift) {
2227        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2228        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2229      }
2230
2231      // Truncate down to an integer of the right size.
2232      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2233
2234      // Ignore zero sized fields like {}, they obviously contain no data.
2235      if (FieldSizeBits == 0) continue;
2236
2237      if (FieldSizeBits != AllocaSizeBits)
2238        EltVal = Builder.CreateTrunc(EltVal,
2239                             IntegerType::get(SI->getContext(), FieldSizeBits));
2240      Value *DestField = NewElts[i];
2241      if (EltVal->getType() == FieldTy) {
2242        // Storing to an integer field of this size, just do it.
2243      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2244        // Bitcast to the right element type (for fp/vector values).
2245        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2246      } else {
2247        // Otherwise, bitcast the dest pointer (for aggregates).
2248        DestField = Builder.CreateBitCast(DestField,
2249                                     PointerType::getUnqual(EltVal->getType()));
2250      }
2251      new StoreInst(EltVal, DestField, SI);
2252    }
2253
2254  } else {
2255    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2256    const Type *ArrayEltTy = ATy->getElementType();
2257    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2258    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2259
2260    uint64_t Shift;
2261
2262    if (TD->isBigEndian())
2263      Shift = AllocaSizeBits-ElementOffset;
2264    else
2265      Shift = 0;
2266
2267    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2268      // Ignore zero sized fields like {}, they obviously contain no data.
2269      if (ElementSizeBits == 0) continue;
2270
2271      Value *EltVal = SrcVal;
2272      if (Shift) {
2273        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2274        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2275      }
2276
2277      // Truncate down to an integer of the right size.
2278      if (ElementSizeBits != AllocaSizeBits)
2279        EltVal = Builder.CreateTrunc(EltVal,
2280                                     IntegerType::get(SI->getContext(),
2281                                                      ElementSizeBits));
2282      Value *DestField = NewElts[i];
2283      if (EltVal->getType() == ArrayEltTy) {
2284        // Storing to an integer field of this size, just do it.
2285      } else if (ArrayEltTy->isFloatingPointTy() ||
2286                 ArrayEltTy->isVectorTy()) {
2287        // Bitcast to the right element type (for fp/vector values).
2288        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2289      } else {
2290        // Otherwise, bitcast the dest pointer (for aggregates).
2291        DestField = Builder.CreateBitCast(DestField,
2292                                     PointerType::getUnqual(EltVal->getType()));
2293      }
2294      new StoreInst(EltVal, DestField, SI);
2295
2296      if (TD->isBigEndian())
2297        Shift -= ElementOffset;
2298      else
2299        Shift += ElementOffset;
2300    }
2301  }
2302
2303  DeadInsts.push_back(SI);
2304}
2305
2306/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2307/// an integer.  Load the individual pieces to form the aggregate value.
2308void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2309                                        SmallVector<AllocaInst*, 32> &NewElts) {
2310  // Extract each element out of the NewElts according to its structure offset
2311  // and form the result value.
2312  const Type *AllocaEltTy = AI->getAllocatedType();
2313  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2314
2315  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2316               << '\n');
2317
2318  // There are two forms here: AI could be an array or struct.  Both cases
2319  // have different ways to compute the element offset.
2320  const StructLayout *Layout = 0;
2321  uint64_t ArrayEltBitOffset = 0;
2322  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2323    Layout = TD->getStructLayout(EltSTy);
2324  } else {
2325    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2326    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2327  }
2328
2329  Value *ResultVal =
2330    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2331
2332  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2333    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2334    // the pointer to an integer of the same size before doing the load.
2335    Value *SrcField = NewElts[i];
2336    const Type *FieldTy =
2337      cast<PointerType>(SrcField->getType())->getElementType();
2338    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2339
2340    // Ignore zero sized fields like {}, they obviously contain no data.
2341    if (FieldSizeBits == 0) continue;
2342
2343    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2344                                                     FieldSizeBits);
2345    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2346        !FieldTy->isVectorTy())
2347      SrcField = new BitCastInst(SrcField,
2348                                 PointerType::getUnqual(FieldIntTy),
2349                                 "", LI);
2350    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2351
2352    // If SrcField is a fp or vector of the right size but that isn't an
2353    // integer type, bitcast to an integer so we can shift it.
2354    if (SrcField->getType() != FieldIntTy)
2355      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2356
2357    // Zero extend the field to be the same size as the final alloca so that
2358    // we can shift and insert it.
2359    if (SrcField->getType() != ResultVal->getType())
2360      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2361
2362    // Determine the number of bits to shift SrcField.
2363    uint64_t Shift;
2364    if (Layout) // Struct case.
2365      Shift = Layout->getElementOffsetInBits(i);
2366    else  // Array case.
2367      Shift = i*ArrayEltBitOffset;
2368
2369    if (TD->isBigEndian())
2370      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2371
2372    if (Shift) {
2373      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2374      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2375    }
2376
2377    // Don't create an 'or x, 0' on the first iteration.
2378    if (!isa<Constant>(ResultVal) ||
2379        !cast<Constant>(ResultVal)->isNullValue())
2380      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2381    else
2382      ResultVal = SrcField;
2383  }
2384
2385  // Handle tail padding by truncating the result
2386  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2387    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2388
2389  LI->replaceAllUsesWith(ResultVal);
2390  DeadInsts.push_back(LI);
2391}
2392
2393/// HasPadding - Return true if the specified type has any structure or
2394/// alignment padding in between the elements that would be split apart
2395/// by SROA; return false otherwise.
2396static bool HasPadding(const Type *Ty, const TargetData &TD) {
2397  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2398    Ty = ATy->getElementType();
2399    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2400  }
2401
2402  // SROA currently handles only Arrays and Structs.
2403  const StructType *STy = cast<StructType>(Ty);
2404  const StructLayout *SL = TD.getStructLayout(STy);
2405  unsigned PrevFieldBitOffset = 0;
2406  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2407    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2408
2409    // Check to see if there is any padding between this element and the
2410    // previous one.
2411    if (i) {
2412      unsigned PrevFieldEnd =
2413        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2414      if (PrevFieldEnd < FieldBitOffset)
2415        return true;
2416    }
2417    PrevFieldBitOffset = FieldBitOffset;
2418  }
2419  // Check for tail padding.
2420  if (unsigned EltCount = STy->getNumElements()) {
2421    unsigned PrevFieldEnd = PrevFieldBitOffset +
2422      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2423    if (PrevFieldEnd < SL->getSizeInBits())
2424      return true;
2425  }
2426  return false;
2427}
2428
2429/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2430/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2431/// or 1 if safe after canonicalization has been performed.
2432bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2433  // Loop over the use list of the alloca.  We can only transform it if all of
2434  // the users are safe to transform.
2435  AllocaInfo Info(AI);
2436
2437  isSafeForScalarRepl(AI, 0, Info);
2438  if (Info.isUnsafe) {
2439    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2440    return false;
2441  }
2442
2443  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2444  // source and destination, we have to be careful.  In particular, the memcpy
2445  // could be moving around elements that live in structure padding of the LLVM
2446  // types, but may actually be used.  In these cases, we refuse to promote the
2447  // struct.
2448  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2449      HasPadding(AI->getAllocatedType(), *TD))
2450    return false;
2451
2452  // If the alloca never has an access to just *part* of it, but is accessed
2453  // via loads and stores, then we should use ConvertToScalarInfo to promote
2454  // the alloca instead of promoting each piece at a time and inserting fission
2455  // and fusion code.
2456  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2457    // If the struct/array just has one element, use basic SRoA.
2458    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2459      if (ST->getNumElements() > 1) return false;
2460    } else {
2461      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2462        return false;
2463    }
2464  }
2465
2466  return true;
2467}
2468
2469
2470
2471/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2472/// some part of a constant global variable.  This intentionally only accepts
2473/// constant expressions because we don't can't rewrite arbitrary instructions.
2474static bool PointsToConstantGlobal(Value *V) {
2475  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2476    return GV->isConstant();
2477  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2478    if (CE->getOpcode() == Instruction::BitCast ||
2479        CE->getOpcode() == Instruction::GetElementPtr)
2480      return PointsToConstantGlobal(CE->getOperand(0));
2481  return false;
2482}
2483
2484/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2485/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2486/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2487/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2488/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2489/// the alloca, and if the source pointer is a pointer to a constant global, we
2490/// can optimize this.
2491static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2492                                           bool isOffset) {
2493  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2494    User *U = cast<Instruction>(*UI);
2495
2496    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2497      // Ignore non-volatile loads, they are always ok.
2498      if (LI->isVolatile()) return false;
2499      continue;
2500    }
2501
2502    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2503      // If uses of the bitcast are ok, we are ok.
2504      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2505        return false;
2506      continue;
2507    }
2508    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2509      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2510      // doesn't, it does.
2511      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2512                                         isOffset || !GEP->hasAllZeroIndices()))
2513        return false;
2514      continue;
2515    }
2516
2517    if (CallSite CS = U) {
2518      // If this is the function being called then we treat it like a load and
2519      // ignore it.
2520      if (CS.isCallee(UI))
2521        continue;
2522
2523      // If this is a readonly/readnone call site, then we know it is just a
2524      // load (but one that potentially returns the value itself), so we can
2525      // ignore it if we know that the value isn't captured.
2526      unsigned ArgNo = CS.getArgumentNo(UI);
2527      if (CS.onlyReadsMemory() &&
2528          (CS.getInstruction()->use_empty() ||
2529           CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2530        continue;
2531
2532      // If this is being passed as a byval argument, the caller is making a
2533      // copy, so it is only a read of the alloca.
2534      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2535        continue;
2536    }
2537
2538    // If this is isn't our memcpy/memmove, reject it as something we can't
2539    // handle.
2540    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2541    if (MI == 0)
2542      return false;
2543
2544    // If the transfer is using the alloca as a source of the transfer, then
2545    // ignore it since it is a load (unless the transfer is volatile).
2546    if (UI.getOperandNo() == 1) {
2547      if (MI->isVolatile()) return false;
2548      continue;
2549    }
2550
2551    // If we already have seen a copy, reject the second one.
2552    if (TheCopy) return false;
2553
2554    // If the pointer has been offset from the start of the alloca, we can't
2555    // safely handle this.
2556    if (isOffset) return false;
2557
2558    // If the memintrinsic isn't using the alloca as the dest, reject it.
2559    if (UI.getOperandNo() != 0) return false;
2560
2561    // If the source of the memcpy/move is not a constant global, reject it.
2562    if (!PointsToConstantGlobal(MI->getSource()))
2563      return false;
2564
2565    // Otherwise, the transform is safe.  Remember the copy instruction.
2566    TheCopy = MI;
2567  }
2568  return true;
2569}
2570
2571/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2572/// modified by a copy from a constant global.  If we can prove this, we can
2573/// replace any uses of the alloca with uses of the global directly.
2574MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2575  MemTransferInst *TheCopy = 0;
2576  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2577    return TheCopy;
2578  return 0;
2579}
2580