ScalarReplAggregates.cpp revision 583dd6072eed7a446dad8f0e796fa34aec40aa12
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced,  "Number of allocas broken up");
44STATISTIC(NumPromoted,  "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
47
48namespace {
49  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50    static char ID; // Pass identification, replacement for typeid
51    explicit SROA(signed T = -1) : FunctionPass(&ID) {
52      if (T == -1)
53        SRThreshold = 128;
54      else
55        SRThreshold = T;
56    }
57
58    bool runOnFunction(Function &F);
59
60    bool performScalarRepl(Function &F);
61    bool performPromotion(Function &F);
62
63    // getAnalysisUsage - This pass does not require any passes, but we know it
64    // will not alter the CFG, so say so.
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<DominatorTree>();
67      AU.addRequired<DominanceFrontier>();
68      AU.addRequired<TargetData>();
69      AU.setPreservesCFG();
70    }
71
72  private:
73    TargetData *TD;
74
75    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
76    /// information about the uses.  All these fields are initialized to false
77    /// and set to true when something is learned.
78    struct AllocaInfo {
79      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
80      bool isUnsafe : 1;
81
82      /// needsCanon - This is set to true if there is some use of the alloca
83      /// that requires canonicalization.
84      bool needsCanon : 1;
85
86      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
87      bool isMemCpySrc : 1;
88
89      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
90      bool isMemCpyDst : 1;
91
92      AllocaInfo()
93        : isUnsafe(false), needsCanon(false),
94          isMemCpySrc(false), isMemCpyDst(false) {}
95    };
96
97    unsigned SRThreshold;
98
99    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
100
101    int isSafeAllocaToScalarRepl(AllocationInst *AI);
102
103    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
104                               AllocaInfo &Info);
105    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
106                         AllocaInfo &Info);
107    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
108                                        unsigned OpNo, AllocaInfo &Info);
109    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
110                                        AllocaInfo &Info);
111
112    void DoScalarReplacement(AllocationInst *AI,
113                             std::vector<AllocationInst*> &WorkList);
114    void CanonicalizeAllocaUsers(AllocationInst *AI);
115    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
116
117    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
118                                    SmallVector<AllocaInst*, 32> &NewElts);
119
120    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
121                                      AllocationInst *AI,
122                                      SmallVector<AllocaInst*, 32> &NewElts);
123    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
124                                       SmallVector<AllocaInst*, 32> &NewElts);
125    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
126                                       SmallVector<AllocaInst*, 32> &NewElts);
127
128    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
129    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
130    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
131    Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
132                                     unsigned Offset);
133    Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
134                                      unsigned Offset);
135    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
136  };
137}
138
139char SROA::ID = 0;
140static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
141
142// Public interface to the ScalarReplAggregates pass
143FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
144  return new SROA(Threshold);
145}
146
147
148bool SROA::runOnFunction(Function &F) {
149  TD = &getAnalysis<TargetData>();
150
151  bool Changed = performPromotion(F);
152  while (1) {
153    bool LocalChange = performScalarRepl(F);
154    if (!LocalChange) break;   // No need to repromote if no scalarrepl
155    Changed = true;
156    LocalChange = performPromotion(F);
157    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
158  }
159
160  return Changed;
161}
162
163
164bool SROA::performPromotion(Function &F) {
165  std::vector<AllocaInst*> Allocas;
166  DominatorTree         &DT = getAnalysis<DominatorTree>();
167  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
168
169  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
170
171  bool Changed = false;
172
173  while (1) {
174    Allocas.clear();
175
176    // Find allocas that are safe to promote, by looking at all instructions in
177    // the entry node
178    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
179      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
180        if (isAllocaPromotable(AI))
181          Allocas.push_back(AI);
182
183    if (Allocas.empty()) break;
184
185    PromoteMemToReg(Allocas, DT, DF);
186    NumPromoted += Allocas.size();
187    Changed = true;
188  }
189
190  return Changed;
191}
192
193/// getNumSAElements - Return the number of elements in the specific struct or
194/// array.
195static uint64_t getNumSAElements(const Type *T) {
196  if (const StructType *ST = dyn_cast<StructType>(T))
197    return ST->getNumElements();
198  return cast<ArrayType>(T)->getNumElements();
199}
200
201// performScalarRepl - This algorithm is a simple worklist driven algorithm,
202// which runs on all of the malloc/alloca instructions in the function, removing
203// them if they are only used by getelementptr instructions.
204//
205bool SROA::performScalarRepl(Function &F) {
206  std::vector<AllocationInst*> WorkList;
207
208  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
209  BasicBlock &BB = F.getEntryBlock();
210  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
211    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
212      WorkList.push_back(A);
213
214  // Process the worklist
215  bool Changed = false;
216  while (!WorkList.empty()) {
217    AllocationInst *AI = WorkList.back();
218    WorkList.pop_back();
219
220    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
221    // with unused elements.
222    if (AI->use_empty()) {
223      AI->eraseFromParent();
224      continue;
225    }
226
227    // If we can turn this aggregate value (potentially with casts) into a
228    // simple scalar value that can be mem2reg'd into a register value.
229    bool IsNotTrivial = false;
230    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
231      if (IsNotTrivial && ActualType != Type::VoidTy) {
232        ConvertToScalar(AI, ActualType);
233        Changed = true;
234        continue;
235      }
236
237    // Check to see if we can perform the core SROA transformation.  We cannot
238    // transform the allocation instruction if it is an array allocation
239    // (allocations OF arrays are ok though), and an allocation of a scalar
240    // value cannot be decomposed at all.
241    if (!AI->isArrayAllocation() &&
242        (isa<StructType>(AI->getAllocatedType()) ||
243         isa<ArrayType>(AI->getAllocatedType())) &&
244        AI->getAllocatedType()->isSized() &&
245        // Do not promote any struct whose size is larger than "128" bytes.
246        TD->getABITypeSize(AI->getAllocatedType()) < SRThreshold &&
247        // Do not promote any struct into more than "32" separate vars.
248        getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
249      // Check that all of the users of the allocation are capable of being
250      // transformed.
251      switch (isSafeAllocaToScalarRepl(AI)) {
252      default: assert(0 && "Unexpected value!");
253      case 0:  // Not safe to scalar replace.
254        break;
255      case 1:  // Safe, but requires cleanup/canonicalizations first
256        CanonicalizeAllocaUsers(AI);
257        // FALL THROUGH.
258      case 3:  // Safe to scalar replace.
259        DoScalarReplacement(AI, WorkList);
260        Changed = true;
261        continue;
262      }
263    }
264
265    // Check to see if this allocation is only modified by a memcpy/memmove from
266    // a constant global.  If this is the case, we can change all users to use
267    // the constant global instead.  This is commonly produced by the CFE by
268    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
269    // is only subsequently read.
270    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
271      DOUT << "Found alloca equal to global: " << *AI;
272      DOUT << "  memcpy = " << *TheCopy;
273      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
274      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
275      TheCopy->eraseFromParent();  // Don't mutate the global.
276      AI->eraseFromParent();
277      ++NumGlobals;
278      Changed = true;
279      continue;
280    }
281
282    // Otherwise, couldn't process this.
283  }
284
285  return Changed;
286}
287
288/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
289/// predicate, do SROA now.
290void SROA::DoScalarReplacement(AllocationInst *AI,
291                               std::vector<AllocationInst*> &WorkList) {
292  DOUT << "Found inst to SROA: " << *AI;
293  SmallVector<AllocaInst*, 32> ElementAllocas;
294  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
295    ElementAllocas.reserve(ST->getNumContainedTypes());
296    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
297      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
298                                      AI->getAlignment(),
299                                      AI->getName() + "." + utostr(i), AI);
300      ElementAllocas.push_back(NA);
301      WorkList.push_back(NA);  // Add to worklist for recursive processing
302    }
303  } else {
304    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
305    ElementAllocas.reserve(AT->getNumElements());
306    const Type *ElTy = AT->getElementType();
307    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
308      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
309                                      AI->getName() + "." + utostr(i), AI);
310      ElementAllocas.push_back(NA);
311      WorkList.push_back(NA);  // Add to worklist for recursive processing
312    }
313  }
314
315  // Now that we have created the alloca instructions that we want to use,
316  // expand the getelementptr instructions to use them.
317  //
318  while (!AI->use_empty()) {
319    Instruction *User = cast<Instruction>(AI->use_back());
320    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
321      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
322      BCInst->eraseFromParent();
323      continue;
324    }
325
326    // Replace:
327    //   %res = load { i32, i32 }* %alloc
328    // with:
329    //   %load.0 = load i32* %alloc.0
330    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
331    //   %load.1 = load i32* %alloc.1
332    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
333    // (Also works for arrays instead of structs)
334    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
335      Value *Insert = UndefValue::get(LI->getType());
336      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
337        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
338        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
339      }
340      LI->replaceAllUsesWith(Insert);
341      LI->eraseFromParent();
342      continue;
343    }
344
345    // Replace:
346    //   store { i32, i32 } %val, { i32, i32 }* %alloc
347    // with:
348    //   %val.0 = extractvalue { i32, i32 } %val, 0
349    //   store i32 %val.0, i32* %alloc.0
350    //   %val.1 = extractvalue { i32, i32 } %val, 1
351    //   store i32 %val.1, i32* %alloc.1
352    // (Also works for arrays instead of structs)
353    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
354      Value *Val = SI->getOperand(0);
355      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
356        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
357        new StoreInst(Extract, ElementAllocas[i], SI);
358      }
359      SI->eraseFromParent();
360      continue;
361    }
362
363    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
364    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
365    unsigned Idx =
366       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
367
368    assert(Idx < ElementAllocas.size() && "Index out of range?");
369    AllocaInst *AllocaToUse = ElementAllocas[Idx];
370
371    Value *RepValue;
372    if (GEPI->getNumOperands() == 3) {
373      // Do not insert a new getelementptr instruction with zero indices, only
374      // to have it optimized out later.
375      RepValue = AllocaToUse;
376    } else {
377      // We are indexing deeply into the structure, so we still need a
378      // getelement ptr instruction to finish the indexing.  This may be
379      // expanded itself once the worklist is rerun.
380      //
381      SmallVector<Value*, 8> NewArgs;
382      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
383      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
384      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
385                                           NewArgs.end(), "", GEPI);
386      RepValue->takeName(GEPI);
387    }
388
389    // If this GEP is to the start of the aggregate, check for memcpys.
390    if (Idx == 0 && GEPI->hasAllZeroIndices())
391      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
392
393    // Move all of the users over to the new GEP.
394    GEPI->replaceAllUsesWith(RepValue);
395    // Delete the old GEP
396    GEPI->eraseFromParent();
397  }
398
399  // Finally, delete the Alloca instruction
400  AI->eraseFromParent();
401  NumReplaced++;
402}
403
404
405/// isSafeElementUse - Check to see if this use is an allowed use for a
406/// getelementptr instruction of an array aggregate allocation.  isFirstElt
407/// indicates whether Ptr is known to the start of the aggregate.
408///
409void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
410                            AllocaInfo &Info) {
411  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
412       I != E; ++I) {
413    Instruction *User = cast<Instruction>(*I);
414    switch (User->getOpcode()) {
415    case Instruction::Load:  break;
416    case Instruction::Store:
417      // Store is ok if storing INTO the pointer, not storing the pointer
418      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
419      break;
420    case Instruction::GetElementPtr: {
421      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
422      bool AreAllZeroIndices = isFirstElt;
423      if (GEP->getNumOperands() > 1) {
424        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
425            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
426          // Using pointer arithmetic to navigate the array.
427          return MarkUnsafe(Info);
428
429        if (AreAllZeroIndices)
430          AreAllZeroIndices = GEP->hasAllZeroIndices();
431      }
432      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
433      if (Info.isUnsafe) return;
434      break;
435    }
436    case Instruction::BitCast:
437      if (isFirstElt) {
438        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
439        if (Info.isUnsafe) return;
440        break;
441      }
442      DOUT << "  Transformation preventing inst: " << *User;
443      return MarkUnsafe(Info);
444    case Instruction::Call:
445      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
446        if (isFirstElt) {
447          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
448          if (Info.isUnsafe) return;
449          break;
450        }
451      }
452      DOUT << "  Transformation preventing inst: " << *User;
453      return MarkUnsafe(Info);
454    default:
455      DOUT << "  Transformation preventing inst: " << *User;
456      return MarkUnsafe(Info);
457    }
458  }
459  return;  // All users look ok :)
460}
461
462/// AllUsersAreLoads - Return true if all users of this value are loads.
463static bool AllUsersAreLoads(Value *Ptr) {
464  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
465       I != E; ++I)
466    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
467      return false;
468  return true;
469}
470
471/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
472/// aggregate allocation.
473///
474void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
475                                 AllocaInfo &Info) {
476  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
477    return isSafeUseOfBitCastedAllocation(C, AI, Info);
478
479  if (isa<LoadInst>(User))
480    return; // Loads (returning a first class aggregrate) are always rewritable
481
482  if (isa<StoreInst>(User) && User->getOperand(0) != AI)
483    return; // Store is ok if storing INTO the pointer, not storing the pointer
484
485  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
486  if (GEPI == 0)
487    return MarkUnsafe(Info);
488
489  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
490
491  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
492  if (I == E ||
493      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
494    return MarkUnsafe(Info);
495  }
496
497  ++I;
498  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
499
500  bool IsAllZeroIndices = true;
501
502  // If the first index is a non-constant index into an array, see if we can
503  // handle it as a special case.
504  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
505    if (!isa<ConstantInt>(I.getOperand())) {
506      IsAllZeroIndices = 0;
507      uint64_t NumElements = AT->getNumElements();
508
509      // If this is an array index and the index is not constant, we cannot
510      // promote... that is unless the array has exactly one or two elements in
511      // it, in which case we CAN promote it, but we have to canonicalize this
512      // out if this is the only problem.
513      if ((NumElements == 1 || NumElements == 2) &&
514          AllUsersAreLoads(GEPI)) {
515        Info.needsCanon = true;
516        return;  // Canonicalization required!
517      }
518      return MarkUnsafe(Info);
519    }
520  }
521
522  // Walk through the GEP type indices, checking the types that this indexes
523  // into.
524  for (; I != E; ++I) {
525    // Ignore struct elements, no extra checking needed for these.
526    if (isa<StructType>(*I))
527      continue;
528
529    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
530    if (!IdxVal) return MarkUnsafe(Info);
531
532    // Are all indices still zero?
533    IsAllZeroIndices &= IdxVal->isZero();
534
535    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
536      // This GEP indexes an array.  Verify that this is an in-range constant
537      // integer. Specifically, consider A[0][i]. We cannot know that the user
538      // isn't doing invalid things like allowing i to index an out-of-range
539      // subscript that accesses A[1].  Because of this, we have to reject SROA
540      // of any accesses into structs where any of the components are variables.
541      if (IdxVal->getZExtValue() >= AT->getNumElements())
542        return MarkUnsafe(Info);
543    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
544      if (IdxVal->getZExtValue() >= VT->getNumElements())
545        return MarkUnsafe(Info);
546    }
547  }
548
549  // If there are any non-simple uses of this getelementptr, make sure to reject
550  // them.
551  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
552}
553
554/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
555/// intrinsic can be promoted by SROA.  At this point, we know that the operand
556/// of the memintrinsic is a pointer to the beginning of the allocation.
557void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
558                                          unsigned OpNo, AllocaInfo &Info) {
559  // If not constant length, give up.
560  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
561  if (!Length) return MarkUnsafe(Info);
562
563  // If not the whole aggregate, give up.
564  if (Length->getZExtValue() !=
565      TD->getABITypeSize(AI->getType()->getElementType()))
566    return MarkUnsafe(Info);
567
568  // We only know about memcpy/memset/memmove.
569  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
570    return MarkUnsafe(Info);
571
572  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
573  // into or out of the aggregate.
574  if (OpNo == 1)
575    Info.isMemCpyDst = true;
576  else {
577    assert(OpNo == 2);
578    Info.isMemCpySrc = true;
579  }
580}
581
582/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
583/// are
584void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
585                                          AllocaInfo &Info) {
586  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
587       UI != E; ++UI) {
588    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
589      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
590    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
591      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
592    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
593      // If storing the entire alloca in one chunk through a bitcasted pointer
594      // to integer, we can transform it.  This happens (for example) when you
595      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
596      // memcpy case and occurs in various "byval" cases and emulated memcpys.
597      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
598          TD->getABITypeSize(SI->getOperand(0)->getType()) ==
599          TD->getABITypeSize(AI->getType()->getElementType())) {
600        Info.isMemCpyDst = true;
601        continue;
602      }
603      return MarkUnsafe(Info);
604    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
605      // If loading the entire alloca in one chunk through a bitcasted pointer
606      // to integer, we can transform it.  This happens (for example) when you
607      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
608      // memcpy case and occurs in various "byval" cases and emulated memcpys.
609      if (isa<IntegerType>(LI->getType()) &&
610          TD->getABITypeSize(LI->getType()) ==
611          TD->getABITypeSize(AI->getType()->getElementType())) {
612        Info.isMemCpySrc = true;
613        continue;
614      }
615      return MarkUnsafe(Info);
616    } else {
617      return MarkUnsafe(Info);
618    }
619    if (Info.isUnsafe) return;
620  }
621}
622
623/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
624/// to its first element.  Transform users of the cast to use the new values
625/// instead.
626void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
627                                      SmallVector<AllocaInst*, 32> &NewElts) {
628  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
629  while (UI != UE) {
630    Instruction *User = cast<Instruction>(*UI++);
631    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
632      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
633      if (BCU->use_empty()) BCU->eraseFromParent();
634      continue;
635    }
636
637    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
638      // This must be memcpy/memmove/memset of the entire aggregate.
639      // Split into one per element.
640      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
641      continue;
642    }
643
644    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
645      // If this is a store of the entire alloca from an integer, rewrite it.
646      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
647      continue;
648    }
649
650    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
651      // If this is a load of the entire alloca to an integer, rewrite it.
652      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
653      continue;
654    }
655
656    // Otherwise it must be some other user of a gep of the first pointer.  Just
657    // leave these alone.
658    continue;
659  }
660}
661
662/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
663/// Rewrite it to copy or set the elements of the scalarized memory.
664void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
665                                        AllocationInst *AI,
666                                        SmallVector<AllocaInst*, 32> &NewElts) {
667
668  // If this is a memcpy/memmove, construct the other pointer as the
669  // appropriate type.
670  Value *OtherPtr = 0;
671  if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
672    if (BCInst == MCI->getRawDest())
673      OtherPtr = MCI->getRawSource();
674    else {
675      assert(BCInst == MCI->getRawSource());
676      OtherPtr = MCI->getRawDest();
677    }
678  } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
679    if (BCInst == MMI->getRawDest())
680      OtherPtr = MMI->getRawSource();
681    else {
682      assert(BCInst == MMI->getRawSource());
683      OtherPtr = MMI->getRawDest();
684    }
685  }
686
687  // If there is an other pointer, we want to convert it to the same pointer
688  // type as AI has, so we can GEP through it safely.
689  if (OtherPtr) {
690    // It is likely that OtherPtr is a bitcast, if so, remove it.
691    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
692      OtherPtr = BC->getOperand(0);
693    // All zero GEPs are effectively bitcasts.
694    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
695      if (GEP->hasAllZeroIndices())
696        OtherPtr = GEP->getOperand(0);
697
698    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
699      if (BCE->getOpcode() == Instruction::BitCast)
700        OtherPtr = BCE->getOperand(0);
701
702    // If the pointer is not the right type, insert a bitcast to the right
703    // type.
704    if (OtherPtr->getType() != AI->getType())
705      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
706                                 MI);
707  }
708
709  // Process each element of the aggregate.
710  Value *TheFn = MI->getOperand(0);
711  const Type *BytePtrTy = MI->getRawDest()->getType();
712  bool SROADest = MI->getRawDest() == BCInst;
713
714  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
715
716  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
717    // If this is a memcpy/memmove, emit a GEP of the other element address.
718    Value *OtherElt = 0;
719    if (OtherPtr) {
720      Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
721      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
722                                           OtherPtr->getNameStr()+"."+utostr(i),
723                                           MI);
724    }
725
726    Value *EltPtr = NewElts[i];
727    const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
728
729    // If we got down to a scalar, insert a load or store as appropriate.
730    if (EltTy->isSingleValueType()) {
731      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
732        Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
733                                  MI);
734        new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
735        continue;
736      }
737      assert(isa<MemSetInst>(MI));
738
739      // If the stored element is zero (common case), just store a null
740      // constant.
741      Constant *StoreVal;
742      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
743        if (CI->isZero()) {
744          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
745        } else {
746          // If EltTy is a vector type, get the element type.
747          const Type *ValTy = EltTy;
748          if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
749            ValTy = VTy->getElementType();
750
751          // Construct an integer with the right value.
752          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
753          APInt OneVal(EltSize, CI->getZExtValue());
754          APInt TotalVal(OneVal);
755          // Set each byte.
756          for (unsigned i = 0; 8*i < EltSize; ++i) {
757            TotalVal = TotalVal.shl(8);
758            TotalVal |= OneVal;
759          }
760
761          // Convert the integer value to the appropriate type.
762          StoreVal = ConstantInt::get(TotalVal);
763          if (isa<PointerType>(ValTy))
764            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
765          else if (ValTy->isFloatingPoint())
766            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
767          assert(StoreVal->getType() == ValTy && "Type mismatch!");
768
769          // If the requested value was a vector constant, create it.
770          if (EltTy != ValTy) {
771            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
772            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
773            StoreVal = ConstantVector::get(&Elts[0], NumElts);
774          }
775        }
776        new StoreInst(StoreVal, EltPtr, MI);
777        continue;
778      }
779      // Otherwise, if we're storing a byte variable, use a memset call for
780      // this element.
781    }
782
783    // Cast the element pointer to BytePtrTy.
784    if (EltPtr->getType() != BytePtrTy)
785      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
786
787    // Cast the other pointer (if we have one) to BytePtrTy.
788    if (OtherElt && OtherElt->getType() != BytePtrTy)
789      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
790                                 MI);
791
792    unsigned EltSize = TD->getABITypeSize(EltTy);
793
794    // Finally, insert the meminst for this element.
795    if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
796      Value *Ops[] = {
797        SROADest ? EltPtr : OtherElt,  // Dest ptr
798        SROADest ? OtherElt : EltPtr,  // Src ptr
799        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
800        Zero  // Align
801      };
802      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
803    } else {
804      assert(isa<MemSetInst>(MI));
805      Value *Ops[] = {
806        EltPtr, MI->getOperand(2),  // Dest, Value,
807        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
808        Zero  // Align
809      };
810      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
811    }
812  }
813  MI->eraseFromParent();
814}
815
816/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
817/// overwrites the entire allocation.  Extract out the pieces of the stored
818/// integer and store them individually.
819void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
820                                         AllocationInst *AI,
821                                         SmallVector<AllocaInst*, 32> &NewElts){
822  // Extract each element out of the integer according to its structure offset
823  // and store the element value to the individual alloca.
824  Value *SrcVal = SI->getOperand(0);
825  const Type *AllocaEltTy = AI->getType()->getElementType();
826  uint64_t AllocaSizeBits = TD->getABITypeSizeInBits(AllocaEltTy);
827
828  // If this isn't a store of an integer to the whole alloca, it may be a store
829  // to the first element.  Just ignore the store in this case and normal SROA
830  // will handle it.
831  if (!isa<IntegerType>(SrcVal->getType()) ||
832      TD->getABITypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
833    return;
834
835  DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
836
837  // There are two forms here: AI could be an array or struct.  Both cases
838  // have different ways to compute the element offset.
839  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
840    const StructLayout *Layout = TD->getStructLayout(EltSTy);
841
842    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
843      // Get the number of bits to shift SrcVal to get the value.
844      const Type *FieldTy = EltSTy->getElementType(i);
845      uint64_t Shift = Layout->getElementOffsetInBits(i);
846
847      if (TD->isBigEndian())
848        Shift = AllocaSizeBits-Shift-TD->getABITypeSizeInBits(FieldTy);
849
850      Value *EltVal = SrcVal;
851      if (Shift) {
852        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
853        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
854                                            "sroa.store.elt", SI);
855      }
856
857      // Truncate down to an integer of the right size.
858      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
859
860      // Ignore zero sized fields like {}, they obviously contain no data.
861      if (FieldSizeBits == 0) continue;
862
863      if (FieldSizeBits != AllocaSizeBits)
864        EltVal = new TruncInst(EltVal, IntegerType::get(FieldSizeBits), "", SI);
865      Value *DestField = NewElts[i];
866      if (EltVal->getType() == FieldTy) {
867        // Storing to an integer field of this size, just do it.
868      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
869        // Bitcast to the right element type (for fp/vector values).
870        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
871      } else {
872        // Otherwise, bitcast the dest pointer (for aggregates).
873        DestField = new BitCastInst(DestField,
874                                    PointerType::getUnqual(EltVal->getType()),
875                                    "", SI);
876      }
877      new StoreInst(EltVal, DestField, SI);
878    }
879
880  } else {
881    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
882    const Type *ArrayEltTy = ATy->getElementType();
883    uint64_t ElementOffset = TD->getABITypeSizeInBits(ArrayEltTy);
884    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
885
886    uint64_t Shift;
887
888    if (TD->isBigEndian())
889      Shift = AllocaSizeBits-ElementOffset;
890    else
891      Shift = 0;
892
893    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
894      // Ignore zero sized fields like {}, they obviously contain no data.
895      if (ElementSizeBits == 0) continue;
896
897      Value *EltVal = SrcVal;
898      if (Shift) {
899        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
900        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
901                                            "sroa.store.elt", SI);
902      }
903
904      // Truncate down to an integer of the right size.
905      if (ElementSizeBits != AllocaSizeBits)
906        EltVal = new TruncInst(EltVal, IntegerType::get(ElementSizeBits),"",SI);
907      Value *DestField = NewElts[i];
908      if (EltVal->getType() == ArrayEltTy) {
909        // Storing to an integer field of this size, just do it.
910      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
911        // Bitcast to the right element type (for fp/vector values).
912        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
913      } else {
914        // Otherwise, bitcast the dest pointer (for aggregates).
915        DestField = new BitCastInst(DestField,
916                                    PointerType::getUnqual(EltVal->getType()),
917                                    "", SI);
918      }
919      new StoreInst(EltVal, DestField, SI);
920
921      if (TD->isBigEndian())
922        Shift -= ElementOffset;
923      else
924        Shift += ElementOffset;
925    }
926  }
927
928  SI->eraseFromParent();
929}
930
931/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
932/// an integer.  Load the individual pieces to form the aggregate value.
933void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
934                                        SmallVector<AllocaInst*, 32> &NewElts) {
935  // Extract each element out of the NewElts according to its structure offset
936  // and form the result value.
937  const Type *AllocaEltTy = AI->getType()->getElementType();
938  uint64_t AllocaSizeBits = TD->getABITypeSizeInBits(AllocaEltTy);
939
940  // If this isn't a load of the whole alloca to an integer, it may be a load
941  // of the first element.  Just ignore the load in this case and normal SROA
942  // will handle it.
943  if (!isa<IntegerType>(LI->getType()) ||
944      TD->getABITypeSizeInBits(LI->getType()) != AllocaSizeBits)
945    return;
946
947  DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
948
949  // There are two forms here: AI could be an array or struct.  Both cases
950  // have different ways to compute the element offset.
951  const StructLayout *Layout = 0;
952  uint64_t ArrayEltBitOffset = 0;
953  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
954    Layout = TD->getStructLayout(EltSTy);
955  } else {
956    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
957    ArrayEltBitOffset = TD->getABITypeSizeInBits(ArrayEltTy);
958  }
959
960  Value *ResultVal = Constant::getNullValue(LI->getType());
961
962  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
963    // Load the value from the alloca.  If the NewElt is an aggregate, cast
964    // the pointer to an integer of the same size before doing the load.
965    Value *SrcField = NewElts[i];
966    const Type *FieldTy =
967      cast<PointerType>(SrcField->getType())->getElementType();
968    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
969
970    // Ignore zero sized fields like {}, they obviously contain no data.
971    if (FieldSizeBits == 0) continue;
972
973    const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits);
974    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
975        !isa<VectorType>(FieldTy))
976      SrcField = new BitCastInst(SrcField, PointerType::getUnqual(FieldIntTy),
977                                 "", LI);
978    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
979
980    // If SrcField is a fp or vector of the right size but that isn't an
981    // integer type, bitcast to an integer so we can shift it.
982    if (SrcField->getType() != FieldIntTy)
983      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
984
985    // Zero extend the field to be the same size as the final alloca so that
986    // we can shift and insert it.
987    if (SrcField->getType() != ResultVal->getType())
988      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
989
990    // Determine the number of bits to shift SrcField.
991    uint64_t Shift;
992    if (Layout) // Struct case.
993      Shift = Layout->getElementOffsetInBits(i);
994    else  // Array case.
995      Shift = i*ArrayEltBitOffset;
996
997    if (TD->isBigEndian())
998      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
999
1000    if (Shift) {
1001      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1002      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1003    }
1004
1005    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1006  }
1007
1008  LI->replaceAllUsesWith(ResultVal);
1009  LI->eraseFromParent();
1010}
1011
1012
1013/// HasPadding - Return true if the specified type has any structure or
1014/// alignment padding, false otherwise.
1015static bool HasPadding(const Type *Ty, const TargetData &TD) {
1016  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1017    const StructLayout *SL = TD.getStructLayout(STy);
1018    unsigned PrevFieldBitOffset = 0;
1019    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1020      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1021
1022      // Padding in sub-elements?
1023      if (HasPadding(STy->getElementType(i), TD))
1024        return true;
1025
1026      // Check to see if there is any padding between this element and the
1027      // previous one.
1028      if (i) {
1029        unsigned PrevFieldEnd =
1030        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1031        if (PrevFieldEnd < FieldBitOffset)
1032          return true;
1033      }
1034
1035      PrevFieldBitOffset = FieldBitOffset;
1036    }
1037
1038    //  Check for tail padding.
1039    if (unsigned EltCount = STy->getNumElements()) {
1040      unsigned PrevFieldEnd = PrevFieldBitOffset +
1041                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1042      if (PrevFieldEnd < SL->getSizeInBits())
1043        return true;
1044    }
1045
1046  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1047    return HasPadding(ATy->getElementType(), TD);
1048  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1049    return HasPadding(VTy->getElementType(), TD);
1050  }
1051  return TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
1052}
1053
1054/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1055/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1056/// or 1 if safe after canonicalization has been performed.
1057///
1058int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1059  // Loop over the use list of the alloca.  We can only transform it if all of
1060  // the users are safe to transform.
1061  AllocaInfo Info;
1062
1063  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1064       I != E; ++I) {
1065    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1066    if (Info.isUnsafe) {
1067      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
1068      return 0;
1069    }
1070  }
1071
1072  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1073  // source and destination, we have to be careful.  In particular, the memcpy
1074  // could be moving around elements that live in structure padding of the LLVM
1075  // types, but may actually be used.  In these cases, we refuse to promote the
1076  // struct.
1077  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1078      HasPadding(AI->getType()->getElementType(), *TD))
1079    return 0;
1080
1081  // If we require cleanup, return 1, otherwise return 3.
1082  return Info.needsCanon ? 1 : 3;
1083}
1084
1085/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
1086/// allocation, but only if cleaned up, perform the cleanups required.
1087void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
1088  // At this point, we know that the end result will be SROA'd and promoted, so
1089  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1090  // up.
1091  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1092       UI != E; ) {
1093    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
1094    if (!GEPI) continue;
1095    gep_type_iterator I = gep_type_begin(GEPI);
1096    ++I;
1097
1098    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
1099      uint64_t NumElements = AT->getNumElements();
1100
1101      if (!isa<ConstantInt>(I.getOperand())) {
1102        if (NumElements == 1) {
1103          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
1104        } else {
1105          assert(NumElements == 2 && "Unhandled case!");
1106          // All users of the GEP must be loads.  At each use of the GEP, insert
1107          // two loads of the appropriate indexed GEP and select between them.
1108          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
1109                              Constant::getNullValue(I.getOperand()->getType()),
1110             "isone", GEPI);
1111          // Insert the new GEP instructions, which are properly indexed.
1112          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1113          Indices[1] = Constant::getNullValue(Type::Int32Ty);
1114          Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1115                                                     Indices.begin(),
1116                                                     Indices.end(),
1117                                                     GEPI->getName()+".0", GEPI);
1118          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
1119          Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1120                                                    Indices.begin(),
1121                                                    Indices.end(),
1122                                                    GEPI->getName()+".1", GEPI);
1123          // Replace all loads of the variable index GEP with loads from both
1124          // indexes and a select.
1125          while (!GEPI->use_empty()) {
1126            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1127            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1128            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1129            Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1130            LI->replaceAllUsesWith(R);
1131            LI->eraseFromParent();
1132          }
1133          GEPI->eraseFromParent();
1134        }
1135      }
1136    }
1137  }
1138}
1139
1140/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
1141/// types are incompatible, return true, otherwise update Accum and return
1142/// false.
1143///
1144/// There are three cases we handle here:
1145///   1) An effectively-integer union, where the pieces are stored into as
1146///      smaller integers (common with byte swap and other idioms).
1147///   2) A union of vector types of the same size and potentially its elements.
1148///      Here we turn element accesses into insert/extract element operations.
1149///   3) A union of scalar types, such as int/float or int/pointer.  Here we
1150///      merge together into integers, allowing the xform to work with #1 as
1151///      well.
1152static bool MergeInType(const Type *In, const Type *&Accum,
1153                        const TargetData &TD) {
1154  // If this is our first type, just use it.
1155  const VectorType *PTy;
1156  if (Accum == Type::VoidTy || In == Accum) {
1157    Accum = In;
1158  } else if (In == Type::VoidTy) {
1159    // Noop.
1160  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
1161    // Otherwise pick whichever type is larger.
1162    if (cast<IntegerType>(In)->getBitWidth() >
1163        cast<IntegerType>(Accum)->getBitWidth())
1164      Accum = In;
1165  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
1166    // Pointer unions just stay as one of the pointers.
1167  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
1168    if ((PTy = dyn_cast<VectorType>(Accum)) &&
1169        PTy->getElementType() == In) {
1170      // Accum is a vector, and we are accessing an element: ok.
1171    } else if ((PTy = dyn_cast<VectorType>(In)) &&
1172               PTy->getElementType() == Accum) {
1173      // In is a vector, and accum is an element: ok, remember In.
1174      Accum = In;
1175    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
1176               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
1177      // Two vectors of the same size: keep Accum.
1178    } else {
1179      // Cannot insert an short into a <4 x int> or handle
1180      // <2 x int> -> <4 x int>
1181      return true;
1182    }
1183  } else {
1184    // Pointer/FP/Integer unions merge together as integers.
1185    switch (Accum->getTypeID()) {
1186    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
1187    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
1188    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
1189    case Type::X86_FP80TyID:  return true;
1190    case Type::FP128TyID: return true;
1191    case Type::PPC_FP128TyID: return true;
1192    default:
1193      assert(Accum->isInteger() && "Unknown FP type!");
1194      break;
1195    }
1196
1197    switch (In->getTypeID()) {
1198    case Type::PointerTyID: In = TD.getIntPtrType(); break;
1199    case Type::FloatTyID:   In = Type::Int32Ty; break;
1200    case Type::DoubleTyID:  In = Type::Int64Ty; break;
1201    case Type::X86_FP80TyID:  return true;
1202    case Type::FP128TyID: return true;
1203    case Type::PPC_FP128TyID: return true;
1204    default:
1205      assert(In->isInteger() && "Unknown FP type!");
1206      break;
1207    }
1208    return MergeInType(In, Accum, TD);
1209  }
1210  return false;
1211}
1212
1213/// getIntAtLeastAsBigAs - Return an integer type that is at least as big as the
1214/// specified type.  If there is no suitable type, this returns null.
1215const Type *getIntAtLeastAsBigAs(unsigned NumBits) {
1216  if (NumBits > 64) return 0;
1217  if (NumBits > 32) return Type::Int64Ty;
1218  if (NumBits > 16) return Type::Int32Ty;
1219  if (NumBits > 8) return Type::Int16Ty;
1220  return Type::Int8Ty;
1221}
1222
1223/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
1224/// single scalar integer type, return that type.  Further, if the use is not
1225/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
1226/// there are no uses of this pointer, return Type::VoidTy to differentiate from
1227/// failure.
1228///
1229const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
1230  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
1231  const PointerType *PTy = cast<PointerType>(V->getType());
1232
1233  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1234    Instruction *User = cast<Instruction>(*UI);
1235
1236    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1237      // FIXME: Loads of a first class aggregrate value could be converted to a
1238      // series of loads and insertvalues
1239      if (!LI->getType()->isSingleValueType())
1240        return 0;
1241
1242      if (MergeInType(LI->getType(), UsedType, *TD))
1243        return 0;
1244      continue;
1245    }
1246
1247    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1248      // Storing the pointer, not into the value?
1249      if (SI->getOperand(0) == V) return 0;
1250
1251      // FIXME: Stores of a first class aggregrate value could be converted to a
1252      // series of extractvalues and stores
1253      if (!SI->getOperand(0)->getType()->isSingleValueType())
1254        return 0;
1255
1256      // NOTE: We could handle storing of FP imms into integers here!
1257
1258      if (MergeInType(SI->getOperand(0)->getType(), UsedType, *TD))
1259        return 0;
1260      continue;
1261    }
1262    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1263      IsNotTrivial = true;
1264      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
1265      if (!SubTy || MergeInType(SubTy, UsedType, *TD)) return 0;
1266      continue;
1267    }
1268
1269    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1270      // Check to see if this is stepping over an element: GEP Ptr, int C
1271      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
1272        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1273        unsigned ElSize = TD->getABITypeSize(PTy->getElementType());
1274        unsigned BitOffset = Idx*ElSize*8;
1275        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
1276
1277        IsNotTrivial = true;
1278        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
1279        if (SubElt == 0) return 0;
1280        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
1281          const Type *NewTy =
1282            getIntAtLeastAsBigAs(TD->getABITypeSizeInBits(SubElt)+BitOffset);
1283          if (NewTy == 0 || MergeInType(NewTy, UsedType, *TD)) return 0;
1284          continue;
1285        }
1286        // Cannot handle this!
1287        return 0;
1288      }
1289
1290      if (GEP->getNumOperands() == 3 &&
1291          isa<ConstantInt>(GEP->getOperand(1)) &&
1292          isa<ConstantInt>(GEP->getOperand(2)) &&
1293          cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
1294        // We are stepping into an element, e.g. a structure or an array:
1295        // GEP Ptr, i32 0, i32 Cst
1296        const Type *AggTy = PTy->getElementType();
1297        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1298
1299        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
1300          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
1301        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
1302          // Getting an element of the vector.
1303          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
1304
1305          // Merge in the vector type.
1306          if (MergeInType(VectorTy, UsedType, *TD)) return 0;
1307
1308          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1309          if (SubTy == 0) return 0;
1310
1311          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, *TD))
1312            return 0;
1313
1314          // We'll need to change this to an insert/extract element operation.
1315          IsNotTrivial = true;
1316          continue;    // Everything looks ok
1317
1318        } else if (isa<StructType>(AggTy)) {
1319          // Structs are always ok.
1320        } else {
1321          return 0;
1322        }
1323        const Type *NTy = getIntAtLeastAsBigAs(TD->getABITypeSizeInBits(AggTy));
1324        if (NTy == 0 || MergeInType(NTy, UsedType, *TD)) return 0;
1325        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1326        if (SubTy == 0) return 0;
1327        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, *TD))
1328          return 0;
1329        continue;    // Everything looks ok
1330      }
1331      return 0;
1332    }
1333
1334    // Cannot handle this!
1335    return 0;
1336  }
1337
1338  return UsedType;
1339}
1340
1341/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1342/// predicate and is non-trivial.  Convert it to something that can be trivially
1343/// promoted into a register by mem2reg.
1344void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1345  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
1346       << *ActualTy << "\n";
1347  ++NumConverted;
1348
1349  BasicBlock *EntryBlock = AI->getParent();
1350  assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
1351         "Not in the entry block!");
1352  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
1353
1354  // Create and insert the alloca.
1355  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1356                                     EntryBlock->begin());
1357  ConvertUsesToScalar(AI, NewAI, 0);
1358  delete AI;
1359}
1360
1361
1362/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1363/// directly.  This happens when we are converting an "integer union" to a
1364/// single integer scalar, or when we are converting a "vector union" to a
1365/// vector with insert/extractelement instructions.
1366///
1367/// Offset is an offset from the original alloca, in bits that need to be
1368/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1369void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
1370  while (!Ptr->use_empty()) {
1371    Instruction *User = cast<Instruction>(Ptr->use_back());
1372
1373    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1374      Value *NV = ConvertUsesOfLoadToScalar(LI, NewAI, Offset);
1375      LI->replaceAllUsesWith(NV);
1376      LI->eraseFromParent();
1377      continue;
1378    }
1379
1380    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1381      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1382
1383      Value *SV = ConvertUsesOfStoreToScalar(SI, NewAI, Offset);
1384      new StoreInst(SV, NewAI, SI);
1385      SI->eraseFromParent();
1386      continue;
1387    }
1388
1389    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1390      ConvertUsesToScalar(CI, NewAI, Offset);
1391      CI->eraseFromParent();
1392      continue;
1393    }
1394
1395    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1396      const PointerType *AggPtrTy =
1397        cast<PointerType>(GEP->getOperand(0)->getType());
1398      unsigned AggSizeInBits =
1399        TD->getABITypeSizeInBits(AggPtrTy->getElementType());
1400
1401      // Check to see if this is stepping over an element: GEP Ptr, int C
1402      unsigned NewOffset = Offset;
1403      if (GEP->getNumOperands() == 2) {
1404        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1405        unsigned BitOffset = Idx*AggSizeInBits;
1406
1407        NewOffset += BitOffset;
1408        ConvertUsesToScalar(GEP, NewAI, NewOffset);
1409        GEP->eraseFromParent();
1410        continue;
1411      }
1412
1413      assert(GEP->getNumOperands() == 3 && "Unsupported operation");
1414
1415      // We know that operand #2 is zero.
1416      unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1417      const Type *AggTy = AggPtrTy->getElementType();
1418      if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1419        unsigned ElSizeBits =
1420          TD->getABITypeSizeInBits(SeqTy->getElementType());
1421
1422        NewOffset += ElSizeBits*Idx;
1423      } else {
1424        const StructType *STy = cast<StructType>(AggTy);
1425        unsigned EltBitOffset =
1426          TD->getStructLayout(STy)->getElementOffsetInBits(Idx);
1427
1428        NewOffset += EltBitOffset;
1429      }
1430      ConvertUsesToScalar(GEP, NewAI, NewOffset);
1431      GEP->eraseFromParent();
1432      continue;
1433    }
1434
1435    assert(0 && "Unsupported operation!");
1436    abort();
1437  }
1438}
1439
1440/// ConvertUsesOfLoadToScalar - Convert all of the users the specified load to
1441/// use the new alloca directly, returning the value that should replace the
1442/// load.  This happens when we are converting an "integer union" to a
1443/// single integer scalar, or when we are converting a "vector union" to a
1444/// vector with insert/extractelement instructions.
1445///
1446/// Offset is an offset from the original alloca, in bits that need to be
1447/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1448Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
1449                                       unsigned Offset) {
1450  // The load is a bit extract from NewAI shifted right by Offset bits.
1451  Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1452
1453  if (NV->getType() == LI->getType() && Offset == 0) {
1454    // We win, no conversion needed.
1455    return NV;
1456  }
1457
1458  // If the result type of the 'union' is a pointer, then this must be ptr->ptr
1459  // cast.  Anything else would result in NV being an integer.
1460  if (isa<PointerType>(NV->getType())) {
1461    assert(isa<PointerType>(LI->getType()));
1462    return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1463  }
1464
1465  if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
1466    // If the result alloca is a vector type, this is either an element
1467    // access or a bitcast to another vector type.
1468    if (isa<VectorType>(LI->getType()))
1469      return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1470
1471    // Otherwise it must be an element access.
1472    unsigned Elt = 0;
1473    if (Offset) {
1474      unsigned EltSize = TD->getABITypeSizeInBits(VTy->getElementType());
1475      Elt = Offset/EltSize;
1476      Offset -= EltSize*Elt;
1477    }
1478    NV = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
1479                                "tmp", LI);
1480
1481    // If we're done, return this element.
1482    if (NV->getType() == LI->getType() && Offset == 0)
1483      return NV;
1484  }
1485
1486  const IntegerType *NTy = cast<IntegerType>(NV->getType());
1487
1488  // If this is a big-endian system and the load is narrower than the
1489  // full alloca type, we need to do a shift to get the right bits.
1490  int ShAmt = 0;
1491  if (TD->isBigEndian()) {
1492    // On big-endian machines, the lowest bit is stored at the bit offset
1493    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1494    // integers with a bitwidth that is not a multiple of 8.
1495    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1496            TD->getTypeStoreSizeInBits(LI->getType()) - Offset;
1497  } else {
1498    ShAmt = Offset;
1499  }
1500
1501  // Note: we support negative bitwidths (with shl) which are not defined.
1502  // We do this to support (f.e.) loads off the end of a structure where
1503  // only some bits are used.
1504  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1505    NV = BinaryOperator::CreateLShr(NV,
1506                                    ConstantInt::get(NV->getType(),ShAmt),
1507                                    LI->getName(), LI);
1508  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1509    NV = BinaryOperator::CreateShl(NV,
1510                                   ConstantInt::get(NV->getType(),-ShAmt),
1511                                   LI->getName(), LI);
1512
1513  // Finally, unconditionally truncate the integer to the right width.
1514  unsigned LIBitWidth = TD->getTypeSizeInBits(LI->getType());
1515  if (LIBitWidth < NTy->getBitWidth())
1516    NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1517                       LI->getName(), LI);
1518
1519  // If the result is an integer, this is a trunc or bitcast.
1520  if (isa<IntegerType>(LI->getType())) {
1521    // Should be done.
1522  } else if (LI->getType()->isFloatingPoint()) {
1523    // Just do a bitcast, we know the sizes match up.
1524    NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1525  } else {
1526    // Otherwise must be a pointer.
1527    NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1528  }
1529  assert(NV->getType() == LI->getType() && "Didn't convert right?");
1530  return NV;
1531}
1532
1533
1534/// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
1535/// pair of the new alloca directly, returning the value that should be stored
1536/// to the alloca.  This happens when we are converting an "integer union" to a
1537/// single integer scalar, or when we are converting a "vector union" to a
1538/// vector with insert/extractelement instructions.
1539///
1540/// Offset is an offset from the original alloca, in bits that need to be
1541/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1542Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
1543                                        unsigned Offset) {
1544
1545  // Convert the stored type to the actual type, shift it left to insert
1546  // then 'or' into place.
1547  Value *SV = SI->getOperand(0);
1548  const Type *AllocaType = NewAI->getType()->getElementType();
1549  if (SV->getType() == AllocaType && Offset == 0) {
1550    // All is well.
1551  } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1552    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1553
1554    // If the result alloca is a vector type, this is either an element
1555    // access or a bitcast to another vector type.
1556    if (isa<VectorType>(SV->getType())) {
1557      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1558    } else {
1559      // Must be an element insertion.
1560      unsigned Elt = Offset/TD->getABITypeSizeInBits(PTy->getElementType());
1561      SV = InsertElementInst::Create(Old, SV,
1562                                     ConstantInt::get(Type::Int32Ty, Elt),
1563                                     "tmp", SI);
1564    }
1565  } else if (isa<PointerType>(AllocaType)) {
1566    // If the alloca type is a pointer, then all the elements must be
1567    // pointers.
1568    if (SV->getType() != AllocaType)
1569      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1570  } else {
1571    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1572
1573    // If SV is a float, convert it to the appropriate integer type.
1574    // If it is a pointer, do the same, and also handle ptr->ptr casts
1575    // here.
1576    unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1577    unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1578    unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1579    unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1580    if (SV->getType()->isFloatingPoint())
1581      SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1582                           SV->getName(), SI);
1583    else if (isa<PointerType>(SV->getType()))
1584      SV = new PtrToIntInst(SV, TD->getIntPtrType(), SV->getName(), SI);
1585
1586    // Always zero extend the value if needed.
1587    if (SV->getType() != AllocaType)
1588      SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1589
1590    // If this is a big-endian system and the store is narrower than the
1591    // full alloca type, we need to do a shift to get the right bits.
1592    int ShAmt = 0;
1593    if (TD->isBigEndian()) {
1594      // On big-endian machines, the lowest bit is stored at the bit offset
1595      // from the pointer given by getTypeStoreSizeInBits.  This matters for
1596      // integers with a bitwidth that is not a multiple of 8.
1597      ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1598    } else {
1599      ShAmt = Offset;
1600    }
1601
1602    // Note: we support negative bitwidths (with shr) which are not defined.
1603    // We do this to support (f.e.) stores off the end of a structure where
1604    // only some bits in the structure are set.
1605    APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1606    if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1607      SV = BinaryOperator::CreateShl(SV,
1608                                     ConstantInt::get(SV->getType(), ShAmt),
1609                                     SV->getName(), SI);
1610      Mask <<= ShAmt;
1611    } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1612      SV = BinaryOperator::CreateLShr(SV,
1613                                      ConstantInt::get(SV->getType(),-ShAmt),
1614                                      SV->getName(), SI);
1615      Mask = Mask.lshr(ShAmt);
1616    }
1617
1618    // Mask out the bits we are about to insert from the old value, and or
1619    // in the new bits.
1620    if (SrcWidth != DestWidth) {
1621      assert(DestWidth > SrcWidth);
1622      Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
1623                                      Old->getName()+".mask", SI);
1624      SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI);
1625    }
1626  }
1627  return SV;
1628}
1629
1630
1631
1632/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1633/// some part of a constant global variable.  This intentionally only accepts
1634/// constant expressions because we don't can't rewrite arbitrary instructions.
1635static bool PointsToConstantGlobal(Value *V) {
1636  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1637    return GV->isConstant();
1638  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1639    if (CE->getOpcode() == Instruction::BitCast ||
1640        CE->getOpcode() == Instruction::GetElementPtr)
1641      return PointsToConstantGlobal(CE->getOperand(0));
1642  return false;
1643}
1644
1645/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1646/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1647/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1648/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1649/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1650/// the alloca, and if the source pointer is a pointer to a constant  global, we
1651/// can optimize this.
1652static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1653                                           bool isOffset) {
1654  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1655    if (isa<LoadInst>(*UI)) {
1656      // Ignore loads, they are always ok.
1657      continue;
1658    }
1659    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1660      // If uses of the bitcast are ok, we are ok.
1661      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1662        return false;
1663      continue;
1664    }
1665    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1666      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1667      // doesn't, it does.
1668      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1669                                         isOffset || !GEP->hasAllZeroIndices()))
1670        return false;
1671      continue;
1672    }
1673
1674    // If this is isn't our memcpy/memmove, reject it as something we can't
1675    // handle.
1676    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1677      return false;
1678
1679    // If we already have seen a copy, reject the second one.
1680    if (TheCopy) return false;
1681
1682    // If the pointer has been offset from the start of the alloca, we can't
1683    // safely handle this.
1684    if (isOffset) return false;
1685
1686    // If the memintrinsic isn't using the alloca as the dest, reject it.
1687    if (UI.getOperandNo() != 1) return false;
1688
1689    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1690
1691    // If the source of the memcpy/move is not a constant global, reject it.
1692    if (!PointsToConstantGlobal(MI->getOperand(2)))
1693      return false;
1694
1695    // Otherwise, the transform is safe.  Remember the copy instruction.
1696    TheCopy = MI;
1697  }
1698  return true;
1699}
1700
1701/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1702/// modified by a copy from a constant global.  If we can prove this, we can
1703/// replace any uses of the alloca with uses of the global directly.
1704Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1705  Instruction *TheCopy = 0;
1706  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1707    return TheCopy;
1708  return 0;
1709}
1710