ScalarReplAggregates.cpp revision 5a1cb644c903da49dc612a0ba5044505d066259e
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DebugInfo.h"
34#include "llvm/Analysis/DIBuilder.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/Loads.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Transforms/Utils/PromoteMemToReg.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include "llvm/Transforms/Utils/SSAUpdater.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/GetElementPtrTypeIterator.h"
46#include "llvm/Support/IRBuilder.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/SetVector.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/Statistic.h"
52using namespace llvm;
53
54STATISTIC(NumReplaced,  "Number of allocas broken up");
55STATISTIC(NumPromoted,  "Number of allocas promoted");
56STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
57STATISTIC(NumConverted, "Number of aggregates converted to scalar");
58STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
59
60namespace {
61  struct SROA : public FunctionPass {
62    SROA(int T, bool hasDT, char &ID)
63      : FunctionPass(ID), HasDomTree(hasDT) {
64      if (T == -1)
65        SRThreshold = 128;
66      else
67        SRThreshold = T;
68    }
69
70    bool runOnFunction(Function &F);
71
72    bool performScalarRepl(Function &F);
73    bool performPromotion(Function &F);
74
75  private:
76    bool HasDomTree;
77    TargetData *TD;
78
79    /// DeadInsts - Keep track of instructions we have made dead, so that
80    /// we can remove them after we are done working.
81    SmallVector<Value*, 32> DeadInsts;
82
83    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84    /// information about the uses.  All these fields are initialized to false
85    /// and set to true when something is learned.
86    struct AllocaInfo {
87      /// The alloca to promote.
88      AllocaInst *AI;
89
90      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
91      /// looping and avoid redundant work.
92      SmallPtrSet<PHINode*, 8> CheckedPHIs;
93
94      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
95      bool isUnsafe : 1;
96
97      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
98      bool isMemCpySrc : 1;
99
100      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
101      bool isMemCpyDst : 1;
102
103      /// hasSubelementAccess - This is true if a subelement of the alloca is
104      /// ever accessed, or false if the alloca is only accessed with mem
105      /// intrinsics or load/store that only access the entire alloca at once.
106      bool hasSubelementAccess : 1;
107
108      /// hasALoadOrStore - This is true if there are any loads or stores to it.
109      /// The alloca may just be accessed with memcpy, for example, which would
110      /// not set this.
111      bool hasALoadOrStore : 1;
112
113      explicit AllocaInfo(AllocaInst *ai)
114        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
115          hasSubelementAccess(false), hasALoadOrStore(false) {}
116    };
117
118    unsigned SRThreshold;
119
120    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
121      I.isUnsafe = true;
122      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
123    }
124
125    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
126
127    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
128    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
129                                         AllocaInfo &Info);
130    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
131    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
132                         Type *MemOpType, bool isStore, AllocaInfo &Info,
133                         Instruction *TheAccess, bool AllowWholeAccess);
134    bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
135    uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
136                                  Type *&IdxTy);
137
138    void DoScalarReplacement(AllocaInst *AI,
139                             std::vector<AllocaInst*> &WorkList);
140    void DeleteDeadInstructions();
141
142    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
143                              SmallVector<AllocaInst*, 32> &NewElts);
144    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
145                        SmallVector<AllocaInst*, 32> &NewElts);
146    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
147                    SmallVector<AllocaInst*, 32> &NewElts);
148    void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
149                                  uint64_t Offset,
150                                  SmallVector<AllocaInst*, 32> &NewElts);
151    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
152                                      AllocaInst *AI,
153                                      SmallVector<AllocaInst*, 32> &NewElts);
154    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
155                                       SmallVector<AllocaInst*, 32> &NewElts);
156    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
157                                      SmallVector<AllocaInst*, 32> &NewElts);
158
159    static MemTransferInst *isOnlyCopiedFromConstantGlobal(
160        AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
161  };
162
163  // SROA_DT - SROA that uses DominatorTree.
164  struct SROA_DT : public SROA {
165    static char ID;
166  public:
167    SROA_DT(int T = -1) : SROA(T, true, ID) {
168      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
169    }
170
171    // getAnalysisUsage - This pass does not require any passes, but we know it
172    // will not alter the CFG, so say so.
173    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174      AU.addRequired<DominatorTree>();
175      AU.setPreservesCFG();
176    }
177  };
178
179  // SROA_SSAUp - SROA that uses SSAUpdater.
180  struct SROA_SSAUp : public SROA {
181    static char ID;
182  public:
183    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
184      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
185    }
186
187    // getAnalysisUsage - This pass does not require any passes, but we know it
188    // will not alter the CFG, so say so.
189    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
190      AU.setPreservesCFG();
191    }
192  };
193
194}
195
196char SROA_DT::ID = 0;
197char SROA_SSAUp::ID = 0;
198
199INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
200                "Scalar Replacement of Aggregates (DT)", false, false)
201INITIALIZE_PASS_DEPENDENCY(DominatorTree)
202INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
203                "Scalar Replacement of Aggregates (DT)", false, false)
204
205INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
206                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
207INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
208                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
209
210// Public interface to the ScalarReplAggregates pass
211FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
212                                                   bool UseDomTree) {
213  if (UseDomTree)
214    return new SROA_DT(Threshold);
215  return new SROA_SSAUp(Threshold);
216}
217
218
219//===----------------------------------------------------------------------===//
220// Convert To Scalar Optimization.
221//===----------------------------------------------------------------------===//
222
223namespace {
224/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
225/// optimization, which scans the uses of an alloca and determines if it can
226/// rewrite it in terms of a single new alloca that can be mem2reg'd.
227class ConvertToScalarInfo {
228  /// AllocaSize - The size of the alloca being considered in bytes.
229  unsigned AllocaSize;
230  const TargetData &TD;
231
232  /// IsNotTrivial - This is set to true if there is some access to the object
233  /// which means that mem2reg can't promote it.
234  bool IsNotTrivial;
235
236  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
237  /// computed based on the uses of the alloca rather than the LLVM type system.
238  enum {
239    Unknown,
240
241    // Accesses via GEPs that are consistent with element access of a vector
242    // type. This will not be converted into a vector unless there is a later
243    // access using an actual vector type.
244    ImplicitVector,
245
246    // Accesses via vector operations and GEPs that are consistent with the
247    // layout of a vector type.
248    Vector,
249
250    // An integer bag-of-bits with bitwise operations for insertion and
251    // extraction. Any combination of types can be converted into this kind
252    // of scalar.
253    Integer
254  } ScalarKind;
255
256  /// VectorTy - This tracks the type that we should promote the vector to if
257  /// it is possible to turn it into a vector.  This starts out null, and if it
258  /// isn't possible to turn into a vector type, it gets set to VoidTy.
259  VectorType *VectorTy;
260
261  /// HadNonMemTransferAccess - True if there is at least one access to the
262  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
263  /// large integers unless there is some potential for optimization.
264  bool HadNonMemTransferAccess;
265
266public:
267  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
268    : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
269      VectorTy(0), HadNonMemTransferAccess(false) { }
270
271  AllocaInst *TryConvert(AllocaInst *AI);
272
273private:
274  bool CanConvertToScalar(Value *V, uint64_t Offset);
275  void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
276  bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
277  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
278
279  Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
280                                    uint64_t Offset, IRBuilder<> &Builder);
281  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
282                                   uint64_t Offset, IRBuilder<> &Builder);
283};
284} // end anonymous namespace.
285
286
287/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
288/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
289/// alloca if possible or null if not.
290AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
291  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
292  // out.
293  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
294    return 0;
295
296  // If an alloca has only memset / memcpy uses, it may still have an Unknown
297  // ScalarKind. Treat it as an Integer below.
298  if (ScalarKind == Unknown)
299    ScalarKind = Integer;
300
301  // FIXME: It should be possible to promote the vector type up to the alloca's
302  // size.
303  if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
304    ScalarKind = Integer;
305
306  // If we were able to find a vector type that can handle this with
307  // insert/extract elements, and if there was at least one use that had
308  // a vector type, promote this to a vector.  We don't want to promote
309  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
310  // we just get a lot of insert/extracts.  If at least one vector is
311  // involved, then we probably really do have a union of vector/array.
312  Type *NewTy;
313  if (ScalarKind == Vector) {
314    assert(VectorTy && "Missing type for vector scalar.");
315    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
316          << *VectorTy << '\n');
317    NewTy = VectorTy;  // Use the vector type.
318  } else {
319    unsigned BitWidth = AllocaSize * 8;
320    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
321        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
322      return 0;
323
324    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
325    // Create and insert the integer alloca.
326    NewTy = IntegerType::get(AI->getContext(), BitWidth);
327  }
328  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
329  ConvertUsesToScalar(AI, NewAI, 0);
330  return NewAI;
331}
332
333/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
334/// (VectorTy) so far at the offset specified by Offset (which is specified in
335/// bytes).
336///
337/// There are three cases we handle here:
338///   1) A union of vector types of the same size and potentially its elements.
339///      Here we turn element accesses into insert/extract element operations.
340///      This promotes a <4 x float> with a store of float to the third element
341///      into a <4 x float> that uses insert element.
342///   2) A union of vector types with power-of-2 size differences, e.g. a float,
343///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
344///      and extract element operations, and <2 x float> accesses into a cast to
345///      <2 x double>, an extract, and a cast back to <2 x float>.
346///   3) A fully general blob of memory, which we turn into some (potentially
347///      large) integer type with extract and insert operations where the loads
348///      and stores would mutate the memory.  We mark this by setting VectorTy
349///      to VoidTy.
350void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
351                                                    uint64_t Offset) {
352  // If we already decided to turn this into a blob of integer memory, there is
353  // nothing to be done.
354  if (ScalarKind == Integer)
355    return;
356
357  // If this could be contributing to a vector, analyze it.
358
359  // If the In type is a vector that is the same size as the alloca, see if it
360  // matches the existing VecTy.
361  if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
362    if (MergeInVectorType(VInTy, Offset))
363      return;
364  } else if (In->isFloatTy() || In->isDoubleTy() ||
365             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
366              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
367    // Full width accesses can be ignored, because they can always be turned
368    // into bitcasts.
369    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
370    if (EltSize == AllocaSize)
371      return;
372
373    // If we're accessing something that could be an element of a vector, see
374    // if the implied vector agrees with what we already have and if Offset is
375    // compatible with it.
376    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
377        (!VectorTy || Offset * 8 < VectorTy->getPrimitiveSizeInBits())) {
378      if (!VectorTy) {
379        ScalarKind = ImplicitVector;
380        VectorTy = VectorType::get(In, AllocaSize/EltSize);
381        return;
382      }
383
384      unsigned CurrentEltSize = VectorTy->getElementType()
385                                ->getPrimitiveSizeInBits()/8;
386      if (EltSize == CurrentEltSize)
387        return;
388
389      if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
390        return;
391    }
392  }
393
394  // Otherwise, we have a case that we can't handle with an optimized vector
395  // form.  We can still turn this into a large integer.
396  ScalarKind = Integer;
397}
398
399/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
400/// returning true if the type was successfully merged and false otherwise.
401bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
402                                            uint64_t Offset) {
403  // TODO: Support nonzero offsets?
404  if (Offset != 0)
405    return false;
406
407  // Only allow vectors that are a power-of-2 away from the size of the alloca.
408  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
409    return false;
410
411  // If this the first vector we see, remember the type so that we know the
412  // element size.
413  if (!VectorTy) {
414    ScalarKind = Vector;
415    VectorTy = VInTy;
416    return true;
417  }
418
419  unsigned BitWidth = VectorTy->getBitWidth();
420  unsigned InBitWidth = VInTy->getBitWidth();
421
422  // Vectors of the same size can be converted using a simple bitcast.
423  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8)) {
424    ScalarKind = Vector;
425    return true;
426  }
427
428  Type *ElementTy = VectorTy->getElementType();
429  Type *InElementTy = VInTy->getElementType();
430
431  // If they're the same alloc size, we'll be attempting to convert between
432  // them with a vector shuffle, which requires the element types to match.
433  if (TD.getTypeAllocSize(VectorTy) == TD.getTypeAllocSize(VInTy) &&
434      ElementTy != InElementTy)
435    return false;
436
437  // Do not allow mixed integer and floating-point accesses from vectors of
438  // different sizes.
439  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
440    return false;
441
442  if (ElementTy->isFloatingPointTy()) {
443    // Only allow floating-point vectors of different sizes if they have the
444    // same element type.
445    // TODO: This could be loosened a bit, but would anything benefit?
446    if (ElementTy != InElementTy)
447      return false;
448
449    // There are no arbitrary-precision floating-point types, which limits the
450    // number of legal vector types with larger element types that we can form
451    // to bitcast and extract a subvector.
452    // TODO: We could support some more cases with mixed fp128 and double here.
453    if (!(BitWidth == 64 || BitWidth == 128) ||
454        !(InBitWidth == 64 || InBitWidth == 128))
455      return false;
456  } else {
457    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
458                                       "or floating-point.");
459    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
460    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
461
462    // Do not allow integer types smaller than a byte or types whose widths are
463    // not a multiple of a byte.
464    if (BitWidth < 8 || InBitWidth < 8 ||
465        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
466      return false;
467  }
468
469  // Pick the largest of the two vector types.
470  ScalarKind = Vector;
471  if (InBitWidth > BitWidth)
472    VectorTy = VInTy;
473
474  return true;
475}
476
477/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
478/// its accesses to a single vector type, return true and set VecTy to
479/// the new type.  If we could convert the alloca into a single promotable
480/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
481/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
482/// is the current offset from the base of the alloca being analyzed.
483///
484/// If we see at least one access to the value that is as a vector type, set the
485/// SawVec flag.
486bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
487  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
488    Instruction *User = cast<Instruction>(*UI);
489
490    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
491      // Don't break volatile loads.
492      if (LI->isVolatile())
493        return false;
494      // Don't touch MMX operations.
495      if (LI->getType()->isX86_MMXTy())
496        return false;
497      HadNonMemTransferAccess = true;
498      MergeInTypeForLoadOrStore(LI->getType(), Offset);
499      continue;
500    }
501
502    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
503      // Storing the pointer, not into the value?
504      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
505      // Don't touch MMX operations.
506      if (SI->getOperand(0)->getType()->isX86_MMXTy())
507        return false;
508      HadNonMemTransferAccess = true;
509      MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
510      continue;
511    }
512
513    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
514      if (!onlyUsedByLifetimeMarkers(BCI))
515        IsNotTrivial = true;  // Can't be mem2reg'd.
516      if (!CanConvertToScalar(BCI, Offset))
517        return false;
518      continue;
519    }
520
521    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
522      // If this is a GEP with a variable indices, we can't handle it.
523      if (!GEP->hasAllConstantIndices())
524        return false;
525
526      // Compute the offset that this GEP adds to the pointer.
527      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
528      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
529                                               Indices);
530      // See if all uses can be converted.
531      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
532        return false;
533      IsNotTrivial = true;  // Can't be mem2reg'd.
534      HadNonMemTransferAccess = true;
535      continue;
536    }
537
538    // If this is a constant sized memset of a constant value (e.g. 0) we can
539    // handle it.
540    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
541      // Store of constant value.
542      if (!isa<ConstantInt>(MSI->getValue()))
543        return false;
544
545      // Store of constant size.
546      ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
547      if (!Len)
548        return false;
549
550      // If the size differs from the alloca, we can only convert the alloca to
551      // an integer bag-of-bits.
552      // FIXME: This should handle all of the cases that are currently accepted
553      // as vector element insertions.
554      if (Len->getZExtValue() != AllocaSize || Offset != 0)
555        ScalarKind = Integer;
556
557      IsNotTrivial = true;  // Can't be mem2reg'd.
558      HadNonMemTransferAccess = true;
559      continue;
560    }
561
562    // If this is a memcpy or memmove into or out of the whole allocation, we
563    // can handle it like a load or store of the scalar type.
564    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
565      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
566      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
567        return false;
568
569      IsNotTrivial = true;  // Can't be mem2reg'd.
570      continue;
571    }
572
573    // If this is a lifetime intrinsic, we can handle it.
574    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
575      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
576          II->getIntrinsicID() == Intrinsic::lifetime_end) {
577        continue;
578      }
579    }
580
581    // Otherwise, we cannot handle this!
582    return false;
583  }
584
585  return true;
586}
587
588/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
589/// directly.  This happens when we are converting an "integer union" to a
590/// single integer scalar, or when we are converting a "vector union" to a
591/// vector with insert/extractelement instructions.
592///
593/// Offset is an offset from the original alloca, in bits that need to be
594/// shifted to the right.  By the end of this, there should be no uses of Ptr.
595void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
596                                              uint64_t Offset) {
597  while (!Ptr->use_empty()) {
598    Instruction *User = cast<Instruction>(Ptr->use_back());
599
600    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
601      ConvertUsesToScalar(CI, NewAI, Offset);
602      CI->eraseFromParent();
603      continue;
604    }
605
606    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
607      // Compute the offset that this GEP adds to the pointer.
608      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
609      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
610                                               Indices);
611      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
612      GEP->eraseFromParent();
613      continue;
614    }
615
616    IRBuilder<> Builder(User);
617
618    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
619      // The load is a bit extract from NewAI shifted right by Offset bits.
620      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
621      Value *NewLoadVal
622        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
623      LI->replaceAllUsesWith(NewLoadVal);
624      LI->eraseFromParent();
625      continue;
626    }
627
628    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
629      assert(SI->getOperand(0) != Ptr && "Consistency error!");
630      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
631      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
632                                             Builder);
633      Builder.CreateStore(New, NewAI);
634      SI->eraseFromParent();
635
636      // If the load we just inserted is now dead, then the inserted store
637      // overwrote the entire thing.
638      if (Old->use_empty())
639        Old->eraseFromParent();
640      continue;
641    }
642
643    // If this is a constant sized memset of a constant value (e.g. 0) we can
644    // transform it into a store of the expanded constant value.
645    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
646      assert(MSI->getRawDest() == Ptr && "Consistency error!");
647      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
648      if (NumBytes != 0) {
649        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
650
651        // Compute the value replicated the right number of times.
652        APInt APVal(NumBytes*8, Val);
653
654        // Splat the value if non-zero.
655        if (Val)
656          for (unsigned i = 1; i != NumBytes; ++i)
657            APVal |= APVal << 8;
658
659        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
660        Value *New = ConvertScalar_InsertValue(
661                                    ConstantInt::get(User->getContext(), APVal),
662                                               Old, Offset, Builder);
663        Builder.CreateStore(New, NewAI);
664
665        // If the load we just inserted is now dead, then the memset overwrote
666        // the entire thing.
667        if (Old->use_empty())
668          Old->eraseFromParent();
669      }
670      MSI->eraseFromParent();
671      continue;
672    }
673
674    // If this is a memcpy or memmove into or out of the whole allocation, we
675    // can handle it like a load or store of the scalar type.
676    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
677      assert(Offset == 0 && "must be store to start of alloca");
678
679      // If the source and destination are both to the same alloca, then this is
680      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
681      // as appropriate.
682      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
683
684      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
685        // Dest must be OrigAI, change this to be a load from the original
686        // pointer (bitcasted), then a store to our new alloca.
687        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
688        Value *SrcPtr = MTI->getSource();
689        PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
690        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
691        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
692          AIPTy = PointerType::get(AIPTy->getElementType(),
693                                   SPTy->getAddressSpace());
694        }
695        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
696
697        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
698        SrcVal->setAlignment(MTI->getAlignment());
699        Builder.CreateStore(SrcVal, NewAI);
700      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
701        // Src must be OrigAI, change this to be a load from NewAI then a store
702        // through the original dest pointer (bitcasted).
703        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
704        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
705
706        PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
707        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
708        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
709          AIPTy = PointerType::get(AIPTy->getElementType(),
710                                   DPTy->getAddressSpace());
711        }
712        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
713
714        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
715        NewStore->setAlignment(MTI->getAlignment());
716      } else {
717        // Noop transfer. Src == Dst
718      }
719
720      MTI->eraseFromParent();
721      continue;
722    }
723
724    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
725      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
726          II->getIntrinsicID() == Intrinsic::lifetime_end) {
727        // There's no need to preserve these, as the resulting alloca will be
728        // converted to a register anyways.
729        II->eraseFromParent();
730        continue;
731      }
732    }
733
734    llvm_unreachable("Unsupported operation!");
735  }
736}
737
738/// getScaledElementType - Gets a scaled element type for a partial vector
739/// access of an alloca. The input types must be integer or floating-point
740/// scalar or vector types, and the resulting type is an integer, float or
741/// double.
742static Type *getScaledElementType(Type *Ty1, Type *Ty2,
743                                        unsigned NewBitWidth) {
744  bool IsFP1 = Ty1->isFloatingPointTy() ||
745               (Ty1->isVectorTy() &&
746                cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
747  bool IsFP2 = Ty2->isFloatingPointTy() ||
748               (Ty2->isVectorTy() &&
749                cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
750
751  LLVMContext &Context = Ty1->getContext();
752
753  // Prefer floating-point types over integer types, as integer types may have
754  // been created by earlier scalar replacement.
755  if (IsFP1 || IsFP2) {
756    if (NewBitWidth == 32)
757      return Type::getFloatTy(Context);
758    if (NewBitWidth == 64)
759      return Type::getDoubleTy(Context);
760  }
761
762  return Type::getIntNTy(Context, NewBitWidth);
763}
764
765/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
766/// to another vector of the same element type which has the same allocation
767/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
768static Value *CreateShuffleVectorCast(Value *FromVal, Type *ToType,
769                                      IRBuilder<> &Builder) {
770  Type *FromType = FromVal->getType();
771  VectorType *FromVTy = cast<VectorType>(FromType);
772  VectorType *ToVTy = cast<VectorType>(ToType);
773  assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
774         "Vectors must have the same element type");
775   Value *UnV = UndefValue::get(FromType);
776   unsigned numEltsFrom = FromVTy->getNumElements();
777   unsigned numEltsTo = ToVTy->getNumElements();
778
779   SmallVector<Constant*, 3> Args;
780   Type* Int32Ty = Builder.getInt32Ty();
781   unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
782   unsigned i;
783   for (i=0; i != minNumElts; ++i)
784     Args.push_back(ConstantInt::get(Int32Ty, i));
785
786   if (i < numEltsTo) {
787     Constant* UnC = UndefValue::get(Int32Ty);
788     for (; i != numEltsTo; ++i)
789       Args.push_back(UnC);
790   }
791   Constant *Mask = ConstantVector::get(Args);
792   return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
793}
794
795/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
796/// or vector value FromVal, extracting the bits from the offset specified by
797/// Offset.  This returns the value, which is of type ToType.
798///
799/// This happens when we are converting an "integer union" to a single
800/// integer scalar, or when we are converting a "vector union" to a vector with
801/// insert/extractelement instructions.
802///
803/// Offset is an offset from the original alloca, in bits that need to be
804/// shifted to the right.
805Value *ConvertToScalarInfo::
806ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
807                           uint64_t Offset, IRBuilder<> &Builder) {
808  // If the load is of the whole new alloca, no conversion is needed.
809  Type *FromType = FromVal->getType();
810  if (FromType == ToType && Offset == 0)
811    return FromVal;
812
813  // If the result alloca is a vector type, this is either an element
814  // access or a bitcast to another vector type of the same size.
815  if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
816    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
817    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
818    if (FromTypeSize == ToTypeSize) {
819      // If the two types have the same primitive size, use a bit cast.
820      // Otherwise, it is two vectors with the same element type that has
821      // the same allocation size but different number of elements so use
822      // a shuffle vector.
823      if (FromType->getPrimitiveSizeInBits() ==
824          ToType->getPrimitiveSizeInBits())
825        return Builder.CreateBitCast(FromVal, ToType, "tmp");
826      else
827        return CreateShuffleVectorCast(FromVal, ToType, Builder);
828    }
829
830    if (isPowerOf2_64(FromTypeSize / ToTypeSize)) {
831      assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
832             "of a smaller vector type at a nonzero offset.");
833
834      Type *CastElementTy = getScaledElementType(FromType, ToType,
835                                                       ToTypeSize * 8);
836      unsigned NumCastVectorElements = FromTypeSize / ToTypeSize;
837
838      LLVMContext &Context = FromVal->getContext();
839      Type *CastTy = VectorType::get(CastElementTy,
840                                           NumCastVectorElements);
841      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
842
843      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
844      unsigned Elt = Offset/EltSize;
845      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
846      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
847                                        Type::getInt32Ty(Context), Elt), "tmp");
848      return Builder.CreateBitCast(Extract, ToType, "tmp");
849    }
850
851    // Otherwise it must be an element access.
852    unsigned Elt = 0;
853    if (Offset) {
854      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
855      Elt = Offset/EltSize;
856      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
857    }
858    // Return the element extracted out of it.
859    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
860                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
861    if (V->getType() != ToType)
862      V = Builder.CreateBitCast(V, ToType, "tmp");
863    return V;
864  }
865
866  // If ToType is a first class aggregate, extract out each of the pieces and
867  // use insertvalue's to form the FCA.
868  if (StructType *ST = dyn_cast<StructType>(ToType)) {
869    const StructLayout &Layout = *TD.getStructLayout(ST);
870    Value *Res = UndefValue::get(ST);
871    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
872      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
873                                        Offset+Layout.getElementOffsetInBits(i),
874                                              Builder);
875      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
876    }
877    return Res;
878  }
879
880  if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
881    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
882    Value *Res = UndefValue::get(AT);
883    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
884      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
885                                              Offset+i*EltSize, Builder);
886      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
887    }
888    return Res;
889  }
890
891  // Otherwise, this must be a union that was converted to an integer value.
892  IntegerType *NTy = cast<IntegerType>(FromVal->getType());
893
894  // If this is a big-endian system and the load is narrower than the
895  // full alloca type, we need to do a shift to get the right bits.
896  int ShAmt = 0;
897  if (TD.isBigEndian()) {
898    // On big-endian machines, the lowest bit is stored at the bit offset
899    // from the pointer given by getTypeStoreSizeInBits.  This matters for
900    // integers with a bitwidth that is not a multiple of 8.
901    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
902            TD.getTypeStoreSizeInBits(ToType) - Offset;
903  } else {
904    ShAmt = Offset;
905  }
906
907  // Note: we support negative bitwidths (with shl) which are not defined.
908  // We do this to support (f.e.) loads off the end of a structure where
909  // only some bits are used.
910  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
911    FromVal = Builder.CreateLShr(FromVal,
912                                 ConstantInt::get(FromVal->getType(),
913                                                           ShAmt), "tmp");
914  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
915    FromVal = Builder.CreateShl(FromVal,
916                                ConstantInt::get(FromVal->getType(),
917                                                          -ShAmt), "tmp");
918
919  // Finally, unconditionally truncate the integer to the right width.
920  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
921  if (LIBitWidth < NTy->getBitWidth())
922    FromVal =
923      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
924                                                    LIBitWidth), "tmp");
925  else if (LIBitWidth > NTy->getBitWidth())
926    FromVal =
927       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
928                                                    LIBitWidth), "tmp");
929
930  // If the result is an integer, this is a trunc or bitcast.
931  if (ToType->isIntegerTy()) {
932    // Should be done.
933  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
934    // Just do a bitcast, we know the sizes match up.
935    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
936  } else {
937    // Otherwise must be a pointer.
938    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
939  }
940  assert(FromVal->getType() == ToType && "Didn't convert right?");
941  return FromVal;
942}
943
944/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
945/// or vector value "Old" at the offset specified by Offset.
946///
947/// This happens when we are converting an "integer union" to a
948/// single integer scalar, or when we are converting a "vector union" to a
949/// vector with insert/extractelement instructions.
950///
951/// Offset is an offset from the original alloca, in bits that need to be
952/// shifted to the right.
953Value *ConvertToScalarInfo::
954ConvertScalar_InsertValue(Value *SV, Value *Old,
955                          uint64_t Offset, IRBuilder<> &Builder) {
956  // Convert the stored type to the actual type, shift it left to insert
957  // then 'or' into place.
958  Type *AllocaType = Old->getType();
959  LLVMContext &Context = Old->getContext();
960
961  if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
962    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
963    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
964
965    // Changing the whole vector with memset or with an access of a different
966    // vector type?
967    if (ValSize == VecSize) {
968      // If the two types have the same primitive size, use a bit cast.
969      // Otherwise, it is two vectors with the same element type that has
970      // the same allocation size but different number of elements so use
971      // a shuffle vector.
972      if (VTy->getPrimitiveSizeInBits() ==
973          SV->getType()->getPrimitiveSizeInBits())
974        return Builder.CreateBitCast(SV, AllocaType, "tmp");
975      else
976        return CreateShuffleVectorCast(SV, VTy, Builder);
977    }
978
979    if (isPowerOf2_64(VecSize / ValSize)) {
980      assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
981             "value of a smaller vector type at a nonzero offset.");
982
983      Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
984                                                       ValSize);
985      unsigned NumCastVectorElements = VecSize / ValSize;
986
987      LLVMContext &Context = SV->getContext();
988      Type *OldCastTy = VectorType::get(CastElementTy,
989                                              NumCastVectorElements);
990      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
991
992      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
993
994      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
995      unsigned Elt = Offset/EltSize;
996      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
997      Value *Insert =
998        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
999                                        Type::getInt32Ty(Context), Elt), "tmp");
1000      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
1001    }
1002
1003    // Must be an element insertion.
1004    assert(SV->getType() == VTy->getElementType());
1005    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
1006    unsigned Elt = Offset/EltSize;
1007    return Builder.CreateInsertElement(Old, SV,
1008                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
1009                                     "tmp");
1010  }
1011
1012  // If SV is a first-class aggregate value, insert each value recursively.
1013  if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
1014    const StructLayout &Layout = *TD.getStructLayout(ST);
1015    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1016      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1017      Old = ConvertScalar_InsertValue(Elt, Old,
1018                                      Offset+Layout.getElementOffsetInBits(i),
1019                                      Builder);
1020    }
1021    return Old;
1022  }
1023
1024  if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1025    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
1026    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1027      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1028      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1029    }
1030    return Old;
1031  }
1032
1033  // If SV is a float, convert it to the appropriate integer type.
1034  // If it is a pointer, do the same.
1035  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1036  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
1037  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
1038  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
1039  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
1040    SV = Builder.CreateBitCast(SV,
1041                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
1042  else if (SV->getType()->isPointerTy())
1043    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
1044
1045  // Zero extend or truncate the value if needed.
1046  if (SV->getType() != AllocaType) {
1047    if (SV->getType()->getPrimitiveSizeInBits() <
1048             AllocaType->getPrimitiveSizeInBits())
1049      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1050    else {
1051      // Truncation may be needed if storing more than the alloca can hold
1052      // (undefined behavior).
1053      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1054      SrcWidth = DestWidth;
1055      SrcStoreWidth = DestStoreWidth;
1056    }
1057  }
1058
1059  // If this is a big-endian system and the store is narrower than the
1060  // full alloca type, we need to do a shift to get the right bits.
1061  int ShAmt = 0;
1062  if (TD.isBigEndian()) {
1063    // On big-endian machines, the lowest bit is stored at the bit offset
1064    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1065    // integers with a bitwidth that is not a multiple of 8.
1066    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1067  } else {
1068    ShAmt = Offset;
1069  }
1070
1071  // Note: we support negative bitwidths (with shr) which are not defined.
1072  // We do this to support (f.e.) stores off the end of a structure where
1073  // only some bits in the structure are set.
1074  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1075  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1076    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1077                           ShAmt), "tmp");
1078    Mask <<= ShAmt;
1079  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1080    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1081                            -ShAmt), "tmp");
1082    Mask = Mask.lshr(-ShAmt);
1083  }
1084
1085  // Mask out the bits we are about to insert from the old value, and or
1086  // in the new bits.
1087  if (SrcWidth != DestWidth) {
1088    assert(DestWidth > SrcWidth);
1089    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1090    SV = Builder.CreateOr(Old, SV, "ins");
1091  }
1092  return SV;
1093}
1094
1095
1096//===----------------------------------------------------------------------===//
1097// SRoA Driver
1098//===----------------------------------------------------------------------===//
1099
1100
1101bool SROA::runOnFunction(Function &F) {
1102  TD = getAnalysisIfAvailable<TargetData>();
1103
1104  bool Changed = performPromotion(F);
1105
1106  // FIXME: ScalarRepl currently depends on TargetData more than it
1107  // theoretically needs to. It should be refactored in order to support
1108  // target-independent IR. Until this is done, just skip the actual
1109  // scalar-replacement portion of this pass.
1110  if (!TD) return Changed;
1111
1112  while (1) {
1113    bool LocalChange = performScalarRepl(F);
1114    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1115    Changed = true;
1116    LocalChange = performPromotion(F);
1117    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1118  }
1119
1120  return Changed;
1121}
1122
1123namespace {
1124class AllocaPromoter : public LoadAndStorePromoter {
1125  AllocaInst *AI;
1126  DIBuilder *DIB;
1127  SmallVector<DbgDeclareInst *, 4> DDIs;
1128  SmallVector<DbgValueInst *, 4> DVIs;
1129public:
1130  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1131                 DIBuilder *DB)
1132    : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
1133
1134  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1135    // Remember which alloca we're promoting (for isInstInList).
1136    this->AI = AI;
1137    if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI))
1138      for (Value::use_iterator UI = DebugNode->use_begin(),
1139             E = DebugNode->use_end(); UI != E; ++UI)
1140        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1141          DDIs.push_back(DDI);
1142        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1143          DVIs.push_back(DVI);
1144
1145    LoadAndStorePromoter::run(Insts);
1146    AI->eraseFromParent();
1147    for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
1148           E = DDIs.end(); I != E; ++I) {
1149      DbgDeclareInst *DDI = *I;
1150      DDI->eraseFromParent();
1151    }
1152    for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
1153           E = DVIs.end(); I != E; ++I) {
1154      DbgValueInst *DVI = *I;
1155      DVI->eraseFromParent();
1156    }
1157  }
1158
1159  virtual bool isInstInList(Instruction *I,
1160                            const SmallVectorImpl<Instruction*> &Insts) const {
1161    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1162      return LI->getOperand(0) == AI;
1163    return cast<StoreInst>(I)->getPointerOperand() == AI;
1164  }
1165
1166  virtual void updateDebugInfo(Instruction *Inst) const {
1167    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1168           E = DDIs.end(); I != E; ++I) {
1169      DbgDeclareInst *DDI = *I;
1170      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1171        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1172      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1173        ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
1174    }
1175    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1176           E = DVIs.end(); I != E; ++I) {
1177      DbgValueInst *DVI = *I;
1178      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1179        Instruction *DbgVal = NULL;
1180        // If an argument is zero extended then use argument directly. The ZExt
1181        // may be zapped by an optimization pass in future.
1182        Argument *ExtendedArg = NULL;
1183        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1184          ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1185        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1186          ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1187        if (ExtendedArg)
1188          DbgVal = DIB->insertDbgValueIntrinsic(ExtendedArg, 0,
1189                                                DIVariable(DVI->getVariable()),
1190                                                SI);
1191        else
1192          DbgVal = DIB->insertDbgValueIntrinsic(SI->getOperand(0), 0,
1193                                                DIVariable(DVI->getVariable()),
1194                                                SI);
1195        DbgVal->setDebugLoc(DVI->getDebugLoc());
1196      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1197        Instruction *DbgVal =
1198          DIB->insertDbgValueIntrinsic(LI->getOperand(0), 0,
1199                                       DIVariable(DVI->getVariable()), LI);
1200        DbgVal->setDebugLoc(DVI->getDebugLoc());
1201      }
1202    }
1203  }
1204};
1205} // end anon namespace
1206
1207/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1208/// subsequently loaded can be rewritten to load both input pointers and then
1209/// select between the result, allowing the load of the alloca to be promoted.
1210/// From this:
1211///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1212///   %V = load i32* %P2
1213/// to:
1214///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1215///   %V2 = load i32* %Other
1216///   %V = select i1 %cond, i32 %V1, i32 %V2
1217///
1218/// We can do this to a select if its only uses are loads and if the operand to
1219/// the select can be loaded unconditionally.
1220static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1221  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1222  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1223
1224  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1225       UI != UE; ++UI) {
1226    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1227    if (LI == 0 || LI->isVolatile()) return false;
1228
1229    // Both operands to the select need to be dereferencable, either absolutely
1230    // (e.g. allocas) or at this point because we can see other accesses to it.
1231    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1232                                                    LI->getAlignment(), TD))
1233      return false;
1234    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1235                                                    LI->getAlignment(), TD))
1236      return false;
1237  }
1238
1239  return true;
1240}
1241
1242/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1243/// subsequently loaded can be rewritten to load both input pointers in the pred
1244/// blocks and then PHI the results, allowing the load of the alloca to be
1245/// promoted.
1246/// From this:
1247///   %P2 = phi [i32* %Alloca, i32* %Other]
1248///   %V = load i32* %P2
1249/// to:
1250///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1251///   ...
1252///   %V2 = load i32* %Other
1253///   ...
1254///   %V = phi [i32 %V1, i32 %V2]
1255///
1256/// We can do this to a select if its only uses are loads and if the operand to
1257/// the select can be loaded unconditionally.
1258static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1259  // For now, we can only do this promotion if the load is in the same block as
1260  // the PHI, and if there are no stores between the phi and load.
1261  // TODO: Allow recursive phi users.
1262  // TODO: Allow stores.
1263  BasicBlock *BB = PN->getParent();
1264  unsigned MaxAlign = 0;
1265  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1266       UI != UE; ++UI) {
1267    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1268    if (LI == 0 || LI->isVolatile()) return false;
1269
1270    // For now we only allow loads in the same block as the PHI.  This is a
1271    // common case that happens when instcombine merges two loads through a PHI.
1272    if (LI->getParent() != BB) return false;
1273
1274    // Ensure that there are no instructions between the PHI and the load that
1275    // could store.
1276    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1277      if (BBI->mayWriteToMemory())
1278        return false;
1279
1280    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1281  }
1282
1283  // Okay, we know that we have one or more loads in the same block as the PHI.
1284  // We can transform this if it is safe to push the loads into the predecessor
1285  // blocks.  The only thing to watch out for is that we can't put a possibly
1286  // trapping load in the predecessor if it is a critical edge.
1287  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1288    BasicBlock *Pred = PN->getIncomingBlock(i);
1289
1290    // If the predecessor has a single successor, then the edge isn't critical.
1291    if (Pred->getTerminator()->getNumSuccessors() == 1)
1292      continue;
1293
1294    Value *InVal = PN->getIncomingValue(i);
1295
1296    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1297    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1298      if (II->getParent() == Pred)
1299        return false;
1300
1301    // If this pointer is always safe to load, or if we can prove that there is
1302    // already a load in the block, then we can move the load to the pred block.
1303    if (InVal->isDereferenceablePointer() ||
1304        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1305      continue;
1306
1307    return false;
1308  }
1309
1310  return true;
1311}
1312
1313
1314/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1315/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1316/// not quite there, this will transform the code to allow promotion.  As such,
1317/// it is a non-pure predicate.
1318static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1319  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1320            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1321
1322  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1323       UI != UE; ++UI) {
1324    User *U = *UI;
1325    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1326      if (LI->isVolatile())
1327        return false;
1328      continue;
1329    }
1330
1331    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1332      if (SI->getOperand(0) == AI || SI->isVolatile())
1333        return false;   // Don't allow a store OF the AI, only INTO the AI.
1334      continue;
1335    }
1336
1337    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1338      // If the condition being selected on is a constant, fold the select, yes
1339      // this does (rarely) happen early on.
1340      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1341        Value *Result = SI->getOperand(1+CI->isZero());
1342        SI->replaceAllUsesWith(Result);
1343        SI->eraseFromParent();
1344
1345        // This is very rare and we just scrambled the use list of AI, start
1346        // over completely.
1347        return tryToMakeAllocaBePromotable(AI, TD);
1348      }
1349
1350      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1351      // loads, then we can transform this by rewriting the select.
1352      if (!isSafeSelectToSpeculate(SI, TD))
1353        return false;
1354
1355      InstsToRewrite.insert(SI);
1356      continue;
1357    }
1358
1359    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1360      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1361        InstsToRewrite.insert(PN);
1362        continue;
1363      }
1364
1365      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1366      // in the pred blocks, then we can transform this by rewriting the PHI.
1367      if (!isSafePHIToSpeculate(PN, TD))
1368        return false;
1369
1370      InstsToRewrite.insert(PN);
1371      continue;
1372    }
1373
1374    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1375      if (onlyUsedByLifetimeMarkers(BCI)) {
1376        InstsToRewrite.insert(BCI);
1377        continue;
1378      }
1379    }
1380
1381    return false;
1382  }
1383
1384  // If there are no instructions to rewrite, then all uses are load/stores and
1385  // we're done!
1386  if (InstsToRewrite.empty())
1387    return true;
1388
1389  // If we have instructions that need to be rewritten for this to be promotable
1390  // take care of it now.
1391  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1392    if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1393      // This could only be a bitcast used by nothing but lifetime intrinsics.
1394      for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
1395           I != E;) {
1396        Use &U = I.getUse();
1397        ++I;
1398        cast<Instruction>(U.getUser())->eraseFromParent();
1399      }
1400      BCI->eraseFromParent();
1401      continue;
1402    }
1403
1404    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1405      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1406      // loads with a new select.
1407      while (!SI->use_empty()) {
1408        LoadInst *LI = cast<LoadInst>(SI->use_back());
1409
1410        IRBuilder<> Builder(LI);
1411        LoadInst *TrueLoad =
1412          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1413        LoadInst *FalseLoad =
1414          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1415
1416        // Transfer alignment and TBAA info if present.
1417        TrueLoad->setAlignment(LI->getAlignment());
1418        FalseLoad->setAlignment(LI->getAlignment());
1419        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1420          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1421          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1422        }
1423
1424        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1425        V->takeName(LI);
1426        LI->replaceAllUsesWith(V);
1427        LI->eraseFromParent();
1428      }
1429
1430      // Now that all the loads are gone, the select is gone too.
1431      SI->eraseFromParent();
1432      continue;
1433    }
1434
1435    // Otherwise, we have a PHI node which allows us to push the loads into the
1436    // predecessors.
1437    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1438    if (PN->use_empty()) {
1439      PN->eraseFromParent();
1440      continue;
1441    }
1442
1443    Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1444    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1445                                     PN->getName()+".ld", PN);
1446
1447    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1448    // matter which one we get and if any differ, it doesn't matter.
1449    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1450    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1451    unsigned Align = SomeLoad->getAlignment();
1452
1453    // Rewrite all loads of the PN to use the new PHI.
1454    while (!PN->use_empty()) {
1455      LoadInst *LI = cast<LoadInst>(PN->use_back());
1456      LI->replaceAllUsesWith(NewPN);
1457      LI->eraseFromParent();
1458    }
1459
1460    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1461    // insert them into in case we have multiple edges from the same block.
1462    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1463
1464    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1465      BasicBlock *Pred = PN->getIncomingBlock(i);
1466      LoadInst *&Load = InsertedLoads[Pred];
1467      if (Load == 0) {
1468        Load = new LoadInst(PN->getIncomingValue(i),
1469                            PN->getName() + "." + Pred->getName(),
1470                            Pred->getTerminator());
1471        Load->setAlignment(Align);
1472        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1473      }
1474
1475      NewPN->addIncoming(Load, Pred);
1476    }
1477
1478    PN->eraseFromParent();
1479  }
1480
1481  ++NumAdjusted;
1482  return true;
1483}
1484
1485bool SROA::performPromotion(Function &F) {
1486  std::vector<AllocaInst*> Allocas;
1487  DominatorTree *DT = 0;
1488  if (HasDomTree)
1489    DT = &getAnalysis<DominatorTree>();
1490
1491  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1492  DIBuilder DIB(*F.getParent());
1493  bool Changed = false;
1494  SmallVector<Instruction*, 64> Insts;
1495  while (1) {
1496    Allocas.clear();
1497
1498    // Find allocas that are safe to promote, by looking at all instructions in
1499    // the entry node
1500    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1501      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1502        if (tryToMakeAllocaBePromotable(AI, TD))
1503          Allocas.push_back(AI);
1504
1505    if (Allocas.empty()) break;
1506
1507    if (HasDomTree)
1508      PromoteMemToReg(Allocas, *DT);
1509    else {
1510      SSAUpdater SSA;
1511      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1512        AllocaInst *AI = Allocas[i];
1513
1514        // Build list of instructions to promote.
1515        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1516             UI != E; ++UI)
1517          Insts.push_back(cast<Instruction>(*UI));
1518        AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1519        Insts.clear();
1520      }
1521    }
1522    NumPromoted += Allocas.size();
1523    Changed = true;
1524  }
1525
1526  return Changed;
1527}
1528
1529
1530/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1531/// SROA.  It must be a struct or array type with a small number of elements.
1532static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1533  Type *T = AI->getAllocatedType();
1534  // Do not promote any struct into more than 32 separate vars.
1535  if (StructType *ST = dyn_cast<StructType>(T))
1536    return ST->getNumElements() <= 32;
1537  // Arrays are much less likely to be safe for SROA; only consider
1538  // them if they are very small.
1539  if (ArrayType *AT = dyn_cast<ArrayType>(T))
1540    return AT->getNumElements() <= 8;
1541  return false;
1542}
1543
1544
1545// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1546// which runs on all of the alloca instructions in the function, removing them
1547// if they are only used by getelementptr instructions.
1548//
1549bool SROA::performScalarRepl(Function &F) {
1550  std::vector<AllocaInst*> WorkList;
1551
1552  // Scan the entry basic block, adding allocas to the worklist.
1553  BasicBlock &BB = F.getEntryBlock();
1554  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1555    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1556      WorkList.push_back(A);
1557
1558  // Process the worklist
1559  bool Changed = false;
1560  while (!WorkList.empty()) {
1561    AllocaInst *AI = WorkList.back();
1562    WorkList.pop_back();
1563
1564    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1565    // with unused elements.
1566    if (AI->use_empty()) {
1567      AI->eraseFromParent();
1568      Changed = true;
1569      continue;
1570    }
1571
1572    // If this alloca is impossible for us to promote, reject it early.
1573    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1574      continue;
1575
1576    // Check to see if this allocation is only modified by a memcpy/memmove from
1577    // a constant global.  If this is the case, we can change all users to use
1578    // the constant global instead.  This is commonly produced by the CFE by
1579    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1580    // is only subsequently read.
1581    SmallVector<Instruction *, 4> ToDelete;
1582    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
1583      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1584      DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
1585      for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
1586        ToDelete[i]->eraseFromParent();
1587      Constant *TheSrc = cast<Constant>(Copy->getSource());
1588      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1589      Copy->eraseFromParent();  // Don't mutate the global.
1590      AI->eraseFromParent();
1591      ++NumGlobals;
1592      Changed = true;
1593      continue;
1594    }
1595
1596    // Check to see if we can perform the core SROA transformation.  We cannot
1597    // transform the allocation instruction if it is an array allocation
1598    // (allocations OF arrays are ok though), and an allocation of a scalar
1599    // value cannot be decomposed at all.
1600    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1601
1602    // Do not promote [0 x %struct].
1603    if (AllocaSize == 0) continue;
1604
1605    // Do not promote any struct whose size is too big.
1606    if (AllocaSize > SRThreshold) continue;
1607
1608    // If the alloca looks like a good candidate for scalar replacement, and if
1609    // all its users can be transformed, then split up the aggregate into its
1610    // separate elements.
1611    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1612      DoScalarReplacement(AI, WorkList);
1613      Changed = true;
1614      continue;
1615    }
1616
1617    // If we can turn this aggregate value (potentially with casts) into a
1618    // simple scalar value that can be mem2reg'd into a register value.
1619    // IsNotTrivial tracks whether this is something that mem2reg could have
1620    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1621    // that we can't just check based on the type: the alloca may be of an i32
1622    // but that has pointer arithmetic to set byte 3 of it or something.
1623    if (AllocaInst *NewAI =
1624          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1625      NewAI->takeName(AI);
1626      AI->eraseFromParent();
1627      ++NumConverted;
1628      Changed = true;
1629      continue;
1630    }
1631
1632    // Otherwise, couldn't process this alloca.
1633  }
1634
1635  return Changed;
1636}
1637
1638/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1639/// predicate, do SROA now.
1640void SROA::DoScalarReplacement(AllocaInst *AI,
1641                               std::vector<AllocaInst*> &WorkList) {
1642  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1643  SmallVector<AllocaInst*, 32> ElementAllocas;
1644  if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1645    ElementAllocas.reserve(ST->getNumContainedTypes());
1646    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1647      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1648                                      AI->getAlignment(),
1649                                      AI->getName() + "." + Twine(i), AI);
1650      ElementAllocas.push_back(NA);
1651      WorkList.push_back(NA);  // Add to worklist for recursive processing
1652    }
1653  } else {
1654    ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1655    ElementAllocas.reserve(AT->getNumElements());
1656    Type *ElTy = AT->getElementType();
1657    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1658      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1659                                      AI->getName() + "." + Twine(i), AI);
1660      ElementAllocas.push_back(NA);
1661      WorkList.push_back(NA);  // Add to worklist for recursive processing
1662    }
1663  }
1664
1665  // Now that we have created the new alloca instructions, rewrite all the
1666  // uses of the old alloca.
1667  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1668
1669  // Now erase any instructions that were made dead while rewriting the alloca.
1670  DeleteDeadInstructions();
1671  AI->eraseFromParent();
1672
1673  ++NumReplaced;
1674}
1675
1676/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1677/// recursively including all their operands that become trivially dead.
1678void SROA::DeleteDeadInstructions() {
1679  while (!DeadInsts.empty()) {
1680    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1681
1682    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1683      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1684        // Zero out the operand and see if it becomes trivially dead.
1685        // (But, don't add allocas to the dead instruction list -- they are
1686        // already on the worklist and will be deleted separately.)
1687        *OI = 0;
1688        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1689          DeadInsts.push_back(U);
1690      }
1691
1692    I->eraseFromParent();
1693  }
1694}
1695
1696/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1697/// performing scalar replacement of alloca AI.  The results are flagged in
1698/// the Info parameter.  Offset indicates the position within AI that is
1699/// referenced by this instruction.
1700void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1701                               AllocaInfo &Info) {
1702  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1703    Instruction *User = cast<Instruction>(*UI);
1704
1705    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1706      isSafeForScalarRepl(BC, Offset, Info);
1707    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1708      uint64_t GEPOffset = Offset;
1709      isSafeGEP(GEPI, GEPOffset, Info);
1710      if (!Info.isUnsafe)
1711        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1712    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1713      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1714      if (Length == 0)
1715        return MarkUnsafe(Info, User);
1716      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1717                      UI.getOperandNo() == 0, Info, MI,
1718                      true /*AllowWholeAccess*/);
1719    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1720      if (LI->isVolatile())
1721        return MarkUnsafe(Info, User);
1722      Type *LIType = LI->getType();
1723      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1724                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1725      Info.hasALoadOrStore = true;
1726
1727    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1728      // Store is ok if storing INTO the pointer, not storing the pointer
1729      if (SI->isVolatile() || SI->getOperand(0) == I)
1730        return MarkUnsafe(Info, User);
1731
1732      Type *SIType = SI->getOperand(0)->getType();
1733      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1734                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1735      Info.hasALoadOrStore = true;
1736    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1737      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1738          II->getIntrinsicID() != Intrinsic::lifetime_end)
1739        return MarkUnsafe(Info, User);
1740    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1741      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1742    } else {
1743      return MarkUnsafe(Info, User);
1744    }
1745    if (Info.isUnsafe) return;
1746  }
1747}
1748
1749
1750/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1751/// derived from the alloca, we can often still split the alloca into elements.
1752/// This is useful if we have a large alloca where one element is phi'd
1753/// together somewhere: we can SRoA and promote all the other elements even if
1754/// we end up not being able to promote this one.
1755///
1756/// All we require is that the uses of the PHI do not index into other parts of
1757/// the alloca.  The most important use case for this is single load and stores
1758/// that are PHI'd together, which can happen due to code sinking.
1759void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1760                                           AllocaInfo &Info) {
1761  // If we've already checked this PHI, don't do it again.
1762  if (PHINode *PN = dyn_cast<PHINode>(I))
1763    if (!Info.CheckedPHIs.insert(PN))
1764      return;
1765
1766  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1767    Instruction *User = cast<Instruction>(*UI);
1768
1769    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1770      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1771    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1772      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1773      // but would have to prove that we're staying inside of an element being
1774      // promoted.
1775      if (!GEPI->hasAllZeroIndices())
1776        return MarkUnsafe(Info, User);
1777      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1778    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1779      if (LI->isVolatile())
1780        return MarkUnsafe(Info, User);
1781      Type *LIType = LI->getType();
1782      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1783                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1784      Info.hasALoadOrStore = true;
1785
1786    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1787      // Store is ok if storing INTO the pointer, not storing the pointer
1788      if (SI->isVolatile() || SI->getOperand(0) == I)
1789        return MarkUnsafe(Info, User);
1790
1791      Type *SIType = SI->getOperand(0)->getType();
1792      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1793                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1794      Info.hasALoadOrStore = true;
1795    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1796      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1797    } else {
1798      return MarkUnsafe(Info, User);
1799    }
1800    if (Info.isUnsafe) return;
1801  }
1802}
1803
1804/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1805/// replacement.  It is safe when all the indices are constant, in-bounds
1806/// references, and when the resulting offset corresponds to an element within
1807/// the alloca type.  The results are flagged in the Info parameter.  Upon
1808/// return, Offset is adjusted as specified by the GEP indices.
1809void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1810                     uint64_t &Offset, AllocaInfo &Info) {
1811  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1812  if (GEPIt == E)
1813    return;
1814
1815  // Walk through the GEP type indices, checking the types that this indexes
1816  // into.
1817  for (; GEPIt != E; ++GEPIt) {
1818    // Ignore struct elements, no extra checking needed for these.
1819    if ((*GEPIt)->isStructTy())
1820      continue;
1821
1822    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1823    if (!IdxVal)
1824      return MarkUnsafe(Info, GEPI);
1825  }
1826
1827  // Compute the offset due to this GEP and check if the alloca has a
1828  // component element at that offset.
1829  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1830  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1831  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1832    MarkUnsafe(Info, GEPI);
1833}
1834
1835/// isHomogeneousAggregate - Check if type T is a struct or array containing
1836/// elements of the same type (which is always true for arrays).  If so,
1837/// return true with NumElts and EltTy set to the number of elements and the
1838/// element type, respectively.
1839static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1840                                   Type *&EltTy) {
1841  if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1842    NumElts = AT->getNumElements();
1843    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1844    return true;
1845  }
1846  if (StructType *ST = dyn_cast<StructType>(T)) {
1847    NumElts = ST->getNumContainedTypes();
1848    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1849    for (unsigned n = 1; n < NumElts; ++n) {
1850      if (ST->getContainedType(n) != EltTy)
1851        return false;
1852    }
1853    return true;
1854  }
1855  return false;
1856}
1857
1858/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1859/// "homogeneous" aggregates with the same element type and number of elements.
1860static bool isCompatibleAggregate(Type *T1, Type *T2) {
1861  if (T1 == T2)
1862    return true;
1863
1864  unsigned NumElts1, NumElts2;
1865  Type *EltTy1, *EltTy2;
1866  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1867      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1868      NumElts1 == NumElts2 &&
1869      EltTy1 == EltTy2)
1870    return true;
1871
1872  return false;
1873}
1874
1875/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1876/// alloca or has an offset and size that corresponds to a component element
1877/// within it.  The offset checked here may have been formed from a GEP with a
1878/// pointer bitcasted to a different type.
1879///
1880/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1881/// unit.  If false, it only allows accesses known to be in a single element.
1882void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1883                           Type *MemOpType, bool isStore,
1884                           AllocaInfo &Info, Instruction *TheAccess,
1885                           bool AllowWholeAccess) {
1886  // Check if this is a load/store of the entire alloca.
1887  if (Offset == 0 && AllowWholeAccess &&
1888      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1889    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1890    // loads/stores (which are essentially the same as the MemIntrinsics with
1891    // regard to copying padding between elements).  But, if an alloca is
1892    // flagged as both a source and destination of such operations, we'll need
1893    // to check later for padding between elements.
1894    if (!MemOpType || MemOpType->isIntegerTy()) {
1895      if (isStore)
1896        Info.isMemCpyDst = true;
1897      else
1898        Info.isMemCpySrc = true;
1899      return;
1900    }
1901    // This is also safe for references using a type that is compatible with
1902    // the type of the alloca, so that loads/stores can be rewritten using
1903    // insertvalue/extractvalue.
1904    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1905      Info.hasSubelementAccess = true;
1906      return;
1907    }
1908  }
1909  // Check if the offset/size correspond to a component within the alloca type.
1910  Type *T = Info.AI->getAllocatedType();
1911  if (TypeHasComponent(T, Offset, MemSize)) {
1912    Info.hasSubelementAccess = true;
1913    return;
1914  }
1915
1916  return MarkUnsafe(Info, TheAccess);
1917}
1918
1919/// TypeHasComponent - Return true if T has a component type with the
1920/// specified offset and size.  If Size is zero, do not check the size.
1921bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1922  Type *EltTy;
1923  uint64_t EltSize;
1924  if (StructType *ST = dyn_cast<StructType>(T)) {
1925    const StructLayout *Layout = TD->getStructLayout(ST);
1926    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1927    EltTy = ST->getContainedType(EltIdx);
1928    EltSize = TD->getTypeAllocSize(EltTy);
1929    Offset -= Layout->getElementOffset(EltIdx);
1930  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1931    EltTy = AT->getElementType();
1932    EltSize = TD->getTypeAllocSize(EltTy);
1933    if (Offset >= AT->getNumElements() * EltSize)
1934      return false;
1935    Offset %= EltSize;
1936  } else {
1937    return false;
1938  }
1939  if (Offset == 0 && (Size == 0 || EltSize == Size))
1940    return true;
1941  // Check if the component spans multiple elements.
1942  if (Offset + Size > EltSize)
1943    return false;
1944  return TypeHasComponent(EltTy, Offset, Size);
1945}
1946
1947/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1948/// the instruction I, which references it, to use the separate elements.
1949/// Offset indicates the position within AI that is referenced by this
1950/// instruction.
1951void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1952                                SmallVector<AllocaInst*, 32> &NewElts) {
1953  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1954    Use &TheUse = UI.getUse();
1955    Instruction *User = cast<Instruction>(*UI++);
1956
1957    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1958      RewriteBitCast(BC, AI, Offset, NewElts);
1959      continue;
1960    }
1961
1962    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1963      RewriteGEP(GEPI, AI, Offset, NewElts);
1964      continue;
1965    }
1966
1967    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1968      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1969      uint64_t MemSize = Length->getZExtValue();
1970      if (Offset == 0 &&
1971          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1972        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1973      // Otherwise the intrinsic can only touch a single element and the
1974      // address operand will be updated, so nothing else needs to be done.
1975      continue;
1976    }
1977
1978    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1979      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1980          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1981        RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1982      }
1983      continue;
1984    }
1985
1986    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1987      Type *LIType = LI->getType();
1988
1989      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1990        // Replace:
1991        //   %res = load { i32, i32 }* %alloc
1992        // with:
1993        //   %load.0 = load i32* %alloc.0
1994        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1995        //   %load.1 = load i32* %alloc.1
1996        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1997        // (Also works for arrays instead of structs)
1998        Value *Insert = UndefValue::get(LIType);
1999        IRBuilder<> Builder(LI);
2000        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2001          Value *Load = Builder.CreateLoad(NewElts[i], "load");
2002          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
2003        }
2004        LI->replaceAllUsesWith(Insert);
2005        DeadInsts.push_back(LI);
2006      } else if (LIType->isIntegerTy() &&
2007                 TD->getTypeAllocSize(LIType) ==
2008                 TD->getTypeAllocSize(AI->getAllocatedType())) {
2009        // If this is a load of the entire alloca to an integer, rewrite it.
2010        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
2011      }
2012      continue;
2013    }
2014
2015    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
2016      Value *Val = SI->getOperand(0);
2017      Type *SIType = Val->getType();
2018      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
2019        // Replace:
2020        //   store { i32, i32 } %val, { i32, i32 }* %alloc
2021        // with:
2022        //   %val.0 = extractvalue { i32, i32 } %val, 0
2023        //   store i32 %val.0, i32* %alloc.0
2024        //   %val.1 = extractvalue { i32, i32 } %val, 1
2025        //   store i32 %val.1, i32* %alloc.1
2026        // (Also works for arrays instead of structs)
2027        IRBuilder<> Builder(SI);
2028        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2029          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
2030          Builder.CreateStore(Extract, NewElts[i]);
2031        }
2032        DeadInsts.push_back(SI);
2033      } else if (SIType->isIntegerTy() &&
2034                 TD->getTypeAllocSize(SIType) ==
2035                 TD->getTypeAllocSize(AI->getAllocatedType())) {
2036        // If this is a store of the entire alloca from an integer, rewrite it.
2037        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
2038      }
2039      continue;
2040    }
2041
2042    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
2043      // If we have a PHI user of the alloca itself (as opposed to a GEP or
2044      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
2045      // the new pointer.
2046      if (!isa<AllocaInst>(I)) continue;
2047
2048      assert(Offset == 0 && NewElts[0] &&
2049             "Direct alloca use should have a zero offset");
2050
2051      // If we have a use of the alloca, we know the derived uses will be
2052      // utilizing just the first element of the scalarized result.  Insert a
2053      // bitcast of the first alloca before the user as required.
2054      AllocaInst *NewAI = NewElts[0];
2055      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
2056      NewAI->moveBefore(BCI);
2057      TheUse = BCI;
2058      continue;
2059    }
2060  }
2061}
2062
2063/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
2064/// and recursively continue updating all of its uses.
2065void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
2066                          SmallVector<AllocaInst*, 32> &NewElts) {
2067  RewriteForScalarRepl(BC, AI, Offset, NewElts);
2068  if (BC->getOperand(0) != AI)
2069    return;
2070
2071  // The bitcast references the original alloca.  Replace its uses with
2072  // references to the first new element alloca.
2073  Instruction *Val = NewElts[0];
2074  if (Val->getType() != BC->getDestTy()) {
2075    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
2076    Val->takeName(BC);
2077  }
2078  BC->replaceAllUsesWith(Val);
2079  DeadInsts.push_back(BC);
2080}
2081
2082/// FindElementAndOffset - Return the index of the element containing Offset
2083/// within the specified type, which must be either a struct or an array.
2084/// Sets T to the type of the element and Offset to the offset within that
2085/// element.  IdxTy is set to the type of the index result to be used in a
2086/// GEP instruction.
2087uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
2088                                    Type *&IdxTy) {
2089  uint64_t Idx = 0;
2090  if (StructType *ST = dyn_cast<StructType>(T)) {
2091    const StructLayout *Layout = TD->getStructLayout(ST);
2092    Idx = Layout->getElementContainingOffset(Offset);
2093    T = ST->getContainedType(Idx);
2094    Offset -= Layout->getElementOffset(Idx);
2095    IdxTy = Type::getInt32Ty(T->getContext());
2096    return Idx;
2097  }
2098  ArrayType *AT = cast<ArrayType>(T);
2099  T = AT->getElementType();
2100  uint64_t EltSize = TD->getTypeAllocSize(T);
2101  Idx = Offset / EltSize;
2102  Offset -= Idx * EltSize;
2103  IdxTy = Type::getInt64Ty(T->getContext());
2104  return Idx;
2105}
2106
2107/// RewriteGEP - Check if this GEP instruction moves the pointer across
2108/// elements of the alloca that are being split apart, and if so, rewrite
2109/// the GEP to be relative to the new element.
2110void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
2111                      SmallVector<AllocaInst*, 32> &NewElts) {
2112  uint64_t OldOffset = Offset;
2113  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
2114  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
2115
2116  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
2117
2118  Type *T = AI->getAllocatedType();
2119  Type *IdxTy;
2120  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
2121  if (GEPI->getOperand(0) == AI)
2122    OldIdx = ~0ULL; // Force the GEP to be rewritten.
2123
2124  T = AI->getAllocatedType();
2125  uint64_t EltOffset = Offset;
2126  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
2127
2128  // If this GEP does not move the pointer across elements of the alloca
2129  // being split, then it does not needs to be rewritten.
2130  if (Idx == OldIdx)
2131    return;
2132
2133  Type *i32Ty = Type::getInt32Ty(AI->getContext());
2134  SmallVector<Value*, 8> NewArgs;
2135  NewArgs.push_back(Constant::getNullValue(i32Ty));
2136  while (EltOffset != 0) {
2137    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
2138    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2139  }
2140  Instruction *Val = NewElts[Idx];
2141  if (NewArgs.size() > 1) {
2142    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
2143    Val->takeName(GEPI);
2144  }
2145  if (Val->getType() != GEPI->getType())
2146    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2147  GEPI->replaceAllUsesWith(Val);
2148  DeadInsts.push_back(GEPI);
2149}
2150
2151/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
2152/// to mark the lifetime of the scalarized memory.
2153void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
2154                                    uint64_t Offset,
2155                                    SmallVector<AllocaInst*, 32> &NewElts) {
2156  ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
2157  // Put matching lifetime markers on everything from Offset up to
2158  // Offset+OldSize.
2159  Type *AIType = AI->getAllocatedType();
2160  uint64_t NewOffset = Offset;
2161  Type *IdxTy;
2162  uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
2163
2164  IRBuilder<> Builder(II);
2165  uint64_t Size = OldSize->getLimitedValue();
2166
2167  if (NewOffset) {
2168    // Splice the first element and index 'NewOffset' bytes in.  SROA will
2169    // split the alloca again later.
2170    Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
2171    V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
2172
2173    IdxTy = NewElts[Idx]->getAllocatedType();
2174    uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
2175    if (EltSize > Size) {
2176      EltSize = Size;
2177      Size = 0;
2178    } else {
2179      Size -= EltSize;
2180    }
2181    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2182      Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
2183    else
2184      Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
2185    ++Idx;
2186  }
2187
2188  for (; Idx != NewElts.size() && Size; ++Idx) {
2189    IdxTy = NewElts[Idx]->getAllocatedType();
2190    uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
2191    if (EltSize > Size) {
2192      EltSize = Size;
2193      Size = 0;
2194    } else {
2195      Size -= EltSize;
2196    }
2197    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2198      Builder.CreateLifetimeStart(NewElts[Idx],
2199                                  Builder.getInt64(EltSize));
2200    else
2201      Builder.CreateLifetimeEnd(NewElts[Idx],
2202                                Builder.getInt64(EltSize));
2203  }
2204  DeadInsts.push_back(II);
2205}
2206
2207/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2208/// Rewrite it to copy or set the elements of the scalarized memory.
2209void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2210                                        AllocaInst *AI,
2211                                        SmallVector<AllocaInst*, 32> &NewElts) {
2212  // If this is a memcpy/memmove, construct the other pointer as the
2213  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2214  // that doesn't have anything to do with the alloca that we are promoting. For
2215  // memset, this Value* stays null.
2216  Value *OtherPtr = 0;
2217  unsigned MemAlignment = MI->getAlignment();
2218  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2219    if (Inst == MTI->getRawDest())
2220      OtherPtr = MTI->getRawSource();
2221    else {
2222      assert(Inst == MTI->getRawSource());
2223      OtherPtr = MTI->getRawDest();
2224    }
2225  }
2226
2227  // If there is an other pointer, we want to convert it to the same pointer
2228  // type as AI has, so we can GEP through it safely.
2229  if (OtherPtr) {
2230    unsigned AddrSpace =
2231      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2232
2233    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2234    // optimization, but it's also required to detect the corner case where
2235    // both pointer operands are referencing the same memory, and where
2236    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2237    // function is only called for mem intrinsics that access the whole
2238    // aggregate, so non-zero GEPs are not an issue here.)
2239    OtherPtr = OtherPtr->stripPointerCasts();
2240
2241    // Copying the alloca to itself is a no-op: just delete it.
2242    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2243      // This code will run twice for a no-op memcpy -- once for each operand.
2244      // Put only one reference to MI on the DeadInsts list.
2245      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2246             E = DeadInsts.end(); I != E; ++I)
2247        if (*I == MI) return;
2248      DeadInsts.push_back(MI);
2249      return;
2250    }
2251
2252    // If the pointer is not the right type, insert a bitcast to the right
2253    // type.
2254    Type *NewTy =
2255      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2256
2257    if (OtherPtr->getType() != NewTy)
2258      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2259  }
2260
2261  // Process each element of the aggregate.
2262  bool SROADest = MI->getRawDest() == Inst;
2263
2264  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2265
2266  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2267    // If this is a memcpy/memmove, emit a GEP of the other element address.
2268    Value *OtherElt = 0;
2269    unsigned OtherEltAlign = MemAlignment;
2270
2271    if (OtherPtr) {
2272      Value *Idx[2] = { Zero,
2273                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2274      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2275                                              OtherPtr->getName()+"."+Twine(i),
2276                                                   MI);
2277      uint64_t EltOffset;
2278      PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2279      Type *OtherTy = OtherPtrTy->getElementType();
2280      if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2281        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2282      } else {
2283        Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2284        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2285      }
2286
2287      // The alignment of the other pointer is the guaranteed alignment of the
2288      // element, which is affected by both the known alignment of the whole
2289      // mem intrinsic and the alignment of the element.  If the alignment of
2290      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2291      // known alignment is just 4 bytes.
2292      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2293    }
2294
2295    Value *EltPtr = NewElts[i];
2296    Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2297
2298    // If we got down to a scalar, insert a load or store as appropriate.
2299    if (EltTy->isSingleValueType()) {
2300      if (isa<MemTransferInst>(MI)) {
2301        if (SROADest) {
2302          // From Other to Alloca.
2303          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2304          new StoreInst(Elt, EltPtr, MI);
2305        } else {
2306          // From Alloca to Other.
2307          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2308          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2309        }
2310        continue;
2311      }
2312      assert(isa<MemSetInst>(MI));
2313
2314      // If the stored element is zero (common case), just store a null
2315      // constant.
2316      Constant *StoreVal;
2317      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2318        if (CI->isZero()) {
2319          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2320        } else {
2321          // If EltTy is a vector type, get the element type.
2322          Type *ValTy = EltTy->getScalarType();
2323
2324          // Construct an integer with the right value.
2325          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2326          APInt OneVal(EltSize, CI->getZExtValue());
2327          APInt TotalVal(OneVal);
2328          // Set each byte.
2329          for (unsigned i = 0; 8*i < EltSize; ++i) {
2330            TotalVal = TotalVal.shl(8);
2331            TotalVal |= OneVal;
2332          }
2333
2334          // Convert the integer value to the appropriate type.
2335          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2336          if (ValTy->isPointerTy())
2337            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2338          else if (ValTy->isFloatingPointTy())
2339            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2340          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2341
2342          // If the requested value was a vector constant, create it.
2343          if (EltTy != ValTy) {
2344            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2345            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2346            StoreVal = ConstantVector::get(Elts);
2347          }
2348        }
2349        new StoreInst(StoreVal, EltPtr, MI);
2350        continue;
2351      }
2352      // Otherwise, if we're storing a byte variable, use a memset call for
2353      // this element.
2354    }
2355
2356    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2357
2358    IRBuilder<> Builder(MI);
2359
2360    // Finally, insert the meminst for this element.
2361    if (isa<MemSetInst>(MI)) {
2362      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2363                           MI->isVolatile());
2364    } else {
2365      assert(isa<MemTransferInst>(MI));
2366      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2367      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2368
2369      if (isa<MemCpyInst>(MI))
2370        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2371      else
2372        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2373    }
2374  }
2375  DeadInsts.push_back(MI);
2376}
2377
2378/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2379/// overwrites the entire allocation.  Extract out the pieces of the stored
2380/// integer and store them individually.
2381void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2382                                         SmallVector<AllocaInst*, 32> &NewElts){
2383  // Extract each element out of the integer according to its structure offset
2384  // and store the element value to the individual alloca.
2385  Value *SrcVal = SI->getOperand(0);
2386  Type *AllocaEltTy = AI->getAllocatedType();
2387  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2388
2389  IRBuilder<> Builder(SI);
2390
2391  // Handle tail padding by extending the operand
2392  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2393    SrcVal = Builder.CreateZExt(SrcVal,
2394                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2395
2396  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2397               << '\n');
2398
2399  // There are two forms here: AI could be an array or struct.  Both cases
2400  // have different ways to compute the element offset.
2401  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2402    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2403
2404    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2405      // Get the number of bits to shift SrcVal to get the value.
2406      Type *FieldTy = EltSTy->getElementType(i);
2407      uint64_t Shift = Layout->getElementOffsetInBits(i);
2408
2409      if (TD->isBigEndian())
2410        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2411
2412      Value *EltVal = SrcVal;
2413      if (Shift) {
2414        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2415        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2416      }
2417
2418      // Truncate down to an integer of the right size.
2419      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2420
2421      // Ignore zero sized fields like {}, they obviously contain no data.
2422      if (FieldSizeBits == 0) continue;
2423
2424      if (FieldSizeBits != AllocaSizeBits)
2425        EltVal = Builder.CreateTrunc(EltVal,
2426                             IntegerType::get(SI->getContext(), FieldSizeBits));
2427      Value *DestField = NewElts[i];
2428      if (EltVal->getType() == FieldTy) {
2429        // Storing to an integer field of this size, just do it.
2430      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2431        // Bitcast to the right element type (for fp/vector values).
2432        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2433      } else {
2434        // Otherwise, bitcast the dest pointer (for aggregates).
2435        DestField = Builder.CreateBitCast(DestField,
2436                                     PointerType::getUnqual(EltVal->getType()));
2437      }
2438      new StoreInst(EltVal, DestField, SI);
2439    }
2440
2441  } else {
2442    ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2443    Type *ArrayEltTy = ATy->getElementType();
2444    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2445    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2446
2447    uint64_t Shift;
2448
2449    if (TD->isBigEndian())
2450      Shift = AllocaSizeBits-ElementOffset;
2451    else
2452      Shift = 0;
2453
2454    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2455      // Ignore zero sized fields like {}, they obviously contain no data.
2456      if (ElementSizeBits == 0) continue;
2457
2458      Value *EltVal = SrcVal;
2459      if (Shift) {
2460        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2461        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2462      }
2463
2464      // Truncate down to an integer of the right size.
2465      if (ElementSizeBits != AllocaSizeBits)
2466        EltVal = Builder.CreateTrunc(EltVal,
2467                                     IntegerType::get(SI->getContext(),
2468                                                      ElementSizeBits));
2469      Value *DestField = NewElts[i];
2470      if (EltVal->getType() == ArrayEltTy) {
2471        // Storing to an integer field of this size, just do it.
2472      } else if (ArrayEltTy->isFloatingPointTy() ||
2473                 ArrayEltTy->isVectorTy()) {
2474        // Bitcast to the right element type (for fp/vector values).
2475        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2476      } else {
2477        // Otherwise, bitcast the dest pointer (for aggregates).
2478        DestField = Builder.CreateBitCast(DestField,
2479                                     PointerType::getUnqual(EltVal->getType()));
2480      }
2481      new StoreInst(EltVal, DestField, SI);
2482
2483      if (TD->isBigEndian())
2484        Shift -= ElementOffset;
2485      else
2486        Shift += ElementOffset;
2487    }
2488  }
2489
2490  DeadInsts.push_back(SI);
2491}
2492
2493/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2494/// an integer.  Load the individual pieces to form the aggregate value.
2495void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2496                                        SmallVector<AllocaInst*, 32> &NewElts) {
2497  // Extract each element out of the NewElts according to its structure offset
2498  // and form the result value.
2499  Type *AllocaEltTy = AI->getAllocatedType();
2500  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2501
2502  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2503               << '\n');
2504
2505  // There are two forms here: AI could be an array or struct.  Both cases
2506  // have different ways to compute the element offset.
2507  const StructLayout *Layout = 0;
2508  uint64_t ArrayEltBitOffset = 0;
2509  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2510    Layout = TD->getStructLayout(EltSTy);
2511  } else {
2512    Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2513    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2514  }
2515
2516  Value *ResultVal =
2517    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2518
2519  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2520    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2521    // the pointer to an integer of the same size before doing the load.
2522    Value *SrcField = NewElts[i];
2523    Type *FieldTy =
2524      cast<PointerType>(SrcField->getType())->getElementType();
2525    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2526
2527    // Ignore zero sized fields like {}, they obviously contain no data.
2528    if (FieldSizeBits == 0) continue;
2529
2530    IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2531                                                     FieldSizeBits);
2532    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2533        !FieldTy->isVectorTy())
2534      SrcField = new BitCastInst(SrcField,
2535                                 PointerType::getUnqual(FieldIntTy),
2536                                 "", LI);
2537    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2538
2539    // If SrcField is a fp or vector of the right size but that isn't an
2540    // integer type, bitcast to an integer so we can shift it.
2541    if (SrcField->getType() != FieldIntTy)
2542      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2543
2544    // Zero extend the field to be the same size as the final alloca so that
2545    // we can shift and insert it.
2546    if (SrcField->getType() != ResultVal->getType())
2547      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2548
2549    // Determine the number of bits to shift SrcField.
2550    uint64_t Shift;
2551    if (Layout) // Struct case.
2552      Shift = Layout->getElementOffsetInBits(i);
2553    else  // Array case.
2554      Shift = i*ArrayEltBitOffset;
2555
2556    if (TD->isBigEndian())
2557      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2558
2559    if (Shift) {
2560      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2561      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2562    }
2563
2564    // Don't create an 'or x, 0' on the first iteration.
2565    if (!isa<Constant>(ResultVal) ||
2566        !cast<Constant>(ResultVal)->isNullValue())
2567      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2568    else
2569      ResultVal = SrcField;
2570  }
2571
2572  // Handle tail padding by truncating the result
2573  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2574    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2575
2576  LI->replaceAllUsesWith(ResultVal);
2577  DeadInsts.push_back(LI);
2578}
2579
2580/// HasPadding - Return true if the specified type has any structure or
2581/// alignment padding in between the elements that would be split apart
2582/// by SROA; return false otherwise.
2583static bool HasPadding(Type *Ty, const TargetData &TD) {
2584  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2585    Ty = ATy->getElementType();
2586    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2587  }
2588
2589  // SROA currently handles only Arrays and Structs.
2590  StructType *STy = cast<StructType>(Ty);
2591  const StructLayout *SL = TD.getStructLayout(STy);
2592  unsigned PrevFieldBitOffset = 0;
2593  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2594    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2595
2596    // Check to see if there is any padding between this element and the
2597    // previous one.
2598    if (i) {
2599      unsigned PrevFieldEnd =
2600        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2601      if (PrevFieldEnd < FieldBitOffset)
2602        return true;
2603    }
2604    PrevFieldBitOffset = FieldBitOffset;
2605  }
2606  // Check for tail padding.
2607  if (unsigned EltCount = STy->getNumElements()) {
2608    unsigned PrevFieldEnd = PrevFieldBitOffset +
2609      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2610    if (PrevFieldEnd < SL->getSizeInBits())
2611      return true;
2612  }
2613  return false;
2614}
2615
2616/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2617/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2618/// or 1 if safe after canonicalization has been performed.
2619bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2620  // Loop over the use list of the alloca.  We can only transform it if all of
2621  // the users are safe to transform.
2622  AllocaInfo Info(AI);
2623
2624  isSafeForScalarRepl(AI, 0, Info);
2625  if (Info.isUnsafe) {
2626    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2627    return false;
2628  }
2629
2630  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2631  // source and destination, we have to be careful.  In particular, the memcpy
2632  // could be moving around elements that live in structure padding of the LLVM
2633  // types, but may actually be used.  In these cases, we refuse to promote the
2634  // struct.
2635  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2636      HasPadding(AI->getAllocatedType(), *TD))
2637    return false;
2638
2639  // If the alloca never has an access to just *part* of it, but is accessed
2640  // via loads and stores, then we should use ConvertToScalarInfo to promote
2641  // the alloca instead of promoting each piece at a time and inserting fission
2642  // and fusion code.
2643  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2644    // If the struct/array just has one element, use basic SRoA.
2645    if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2646      if (ST->getNumElements() > 1) return false;
2647    } else {
2648      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2649        return false;
2650    }
2651  }
2652
2653  return true;
2654}
2655
2656
2657
2658/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2659/// some part of a constant global variable.  This intentionally only accepts
2660/// constant expressions because we don't can't rewrite arbitrary instructions.
2661static bool PointsToConstantGlobal(Value *V) {
2662  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2663    return GV->isConstant();
2664  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2665    if (CE->getOpcode() == Instruction::BitCast ||
2666        CE->getOpcode() == Instruction::GetElementPtr)
2667      return PointsToConstantGlobal(CE->getOperand(0));
2668  return false;
2669}
2670
2671/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2672/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2673/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2674/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2675/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2676/// the alloca, and if the source pointer is a pointer to a constant global, we
2677/// can optimize this.
2678static bool
2679isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2680                               bool isOffset,
2681                               SmallVector<Instruction *, 4> &LifetimeMarkers) {
2682  // We track lifetime intrinsics as we encounter them.  If we decide to go
2683  // ahead and replace the value with the global, this lets the caller quickly
2684  // eliminate the markers.
2685
2686  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2687    User *U = cast<Instruction>(*UI);
2688
2689    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2690      // Ignore non-volatile loads, they are always ok.
2691      if (LI->isVolatile()) return false;
2692      continue;
2693    }
2694
2695    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2696      // If uses of the bitcast are ok, we are ok.
2697      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
2698                                          LifetimeMarkers))
2699        return false;
2700      continue;
2701    }
2702    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2703      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2704      // doesn't, it does.
2705      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2706                                          isOffset || !GEP->hasAllZeroIndices(),
2707                                          LifetimeMarkers))
2708        return false;
2709      continue;
2710    }
2711
2712    if (CallSite CS = U) {
2713      // If this is the function being called then we treat it like a load and
2714      // ignore it.
2715      if (CS.isCallee(UI))
2716        continue;
2717
2718      // If this is a readonly/readnone call site, then we know it is just a
2719      // load (but one that potentially returns the value itself), so we can
2720      // ignore it if we know that the value isn't captured.
2721      unsigned ArgNo = CS.getArgumentNo(UI);
2722      if (CS.onlyReadsMemory() &&
2723          (CS.getInstruction()->use_empty() ||
2724           CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2725        continue;
2726
2727      // If this is being passed as a byval argument, the caller is making a
2728      // copy, so it is only a read of the alloca.
2729      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2730        continue;
2731    }
2732
2733    // Lifetime intrinsics can be handled by the caller.
2734    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
2735      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2736          II->getIntrinsicID() == Intrinsic::lifetime_end) {
2737        assert(II->use_empty() && "Lifetime markers have no result to use!");
2738        LifetimeMarkers.push_back(II);
2739        continue;
2740      }
2741    }
2742
2743    // If this is isn't our memcpy/memmove, reject it as something we can't
2744    // handle.
2745    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2746    if (MI == 0)
2747      return false;
2748
2749    // If the transfer is using the alloca as a source of the transfer, then
2750    // ignore it since it is a load (unless the transfer is volatile).
2751    if (UI.getOperandNo() == 1) {
2752      if (MI->isVolatile()) return false;
2753      continue;
2754    }
2755
2756    // If we already have seen a copy, reject the second one.
2757    if (TheCopy) return false;
2758
2759    // If the pointer has been offset from the start of the alloca, we can't
2760    // safely handle this.
2761    if (isOffset) return false;
2762
2763    // If the memintrinsic isn't using the alloca as the dest, reject it.
2764    if (UI.getOperandNo() != 0) return false;
2765
2766    // If the source of the memcpy/move is not a constant global, reject it.
2767    if (!PointsToConstantGlobal(MI->getSource()))
2768      return false;
2769
2770    // Otherwise, the transform is safe.  Remember the copy instruction.
2771    TheCopy = MI;
2772  }
2773  return true;
2774}
2775
2776/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2777/// modified by a copy from a constant global.  If we can prove this, we can
2778/// replace any uses of the alloca with uses of the global directly.
2779MemTransferInst *
2780SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
2781                                     SmallVector<Instruction*, 4> &ToDelete) {
2782  MemTransferInst *TheCopy = 0;
2783  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
2784    return TheCopy;
2785  return 0;
2786}
2787