ScalarReplAggregates.cpp revision 68c01b3cf35bb7ed2d3a3f63053e304e092bcfdd
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced,  "Number of allocas broken up");
44STATISTIC(NumPromoted,  "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
47
48namespace {
49  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50    bool runOnFunction(Function &F);
51
52    bool performScalarRepl(Function &F);
53    bool performPromotion(Function &F);
54
55    // getAnalysisUsage - This pass does not require any passes, but we know it
56    // will not alter the CFG, so say so.
57    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
58      AU.addRequired<ETForest>();
59      AU.addRequired<DominanceFrontier>();
60      AU.addRequired<TargetData>();
61      AU.setPreservesCFG();
62    }
63
64  private:
65    int isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI);
66    int isSafeUseOfAllocation(Instruction *User, AllocationInst *AI);
67    bool isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI);
68    bool isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI);
69    int isSafeAllocaToScalarRepl(AllocationInst *AI);
70    void DoScalarReplacement(AllocationInst *AI,
71                             std::vector<AllocationInst*> &WorkList);
72    void CanonicalizeAllocaUsers(AllocationInst *AI);
73    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
74
75    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
76                                    SmallVector<AllocaInst*, 32> &NewElts);
77
78    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
79    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
80    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
81    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
82  };
83
84  RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
85}
86
87// Public interface to the ScalarReplAggregates pass
88FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }
89
90
91bool SROA::runOnFunction(Function &F) {
92  bool Changed = performPromotion(F);
93  while (1) {
94    bool LocalChange = performScalarRepl(F);
95    if (!LocalChange) break;   // No need to repromote if no scalarrepl
96    Changed = true;
97    LocalChange = performPromotion(F);
98    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
99  }
100
101  return Changed;
102}
103
104
105bool SROA::performPromotion(Function &F) {
106  std::vector<AllocaInst*> Allocas;
107  ETForest         &ET = getAnalysis<ETForest>();
108  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
109
110  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
111
112  bool Changed = false;
113
114  while (1) {
115    Allocas.clear();
116
117    // Find allocas that are safe to promote, by looking at all instructions in
118    // the entry node
119    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
120      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
121        if (isAllocaPromotable(AI))
122          Allocas.push_back(AI);
123
124    if (Allocas.empty()) break;
125
126    PromoteMemToReg(Allocas, ET, DF);
127    NumPromoted += Allocas.size();
128    Changed = true;
129  }
130
131  return Changed;
132}
133
134// performScalarRepl - This algorithm is a simple worklist driven algorithm,
135// which runs on all of the malloc/alloca instructions in the function, removing
136// them if they are only used by getelementptr instructions.
137//
138bool SROA::performScalarRepl(Function &F) {
139  std::vector<AllocationInst*> WorkList;
140
141  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
142  BasicBlock &BB = F.getEntryBlock();
143  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
144    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
145      WorkList.push_back(A);
146
147  // Process the worklist
148  bool Changed = false;
149  while (!WorkList.empty()) {
150    AllocationInst *AI = WorkList.back();
151    WorkList.pop_back();
152
153    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
154    // with unused elements.
155    if (AI->use_empty()) {
156      AI->eraseFromParent();
157      continue;
158    }
159
160    // If we can turn this aggregate value (potentially with casts) into a
161    // simple scalar value that can be mem2reg'd into a register value.
162    bool IsNotTrivial = false;
163    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
164      if (IsNotTrivial && ActualType != Type::VoidTy) {
165        ConvertToScalar(AI, ActualType);
166        Changed = true;
167        continue;
168      }
169
170    // Check to see if we can perform the core SROA transformation.  We cannot
171    // transform the allocation instruction if it is an array allocation
172    // (allocations OF arrays are ok though), and an allocation of a scalar
173    // value cannot be decomposed at all.
174    if (!AI->isArrayAllocation() &&
175        (isa<StructType>(AI->getAllocatedType()) ||
176         isa<ArrayType>(AI->getAllocatedType()))) {
177      // Check that all of the users of the allocation are capable of being
178      // transformed.
179      switch (isSafeAllocaToScalarRepl(AI)) {
180      default: assert(0 && "Unexpected value!");
181      case 0:  // Not safe to scalar replace.
182        break;
183      case 1:  // Safe, but requires cleanup/canonicalizations first
184        CanonicalizeAllocaUsers(AI);
185        // FALL THROUGH.
186      case 3:  // Safe to scalar replace.
187        DoScalarReplacement(AI, WorkList);
188        Changed = true;
189        continue;
190      }
191    }
192
193    // Check to see if this allocation is only modified by a memcpy/memmove from
194    // a constant global.  If this is the case, we can change all users to use
195    // the constant global instead.  This is commonly produced by the CFE by
196    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
197    // is only subsequently read.
198    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
199      DOUT << "Found alloca equal to global: " << *AI;
200      DOUT << "  memcpy = " << *TheCopy;
201      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
202      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
203      TheCopy->eraseFromParent();  // Don't mutate the global.
204      AI->eraseFromParent();
205      ++NumGlobals;
206      Changed = true;
207      continue;
208    }
209
210    // Otherwise, couldn't process this.
211  }
212
213  return Changed;
214}
215
216/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
217/// predicate, do SROA now.
218void SROA::DoScalarReplacement(AllocationInst *AI,
219                               std::vector<AllocationInst*> &WorkList) {
220  DOUT << "Found inst to SROA: " << *AI;
221  SmallVector<AllocaInst*, 32> ElementAllocas;
222  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
223    ElementAllocas.reserve(ST->getNumContainedTypes());
224    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
225      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
226                                      AI->getAlignment(),
227                                      AI->getName() + "." + utostr(i), AI);
228      ElementAllocas.push_back(NA);
229      WorkList.push_back(NA);  // Add to worklist for recursive processing
230    }
231  } else {
232    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
233    ElementAllocas.reserve(AT->getNumElements());
234    const Type *ElTy = AT->getElementType();
235    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
236      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
237                                      AI->getName() + "." + utostr(i), AI);
238      ElementAllocas.push_back(NA);
239      WorkList.push_back(NA);  // Add to worklist for recursive processing
240    }
241  }
242
243  // Now that we have created the alloca instructions that we want to use,
244  // expand the getelementptr instructions to use them.
245  //
246  while (!AI->use_empty()) {
247    Instruction *User = cast<Instruction>(AI->use_back());
248    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
249      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
250      BCInst->eraseFromParent();
251      continue;
252    }
253
254    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
255    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
256    unsigned Idx =
257       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
258
259    assert(Idx < ElementAllocas.size() && "Index out of range?");
260    AllocaInst *AllocaToUse = ElementAllocas[Idx];
261
262    Value *RepValue;
263    if (GEPI->getNumOperands() == 3) {
264      // Do not insert a new getelementptr instruction with zero indices, only
265      // to have it optimized out later.
266      RepValue = AllocaToUse;
267    } else {
268      // We are indexing deeply into the structure, so we still need a
269      // getelement ptr instruction to finish the indexing.  This may be
270      // expanded itself once the worklist is rerun.
271      //
272      SmallVector<Value*, 8> NewArgs;
273      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
274      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
275      RepValue = new GetElementPtrInst(AllocaToUse, &NewArgs[0],
276                                       NewArgs.size(), "", GEPI);
277      RepValue->takeName(GEPI);
278    }
279
280    // If this GEP is to the start of the aggregate, check for memcpys.
281    if (Idx == 0) {
282      bool IsStartOfAggregateGEP = true;
283      for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
284        if (!isa<ConstantInt>(GEPI->getOperand(i))) {
285          IsStartOfAggregateGEP = false;
286          break;
287        }
288        if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
289          IsStartOfAggregateGEP = false;
290          break;
291        }
292      }
293
294      if (IsStartOfAggregateGEP)
295        RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
296    }
297
298
299    // Move all of the users over to the new GEP.
300    GEPI->replaceAllUsesWith(RepValue);
301    // Delete the old GEP
302    GEPI->eraseFromParent();
303  }
304
305  // Finally, delete the Alloca instruction
306  AI->eraseFromParent();
307  NumReplaced++;
308}
309
310
311/// isSafeElementUse - Check to see if this use is an allowed use for a
312/// getelementptr instruction of an array aggregate allocation.  isFirstElt
313/// indicates whether Ptr is known to the start of the aggregate.
314///
315int SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI) {
316  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
317       I != E; ++I) {
318    Instruction *User = cast<Instruction>(*I);
319    switch (User->getOpcode()) {
320    case Instruction::Load:  break;
321    case Instruction::Store:
322      // Store is ok if storing INTO the pointer, not storing the pointer
323      if (User->getOperand(0) == Ptr) return 0;
324      break;
325    case Instruction::GetElementPtr: {
326      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
327      bool AreAllZeroIndices = isFirstElt;
328      if (GEP->getNumOperands() > 1) {
329        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
330            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
331          return 0;  // Using pointer arithmetic to navigate the array.
332
333        if (AreAllZeroIndices) {
334          for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
335            if (!isa<ConstantInt>(GEP->getOperand(i)) ||
336                !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
337              AreAllZeroIndices = false;
338              break;
339            }
340          }
341        }
342      }
343      if (!isSafeElementUse(GEP, AreAllZeroIndices, AI)) return 0;
344      break;
345    }
346    case Instruction::BitCast:
347      if (isFirstElt &&
348          isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI))
349        break;
350      DOUT << "  Transformation preventing inst: " << *User;
351      return 0;
352    case Instruction::Call:
353      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
354        if (isFirstElt && isSafeMemIntrinsicOnAllocation(MI, AI))
355          break;
356      }
357      DOUT << "  Transformation preventing inst: " << *User;
358      return 0;
359    default:
360      DOUT << "  Transformation preventing inst: " << *User;
361      return 0;
362    }
363  }
364  return 3;  // All users look ok :)
365}
366
367/// AllUsersAreLoads - Return true if all users of this value are loads.
368static bool AllUsersAreLoads(Value *Ptr) {
369  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
370       I != E; ++I)
371    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
372      return false;
373  return true;
374}
375
376/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
377/// aggregate allocation.
378///
379int SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI) {
380  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
381    return isSafeUseOfBitCastedAllocation(C, AI) ? 3 : 0;
382  if (!isa<GetElementPtrInst>(User)) return 0;
383
384  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
385  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
386
387  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
388  if (I == E ||
389      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
390    return 0;
391
392  ++I;
393  if (I == E) return 0;  // ran out of GEP indices??
394
395  bool IsAllZeroIndices = true;
396
397  // If this is a use of an array allocation, do a bit more checking for sanity.
398  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
399    uint64_t NumElements = AT->getNumElements();
400
401    if (ConstantInt *Idx = dyn_cast<ConstantInt>(I.getOperand())) {
402      IsAllZeroIndices &= Idx->isZero();
403
404      // Check to make sure that index falls within the array.  If not,
405      // something funny is going on, so we won't do the optimization.
406      //
407      if (Idx->getZExtValue() >= NumElements)
408        return 0;
409
410      // We cannot scalar repl this level of the array unless any array
411      // sub-indices are in-range constants.  In particular, consider:
412      // A[0][i].  We cannot know that the user isn't doing invalid things like
413      // allowing i to index an out-of-range subscript that accesses A[1].
414      //
415      // Scalar replacing *just* the outer index of the array is probably not
416      // going to be a win anyway, so just give up.
417      for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
418        uint64_t NumElements;
419        if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
420          NumElements = SubArrayTy->getNumElements();
421        else
422          NumElements = cast<VectorType>(*I)->getNumElements();
423
424        ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
425        if (!IdxVal) return 0;
426        if (IdxVal->getZExtValue() >= NumElements)
427          return 0;
428        IsAllZeroIndices &= IdxVal->isZero();
429      }
430
431    } else {
432      IsAllZeroIndices = 0;
433
434      // If this is an array index and the index is not constant, we cannot
435      // promote... that is unless the array has exactly one or two elements in
436      // it, in which case we CAN promote it, but we have to canonicalize this
437      // out if this is the only problem.
438      if ((NumElements == 1 || NumElements == 2) &&
439          AllUsersAreLoads(GEPI))
440        return 1;  // Canonicalization required!
441      return 0;
442    }
443  }
444
445  // If there are any non-simple uses of this getelementptr, make sure to reject
446  // them.
447  return isSafeElementUse(GEPI, IsAllZeroIndices, AI);
448}
449
450/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
451/// intrinsic can be promoted by SROA.  At this point, we know that the operand
452/// of the memintrinsic is a pointer to the beginning of the allocation.
453bool SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI){
454  // If not constant length, give up.
455  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
456  if (!Length) return false;
457
458  // If not the whole aggregate, give up.
459  const TargetData &TD = getAnalysis<TargetData>();
460  if (Length->getZExtValue() != TD.getTypeSize(AI->getType()->getElementType()))
461    return false;
462
463  // We only know about memcpy/memset/memmove.
464  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
465    return false;
466  // Otherwise, we can transform it.
467  return true;
468}
469
470/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
471/// are
472bool SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI) {
473  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
474       UI != E; ++UI) {
475    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
476      if (!isSafeUseOfBitCastedAllocation(BCU, AI))
477        return false;
478    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
479      if (!isSafeMemIntrinsicOnAllocation(MI, AI))
480        return false;
481    } else {
482      return false;
483    }
484  }
485  return true;
486}
487
488/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
489/// to its first element.  Transform users of the cast to use the new values
490/// instead.
491void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
492                                      SmallVector<AllocaInst*, 32> &NewElts) {
493  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
494  const TargetData &TD = getAnalysis<TargetData>();
495
496  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
497  while (UI != UE) {
498    if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
499      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
500      ++UI;
501      BCU->eraseFromParent();
502      continue;
503    }
504
505    // Otherwise, must be memcpy/memmove/memset of the entire aggregate.  Split
506    // into one per element.
507    MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
508
509    // If it's not a mem intrinsic, it must be some other user of a gep of the
510    // first pointer.  Just leave these alone.
511    if (!MI) {
512      ++UI;
513      continue;
514    }
515
516    // If this is a memcpy/memmove, construct the other pointer as the
517    // appropriate type.
518    Value *OtherPtr = 0;
519    if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
520      if (BCInst == MCI->getRawDest())
521        OtherPtr = MCI->getRawSource();
522      else {
523        assert(BCInst == MCI->getRawSource());
524        OtherPtr = MCI->getRawDest();
525      }
526    } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
527      if (BCInst == MMI->getRawDest())
528        OtherPtr = MMI->getRawSource();
529      else {
530        assert(BCInst == MMI->getRawSource());
531        OtherPtr = MMI->getRawDest();
532      }
533    }
534
535    // If there is an other pointer, we want to convert it to the same pointer
536    // type as AI has, so we can GEP through it.
537    if (OtherPtr) {
538      // It is likely that OtherPtr is a bitcast, if so, remove it.
539      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
540        OtherPtr = BC->getOperand(0);
541      if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
542        if (BCE->getOpcode() == Instruction::BitCast)
543          OtherPtr = BCE->getOperand(0);
544
545      // If the pointer is not the right type, insert a bitcast to the right
546      // type.
547      if (OtherPtr->getType() != AI->getType())
548        OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
549                                   MI);
550    }
551
552    // Process each element of the aggregate.
553    Value *TheFn = MI->getOperand(0);
554    const Type *BytePtrTy = MI->getRawDest()->getType();
555    bool SROADest = MI->getRawDest() == BCInst;
556
557    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
558      // If this is a memcpy/memmove, emit a GEP of the other element address.
559      Value *OtherElt = 0;
560      if (OtherPtr) {
561        OtherElt = new GetElementPtrInst(OtherPtr, Zero,
562                                         ConstantInt::get(Type::Int32Ty, i),
563                                         OtherPtr->getNameStr()+"."+utostr(i),
564                                         MI);
565      }
566
567      Value *EltPtr = NewElts[i];
568      const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
569
570      // If we got down to a scalar, insert a load or store as appropriate.
571      if (EltTy->isFirstClassType()) {
572        if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
573          Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
574                                    MI);
575          new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
576          continue;
577        } else {
578          assert(isa<MemSetInst>(MI));
579
580          // If the stored element is zero (common case), just store a null
581          // constant.
582          Constant *StoreVal;
583          if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
584            if (CI->isZero()) {
585              StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
586            } else {
587              // If EltTy is a packed type, get the element type.
588              const Type *ValTy = EltTy;
589              if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
590                ValTy = VTy->getElementType();
591
592              // Construct an integer with the right value.
593              unsigned EltSize = TD.getTypeSize(ValTy);
594              APInt OneVal(EltSize*8, CI->getZExtValue());
595              APInt TotalVal(OneVal);
596              // Set each byte.
597              for (unsigned i = 0; i != EltSize-1; ++i) {
598                TotalVal = TotalVal.shl(8);
599                TotalVal |= OneVal;
600              }
601
602              // Convert the integer value to the appropriate type.
603              StoreVal = ConstantInt::get(TotalVal);
604              if (isa<PointerType>(ValTy))
605                StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
606              else if (ValTy->isFloatingPoint())
607                StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
608              assert(StoreVal->getType() == ValTy && "Type mismatch!");
609
610              // If the requested value was a vector constant, create it.
611              if (EltTy != ValTy) {
612                unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
613                SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
614                StoreVal = ConstantVector::get(&Elts[0], NumElts);
615              }
616            }
617            new StoreInst(StoreVal, EltPtr, MI);
618            continue;
619          }
620          // Otherwise, if we're storing a byte variable, use a memset call for
621          // this element.
622        }
623      }
624
625      // Cast the element pointer to BytePtrTy.
626      if (EltPtr->getType() != BytePtrTy)
627        EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
628
629      // Cast the other pointer (if we have one) to BytePtrTy.
630      if (OtherElt && OtherElt->getType() != BytePtrTy)
631        OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
632                                   MI);
633
634      unsigned EltSize = TD.getTypeSize(EltTy);
635
636      // Finally, insert the meminst for this element.
637      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
638        Value *Ops[] = {
639          SROADest ? EltPtr : OtherElt,  // Dest ptr
640          SROADest ? OtherElt : EltPtr,  // Src ptr
641          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
642          Zero  // Align
643        };
644        new CallInst(TheFn, Ops, 4, "", MI);
645      } else {
646        assert(isa<MemSetInst>(MI));
647        Value *Ops[] = {
648          EltPtr, MI->getOperand(2),  // Dest, Value,
649          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
650          Zero  // Align
651        };
652        new CallInst(TheFn, Ops, 4, "", MI);
653      }
654    }
655
656    // Finally, MI is now dead, as we've modified its actions to occur on all of
657    // the elements of the aggregate.
658    ++UI;
659    MI->eraseFromParent();
660  }
661}
662
663
664/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
665/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
666/// or 1 if safe after canonicalization has been performed.
667///
668int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
669  // Loop over the use list of the alloca.  We can only transform it if all of
670  // the users are safe to transform.
671  //
672  int isSafe = 3;
673  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
674       I != E; ++I) {
675    isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I), AI);
676    if (isSafe == 0) {
677      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
678      return 0;
679    }
680  }
681  // If we require cleanup, isSafe is now 1, otherwise it is 3.
682  return isSafe;
683}
684
685/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
686/// allocation, but only if cleaned up, perform the cleanups required.
687void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
688  // At this point, we know that the end result will be SROA'd and promoted, so
689  // we can insert ugly code if required so long as sroa+mem2reg will clean it
690  // up.
691  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
692       UI != E; ) {
693    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
694    if (!GEPI) continue;
695    gep_type_iterator I = gep_type_begin(GEPI);
696    ++I;
697
698    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
699      uint64_t NumElements = AT->getNumElements();
700
701      if (!isa<ConstantInt>(I.getOperand())) {
702        if (NumElements == 1) {
703          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
704        } else {
705          assert(NumElements == 2 && "Unhandled case!");
706          // All users of the GEP must be loads.  At each use of the GEP, insert
707          // two loads of the appropriate indexed GEP and select between them.
708          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
709                              Constant::getNullValue(I.getOperand()->getType()),
710             "isone", GEPI);
711          // Insert the new GEP instructions, which are properly indexed.
712          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
713          Indices[1] = Constant::getNullValue(Type::Int32Ty);
714          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0),
715                                                 &Indices[0], Indices.size(),
716                                                 GEPI->getName()+".0", GEPI);
717          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
718          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0),
719                                                &Indices[0], Indices.size(),
720                                                GEPI->getName()+".1", GEPI);
721          // Replace all loads of the variable index GEP with loads from both
722          // indexes and a select.
723          while (!GEPI->use_empty()) {
724            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
725            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
726            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
727            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
728            LI->replaceAllUsesWith(R);
729            LI->eraseFromParent();
730          }
731          GEPI->eraseFromParent();
732        }
733      }
734    }
735  }
736}
737
738/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
739/// types are incompatible, return true, otherwise update Accum and return
740/// false.
741///
742/// There are three cases we handle here:
743///   1) An effectively-integer union, where the pieces are stored into as
744///      smaller integers (common with byte swap and other idioms).
745///   2) A union of vector types of the same size and potentially its elements.
746///      Here we turn element accesses into insert/extract element operations.
747///   3) A union of scalar types, such as int/float or int/pointer.  Here we
748///      merge together into integers, allowing the xform to work with #1 as
749///      well.
750static bool MergeInType(const Type *In, const Type *&Accum,
751                        const TargetData &TD) {
752  // If this is our first type, just use it.
753  const VectorType *PTy;
754  if (Accum == Type::VoidTy || In == Accum) {
755    Accum = In;
756  } else if (In == Type::VoidTy) {
757    // Noop.
758  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
759    // Otherwise pick whichever type is larger.
760    if (cast<IntegerType>(In)->getBitWidth() >
761        cast<IntegerType>(Accum)->getBitWidth())
762      Accum = In;
763  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
764    // Pointer unions just stay as one of the pointers.
765  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
766    if ((PTy = dyn_cast<VectorType>(Accum)) &&
767        PTy->getElementType() == In) {
768      // Accum is a vector, and we are accessing an element: ok.
769    } else if ((PTy = dyn_cast<VectorType>(In)) &&
770               PTy->getElementType() == Accum) {
771      // In is a vector, and accum is an element: ok, remember In.
772      Accum = In;
773    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
774               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
775      // Two vectors of the same size: keep Accum.
776    } else {
777      // Cannot insert an short into a <4 x int> or handle
778      // <2 x int> -> <4 x int>
779      return true;
780    }
781  } else {
782    // Pointer/FP/Integer unions merge together as integers.
783    switch (Accum->getTypeID()) {
784    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
785    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
786    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
787    default:
788      assert(Accum->isInteger() && "Unknown FP type!");
789      break;
790    }
791
792    switch (In->getTypeID()) {
793    case Type::PointerTyID: In = TD.getIntPtrType(); break;
794    case Type::FloatTyID:   In = Type::Int32Ty; break;
795    case Type::DoubleTyID:  In = Type::Int64Ty; break;
796    default:
797      assert(In->isInteger() && "Unknown FP type!");
798      break;
799    }
800    return MergeInType(In, Accum, TD);
801  }
802  return false;
803}
804
805/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
806/// as big as the specified type.  If there is no suitable type, this returns
807/// null.
808const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
809  if (NumBits > 64) return 0;
810  if (NumBits > 32) return Type::Int64Ty;
811  if (NumBits > 16) return Type::Int32Ty;
812  if (NumBits > 8) return Type::Int16Ty;
813  return Type::Int8Ty;
814}
815
816/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
817/// single scalar integer type, return that type.  Further, if the use is not
818/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
819/// there are no uses of this pointer, return Type::VoidTy to differentiate from
820/// failure.
821///
822const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
823  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
824  const TargetData &TD = getAnalysis<TargetData>();
825  const PointerType *PTy = cast<PointerType>(V->getType());
826
827  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
828    Instruction *User = cast<Instruction>(*UI);
829
830    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
831      if (MergeInType(LI->getType(), UsedType, TD))
832        return 0;
833
834    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
835      // Storing the pointer, not into the value?
836      if (SI->getOperand(0) == V) return 0;
837
838      // NOTE: We could handle storing of FP imms into integers here!
839
840      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
841        return 0;
842    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
843      IsNotTrivial = true;
844      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
845      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
846    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
847      // Check to see if this is stepping over an element: GEP Ptr, int C
848      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
849        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
850        unsigned ElSize = TD.getTypeSize(PTy->getElementType());
851        unsigned BitOffset = Idx*ElSize*8;
852        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
853
854        IsNotTrivial = true;
855        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
856        if (SubElt == 0) return 0;
857        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
858          const Type *NewTy =
859            getUIntAtLeastAsBitAs(TD.getTypeSize(SubElt)*8+BitOffset);
860          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
861          continue;
862        }
863      } else if (GEP->getNumOperands() == 3 &&
864                 isa<ConstantInt>(GEP->getOperand(1)) &&
865                 isa<ConstantInt>(GEP->getOperand(2)) &&
866                 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
867        // We are stepping into an element, e.g. a structure or an array:
868        // GEP Ptr, int 0, uint C
869        const Type *AggTy = PTy->getElementType();
870        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
871
872        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
873          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
874        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
875          // Getting an element of the packed vector.
876          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
877
878          // Merge in the vector type.
879          if (MergeInType(VectorTy, UsedType, TD)) return 0;
880
881          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
882          if (SubTy == 0) return 0;
883
884          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
885            return 0;
886
887          // We'll need to change this to an insert/extract element operation.
888          IsNotTrivial = true;
889          continue;    // Everything looks ok
890
891        } else if (isa<StructType>(AggTy)) {
892          // Structs are always ok.
893        } else {
894          return 0;
895        }
896        const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
897        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
898        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
899        if (SubTy == 0) return 0;
900        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
901          return 0;
902        continue;    // Everything looks ok
903      }
904      return 0;
905    } else {
906      // Cannot handle this!
907      return 0;
908    }
909  }
910
911  return UsedType;
912}
913
914/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
915/// predicate and is non-trivial.  Convert it to something that can be trivially
916/// promoted into a register by mem2reg.
917void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
918  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
919       << *ActualTy << "\n";
920  ++NumConverted;
921
922  BasicBlock *EntryBlock = AI->getParent();
923  assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
924         "Not in the entry block!");
925  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
926
927  // Create and insert the alloca.
928  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
929                                     EntryBlock->begin());
930  ConvertUsesToScalar(AI, NewAI, 0);
931  delete AI;
932}
933
934
935/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
936/// directly.  This happens when we are converting an "integer union" to a
937/// single integer scalar, or when we are converting a "vector union" to a
938/// vector with insert/extractelement instructions.
939///
940/// Offset is an offset from the original alloca, in bits that need to be
941/// shifted to the right.  By the end of this, there should be no uses of Ptr.
942void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
943  const TargetData &TD = getAnalysis<TargetData>();
944  while (!Ptr->use_empty()) {
945    Instruction *User = cast<Instruction>(Ptr->use_back());
946
947    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
948      // The load is a bit extract from NewAI shifted right by Offset bits.
949      Value *NV = new LoadInst(NewAI, LI->getName(), LI);
950      if (NV->getType() == LI->getType()) {
951        // We win, no conversion needed.
952      } else if (const VectorType *PTy = dyn_cast<VectorType>(NV->getType())) {
953        // If the result alloca is a vector type, this is either an element
954        // access or a bitcast to another vector type.
955        if (isa<VectorType>(LI->getType())) {
956          NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
957        } else {
958          // Must be an element access.
959          unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
960          NV = new ExtractElementInst(
961                         NV, ConstantInt::get(Type::Int32Ty, Elt), "tmp", LI);
962        }
963      } else if (isa<PointerType>(NV->getType())) {
964        assert(isa<PointerType>(LI->getType()));
965        // Must be ptr->ptr cast.  Anything else would result in NV being
966        // an integer.
967        NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
968      } else {
969        const IntegerType *NTy = cast<IntegerType>(NV->getType());
970        unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
971
972        // If this is a big-endian system and the load is narrower than the
973        // full alloca type, we need to do a shift to get the right bits.
974        int ShAmt = 0;
975        if (TD.isBigEndian()) {
976          ShAmt = NTy->getBitWidth()-LIBitWidth-Offset;
977        } else {
978          ShAmt = Offset;
979        }
980
981        // Note: we support negative bitwidths (with shl) which are not defined.
982        // We do this to support (f.e.) loads off the end of a structure where
983        // only some bits are used.
984        if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
985          NV = BinaryOperator::createLShr(NV,
986                                          ConstantInt::get(NV->getType(),ShAmt),
987                                          LI->getName(), LI);
988        else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
989          NV = BinaryOperator::createShl(NV,
990                                         ConstantInt::get(NV->getType(),-ShAmt),
991                                         LI->getName(), LI);
992
993        // Finally, unconditionally truncate the integer to the right width.
994        if (LIBitWidth < NTy->getBitWidth())
995          NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
996                             LI->getName(), LI);
997
998        // If the result is an integer, this is a trunc or bitcast.
999        if (isa<IntegerType>(LI->getType())) {
1000          assert(NV->getType() == LI->getType() && "Truncate wasn't enough?");
1001        } else if (LI->getType()->isFloatingPoint()) {
1002          // Just do a bitcast, we know the sizes match up.
1003          NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1004        } else {
1005          // Otherwise must be a pointer.
1006          NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1007        }
1008      }
1009      LI->replaceAllUsesWith(NV);
1010      LI->eraseFromParent();
1011    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1012      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1013
1014      // Convert the stored type to the actual type, shift it left to insert
1015      // then 'or' into place.
1016      Value *SV = SI->getOperand(0);
1017      const Type *AllocaType = NewAI->getType()->getElementType();
1018      if (SV->getType() == AllocaType) {
1019        // All is well.
1020      } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1021        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1022
1023        // If the result alloca is a vector type, this is either an element
1024        // access or a bitcast to another vector type.
1025        if (isa<VectorType>(SV->getType())) {
1026          SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1027        } else {
1028          // Must be an element insertion.
1029          unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
1030          SV = new InsertElementInst(Old, SV,
1031                                     ConstantInt::get(Type::Int32Ty, Elt),
1032                                     "tmp", SI);
1033        }
1034      } else if (isa<PointerType>(AllocaType)) {
1035        // If the alloca type is a pointer, then all the elements must be
1036        // pointers.
1037        if (SV->getType() != AllocaType)
1038          SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1039      } else {
1040        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1041
1042        // If SV is a float, convert it to the appropriate integer type.
1043        // If it is a pointer, do the same, and also handle ptr->ptr casts
1044        // here.
1045        unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1046        unsigned DestWidth = AllocaType->getPrimitiveSizeInBits();
1047        if (SV->getType()->isFloatingPoint())
1048          SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1049                               SV->getName(), SI);
1050        else if (isa<PointerType>(SV->getType()))
1051          SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
1052
1053        // Always zero extend the value if needed.
1054        if (SV->getType() != AllocaType)
1055          SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1056
1057        // If this is a big-endian system and the store is narrower than the
1058        // full alloca type, we need to do a shift to get the right bits.
1059        int ShAmt = 0;
1060        if (TD.isBigEndian()) {
1061          ShAmt = DestWidth-SrcWidth-Offset;
1062        } else {
1063          ShAmt = Offset;
1064        }
1065
1066        // Note: we support negative bitwidths (with shr) which are not defined.
1067        // We do this to support (f.e.) stores off the end of a structure where
1068        // only some bits in the structure are set.
1069        APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1070        if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1071          SV = BinaryOperator::createShl(SV,
1072                                         ConstantInt::get(SV->getType(), ShAmt),
1073                                         SV->getName(), SI);
1074          Mask <<= ShAmt;
1075        } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1076          SV = BinaryOperator::createLShr(SV,
1077                                         ConstantInt::get(SV->getType(),-ShAmt),
1078                                          SV->getName(), SI);
1079          Mask = Mask.lshr(ShAmt);
1080        }
1081
1082        // Mask out the bits we are about to insert from the old value, and or
1083        // in the new bits.
1084        if (SrcWidth != DestWidth) {
1085          assert(DestWidth > SrcWidth);
1086          Old = BinaryOperator::createAnd(Old, ConstantInt::get(~Mask),
1087                                          Old->getName()+".mask", SI);
1088          SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
1089        }
1090      }
1091      new StoreInst(SV, NewAI, SI);
1092      SI->eraseFromParent();
1093
1094    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1095       ConvertUsesToScalar(CI, NewAI, Offset);
1096      CI->eraseFromParent();
1097    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1098      const PointerType *AggPtrTy =
1099        cast<PointerType>(GEP->getOperand(0)->getType());
1100      const TargetData &TD = getAnalysis<TargetData>();
1101      unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
1102
1103      // Check to see if this is stepping over an element: GEP Ptr, int C
1104      unsigned NewOffset = Offset;
1105      if (GEP->getNumOperands() == 2) {
1106        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1107        unsigned BitOffset = Idx*AggSizeInBits;
1108
1109        NewOffset += BitOffset;
1110      } else if (GEP->getNumOperands() == 3) {
1111        // We know that operand #2 is zero.
1112        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1113        const Type *AggTy = AggPtrTy->getElementType();
1114        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1115          unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;
1116
1117          NewOffset += ElSizeBits*Idx;
1118        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
1119          unsigned EltBitOffset =
1120            TD.getStructLayout(STy)->getElementOffset(Idx)*8;
1121
1122          NewOffset += EltBitOffset;
1123        } else {
1124          assert(0 && "Unsupported operation!");
1125          abort();
1126        }
1127      } else {
1128        assert(0 && "Unsupported operation!");
1129        abort();
1130      }
1131      ConvertUsesToScalar(GEP, NewAI, NewOffset);
1132      GEP->eraseFromParent();
1133    } else {
1134      assert(0 && "Unsupported operation!");
1135      abort();
1136    }
1137  }
1138}
1139
1140
1141/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1142/// some part of a constant global variable.  This intentionally only accepts
1143/// constant expressions because we don't can't rewrite arbitrary instructions.
1144static bool PointsToConstantGlobal(Value *V) {
1145  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1146    return GV->isConstant();
1147  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1148    if (CE->getOpcode() == Instruction::BitCast ||
1149        CE->getOpcode() == Instruction::GetElementPtr)
1150      return PointsToConstantGlobal(CE->getOperand(0));
1151  return false;
1152}
1153
1154/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1155/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1156/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1157/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1158/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1159/// the alloca, and if the source pointer is a pointer to a constant  global, we
1160/// can optimize this.
1161static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1162                                           bool isOffset) {
1163  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1164    if (isa<LoadInst>(*UI)) {
1165      // Ignore loads, they are always ok.
1166      continue;
1167    }
1168    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1169      // If uses of the bitcast are ok, we are ok.
1170      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1171        return false;
1172      continue;
1173    }
1174    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1175      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1176      // doesn't, it does.
1177      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1178                                         isOffset || !GEP->hasAllZeroIndices()))
1179        return false;
1180      continue;
1181    }
1182
1183    // If this is isn't our memcpy/memmove, reject it as something we can't
1184    // handle.
1185    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1186      return false;
1187
1188    // If we already have seen a copy, reject the second one.
1189    if (TheCopy) return false;
1190
1191    // If the pointer has been offset from the start of the alloca, we can't
1192    // safely handle this.
1193    if (isOffset) return false;
1194
1195    // If the memintrinsic isn't using the alloca as the dest, reject it.
1196    if (UI.getOperandNo() != 1) return false;
1197
1198    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1199
1200    // If the source of the memcpy/move is not a constant global, reject it.
1201    if (!PointsToConstantGlobal(MI->getOperand(2)))
1202      return false;
1203
1204    // Otherwise, the transform is safe.  Remember the copy instruction.
1205    TheCopy = MI;
1206  }
1207  return true;
1208}
1209
1210/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1211/// modified by a copy from a constant global.  If we can prove this, we can
1212/// replace any uses of the alloca with uses of the global directly.
1213Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1214  Instruction *TheCopy = 0;
1215  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1216    return TheCopy;
1217  return 0;
1218}
1219