ScalarReplAggregates.cpp revision 6be41eb7f00319f5ffa1a5435dcd1e81b3ce932d
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DIBuilder.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/Loads.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Transforms/Utils/PromoteMemToReg.h"
39#include "llvm/Transforms/Utils/Local.h"
40#include "llvm/Transforms/Utils/SSAUpdater.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/MathExtras.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/Statistic.h"
51using namespace llvm;
52
53STATISTIC(NumReplaced,  "Number of allocas broken up");
54STATISTIC(NumPromoted,  "Number of allocas promoted");
55STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
56STATISTIC(NumConverted, "Number of aggregates converted to scalar");
57STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
58
59namespace {
60  struct SROA : public FunctionPass {
61    SROA(int T, bool hasDT, char &ID)
62      : FunctionPass(ID), HasDomTree(hasDT) {
63      if (T == -1)
64        SRThreshold = 128;
65      else
66        SRThreshold = T;
67    }
68
69    bool runOnFunction(Function &F);
70
71    bool performScalarRepl(Function &F);
72    bool performPromotion(Function &F);
73
74  private:
75    bool HasDomTree;
76    TargetData *TD;
77
78    /// DeadInsts - Keep track of instructions we have made dead, so that
79    /// we can remove them after we are done working.
80    SmallVector<Value*, 32> DeadInsts;
81
82    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
83    /// information about the uses.  All these fields are initialized to false
84    /// and set to true when something is learned.
85    struct AllocaInfo {
86      /// The alloca to promote.
87      AllocaInst *AI;
88
89      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
90      /// looping and avoid redundant work.
91      SmallPtrSet<PHINode*, 8> CheckedPHIs;
92
93      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
94      bool isUnsafe : 1;
95
96      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
97      bool isMemCpySrc : 1;
98
99      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
100      bool isMemCpyDst : 1;
101
102      /// hasSubelementAccess - This is true if a subelement of the alloca is
103      /// ever accessed, or false if the alloca is only accessed with mem
104      /// intrinsics or load/store that only access the entire alloca at once.
105      bool hasSubelementAccess : 1;
106
107      /// hasALoadOrStore - This is true if there are any loads or stores to it.
108      /// The alloca may just be accessed with memcpy, for example, which would
109      /// not set this.
110      bool hasALoadOrStore : 1;
111
112      explicit AllocaInfo(AllocaInst *ai)
113        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
114          hasSubelementAccess(false), hasALoadOrStore(false) {}
115    };
116
117    unsigned SRThreshold;
118
119    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
120      I.isUnsafe = true;
121      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
122    }
123
124    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
125
126    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
127    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
128                                         AllocaInfo &Info);
129    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
130    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
131                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
132                         Instruction *TheAccess, bool AllowWholeAccess);
133    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
134    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
135                                  const Type *&IdxTy);
136
137    void DoScalarReplacement(AllocaInst *AI,
138                             std::vector<AllocaInst*> &WorkList);
139    void DeleteDeadInstructions();
140
141    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
142                              SmallVector<AllocaInst*, 32> &NewElts);
143    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
144                        SmallVector<AllocaInst*, 32> &NewElts);
145    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
146                    SmallVector<AllocaInst*, 32> &NewElts);
147    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
148                                      AllocaInst *AI,
149                                      SmallVector<AllocaInst*, 32> &NewElts);
150    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
151                                       SmallVector<AllocaInst*, 32> &NewElts);
152    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
153                                      SmallVector<AllocaInst*, 32> &NewElts);
154
155    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
156  };
157
158  // SROA_DT - SROA that uses DominatorTree.
159  struct SROA_DT : public SROA {
160    static char ID;
161  public:
162    SROA_DT(int T = -1) : SROA(T, true, ID) {
163      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
164    }
165
166    // getAnalysisUsage - This pass does not require any passes, but we know it
167    // will not alter the CFG, so say so.
168    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
169      AU.addRequired<DominatorTree>();
170      AU.setPreservesCFG();
171    }
172  };
173
174  // SROA_SSAUp - SROA that uses SSAUpdater.
175  struct SROA_SSAUp : public SROA {
176    static char ID;
177  public:
178    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
179      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
180    }
181
182    // getAnalysisUsage - This pass does not require any passes, but we know it
183    // will not alter the CFG, so say so.
184    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
185      AU.setPreservesCFG();
186    }
187  };
188
189}
190
191char SROA_DT::ID = 0;
192char SROA_SSAUp::ID = 0;
193
194INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
195                "Scalar Replacement of Aggregates (DT)", false, false)
196INITIALIZE_PASS_DEPENDENCY(DominatorTree)
197INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
198                "Scalar Replacement of Aggregates (DT)", false, false)
199
200INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
201                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
202INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
203                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
204
205// Public interface to the ScalarReplAggregates pass
206FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
207                                                   bool UseDomTree) {
208  if (UseDomTree)
209    return new SROA_DT(Threshold);
210  return new SROA_SSAUp(Threshold);
211}
212
213
214//===----------------------------------------------------------------------===//
215// Convert To Scalar Optimization.
216//===----------------------------------------------------------------------===//
217
218namespace {
219/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
220/// optimization, which scans the uses of an alloca and determines if it can
221/// rewrite it in terms of a single new alloca that can be mem2reg'd.
222class ConvertToScalarInfo {
223  /// AllocaSize - The size of the alloca being considered in bytes.
224  unsigned AllocaSize;
225  const TargetData &TD;
226
227  /// IsNotTrivial - This is set to true if there is some access to the object
228  /// which means that mem2reg can't promote it.
229  bool IsNotTrivial;
230
231  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
232  /// computed based on the uses of the alloca rather than the LLVM type system.
233  enum {
234    Unknown,
235
236    // Accesses via GEPs that are consistent with element access of a vector
237    // type. This will not be converted into a vector unless there is a later
238    // access using an actual vector type.
239    ImplicitVector,
240
241    // Accesses via vector operations and GEPs that are consistent with the
242    // layout of a vector type.
243    Vector,
244
245    // An integer bag-of-bits with bitwise operations for insertion and
246    // extraction. Any combination of types can be converted into this kind
247    // of scalar.
248    Integer
249  } ScalarKind;
250
251  /// VectorTy - This tracks the type that we should promote the vector to if
252  /// it is possible to turn it into a vector.  This starts out null, and if it
253  /// isn't possible to turn into a vector type, it gets set to VoidTy.
254  const VectorType *VectorTy;
255
256  /// HadNonMemTransferAccess - True if there is at least one access to the
257  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
258  /// large integers unless there is some potential for optimization.
259  bool HadNonMemTransferAccess;
260
261public:
262  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
263    : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
264      VectorTy(0), HadNonMemTransferAccess(false) { }
265
266  AllocaInst *TryConvert(AllocaInst *AI);
267
268private:
269  bool CanConvertToScalar(Value *V, uint64_t Offset);
270  void MergeInTypeForLoadOrStore(const Type *In, uint64_t Offset);
271  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
272  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
273
274  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
275                                    uint64_t Offset, IRBuilder<> &Builder);
276  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
277                                   uint64_t Offset, IRBuilder<> &Builder);
278};
279} // end anonymous namespace.
280
281
282/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
283/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
284/// alloca if possible or null if not.
285AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
286  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
287  // out.
288  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
289    return 0;
290
291  // If an alloca has only memset / memcpy uses, it may still have an Unknown
292  // ScalarKind. Treat it as an Integer below.
293  if (ScalarKind == Unknown)
294    ScalarKind = Integer;
295
296  // If we were able to find a vector type that can handle this with
297  // insert/extract elements, and if there was at least one use that had
298  // a vector type, promote this to a vector.  We don't want to promote
299  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
300  // we just get a lot of insert/extracts.  If at least one vector is
301  // involved, then we probably really do have a union of vector/array.
302  const Type *NewTy;
303  if (ScalarKind == Vector) {
304    assert(VectorTy && "Missing type for vector scalar.");
305    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
306          << *VectorTy << '\n');
307    NewTy = VectorTy;  // Use the vector type.
308  } else {
309    unsigned BitWidth = AllocaSize * 8;
310    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
311        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
312      return 0;
313
314    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
315    // Create and insert the integer alloca.
316    NewTy = IntegerType::get(AI->getContext(), BitWidth);
317  }
318  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
319  ConvertUsesToScalar(AI, NewAI, 0);
320  return NewAI;
321}
322
323/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
324/// (VectorTy) so far at the offset specified by Offset (which is specified in
325/// bytes).
326///
327/// There are three cases we handle here:
328///   1) A union of vector types of the same size and potentially its elements.
329///      Here we turn element accesses into insert/extract element operations.
330///      This promotes a <4 x float> with a store of float to the third element
331///      into a <4 x float> that uses insert element.
332///   2) A union of vector types with power-of-2 size differences, e.g. a float,
333///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
334///      and extract element operations, and <2 x float> accesses into a cast to
335///      <2 x double>, an extract, and a cast back to <2 x float>.
336///   3) A fully general blob of memory, which we turn into some (potentially
337///      large) integer type with extract and insert operations where the loads
338///      and stores would mutate the memory.  We mark this by setting VectorTy
339///      to VoidTy.
340void ConvertToScalarInfo::MergeInTypeForLoadOrStore(const Type *In,
341                                                    uint64_t Offset) {
342  // If we already decided to turn this into a blob of integer memory, there is
343  // nothing to be done.
344  if (ScalarKind == Integer)
345    return;
346
347  // If this could be contributing to a vector, analyze it.
348
349  // If the In type is a vector that is the same size as the alloca, see if it
350  // matches the existing VecTy.
351  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
352    if (MergeInVectorType(VInTy, Offset))
353      return;
354  } else if (In->isFloatTy() || In->isDoubleTy() ||
355             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
356              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
357    // Full width accesses can be ignored, because they can always be turned
358    // into bitcasts.
359    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
360    if (EltSize == AllocaSize)
361      return;
362
363    // If we're accessing something that could be an element of a vector, see
364    // if the implied vector agrees with what we already have and if Offset is
365    // compatible with it.
366    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
367        (!VectorTy || Offset * 8 < VectorTy->getPrimitiveSizeInBits())) {
368      if (!VectorTy) {
369        ScalarKind = ImplicitVector;
370        VectorTy = VectorType::get(In, AllocaSize/EltSize);
371        return;
372      }
373
374      unsigned CurrentEltSize = VectorTy->getElementType()
375                                ->getPrimitiveSizeInBits()/8;
376      if (EltSize == CurrentEltSize)
377        return;
378
379      if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
380        return;
381    }
382  }
383
384  // Otherwise, we have a case that we can't handle with an optimized vector
385  // form.  We can still turn this into a large integer.
386  ScalarKind = Integer;
387}
388
389/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
390/// returning true if the type was successfully merged and false otherwise.
391bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
392                                            uint64_t Offset) {
393  // TODO: Support nonzero offsets?
394  if (Offset != 0)
395    return false;
396
397  // Only allow vectors that are a power-of-2 away from the size of the alloca.
398  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
399    return false;
400
401  // If this the first vector we see, remember the type so that we know the
402  // element size.
403  if (!VectorTy) {
404    ScalarKind = Vector;
405    VectorTy = VInTy;
406    return true;
407  }
408
409  unsigned BitWidth = VectorTy->getBitWidth();
410  unsigned InBitWidth = VInTy->getBitWidth();
411
412  // Vectors of the same size can be converted using a simple bitcast.
413  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8)) {
414    ScalarKind = Vector;
415    return true;
416  }
417
418  const Type *ElementTy = VectorTy->getElementType();
419  const Type *InElementTy = VInTy->getElementType();
420
421  // Do not allow mixed integer and floating-point accesses from vectors of
422  // different sizes.
423  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
424    return false;
425
426  if (ElementTy->isFloatingPointTy()) {
427    // Only allow floating-point vectors of different sizes if they have the
428    // same element type.
429    // TODO: This could be loosened a bit, but would anything benefit?
430    if (ElementTy != InElementTy)
431      return false;
432
433    // There are no arbitrary-precision floating-point types, which limits the
434    // number of legal vector types with larger element types that we can form
435    // to bitcast and extract a subvector.
436    // TODO: We could support some more cases with mixed fp128 and double here.
437    if (!(BitWidth == 64 || BitWidth == 128) ||
438        !(InBitWidth == 64 || InBitWidth == 128))
439      return false;
440  } else {
441    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
442                                       "or floating-point.");
443    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
444    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
445
446    // Do not allow integer types smaller than a byte or types whose widths are
447    // not a multiple of a byte.
448    if (BitWidth < 8 || InBitWidth < 8 ||
449        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
450      return false;
451  }
452
453  // Pick the largest of the two vector types.
454  ScalarKind = Vector;
455  if (InBitWidth > BitWidth)
456    VectorTy = VInTy;
457
458  return true;
459}
460
461/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
462/// its accesses to a single vector type, return true and set VecTy to
463/// the new type.  If we could convert the alloca into a single promotable
464/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
465/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
466/// is the current offset from the base of the alloca being analyzed.
467///
468/// If we see at least one access to the value that is as a vector type, set the
469/// SawVec flag.
470bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
471  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
472    Instruction *User = cast<Instruction>(*UI);
473
474    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
475      // Don't break volatile loads.
476      if (LI->isVolatile())
477        return false;
478      // Don't touch MMX operations.
479      if (LI->getType()->isX86_MMXTy())
480        return false;
481      HadNonMemTransferAccess = true;
482      MergeInTypeForLoadOrStore(LI->getType(), Offset);
483      continue;
484    }
485
486    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
487      // Storing the pointer, not into the value?
488      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
489      // Don't touch MMX operations.
490      if (SI->getOperand(0)->getType()->isX86_MMXTy())
491        return false;
492      HadNonMemTransferAccess = true;
493      MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
494      continue;
495    }
496
497    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
498      IsNotTrivial = true;  // Can't be mem2reg'd.
499      if (!CanConvertToScalar(BCI, Offset))
500        return false;
501      continue;
502    }
503
504    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
505      // If this is a GEP with a variable indices, we can't handle it.
506      if (!GEP->hasAllConstantIndices())
507        return false;
508
509      // Compute the offset that this GEP adds to the pointer.
510      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
511      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
512                                               &Indices[0], Indices.size());
513      // See if all uses can be converted.
514      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
515        return false;
516      IsNotTrivial = true;  // Can't be mem2reg'd.
517      HadNonMemTransferAccess = true;
518      continue;
519    }
520
521    // If this is a constant sized memset of a constant value (e.g. 0) we can
522    // handle it.
523    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
524      // Store of constant value.
525      if (!isa<ConstantInt>(MSI->getValue()))
526        return false;
527
528      // Store of constant size.
529      ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
530      if (!Len)
531        return false;
532
533      // If the size differs from the alloca, we can only convert the alloca to
534      // an integer bag-of-bits.
535      // FIXME: This should handle all of the cases that are currently accepted
536      // as vector element insertions.
537      if (Len->getZExtValue() != AllocaSize || Offset != 0)
538        ScalarKind = Integer;
539
540      IsNotTrivial = true;  // Can't be mem2reg'd.
541      HadNonMemTransferAccess = true;
542      continue;
543    }
544
545    // If this is a memcpy or memmove into or out of the whole allocation, we
546    // can handle it like a load or store of the scalar type.
547    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
548      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
549      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
550        return false;
551
552      IsNotTrivial = true;  // Can't be mem2reg'd.
553      continue;
554    }
555
556    // Otherwise, we cannot handle this!
557    return false;
558  }
559
560  return true;
561}
562
563/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
564/// directly.  This happens when we are converting an "integer union" to a
565/// single integer scalar, or when we are converting a "vector union" to a
566/// vector with insert/extractelement instructions.
567///
568/// Offset is an offset from the original alloca, in bits that need to be
569/// shifted to the right.  By the end of this, there should be no uses of Ptr.
570void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
571                                              uint64_t Offset) {
572  while (!Ptr->use_empty()) {
573    Instruction *User = cast<Instruction>(Ptr->use_back());
574
575    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
576      ConvertUsesToScalar(CI, NewAI, Offset);
577      CI->eraseFromParent();
578      continue;
579    }
580
581    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
582      // Compute the offset that this GEP adds to the pointer.
583      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
584      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
585                                               &Indices[0], Indices.size());
586      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
587      GEP->eraseFromParent();
588      continue;
589    }
590
591    IRBuilder<> Builder(User);
592
593    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
594      // The load is a bit extract from NewAI shifted right by Offset bits.
595      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
596      Value *NewLoadVal
597        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
598      LI->replaceAllUsesWith(NewLoadVal);
599      LI->eraseFromParent();
600      continue;
601    }
602
603    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
604      assert(SI->getOperand(0) != Ptr && "Consistency error!");
605      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
606      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
607                                             Builder);
608      Builder.CreateStore(New, NewAI);
609      SI->eraseFromParent();
610
611      // If the load we just inserted is now dead, then the inserted store
612      // overwrote the entire thing.
613      if (Old->use_empty())
614        Old->eraseFromParent();
615      continue;
616    }
617
618    // If this is a constant sized memset of a constant value (e.g. 0) we can
619    // transform it into a store of the expanded constant value.
620    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
621      assert(MSI->getRawDest() == Ptr && "Consistency error!");
622      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
623      if (NumBytes != 0) {
624        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
625
626        // Compute the value replicated the right number of times.
627        APInt APVal(NumBytes*8, Val);
628
629        // Splat the value if non-zero.
630        if (Val)
631          for (unsigned i = 1; i != NumBytes; ++i)
632            APVal |= APVal << 8;
633
634        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
635        Value *New = ConvertScalar_InsertValue(
636                                    ConstantInt::get(User->getContext(), APVal),
637                                               Old, Offset, Builder);
638        Builder.CreateStore(New, NewAI);
639
640        // If the load we just inserted is now dead, then the memset overwrote
641        // the entire thing.
642        if (Old->use_empty())
643          Old->eraseFromParent();
644      }
645      MSI->eraseFromParent();
646      continue;
647    }
648
649    // If this is a memcpy or memmove into or out of the whole allocation, we
650    // can handle it like a load or store of the scalar type.
651    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
652      assert(Offset == 0 && "must be store to start of alloca");
653
654      // If the source and destination are both to the same alloca, then this is
655      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
656      // as appropriate.
657      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
658
659      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
660        // Dest must be OrigAI, change this to be a load from the original
661        // pointer (bitcasted), then a store to our new alloca.
662        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
663        Value *SrcPtr = MTI->getSource();
664        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
665        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
666        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
667          AIPTy = PointerType::get(AIPTy->getElementType(),
668                                   SPTy->getAddressSpace());
669        }
670        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
671
672        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
673        SrcVal->setAlignment(MTI->getAlignment());
674        Builder.CreateStore(SrcVal, NewAI);
675      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
676        // Src must be OrigAI, change this to be a load from NewAI then a store
677        // through the original dest pointer (bitcasted).
678        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
679        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
680
681        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
682        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
683        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
684          AIPTy = PointerType::get(AIPTy->getElementType(),
685                                   DPTy->getAddressSpace());
686        }
687        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
688
689        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
690        NewStore->setAlignment(MTI->getAlignment());
691      } else {
692        // Noop transfer. Src == Dst
693      }
694
695      MTI->eraseFromParent();
696      continue;
697    }
698
699    llvm_unreachable("Unsupported operation!");
700  }
701}
702
703/// getScaledElementType - Gets a scaled element type for a partial vector
704/// access of an alloca. The input types must be integer or floating-point
705/// scalar or vector types, and the resulting type is an integer, float or
706/// double.
707static const Type *getScaledElementType(const Type *Ty1, const Type *Ty2,
708                                        unsigned NewBitWidth) {
709  bool IsFP1 = Ty1->isFloatingPointTy() ||
710               (Ty1->isVectorTy() &&
711                cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
712  bool IsFP2 = Ty2->isFloatingPointTy() ||
713               (Ty2->isVectorTy() &&
714                cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
715
716  LLVMContext &Context = Ty1->getContext();
717
718  // Prefer floating-point types over integer types, as integer types may have
719  // been created by earlier scalar replacement.
720  if (IsFP1 || IsFP2) {
721    if (NewBitWidth == 32)
722      return Type::getFloatTy(Context);
723    if (NewBitWidth == 64)
724      return Type::getDoubleTy(Context);
725  }
726
727  return Type::getIntNTy(Context, NewBitWidth);
728}
729
730/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
731/// to another vector of the same element type which has the same allocation
732/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
733static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
734                                      IRBuilder<> &Builder) {
735  const Type *FromType = FromVal->getType();
736  const VectorType *FromVTy = cast<VectorType>(FromType);
737  const VectorType *ToVTy = cast<VectorType>(ToType);
738  assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
739         "Vectors must have the same element type");
740   Value *UnV = UndefValue::get(FromType);
741   unsigned numEltsFrom = FromVTy->getNumElements();
742   unsigned numEltsTo = ToVTy->getNumElements();
743
744   SmallVector<Constant*, 3> Args;
745   const Type* Int32Ty = Builder.getInt32Ty();
746   unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
747   unsigned i;
748   for (i=0; i != minNumElts; ++i)
749     Args.push_back(ConstantInt::get(Int32Ty, i));
750
751   if (i < numEltsTo) {
752     Constant* UnC = UndefValue::get(Int32Ty);
753     for (; i != numEltsTo; ++i)
754       Args.push_back(UnC);
755   }
756   Constant *Mask = ConstantVector::get(Args);
757   return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
758}
759
760/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
761/// or vector value FromVal, extracting the bits from the offset specified by
762/// Offset.  This returns the value, which is of type ToType.
763///
764/// This happens when we are converting an "integer union" to a single
765/// integer scalar, or when we are converting a "vector union" to a vector with
766/// insert/extractelement instructions.
767///
768/// Offset is an offset from the original alloca, in bits that need to be
769/// shifted to the right.
770Value *ConvertToScalarInfo::
771ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
772                           uint64_t Offset, IRBuilder<> &Builder) {
773  // If the load is of the whole new alloca, no conversion is needed.
774  const Type *FromType = FromVal->getType();
775  if (FromType == ToType && Offset == 0)
776    return FromVal;
777
778  // If the result alloca is a vector type, this is either an element
779  // access or a bitcast to another vector type of the same size.
780  if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
781    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
782    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
783    if (FromTypeSize == ToTypeSize) {
784      // If the two types have the same primitive size, use a bit cast.
785      // Otherwise, it is two vectors with the same element type that has
786      // the same allocation size but different number of elements so use
787      // a shuffle vector.
788      if (FromType->getPrimitiveSizeInBits() ==
789          ToType->getPrimitiveSizeInBits())
790        return Builder.CreateBitCast(FromVal, ToType, "tmp");
791      else
792        return CreateShuffleVectorCast(FromVal, ToType, Builder);
793    }
794
795    if (isPowerOf2_64(FromTypeSize / ToTypeSize)) {
796      assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
797             "of a smaller vector type at a nonzero offset.");
798
799      const Type *CastElementTy = getScaledElementType(FromType, ToType,
800                                                       ToTypeSize * 8);
801      unsigned NumCastVectorElements = FromTypeSize / ToTypeSize;
802
803      LLVMContext &Context = FromVal->getContext();
804      const Type *CastTy = VectorType::get(CastElementTy,
805                                           NumCastVectorElements);
806      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
807
808      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
809      unsigned Elt = Offset/EltSize;
810      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
811      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
812                                        Type::getInt32Ty(Context), Elt), "tmp");
813      return Builder.CreateBitCast(Extract, ToType, "tmp");
814    }
815
816    // Otherwise it must be an element access.
817    unsigned Elt = 0;
818    if (Offset) {
819      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
820      Elt = Offset/EltSize;
821      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
822    }
823    // Return the element extracted out of it.
824    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
825                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
826    if (V->getType() != ToType)
827      V = Builder.CreateBitCast(V, ToType, "tmp");
828    return V;
829  }
830
831  // If ToType is a first class aggregate, extract out each of the pieces and
832  // use insertvalue's to form the FCA.
833  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
834    const StructLayout &Layout = *TD.getStructLayout(ST);
835    Value *Res = UndefValue::get(ST);
836    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
837      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
838                                        Offset+Layout.getElementOffsetInBits(i),
839                                              Builder);
840      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
841    }
842    return Res;
843  }
844
845  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
846    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
847    Value *Res = UndefValue::get(AT);
848    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
849      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
850                                              Offset+i*EltSize, Builder);
851      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
852    }
853    return Res;
854  }
855
856  // Otherwise, this must be a union that was converted to an integer value.
857  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
858
859  // If this is a big-endian system and the load is narrower than the
860  // full alloca type, we need to do a shift to get the right bits.
861  int ShAmt = 0;
862  if (TD.isBigEndian()) {
863    // On big-endian machines, the lowest bit is stored at the bit offset
864    // from the pointer given by getTypeStoreSizeInBits.  This matters for
865    // integers with a bitwidth that is not a multiple of 8.
866    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
867            TD.getTypeStoreSizeInBits(ToType) - Offset;
868  } else {
869    ShAmt = Offset;
870  }
871
872  // Note: we support negative bitwidths (with shl) which are not defined.
873  // We do this to support (f.e.) loads off the end of a structure where
874  // only some bits are used.
875  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
876    FromVal = Builder.CreateLShr(FromVal,
877                                 ConstantInt::get(FromVal->getType(),
878                                                           ShAmt), "tmp");
879  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
880    FromVal = Builder.CreateShl(FromVal,
881                                ConstantInt::get(FromVal->getType(),
882                                                          -ShAmt), "tmp");
883
884  // Finally, unconditionally truncate the integer to the right width.
885  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
886  if (LIBitWidth < NTy->getBitWidth())
887    FromVal =
888      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
889                                                    LIBitWidth), "tmp");
890  else if (LIBitWidth > NTy->getBitWidth())
891    FromVal =
892       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
893                                                    LIBitWidth), "tmp");
894
895  // If the result is an integer, this is a trunc or bitcast.
896  if (ToType->isIntegerTy()) {
897    // Should be done.
898  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
899    // Just do a bitcast, we know the sizes match up.
900    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
901  } else {
902    // Otherwise must be a pointer.
903    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
904  }
905  assert(FromVal->getType() == ToType && "Didn't convert right?");
906  return FromVal;
907}
908
909/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
910/// or vector value "Old" at the offset specified by Offset.
911///
912/// This happens when we are converting an "integer union" to a
913/// single integer scalar, or when we are converting a "vector union" to a
914/// vector with insert/extractelement instructions.
915///
916/// Offset is an offset from the original alloca, in bits that need to be
917/// shifted to the right.
918Value *ConvertToScalarInfo::
919ConvertScalar_InsertValue(Value *SV, Value *Old,
920                          uint64_t Offset, IRBuilder<> &Builder) {
921  // Convert the stored type to the actual type, shift it left to insert
922  // then 'or' into place.
923  const Type *AllocaType = Old->getType();
924  LLVMContext &Context = Old->getContext();
925
926  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
927    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
928    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
929
930    // Changing the whole vector with memset or with an access of a different
931    // vector type?
932    if (ValSize == VecSize) {
933      // If the two types have the same primitive size, use a bit cast.
934      // Otherwise, it is two vectors with the same element type that has
935      // the same allocation size but different number of elements so use
936      // a shuffle vector.
937      if (VTy->getPrimitiveSizeInBits() ==
938          SV->getType()->getPrimitiveSizeInBits())
939        return Builder.CreateBitCast(SV, AllocaType, "tmp");
940      else
941        return CreateShuffleVectorCast(SV, VTy, Builder);
942    }
943
944    if (isPowerOf2_64(VecSize / ValSize)) {
945      assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
946             "value of a smaller vector type at a nonzero offset.");
947
948      const Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
949                                                       ValSize);
950      unsigned NumCastVectorElements = VecSize / ValSize;
951
952      LLVMContext &Context = SV->getContext();
953      const Type *OldCastTy = VectorType::get(CastElementTy,
954                                              NumCastVectorElements);
955      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
956
957      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
958
959      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
960      unsigned Elt = Offset/EltSize;
961      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
962      Value *Insert =
963        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
964                                        Type::getInt32Ty(Context), Elt), "tmp");
965      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
966    }
967
968    // Must be an element insertion.
969    assert(SV->getType() == VTy->getElementType());
970    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
971    unsigned Elt = Offset/EltSize;
972    return Builder.CreateInsertElement(Old, SV,
973                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
974                                     "tmp");
975  }
976
977  // If SV is a first-class aggregate value, insert each value recursively.
978  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
979    const StructLayout &Layout = *TD.getStructLayout(ST);
980    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
981      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
982      Old = ConvertScalar_InsertValue(Elt, Old,
983                                      Offset+Layout.getElementOffsetInBits(i),
984                                      Builder);
985    }
986    return Old;
987  }
988
989  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
990    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
991    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
992      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
993      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
994    }
995    return Old;
996  }
997
998  // If SV is a float, convert it to the appropriate integer type.
999  // If it is a pointer, do the same.
1000  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1001  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
1002  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
1003  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
1004  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
1005    SV = Builder.CreateBitCast(SV,
1006                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
1007  else if (SV->getType()->isPointerTy())
1008    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
1009
1010  // Zero extend or truncate the value if needed.
1011  if (SV->getType() != AllocaType) {
1012    if (SV->getType()->getPrimitiveSizeInBits() <
1013             AllocaType->getPrimitiveSizeInBits())
1014      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1015    else {
1016      // Truncation may be needed if storing more than the alloca can hold
1017      // (undefined behavior).
1018      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1019      SrcWidth = DestWidth;
1020      SrcStoreWidth = DestStoreWidth;
1021    }
1022  }
1023
1024  // If this is a big-endian system and the store is narrower than the
1025  // full alloca type, we need to do a shift to get the right bits.
1026  int ShAmt = 0;
1027  if (TD.isBigEndian()) {
1028    // On big-endian machines, the lowest bit is stored at the bit offset
1029    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1030    // integers with a bitwidth that is not a multiple of 8.
1031    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1032  } else {
1033    ShAmt = Offset;
1034  }
1035
1036  // Note: we support negative bitwidths (with shr) which are not defined.
1037  // We do this to support (f.e.) stores off the end of a structure where
1038  // only some bits in the structure are set.
1039  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1040  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1041    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1042                           ShAmt), "tmp");
1043    Mask <<= ShAmt;
1044  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1045    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1046                            -ShAmt), "tmp");
1047    Mask = Mask.lshr(-ShAmt);
1048  }
1049
1050  // Mask out the bits we are about to insert from the old value, and or
1051  // in the new bits.
1052  if (SrcWidth != DestWidth) {
1053    assert(DestWidth > SrcWidth);
1054    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1055    SV = Builder.CreateOr(Old, SV, "ins");
1056  }
1057  return SV;
1058}
1059
1060
1061//===----------------------------------------------------------------------===//
1062// SRoA Driver
1063//===----------------------------------------------------------------------===//
1064
1065
1066bool SROA::runOnFunction(Function &F) {
1067  TD = getAnalysisIfAvailable<TargetData>();
1068
1069  bool Changed = performPromotion(F);
1070
1071  // FIXME: ScalarRepl currently depends on TargetData more than it
1072  // theoretically needs to. It should be refactored in order to support
1073  // target-independent IR. Until this is done, just skip the actual
1074  // scalar-replacement portion of this pass.
1075  if (!TD) return Changed;
1076
1077  while (1) {
1078    bool LocalChange = performScalarRepl(F);
1079    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1080    Changed = true;
1081    LocalChange = performPromotion(F);
1082    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1083  }
1084
1085  return Changed;
1086}
1087
1088namespace {
1089class AllocaPromoter : public LoadAndStorePromoter {
1090  AllocaInst *AI;
1091public:
1092  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1093                 DbgDeclareInst *DD, DIBuilder *&DB)
1094    : LoadAndStorePromoter(Insts, S, DD, DB), AI(0) {}
1095
1096  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1097    // Remember which alloca we're promoting (for isInstInList).
1098    this->AI = AI;
1099    LoadAndStorePromoter::run(Insts);
1100    AI->eraseFromParent();
1101  }
1102
1103  virtual bool isInstInList(Instruction *I,
1104                            const SmallVectorImpl<Instruction*> &Insts) const {
1105    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1106      return LI->getOperand(0) == AI;
1107    return cast<StoreInst>(I)->getPointerOperand() == AI;
1108  }
1109};
1110} // end anon namespace
1111
1112/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1113/// subsequently loaded can be rewritten to load both input pointers and then
1114/// select between the result, allowing the load of the alloca to be promoted.
1115/// From this:
1116///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1117///   %V = load i32* %P2
1118/// to:
1119///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1120///   %V2 = load i32* %Other
1121///   %V = select i1 %cond, i32 %V1, i32 %V2
1122///
1123/// We can do this to a select if its only uses are loads and if the operand to
1124/// the select can be loaded unconditionally.
1125static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1126  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1127  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1128
1129  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1130       UI != UE; ++UI) {
1131    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1132    if (LI == 0 || LI->isVolatile()) return false;
1133
1134    // Both operands to the select need to be dereferencable, either absolutely
1135    // (e.g. allocas) or at this point because we can see other accesses to it.
1136    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1137                                                    LI->getAlignment(), TD))
1138      return false;
1139    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1140                                                    LI->getAlignment(), TD))
1141      return false;
1142  }
1143
1144  return true;
1145}
1146
1147/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1148/// subsequently loaded can be rewritten to load both input pointers in the pred
1149/// blocks and then PHI the results, allowing the load of the alloca to be
1150/// promoted.
1151/// From this:
1152///   %P2 = phi [i32* %Alloca, i32* %Other]
1153///   %V = load i32* %P2
1154/// to:
1155///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1156///   ...
1157///   %V2 = load i32* %Other
1158///   ...
1159///   %V = phi [i32 %V1, i32 %V2]
1160///
1161/// We can do this to a select if its only uses are loads and if the operand to
1162/// the select can be loaded unconditionally.
1163static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1164  // For now, we can only do this promotion if the load is in the same block as
1165  // the PHI, and if there are no stores between the phi and load.
1166  // TODO: Allow recursive phi users.
1167  // TODO: Allow stores.
1168  BasicBlock *BB = PN->getParent();
1169  unsigned MaxAlign = 0;
1170  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1171       UI != UE; ++UI) {
1172    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1173    if (LI == 0 || LI->isVolatile()) return false;
1174
1175    // For now we only allow loads in the same block as the PHI.  This is a
1176    // common case that happens when instcombine merges two loads through a PHI.
1177    if (LI->getParent() != BB) return false;
1178
1179    // Ensure that there are no instructions between the PHI and the load that
1180    // could store.
1181    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1182      if (BBI->mayWriteToMemory())
1183        return false;
1184
1185    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1186  }
1187
1188  // Okay, we know that we have one or more loads in the same block as the PHI.
1189  // We can transform this if it is safe to push the loads into the predecessor
1190  // blocks.  The only thing to watch out for is that we can't put a possibly
1191  // trapping load in the predecessor if it is a critical edge.
1192  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1193    BasicBlock *Pred = PN->getIncomingBlock(i);
1194
1195    // If the predecessor has a single successor, then the edge isn't critical.
1196    if (Pred->getTerminator()->getNumSuccessors() == 1)
1197      continue;
1198
1199    Value *InVal = PN->getIncomingValue(i);
1200
1201    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1202    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1203      if (II->getParent() == Pred)
1204        return false;
1205
1206    // If this pointer is always safe to load, or if we can prove that there is
1207    // already a load in the block, then we can move the load to the pred block.
1208    if (InVal->isDereferenceablePointer() ||
1209        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1210      continue;
1211
1212    return false;
1213  }
1214
1215  return true;
1216}
1217
1218
1219/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1220/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1221/// not quite there, this will transform the code to allow promotion.  As such,
1222/// it is a non-pure predicate.
1223static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1224  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1225            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1226
1227  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1228       UI != UE; ++UI) {
1229    User *U = *UI;
1230    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1231      if (LI->isVolatile())
1232        return false;
1233      continue;
1234    }
1235
1236    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1237      if (SI->getOperand(0) == AI || SI->isVolatile())
1238        return false;   // Don't allow a store OF the AI, only INTO the AI.
1239      continue;
1240    }
1241
1242    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1243      // If the condition being selected on is a constant, fold the select, yes
1244      // this does (rarely) happen early on.
1245      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1246        Value *Result = SI->getOperand(1+CI->isZero());
1247        SI->replaceAllUsesWith(Result);
1248        SI->eraseFromParent();
1249
1250        // This is very rare and we just scrambled the use list of AI, start
1251        // over completely.
1252        return tryToMakeAllocaBePromotable(AI, TD);
1253      }
1254
1255      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1256      // loads, then we can transform this by rewriting the select.
1257      if (!isSafeSelectToSpeculate(SI, TD))
1258        return false;
1259
1260      InstsToRewrite.insert(SI);
1261      continue;
1262    }
1263
1264    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1265      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1266        InstsToRewrite.insert(PN);
1267        continue;
1268      }
1269
1270      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1271      // in the pred blocks, then we can transform this by rewriting the PHI.
1272      if (!isSafePHIToSpeculate(PN, TD))
1273        return false;
1274
1275      InstsToRewrite.insert(PN);
1276      continue;
1277    }
1278
1279    return false;
1280  }
1281
1282  // If there are no instructions to rewrite, then all uses are load/stores and
1283  // we're done!
1284  if (InstsToRewrite.empty())
1285    return true;
1286
1287  // If we have instructions that need to be rewritten for this to be promotable
1288  // take care of it now.
1289  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1290    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1291      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1292      // loads with a new select.
1293      while (!SI->use_empty()) {
1294        LoadInst *LI = cast<LoadInst>(SI->use_back());
1295
1296        IRBuilder<> Builder(LI);
1297        LoadInst *TrueLoad =
1298          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1299        LoadInst *FalseLoad =
1300          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1301
1302        // Transfer alignment and TBAA info if present.
1303        TrueLoad->setAlignment(LI->getAlignment());
1304        FalseLoad->setAlignment(LI->getAlignment());
1305        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1306          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1307          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1308        }
1309
1310        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1311        V->takeName(LI);
1312        LI->replaceAllUsesWith(V);
1313        LI->eraseFromParent();
1314      }
1315
1316      // Now that all the loads are gone, the select is gone too.
1317      SI->eraseFromParent();
1318      continue;
1319    }
1320
1321    // Otherwise, we have a PHI node which allows us to push the loads into the
1322    // predecessors.
1323    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1324    if (PN->use_empty()) {
1325      PN->eraseFromParent();
1326      continue;
1327    }
1328
1329    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1330    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1331                                     PN->getName()+".ld", PN);
1332
1333    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1334    // matter which one we get and if any differ, it doesn't matter.
1335    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1336    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1337    unsigned Align = SomeLoad->getAlignment();
1338
1339    // Rewrite all loads of the PN to use the new PHI.
1340    while (!PN->use_empty()) {
1341      LoadInst *LI = cast<LoadInst>(PN->use_back());
1342      LI->replaceAllUsesWith(NewPN);
1343      LI->eraseFromParent();
1344    }
1345
1346    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1347    // insert them into in case we have multiple edges from the same block.
1348    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1349
1350    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1351      BasicBlock *Pred = PN->getIncomingBlock(i);
1352      LoadInst *&Load = InsertedLoads[Pred];
1353      if (Load == 0) {
1354        Load = new LoadInst(PN->getIncomingValue(i),
1355                            PN->getName() + "." + Pred->getName(),
1356                            Pred->getTerminator());
1357        Load->setAlignment(Align);
1358        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1359      }
1360
1361      NewPN->addIncoming(Load, Pred);
1362    }
1363
1364    PN->eraseFromParent();
1365  }
1366
1367  ++NumAdjusted;
1368  return true;
1369}
1370
1371bool SROA::performPromotion(Function &F) {
1372  std::vector<AllocaInst*> Allocas;
1373  DominatorTree *DT = 0;
1374  if (HasDomTree)
1375    DT = &getAnalysis<DominatorTree>();
1376
1377  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1378
1379  bool Changed = false;
1380  SmallVector<Instruction*, 64> Insts;
1381  DIBuilder *DIB = 0;
1382  while (1) {
1383    Allocas.clear();
1384
1385    // Find allocas that are safe to promote, by looking at all instructions in
1386    // the entry node
1387    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1388      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1389        if (tryToMakeAllocaBePromotable(AI, TD))
1390          Allocas.push_back(AI);
1391
1392    if (Allocas.empty()) break;
1393
1394    if (HasDomTree)
1395      PromoteMemToReg(Allocas, *DT);
1396    else {
1397      SSAUpdater SSA;
1398      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1399        AllocaInst *AI = Allocas[i];
1400
1401        // Build list of instructions to promote.
1402        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1403             UI != E; ++UI)
1404          Insts.push_back(cast<Instruction>(*UI));
1405
1406        DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
1407        if (DDI && !DIB)
1408          DIB = new DIBuilder(*AI->getParent()->getParent()->getParent());
1409        AllocaPromoter(Insts, SSA, DDI, DIB).run(AI, Insts);
1410        Insts.clear();
1411      }
1412    }
1413    NumPromoted += Allocas.size();
1414    Changed = true;
1415  }
1416
1417  // FIXME: Is there a better way to handle the lazy initialization of DIB
1418  // so that there doesn't need to be an explicit delete?
1419  delete DIB;
1420
1421  return Changed;
1422}
1423
1424
1425/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1426/// SROA.  It must be a struct or array type with a small number of elements.
1427static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1428  const Type *T = AI->getAllocatedType();
1429  // Do not promote any struct into more than 32 separate vars.
1430  if (const StructType *ST = dyn_cast<StructType>(T))
1431    return ST->getNumElements() <= 32;
1432  // Arrays are much less likely to be safe for SROA; only consider
1433  // them if they are very small.
1434  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1435    return AT->getNumElements() <= 8;
1436  return false;
1437}
1438
1439
1440// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1441// which runs on all of the malloc/alloca instructions in the function, removing
1442// them if they are only used by getelementptr instructions.
1443//
1444bool SROA::performScalarRepl(Function &F) {
1445  std::vector<AllocaInst*> WorkList;
1446
1447  // Scan the entry basic block, adding allocas to the worklist.
1448  BasicBlock &BB = F.getEntryBlock();
1449  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1450    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1451      WorkList.push_back(A);
1452
1453  // Process the worklist
1454  bool Changed = false;
1455  while (!WorkList.empty()) {
1456    AllocaInst *AI = WorkList.back();
1457    WorkList.pop_back();
1458
1459    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1460    // with unused elements.
1461    if (AI->use_empty()) {
1462      AI->eraseFromParent();
1463      Changed = true;
1464      continue;
1465    }
1466
1467    // If this alloca is impossible for us to promote, reject it early.
1468    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1469      continue;
1470
1471    // Check to see if this allocation is only modified by a memcpy/memmove from
1472    // a constant global.  If this is the case, we can change all users to use
1473    // the constant global instead.  This is commonly produced by the CFE by
1474    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1475    // is only subsequently read.
1476    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1477      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1478      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1479      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1480      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1481      TheCopy->eraseFromParent();  // Don't mutate the global.
1482      AI->eraseFromParent();
1483      ++NumGlobals;
1484      Changed = true;
1485      continue;
1486    }
1487
1488    // Check to see if we can perform the core SROA transformation.  We cannot
1489    // transform the allocation instruction if it is an array allocation
1490    // (allocations OF arrays are ok though), and an allocation of a scalar
1491    // value cannot be decomposed at all.
1492    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1493
1494    // Do not promote [0 x %struct].
1495    if (AllocaSize == 0) continue;
1496
1497    // Do not promote any struct whose size is too big.
1498    if (AllocaSize > SRThreshold) continue;
1499
1500    // If the alloca looks like a good candidate for scalar replacement, and if
1501    // all its users can be transformed, then split up the aggregate into its
1502    // separate elements.
1503    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1504      DoScalarReplacement(AI, WorkList);
1505      Changed = true;
1506      continue;
1507    }
1508
1509    // If we can turn this aggregate value (potentially with casts) into a
1510    // simple scalar value that can be mem2reg'd into a register value.
1511    // IsNotTrivial tracks whether this is something that mem2reg could have
1512    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1513    // that we can't just check based on the type: the alloca may be of an i32
1514    // but that has pointer arithmetic to set byte 3 of it or something.
1515    if (AllocaInst *NewAI =
1516          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1517      NewAI->takeName(AI);
1518      AI->eraseFromParent();
1519      ++NumConverted;
1520      Changed = true;
1521      continue;
1522    }
1523
1524    // Otherwise, couldn't process this alloca.
1525  }
1526
1527  return Changed;
1528}
1529
1530/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1531/// predicate, do SROA now.
1532void SROA::DoScalarReplacement(AllocaInst *AI,
1533                               std::vector<AllocaInst*> &WorkList) {
1534  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1535  SmallVector<AllocaInst*, 32> ElementAllocas;
1536  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1537    ElementAllocas.reserve(ST->getNumContainedTypes());
1538    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1539      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1540                                      AI->getAlignment(),
1541                                      AI->getName() + "." + Twine(i), AI);
1542      ElementAllocas.push_back(NA);
1543      WorkList.push_back(NA);  // Add to worklist for recursive processing
1544    }
1545  } else {
1546    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1547    ElementAllocas.reserve(AT->getNumElements());
1548    const Type *ElTy = AT->getElementType();
1549    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1550      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1551                                      AI->getName() + "." + Twine(i), AI);
1552      ElementAllocas.push_back(NA);
1553      WorkList.push_back(NA);  // Add to worklist for recursive processing
1554    }
1555  }
1556
1557  // Now that we have created the new alloca instructions, rewrite all the
1558  // uses of the old alloca.
1559  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1560
1561  // Now erase any instructions that were made dead while rewriting the alloca.
1562  DeleteDeadInstructions();
1563  AI->eraseFromParent();
1564
1565  ++NumReplaced;
1566}
1567
1568/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1569/// recursively including all their operands that become trivially dead.
1570void SROA::DeleteDeadInstructions() {
1571  while (!DeadInsts.empty()) {
1572    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1573
1574    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1575      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1576        // Zero out the operand and see if it becomes trivially dead.
1577        // (But, don't add allocas to the dead instruction list -- they are
1578        // already on the worklist and will be deleted separately.)
1579        *OI = 0;
1580        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1581          DeadInsts.push_back(U);
1582      }
1583
1584    I->eraseFromParent();
1585  }
1586}
1587
1588/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1589/// performing scalar replacement of alloca AI.  The results are flagged in
1590/// the Info parameter.  Offset indicates the position within AI that is
1591/// referenced by this instruction.
1592void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1593                               AllocaInfo &Info) {
1594  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1595    Instruction *User = cast<Instruction>(*UI);
1596
1597    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1598      isSafeForScalarRepl(BC, Offset, Info);
1599    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1600      uint64_t GEPOffset = Offset;
1601      isSafeGEP(GEPI, GEPOffset, Info);
1602      if (!Info.isUnsafe)
1603        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1604    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1605      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1606      if (Length == 0)
1607        return MarkUnsafe(Info, User);
1608      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1609                      UI.getOperandNo() == 0, Info, MI,
1610                      true /*AllowWholeAccess*/);
1611    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1612      if (LI->isVolatile())
1613        return MarkUnsafe(Info, User);
1614      const Type *LIType = LI->getType();
1615      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1616                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1617      Info.hasALoadOrStore = true;
1618
1619    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1620      // Store is ok if storing INTO the pointer, not storing the pointer
1621      if (SI->isVolatile() || SI->getOperand(0) == I)
1622        return MarkUnsafe(Info, User);
1623
1624      const Type *SIType = SI->getOperand(0)->getType();
1625      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1626                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1627      Info.hasALoadOrStore = true;
1628    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1629      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1630    } else {
1631      return MarkUnsafe(Info, User);
1632    }
1633    if (Info.isUnsafe) return;
1634  }
1635}
1636
1637
1638/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1639/// derived from the alloca, we can often still split the alloca into elements.
1640/// This is useful if we have a large alloca where one element is phi'd
1641/// together somewhere: we can SRoA and promote all the other elements even if
1642/// we end up not being able to promote this one.
1643///
1644/// All we require is that the uses of the PHI do not index into other parts of
1645/// the alloca.  The most important use case for this is single load and stores
1646/// that are PHI'd together, which can happen due to code sinking.
1647void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1648                                           AllocaInfo &Info) {
1649  // If we've already checked this PHI, don't do it again.
1650  if (PHINode *PN = dyn_cast<PHINode>(I))
1651    if (!Info.CheckedPHIs.insert(PN))
1652      return;
1653
1654  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1655    Instruction *User = cast<Instruction>(*UI);
1656
1657    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1658      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1659    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1660      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1661      // but would have to prove that we're staying inside of an element being
1662      // promoted.
1663      if (!GEPI->hasAllZeroIndices())
1664        return MarkUnsafe(Info, User);
1665      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1666    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1667      if (LI->isVolatile())
1668        return MarkUnsafe(Info, User);
1669      const Type *LIType = LI->getType();
1670      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1671                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1672      Info.hasALoadOrStore = true;
1673
1674    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1675      // Store is ok if storing INTO the pointer, not storing the pointer
1676      if (SI->isVolatile() || SI->getOperand(0) == I)
1677        return MarkUnsafe(Info, User);
1678
1679      const Type *SIType = SI->getOperand(0)->getType();
1680      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1681                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1682      Info.hasALoadOrStore = true;
1683    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1684      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1685    } else {
1686      return MarkUnsafe(Info, User);
1687    }
1688    if (Info.isUnsafe) return;
1689  }
1690}
1691
1692/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1693/// replacement.  It is safe when all the indices are constant, in-bounds
1694/// references, and when the resulting offset corresponds to an element within
1695/// the alloca type.  The results are flagged in the Info parameter.  Upon
1696/// return, Offset is adjusted as specified by the GEP indices.
1697void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1698                     uint64_t &Offset, AllocaInfo &Info) {
1699  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1700  if (GEPIt == E)
1701    return;
1702
1703  // Walk through the GEP type indices, checking the types that this indexes
1704  // into.
1705  for (; GEPIt != E; ++GEPIt) {
1706    // Ignore struct elements, no extra checking needed for these.
1707    if ((*GEPIt)->isStructTy())
1708      continue;
1709
1710    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1711    if (!IdxVal)
1712      return MarkUnsafe(Info, GEPI);
1713  }
1714
1715  // Compute the offset due to this GEP and check if the alloca has a
1716  // component element at that offset.
1717  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1718  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1719                                 &Indices[0], Indices.size());
1720  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1721    MarkUnsafe(Info, GEPI);
1722}
1723
1724/// isHomogeneousAggregate - Check if type T is a struct or array containing
1725/// elements of the same type (which is always true for arrays).  If so,
1726/// return true with NumElts and EltTy set to the number of elements and the
1727/// element type, respectively.
1728static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1729                                   const Type *&EltTy) {
1730  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1731    NumElts = AT->getNumElements();
1732    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1733    return true;
1734  }
1735  if (const StructType *ST = dyn_cast<StructType>(T)) {
1736    NumElts = ST->getNumContainedTypes();
1737    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1738    for (unsigned n = 1; n < NumElts; ++n) {
1739      if (ST->getContainedType(n) != EltTy)
1740        return false;
1741    }
1742    return true;
1743  }
1744  return false;
1745}
1746
1747/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1748/// "homogeneous" aggregates with the same element type and number of elements.
1749static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1750  if (T1 == T2)
1751    return true;
1752
1753  unsigned NumElts1, NumElts2;
1754  const Type *EltTy1, *EltTy2;
1755  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1756      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1757      NumElts1 == NumElts2 &&
1758      EltTy1 == EltTy2)
1759    return true;
1760
1761  return false;
1762}
1763
1764/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1765/// alloca or has an offset and size that corresponds to a component element
1766/// within it.  The offset checked here may have been formed from a GEP with a
1767/// pointer bitcasted to a different type.
1768///
1769/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1770/// unit.  If false, it only allows accesses known to be in a single element.
1771void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1772                           const Type *MemOpType, bool isStore,
1773                           AllocaInfo &Info, Instruction *TheAccess,
1774                           bool AllowWholeAccess) {
1775  // Check if this is a load/store of the entire alloca.
1776  if (Offset == 0 && AllowWholeAccess &&
1777      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1778    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1779    // loads/stores (which are essentially the same as the MemIntrinsics with
1780    // regard to copying padding between elements).  But, if an alloca is
1781    // flagged as both a source and destination of such operations, we'll need
1782    // to check later for padding between elements.
1783    if (!MemOpType || MemOpType->isIntegerTy()) {
1784      if (isStore)
1785        Info.isMemCpyDst = true;
1786      else
1787        Info.isMemCpySrc = true;
1788      return;
1789    }
1790    // This is also safe for references using a type that is compatible with
1791    // the type of the alloca, so that loads/stores can be rewritten using
1792    // insertvalue/extractvalue.
1793    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1794      Info.hasSubelementAccess = true;
1795      return;
1796    }
1797  }
1798  // Check if the offset/size correspond to a component within the alloca type.
1799  const Type *T = Info.AI->getAllocatedType();
1800  if (TypeHasComponent(T, Offset, MemSize)) {
1801    Info.hasSubelementAccess = true;
1802    return;
1803  }
1804
1805  return MarkUnsafe(Info, TheAccess);
1806}
1807
1808/// TypeHasComponent - Return true if T has a component type with the
1809/// specified offset and size.  If Size is zero, do not check the size.
1810bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1811  const Type *EltTy;
1812  uint64_t EltSize;
1813  if (const StructType *ST = dyn_cast<StructType>(T)) {
1814    const StructLayout *Layout = TD->getStructLayout(ST);
1815    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1816    EltTy = ST->getContainedType(EltIdx);
1817    EltSize = TD->getTypeAllocSize(EltTy);
1818    Offset -= Layout->getElementOffset(EltIdx);
1819  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1820    EltTy = AT->getElementType();
1821    EltSize = TD->getTypeAllocSize(EltTy);
1822    if (Offset >= AT->getNumElements() * EltSize)
1823      return false;
1824    Offset %= EltSize;
1825  } else {
1826    return false;
1827  }
1828  if (Offset == 0 && (Size == 0 || EltSize == Size))
1829    return true;
1830  // Check if the component spans multiple elements.
1831  if (Offset + Size > EltSize)
1832    return false;
1833  return TypeHasComponent(EltTy, Offset, Size);
1834}
1835
1836/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1837/// the instruction I, which references it, to use the separate elements.
1838/// Offset indicates the position within AI that is referenced by this
1839/// instruction.
1840void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1841                                SmallVector<AllocaInst*, 32> &NewElts) {
1842  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1843    Use &TheUse = UI.getUse();
1844    Instruction *User = cast<Instruction>(*UI++);
1845
1846    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1847      RewriteBitCast(BC, AI, Offset, NewElts);
1848      continue;
1849    }
1850
1851    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1852      RewriteGEP(GEPI, AI, Offset, NewElts);
1853      continue;
1854    }
1855
1856    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1857      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1858      uint64_t MemSize = Length->getZExtValue();
1859      if (Offset == 0 &&
1860          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1861        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1862      // Otherwise the intrinsic can only touch a single element and the
1863      // address operand will be updated, so nothing else needs to be done.
1864      continue;
1865    }
1866
1867    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1868      const Type *LIType = LI->getType();
1869
1870      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1871        // Replace:
1872        //   %res = load { i32, i32 }* %alloc
1873        // with:
1874        //   %load.0 = load i32* %alloc.0
1875        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1876        //   %load.1 = load i32* %alloc.1
1877        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1878        // (Also works for arrays instead of structs)
1879        Value *Insert = UndefValue::get(LIType);
1880        IRBuilder<> Builder(LI);
1881        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1882          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1883          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1884        }
1885        LI->replaceAllUsesWith(Insert);
1886        DeadInsts.push_back(LI);
1887      } else if (LIType->isIntegerTy() &&
1888                 TD->getTypeAllocSize(LIType) ==
1889                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1890        // If this is a load of the entire alloca to an integer, rewrite it.
1891        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1892      }
1893      continue;
1894    }
1895
1896    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1897      Value *Val = SI->getOperand(0);
1898      const Type *SIType = Val->getType();
1899      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1900        // Replace:
1901        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1902        // with:
1903        //   %val.0 = extractvalue { i32, i32 } %val, 0
1904        //   store i32 %val.0, i32* %alloc.0
1905        //   %val.1 = extractvalue { i32, i32 } %val, 1
1906        //   store i32 %val.1, i32* %alloc.1
1907        // (Also works for arrays instead of structs)
1908        IRBuilder<> Builder(SI);
1909        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1910          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1911          Builder.CreateStore(Extract, NewElts[i]);
1912        }
1913        DeadInsts.push_back(SI);
1914      } else if (SIType->isIntegerTy() &&
1915                 TD->getTypeAllocSize(SIType) ==
1916                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1917        // If this is a store of the entire alloca from an integer, rewrite it.
1918        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1919      }
1920      continue;
1921    }
1922
1923    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1924      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1925      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1926      // the new pointer.
1927      if (!isa<AllocaInst>(I)) continue;
1928
1929      assert(Offset == 0 && NewElts[0] &&
1930             "Direct alloca use should have a zero offset");
1931
1932      // If we have a use of the alloca, we know the derived uses will be
1933      // utilizing just the first element of the scalarized result.  Insert a
1934      // bitcast of the first alloca before the user as required.
1935      AllocaInst *NewAI = NewElts[0];
1936      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1937      NewAI->moveBefore(BCI);
1938      TheUse = BCI;
1939      continue;
1940    }
1941  }
1942}
1943
1944/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1945/// and recursively continue updating all of its uses.
1946void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1947                          SmallVector<AllocaInst*, 32> &NewElts) {
1948  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1949  if (BC->getOperand(0) != AI)
1950    return;
1951
1952  // The bitcast references the original alloca.  Replace its uses with
1953  // references to the first new element alloca.
1954  Instruction *Val = NewElts[0];
1955  if (Val->getType() != BC->getDestTy()) {
1956    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1957    Val->takeName(BC);
1958  }
1959  BC->replaceAllUsesWith(Val);
1960  DeadInsts.push_back(BC);
1961}
1962
1963/// FindElementAndOffset - Return the index of the element containing Offset
1964/// within the specified type, which must be either a struct or an array.
1965/// Sets T to the type of the element and Offset to the offset within that
1966/// element.  IdxTy is set to the type of the index result to be used in a
1967/// GEP instruction.
1968uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1969                                    const Type *&IdxTy) {
1970  uint64_t Idx = 0;
1971  if (const StructType *ST = dyn_cast<StructType>(T)) {
1972    const StructLayout *Layout = TD->getStructLayout(ST);
1973    Idx = Layout->getElementContainingOffset(Offset);
1974    T = ST->getContainedType(Idx);
1975    Offset -= Layout->getElementOffset(Idx);
1976    IdxTy = Type::getInt32Ty(T->getContext());
1977    return Idx;
1978  }
1979  const ArrayType *AT = cast<ArrayType>(T);
1980  T = AT->getElementType();
1981  uint64_t EltSize = TD->getTypeAllocSize(T);
1982  Idx = Offset / EltSize;
1983  Offset -= Idx * EltSize;
1984  IdxTy = Type::getInt64Ty(T->getContext());
1985  return Idx;
1986}
1987
1988/// RewriteGEP - Check if this GEP instruction moves the pointer across
1989/// elements of the alloca that are being split apart, and if so, rewrite
1990/// the GEP to be relative to the new element.
1991void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1992                      SmallVector<AllocaInst*, 32> &NewElts) {
1993  uint64_t OldOffset = Offset;
1994  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1995  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1996                                 &Indices[0], Indices.size());
1997
1998  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1999
2000  const Type *T = AI->getAllocatedType();
2001  const Type *IdxTy;
2002  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
2003  if (GEPI->getOperand(0) == AI)
2004    OldIdx = ~0ULL; // Force the GEP to be rewritten.
2005
2006  T = AI->getAllocatedType();
2007  uint64_t EltOffset = Offset;
2008  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
2009
2010  // If this GEP does not move the pointer across elements of the alloca
2011  // being split, then it does not needs to be rewritten.
2012  if (Idx == OldIdx)
2013    return;
2014
2015  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
2016  SmallVector<Value*, 8> NewArgs;
2017  NewArgs.push_back(Constant::getNullValue(i32Ty));
2018  while (EltOffset != 0) {
2019    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
2020    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2021  }
2022  Instruction *Val = NewElts[Idx];
2023  if (NewArgs.size() > 1) {
2024    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
2025                                            NewArgs.end(), "", GEPI);
2026    Val->takeName(GEPI);
2027  }
2028  if (Val->getType() != GEPI->getType())
2029    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2030  GEPI->replaceAllUsesWith(Val);
2031  DeadInsts.push_back(GEPI);
2032}
2033
2034/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2035/// Rewrite it to copy or set the elements of the scalarized memory.
2036void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2037                                        AllocaInst *AI,
2038                                        SmallVector<AllocaInst*, 32> &NewElts) {
2039  // If this is a memcpy/memmove, construct the other pointer as the
2040  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2041  // that doesn't have anything to do with the alloca that we are promoting. For
2042  // memset, this Value* stays null.
2043  Value *OtherPtr = 0;
2044  unsigned MemAlignment = MI->getAlignment();
2045  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2046    if (Inst == MTI->getRawDest())
2047      OtherPtr = MTI->getRawSource();
2048    else {
2049      assert(Inst == MTI->getRawSource());
2050      OtherPtr = MTI->getRawDest();
2051    }
2052  }
2053
2054  // If there is an other pointer, we want to convert it to the same pointer
2055  // type as AI has, so we can GEP through it safely.
2056  if (OtherPtr) {
2057    unsigned AddrSpace =
2058      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2059
2060    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2061    // optimization, but it's also required to detect the corner case where
2062    // both pointer operands are referencing the same memory, and where
2063    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2064    // function is only called for mem intrinsics that access the whole
2065    // aggregate, so non-zero GEPs are not an issue here.)
2066    OtherPtr = OtherPtr->stripPointerCasts();
2067
2068    // Copying the alloca to itself is a no-op: just delete it.
2069    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2070      // This code will run twice for a no-op memcpy -- once for each operand.
2071      // Put only one reference to MI on the DeadInsts list.
2072      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2073             E = DeadInsts.end(); I != E; ++I)
2074        if (*I == MI) return;
2075      DeadInsts.push_back(MI);
2076      return;
2077    }
2078
2079    // If the pointer is not the right type, insert a bitcast to the right
2080    // type.
2081    const Type *NewTy =
2082      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2083
2084    if (OtherPtr->getType() != NewTy)
2085      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2086  }
2087
2088  // Process each element of the aggregate.
2089  bool SROADest = MI->getRawDest() == Inst;
2090
2091  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2092
2093  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2094    // If this is a memcpy/memmove, emit a GEP of the other element address.
2095    Value *OtherElt = 0;
2096    unsigned OtherEltAlign = MemAlignment;
2097
2098    if (OtherPtr) {
2099      Value *Idx[2] = { Zero,
2100                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2101      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
2102                                              OtherPtr->getName()+"."+Twine(i),
2103                                                   MI);
2104      uint64_t EltOffset;
2105      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2106      const Type *OtherTy = OtherPtrTy->getElementType();
2107      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
2108        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2109      } else {
2110        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2111        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2112      }
2113
2114      // The alignment of the other pointer is the guaranteed alignment of the
2115      // element, which is affected by both the known alignment of the whole
2116      // mem intrinsic and the alignment of the element.  If the alignment of
2117      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2118      // known alignment is just 4 bytes.
2119      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2120    }
2121
2122    Value *EltPtr = NewElts[i];
2123    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2124
2125    // If we got down to a scalar, insert a load or store as appropriate.
2126    if (EltTy->isSingleValueType()) {
2127      if (isa<MemTransferInst>(MI)) {
2128        if (SROADest) {
2129          // From Other to Alloca.
2130          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2131          new StoreInst(Elt, EltPtr, MI);
2132        } else {
2133          // From Alloca to Other.
2134          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2135          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2136        }
2137        continue;
2138      }
2139      assert(isa<MemSetInst>(MI));
2140
2141      // If the stored element is zero (common case), just store a null
2142      // constant.
2143      Constant *StoreVal;
2144      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2145        if (CI->isZero()) {
2146          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2147        } else {
2148          // If EltTy is a vector type, get the element type.
2149          const Type *ValTy = EltTy->getScalarType();
2150
2151          // Construct an integer with the right value.
2152          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2153          APInt OneVal(EltSize, CI->getZExtValue());
2154          APInt TotalVal(OneVal);
2155          // Set each byte.
2156          for (unsigned i = 0; 8*i < EltSize; ++i) {
2157            TotalVal = TotalVal.shl(8);
2158            TotalVal |= OneVal;
2159          }
2160
2161          // Convert the integer value to the appropriate type.
2162          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2163          if (ValTy->isPointerTy())
2164            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2165          else if (ValTy->isFloatingPointTy())
2166            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2167          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2168
2169          // If the requested value was a vector constant, create it.
2170          if (EltTy != ValTy) {
2171            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2172            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2173            StoreVal = ConstantVector::get(Elts);
2174          }
2175        }
2176        new StoreInst(StoreVal, EltPtr, MI);
2177        continue;
2178      }
2179      // Otherwise, if we're storing a byte variable, use a memset call for
2180      // this element.
2181    }
2182
2183    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2184
2185    IRBuilder<> Builder(MI);
2186
2187    // Finally, insert the meminst for this element.
2188    if (isa<MemSetInst>(MI)) {
2189      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2190                           MI->isVolatile());
2191    } else {
2192      assert(isa<MemTransferInst>(MI));
2193      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2194      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2195
2196      if (isa<MemCpyInst>(MI))
2197        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2198      else
2199        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2200    }
2201  }
2202  DeadInsts.push_back(MI);
2203}
2204
2205/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2206/// overwrites the entire allocation.  Extract out the pieces of the stored
2207/// integer and store them individually.
2208void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2209                                         SmallVector<AllocaInst*, 32> &NewElts){
2210  // Extract each element out of the integer according to its structure offset
2211  // and store the element value to the individual alloca.
2212  Value *SrcVal = SI->getOperand(0);
2213  const Type *AllocaEltTy = AI->getAllocatedType();
2214  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2215
2216  IRBuilder<> Builder(SI);
2217
2218  // Handle tail padding by extending the operand
2219  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2220    SrcVal = Builder.CreateZExt(SrcVal,
2221                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2222
2223  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2224               << '\n');
2225
2226  // There are two forms here: AI could be an array or struct.  Both cases
2227  // have different ways to compute the element offset.
2228  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2229    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2230
2231    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2232      // Get the number of bits to shift SrcVal to get the value.
2233      const Type *FieldTy = EltSTy->getElementType(i);
2234      uint64_t Shift = Layout->getElementOffsetInBits(i);
2235
2236      if (TD->isBigEndian())
2237        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2238
2239      Value *EltVal = SrcVal;
2240      if (Shift) {
2241        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2242        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2243      }
2244
2245      // Truncate down to an integer of the right size.
2246      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2247
2248      // Ignore zero sized fields like {}, they obviously contain no data.
2249      if (FieldSizeBits == 0) continue;
2250
2251      if (FieldSizeBits != AllocaSizeBits)
2252        EltVal = Builder.CreateTrunc(EltVal,
2253                             IntegerType::get(SI->getContext(), FieldSizeBits));
2254      Value *DestField = NewElts[i];
2255      if (EltVal->getType() == FieldTy) {
2256        // Storing to an integer field of this size, just do it.
2257      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2258        // Bitcast to the right element type (for fp/vector values).
2259        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2260      } else {
2261        // Otherwise, bitcast the dest pointer (for aggregates).
2262        DestField = Builder.CreateBitCast(DestField,
2263                                     PointerType::getUnqual(EltVal->getType()));
2264      }
2265      new StoreInst(EltVal, DestField, SI);
2266    }
2267
2268  } else {
2269    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2270    const Type *ArrayEltTy = ATy->getElementType();
2271    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2272    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2273
2274    uint64_t Shift;
2275
2276    if (TD->isBigEndian())
2277      Shift = AllocaSizeBits-ElementOffset;
2278    else
2279      Shift = 0;
2280
2281    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2282      // Ignore zero sized fields like {}, they obviously contain no data.
2283      if (ElementSizeBits == 0) continue;
2284
2285      Value *EltVal = SrcVal;
2286      if (Shift) {
2287        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2288        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2289      }
2290
2291      // Truncate down to an integer of the right size.
2292      if (ElementSizeBits != AllocaSizeBits)
2293        EltVal = Builder.CreateTrunc(EltVal,
2294                                     IntegerType::get(SI->getContext(),
2295                                                      ElementSizeBits));
2296      Value *DestField = NewElts[i];
2297      if (EltVal->getType() == ArrayEltTy) {
2298        // Storing to an integer field of this size, just do it.
2299      } else if (ArrayEltTy->isFloatingPointTy() ||
2300                 ArrayEltTy->isVectorTy()) {
2301        // Bitcast to the right element type (for fp/vector values).
2302        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2303      } else {
2304        // Otherwise, bitcast the dest pointer (for aggregates).
2305        DestField = Builder.CreateBitCast(DestField,
2306                                     PointerType::getUnqual(EltVal->getType()));
2307      }
2308      new StoreInst(EltVal, DestField, SI);
2309
2310      if (TD->isBigEndian())
2311        Shift -= ElementOffset;
2312      else
2313        Shift += ElementOffset;
2314    }
2315  }
2316
2317  DeadInsts.push_back(SI);
2318}
2319
2320/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2321/// an integer.  Load the individual pieces to form the aggregate value.
2322void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2323                                        SmallVector<AllocaInst*, 32> &NewElts) {
2324  // Extract each element out of the NewElts according to its structure offset
2325  // and form the result value.
2326  const Type *AllocaEltTy = AI->getAllocatedType();
2327  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2328
2329  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2330               << '\n');
2331
2332  // There are two forms here: AI could be an array or struct.  Both cases
2333  // have different ways to compute the element offset.
2334  const StructLayout *Layout = 0;
2335  uint64_t ArrayEltBitOffset = 0;
2336  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2337    Layout = TD->getStructLayout(EltSTy);
2338  } else {
2339    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2340    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2341  }
2342
2343  Value *ResultVal =
2344    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2345
2346  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2347    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2348    // the pointer to an integer of the same size before doing the load.
2349    Value *SrcField = NewElts[i];
2350    const Type *FieldTy =
2351      cast<PointerType>(SrcField->getType())->getElementType();
2352    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2353
2354    // Ignore zero sized fields like {}, they obviously contain no data.
2355    if (FieldSizeBits == 0) continue;
2356
2357    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2358                                                     FieldSizeBits);
2359    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2360        !FieldTy->isVectorTy())
2361      SrcField = new BitCastInst(SrcField,
2362                                 PointerType::getUnqual(FieldIntTy),
2363                                 "", LI);
2364    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2365
2366    // If SrcField is a fp or vector of the right size but that isn't an
2367    // integer type, bitcast to an integer so we can shift it.
2368    if (SrcField->getType() != FieldIntTy)
2369      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2370
2371    // Zero extend the field to be the same size as the final alloca so that
2372    // we can shift and insert it.
2373    if (SrcField->getType() != ResultVal->getType())
2374      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2375
2376    // Determine the number of bits to shift SrcField.
2377    uint64_t Shift;
2378    if (Layout) // Struct case.
2379      Shift = Layout->getElementOffsetInBits(i);
2380    else  // Array case.
2381      Shift = i*ArrayEltBitOffset;
2382
2383    if (TD->isBigEndian())
2384      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2385
2386    if (Shift) {
2387      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2388      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2389    }
2390
2391    // Don't create an 'or x, 0' on the first iteration.
2392    if (!isa<Constant>(ResultVal) ||
2393        !cast<Constant>(ResultVal)->isNullValue())
2394      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2395    else
2396      ResultVal = SrcField;
2397  }
2398
2399  // Handle tail padding by truncating the result
2400  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2401    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2402
2403  LI->replaceAllUsesWith(ResultVal);
2404  DeadInsts.push_back(LI);
2405}
2406
2407/// HasPadding - Return true if the specified type has any structure or
2408/// alignment padding in between the elements that would be split apart
2409/// by SROA; return false otherwise.
2410static bool HasPadding(const Type *Ty, const TargetData &TD) {
2411  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2412    Ty = ATy->getElementType();
2413    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2414  }
2415
2416  // SROA currently handles only Arrays and Structs.
2417  const StructType *STy = cast<StructType>(Ty);
2418  const StructLayout *SL = TD.getStructLayout(STy);
2419  unsigned PrevFieldBitOffset = 0;
2420  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2421    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2422
2423    // Check to see if there is any padding between this element and the
2424    // previous one.
2425    if (i) {
2426      unsigned PrevFieldEnd =
2427        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2428      if (PrevFieldEnd < FieldBitOffset)
2429        return true;
2430    }
2431    PrevFieldBitOffset = FieldBitOffset;
2432  }
2433  // Check for tail padding.
2434  if (unsigned EltCount = STy->getNumElements()) {
2435    unsigned PrevFieldEnd = PrevFieldBitOffset +
2436      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2437    if (PrevFieldEnd < SL->getSizeInBits())
2438      return true;
2439  }
2440  return false;
2441}
2442
2443/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2444/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2445/// or 1 if safe after canonicalization has been performed.
2446bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2447  // Loop over the use list of the alloca.  We can only transform it if all of
2448  // the users are safe to transform.
2449  AllocaInfo Info(AI);
2450
2451  isSafeForScalarRepl(AI, 0, Info);
2452  if (Info.isUnsafe) {
2453    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2454    return false;
2455  }
2456
2457  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2458  // source and destination, we have to be careful.  In particular, the memcpy
2459  // could be moving around elements that live in structure padding of the LLVM
2460  // types, but may actually be used.  In these cases, we refuse to promote the
2461  // struct.
2462  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2463      HasPadding(AI->getAllocatedType(), *TD))
2464    return false;
2465
2466  // If the alloca never has an access to just *part* of it, but is accessed
2467  // via loads and stores, then we should use ConvertToScalarInfo to promote
2468  // the alloca instead of promoting each piece at a time and inserting fission
2469  // and fusion code.
2470  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2471    // If the struct/array just has one element, use basic SRoA.
2472    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2473      if (ST->getNumElements() > 1) return false;
2474    } else {
2475      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2476        return false;
2477    }
2478  }
2479
2480  return true;
2481}
2482
2483
2484
2485/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2486/// some part of a constant global variable.  This intentionally only accepts
2487/// constant expressions because we don't can't rewrite arbitrary instructions.
2488static bool PointsToConstantGlobal(Value *V) {
2489  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2490    return GV->isConstant();
2491  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2492    if (CE->getOpcode() == Instruction::BitCast ||
2493        CE->getOpcode() == Instruction::GetElementPtr)
2494      return PointsToConstantGlobal(CE->getOperand(0));
2495  return false;
2496}
2497
2498/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2499/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2500/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2501/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2502/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2503/// the alloca, and if the source pointer is a pointer to a constant global, we
2504/// can optimize this.
2505static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2506                                           bool isOffset) {
2507  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2508    User *U = cast<Instruction>(*UI);
2509
2510    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2511      // Ignore non-volatile loads, they are always ok.
2512      if (LI->isVolatile()) return false;
2513      continue;
2514    }
2515
2516    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2517      // If uses of the bitcast are ok, we are ok.
2518      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2519        return false;
2520      continue;
2521    }
2522    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2523      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2524      // doesn't, it does.
2525      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2526                                         isOffset || !GEP->hasAllZeroIndices()))
2527        return false;
2528      continue;
2529    }
2530
2531    if (CallSite CS = U) {
2532      // If this is the function being called then we treat it like a load and
2533      // ignore it.
2534      if (CS.isCallee(UI))
2535        continue;
2536
2537      // If this is a readonly/readnone call site, then we know it is just a
2538      // load (but one that potentially returns the value itself), so we can
2539      // ignore it if we know that the value isn't captured.
2540      unsigned ArgNo = CS.getArgumentNo(UI);
2541      if (CS.onlyReadsMemory() &&
2542          (CS.getInstruction()->use_empty() ||
2543           CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2544        continue;
2545
2546      // If this is being passed as a byval argument, the caller is making a
2547      // copy, so it is only a read of the alloca.
2548      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2549        continue;
2550    }
2551
2552    // If this is isn't our memcpy/memmove, reject it as something we can't
2553    // handle.
2554    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2555    if (MI == 0)
2556      return false;
2557
2558    // If the transfer is using the alloca as a source of the transfer, then
2559    // ignore it since it is a load (unless the transfer is volatile).
2560    if (UI.getOperandNo() == 1) {
2561      if (MI->isVolatile()) return false;
2562      continue;
2563    }
2564
2565    // If we already have seen a copy, reject the second one.
2566    if (TheCopy) return false;
2567
2568    // If the pointer has been offset from the start of the alloca, we can't
2569    // safely handle this.
2570    if (isOffset) return false;
2571
2572    // If the memintrinsic isn't using the alloca as the dest, reject it.
2573    if (UI.getOperandNo() != 0) return false;
2574
2575    // If the source of the memcpy/move is not a constant global, reject it.
2576    if (!PointsToConstantGlobal(MI->getSource()))
2577      return false;
2578
2579    // Otherwise, the transform is safe.  Remember the copy instruction.
2580    TheCopy = MI;
2581  }
2582  return true;
2583}
2584
2585/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2586/// modified by a copy from a constant global.  If we can prove this, we can
2587/// replace any uses of the alloca with uses of the global directly.
2588MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2589  MemTransferInst *TheCopy = 0;
2590  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2591    return TheCopy;
2592  return 0;
2593}
2594