ScalarReplAggregates.cpp revision 704d1347c5009f674408fae6f78343b415891274
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DominanceFrontier.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Transforms/Utils/PromoteMemToReg.h"
37#include "llvm/Transforms/Utils/Local.h"
38#include "llvm/Support/CallSite.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/GetElementPtrTypeIterator.h"
42#include "llvm/Support/IRBuilder.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/ADT/SmallVector.h"
46#include "llvm/ADT/Statistic.h"
47using namespace llvm;
48
49STATISTIC(NumReplaced,  "Number of allocas broken up");
50STATISTIC(NumPromoted,  "Number of allocas promoted");
51STATISTIC(NumConverted, "Number of aggregates converted to scalar");
52STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
53
54namespace {
55  struct SROA : public FunctionPass {
56    static char ID; // Pass identification, replacement for typeid
57    explicit SROA(signed T = -1) : FunctionPass(ID) {
58      initializeSROAPass(*PassRegistry::getPassRegistry());
59      if (T == -1)
60        SRThreshold = 128;
61      else
62        SRThreshold = T;
63    }
64
65    bool runOnFunction(Function &F);
66
67    bool performScalarRepl(Function &F);
68    bool performPromotion(Function &F);
69
70    // getAnalysisUsage - This pass does not require any passes, but we know it
71    // will not alter the CFG, so say so.
72    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
73      AU.addRequired<DominatorTree>();
74      AU.addRequired<DominanceFrontier>();
75      AU.setPreservesCFG();
76    }
77
78  private:
79    TargetData *TD;
80
81    /// DeadInsts - Keep track of instructions we have made dead, so that
82    /// we can remove them after we are done working.
83    SmallVector<Value*, 32> DeadInsts;
84
85    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
86    /// information about the uses.  All these fields are initialized to false
87    /// and set to true when something is learned.
88    struct AllocaInfo {
89      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
90      bool isUnsafe : 1;
91
92      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
93      bool isMemCpySrc : 1;
94
95      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
96      bool isMemCpyDst : 1;
97
98      AllocaInfo()
99        : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false) {}
100    };
101
102    unsigned SRThreshold;
103
104    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
105
106    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
107
108    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
109                             AllocaInfo &Info);
110    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
111                   AllocaInfo &Info);
112    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
113                         const Type *MemOpType, bool isStore, AllocaInfo &Info);
114    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
115    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
116                                  const Type *&IdxTy);
117
118    void DoScalarReplacement(AllocaInst *AI,
119                             std::vector<AllocaInst*> &WorkList);
120    void DeleteDeadInstructions();
121
122    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
123                              SmallVector<AllocaInst*, 32> &NewElts);
124    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
125                        SmallVector<AllocaInst*, 32> &NewElts);
126    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
127                    SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
129                                      AllocaInst *AI,
130                                      SmallVector<AllocaInst*, 32> &NewElts);
131    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
132                                       SmallVector<AllocaInst*, 32> &NewElts);
133    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
134                                      SmallVector<AllocaInst*, 32> &NewElts);
135
136    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
137  };
138}
139
140char SROA::ID = 0;
141INITIALIZE_PASS_BEGIN(SROA, "scalarrepl",
142                "Scalar Replacement of Aggregates", false, false)
143INITIALIZE_PASS_DEPENDENCY(DominatorTree)
144INITIALIZE_PASS_DEPENDENCY(DominanceFrontier)
145INITIALIZE_PASS_END(SROA, "scalarrepl",
146                "Scalar Replacement of Aggregates", false, false)
147
148// Public interface to the ScalarReplAggregates pass
149FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
150  return new SROA(Threshold);
151}
152
153
154//===----------------------------------------------------------------------===//
155// Convert To Scalar Optimization.
156//===----------------------------------------------------------------------===//
157
158namespace {
159/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
160/// optimization, which scans the uses of an alloca and determines if it can
161/// rewrite it in terms of a single new alloca that can be mem2reg'd.
162class ConvertToScalarInfo {
163  /// AllocaSize - The size of the alloca being considered.
164  unsigned AllocaSize;
165  const TargetData &TD;
166
167  /// IsNotTrivial - This is set to true if there is some access to the object
168  /// which means that mem2reg can't promote it.
169  bool IsNotTrivial;
170
171  /// VectorTy - This tracks the type that we should promote the vector to if
172  /// it is possible to turn it into a vector.  This starts out null, and if it
173  /// isn't possible to turn into a vector type, it gets set to VoidTy.
174  const Type *VectorTy;
175
176  /// HadAVector - True if there is at least one vector access to the alloca.
177  /// We don't want to turn random arrays into vectors and use vector element
178  /// insert/extract, but if there are element accesses to something that is
179  /// also declared as a vector, we do want to promote to a vector.
180  bool HadAVector;
181
182public:
183  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
184    : AllocaSize(Size), TD(td) {
185    IsNotTrivial = false;
186    VectorTy = 0;
187    HadAVector = false;
188  }
189
190  AllocaInst *TryConvert(AllocaInst *AI);
191
192private:
193  bool CanConvertToScalar(Value *V, uint64_t Offset);
194  void MergeInType(const Type *In, uint64_t Offset);
195  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
196
197  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
198                                    uint64_t Offset, IRBuilder<> &Builder);
199  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
200                                   uint64_t Offset, IRBuilder<> &Builder);
201};
202} // end anonymous namespace.
203
204
205/// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
206/// allowed to form.  We do this to avoid MMX types, which is a complete hack,
207/// but is required until the backend is fixed.
208static bool IsVerbotenVectorType(const VectorType *VTy, const Instruction *I) {
209  StringRef Triple(I->getParent()->getParent()->getParent()->getTargetTriple());
210  if (!Triple.startswith("i386") &&
211      !Triple.startswith("x86_64"))
212    return false;
213
214  // Reject all the MMX vector types.
215  switch (VTy->getNumElements()) {
216  default: return false;
217  case 1: return VTy->getElementType()->isIntegerTy(64);
218  case 2: return VTy->getElementType()->isIntegerTy(32);
219  case 4: return VTy->getElementType()->isIntegerTy(16);
220  case 8: return VTy->getElementType()->isIntegerTy(8);
221  }
222}
223
224
225/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
226/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
227/// alloca if possible or null if not.
228AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
229  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
230  // out.
231  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
232    return 0;
233
234  // If we were able to find a vector type that can handle this with
235  // insert/extract elements, and if there was at least one use that had
236  // a vector type, promote this to a vector.  We don't want to promote
237  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
238  // we just get a lot of insert/extracts.  If at least one vector is
239  // involved, then we probably really do have a union of vector/array.
240  const Type *NewTy;
241  if (VectorTy && VectorTy->isVectorTy() && HadAVector &&
242      !IsVerbotenVectorType(cast<VectorType>(VectorTy), AI)) {
243    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
244          << *VectorTy << '\n');
245    NewTy = VectorTy;  // Use the vector type.
246  } else {
247    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
248    // Create and insert the integer alloca.
249    NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
250  }
251  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
252  ConvertUsesToScalar(AI, NewAI, 0);
253  return NewAI;
254}
255
256/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
257/// so far at the offset specified by Offset (which is specified in bytes).
258///
259/// There are two cases we handle here:
260///   1) A union of vector types of the same size and potentially its elements.
261///      Here we turn element accesses into insert/extract element operations.
262///      This promotes a <4 x float> with a store of float to the third element
263///      into a <4 x float> that uses insert element.
264///   2) A fully general blob of memory, which we turn into some (potentially
265///      large) integer type with extract and insert operations where the loads
266///      and stores would mutate the memory.  We mark this by setting VectorTy
267///      to VoidTy.
268void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
269  // If we already decided to turn this into a blob of integer memory, there is
270  // nothing to be done.
271  if (VectorTy && VectorTy->isVoidTy())
272    return;
273
274  // If this could be contributing to a vector, analyze it.
275
276  // If the In type is a vector that is the same size as the alloca, see if it
277  // matches the existing VecTy.
278  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
279    // Remember if we saw a vector type.
280    HadAVector = true;
281
282    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
283      // If we're storing/loading a vector of the right size, allow it as a
284      // vector.  If this the first vector we see, remember the type so that
285      // we know the element size.  If this is a subsequent access, ignore it
286      // even if it is a differing type but the same size.  Worst case we can
287      // bitcast the resultant vectors.
288      if (VectorTy == 0)
289        VectorTy = VInTy;
290      return;
291    }
292  } else if (In->isFloatTy() || In->isDoubleTy() ||
293             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
294              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
295    // If we're accessing something that could be an element of a vector, see
296    // if the implied vector agrees with what we already have and if Offset is
297    // compatible with it.
298    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
299    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
300        (VectorTy == 0 ||
301         cast<VectorType>(VectorTy)->getElementType()
302               ->getPrimitiveSizeInBits()/8 == EltSize)) {
303      if (VectorTy == 0)
304        VectorTy = VectorType::get(In, AllocaSize/EltSize);
305      return;
306    }
307  }
308
309  // Otherwise, we have a case that we can't handle with an optimized vector
310  // form.  We can still turn this into a large integer.
311  VectorTy = Type::getVoidTy(In->getContext());
312}
313
314/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
315/// its accesses to a single vector type, return true and set VecTy to
316/// the new type.  If we could convert the alloca into a single promotable
317/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
318/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
319/// is the current offset from the base of the alloca being analyzed.
320///
321/// If we see at least one access to the value that is as a vector type, set the
322/// SawVec flag.
323bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
324  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
325    Instruction *User = cast<Instruction>(*UI);
326
327    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
328      // Don't break volatile loads.
329      if (LI->isVolatile())
330        return false;
331      // Don't touch MMX operations.
332      if (LI->getType()->isX86_MMXTy())
333        return false;
334      MergeInType(LI->getType(), Offset);
335      continue;
336    }
337
338    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
339      // Storing the pointer, not into the value?
340      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
341      // Don't touch MMX operations.
342      if (SI->getOperand(0)->getType()->isX86_MMXTy())
343        return false;
344      MergeInType(SI->getOperand(0)->getType(), Offset);
345      continue;
346    }
347
348    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
349      IsNotTrivial = true;  // Can't be mem2reg'd.
350      if (!CanConvertToScalar(BCI, Offset))
351        return false;
352      continue;
353    }
354
355    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
356      // If this is a GEP with a variable indices, we can't handle it.
357      if (!GEP->hasAllConstantIndices())
358        return false;
359
360      // Compute the offset that this GEP adds to the pointer.
361      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
362      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
363                                               &Indices[0], Indices.size());
364      // See if all uses can be converted.
365      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
366        return false;
367      IsNotTrivial = true;  // Can't be mem2reg'd.
368      continue;
369    }
370
371    // If this is a constant sized memset of a constant value (e.g. 0) we can
372    // handle it.
373    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
374      // Store of constant value and constant size.
375      if (!isa<ConstantInt>(MSI->getValue()) ||
376          !isa<ConstantInt>(MSI->getLength()))
377        return false;
378      IsNotTrivial = true;  // Can't be mem2reg'd.
379      continue;
380    }
381
382    // If this is a memcpy or memmove into or out of the whole allocation, we
383    // can handle it like a load or store of the scalar type.
384    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
385      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
386      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
387        return false;
388
389      IsNotTrivial = true;  // Can't be mem2reg'd.
390      continue;
391    }
392
393    // Otherwise, we cannot handle this!
394    return false;
395  }
396
397  return true;
398}
399
400/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
401/// directly.  This happens when we are converting an "integer union" to a
402/// single integer scalar, or when we are converting a "vector union" to a
403/// vector with insert/extractelement instructions.
404///
405/// Offset is an offset from the original alloca, in bits that need to be
406/// shifted to the right.  By the end of this, there should be no uses of Ptr.
407void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
408                                              uint64_t Offset) {
409  while (!Ptr->use_empty()) {
410    Instruction *User = cast<Instruction>(Ptr->use_back());
411
412    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
413      ConvertUsesToScalar(CI, NewAI, Offset);
414      CI->eraseFromParent();
415      continue;
416    }
417
418    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
419      // Compute the offset that this GEP adds to the pointer.
420      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
421      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
422                                               &Indices[0], Indices.size());
423      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
424      GEP->eraseFromParent();
425      continue;
426    }
427
428    IRBuilder<> Builder(User);
429
430    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
431      // The load is a bit extract from NewAI shifted right by Offset bits.
432      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
433      Value *NewLoadVal
434        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
435      LI->replaceAllUsesWith(NewLoadVal);
436      LI->eraseFromParent();
437      continue;
438    }
439
440    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
441      assert(SI->getOperand(0) != Ptr && "Consistency error!");
442      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
443      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
444                                             Builder);
445      Builder.CreateStore(New, NewAI);
446      SI->eraseFromParent();
447
448      // If the load we just inserted is now dead, then the inserted store
449      // overwrote the entire thing.
450      if (Old->use_empty())
451        Old->eraseFromParent();
452      continue;
453    }
454
455    // If this is a constant sized memset of a constant value (e.g. 0) we can
456    // transform it into a store of the expanded constant value.
457    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
458      assert(MSI->getRawDest() == Ptr && "Consistency error!");
459      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
460      if (NumBytes != 0) {
461        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
462
463        // Compute the value replicated the right number of times.
464        APInt APVal(NumBytes*8, Val);
465
466        // Splat the value if non-zero.
467        if (Val)
468          for (unsigned i = 1; i != NumBytes; ++i)
469            APVal |= APVal << 8;
470
471        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
472        Value *New = ConvertScalar_InsertValue(
473                                    ConstantInt::get(User->getContext(), APVal),
474                                               Old, Offset, Builder);
475        Builder.CreateStore(New, NewAI);
476
477        // If the load we just inserted is now dead, then the memset overwrote
478        // the entire thing.
479        if (Old->use_empty())
480          Old->eraseFromParent();
481      }
482      MSI->eraseFromParent();
483      continue;
484    }
485
486    // If this is a memcpy or memmove into or out of the whole allocation, we
487    // can handle it like a load or store of the scalar type.
488    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
489      assert(Offset == 0 && "must be store to start of alloca");
490
491      // If the source and destination are both to the same alloca, then this is
492      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
493      // as appropriate.
494      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, 0));
495
496      if (GetUnderlyingObject(MTI->getSource(), 0) != OrigAI) {
497        // Dest must be OrigAI, change this to be a load from the original
498        // pointer (bitcasted), then a store to our new alloca.
499        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
500        Value *SrcPtr = MTI->getSource();
501        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
502        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
503        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
504          AIPTy = PointerType::get(AIPTy->getElementType(),
505                                   SPTy->getAddressSpace());
506        }
507        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
508
509        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
510        SrcVal->setAlignment(MTI->getAlignment());
511        Builder.CreateStore(SrcVal, NewAI);
512      } else if (GetUnderlyingObject(MTI->getDest(), 0) != OrigAI) {
513        // Src must be OrigAI, change this to be a load from NewAI then a store
514        // through the original dest pointer (bitcasted).
515        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
516        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
517
518        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
519        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
520        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
521          AIPTy = PointerType::get(AIPTy->getElementType(),
522                                   DPTy->getAddressSpace());
523        }
524        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
525
526        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
527        NewStore->setAlignment(MTI->getAlignment());
528      } else {
529        // Noop transfer. Src == Dst
530      }
531
532      MTI->eraseFromParent();
533      continue;
534    }
535
536    llvm_unreachable("Unsupported operation!");
537  }
538}
539
540/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
541/// or vector value FromVal, extracting the bits from the offset specified by
542/// Offset.  This returns the value, which is of type ToType.
543///
544/// This happens when we are converting an "integer union" to a single
545/// integer scalar, or when we are converting a "vector union" to a vector with
546/// insert/extractelement instructions.
547///
548/// Offset is an offset from the original alloca, in bits that need to be
549/// shifted to the right.
550Value *ConvertToScalarInfo::
551ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
552                           uint64_t Offset, IRBuilder<> &Builder) {
553  // If the load is of the whole new alloca, no conversion is needed.
554  if (FromVal->getType() == ToType && Offset == 0)
555    return FromVal;
556
557  // If the result alloca is a vector type, this is either an element
558  // access or a bitcast to another vector type of the same size.
559  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
560    if (ToType->isVectorTy())
561      return Builder.CreateBitCast(FromVal, ToType, "tmp");
562
563    // Otherwise it must be an element access.
564    unsigned Elt = 0;
565    if (Offset) {
566      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
567      Elt = Offset/EltSize;
568      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
569    }
570    // Return the element extracted out of it.
571    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
572                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
573    if (V->getType() != ToType)
574      V = Builder.CreateBitCast(V, ToType, "tmp");
575    return V;
576  }
577
578  // If ToType is a first class aggregate, extract out each of the pieces and
579  // use insertvalue's to form the FCA.
580  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
581    const StructLayout &Layout = *TD.getStructLayout(ST);
582    Value *Res = UndefValue::get(ST);
583    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
584      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
585                                        Offset+Layout.getElementOffsetInBits(i),
586                                              Builder);
587      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
588    }
589    return Res;
590  }
591
592  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
593    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
594    Value *Res = UndefValue::get(AT);
595    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
596      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
597                                              Offset+i*EltSize, Builder);
598      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
599    }
600    return Res;
601  }
602
603  // Otherwise, this must be a union that was converted to an integer value.
604  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
605
606  // If this is a big-endian system and the load is narrower than the
607  // full alloca type, we need to do a shift to get the right bits.
608  int ShAmt = 0;
609  if (TD.isBigEndian()) {
610    // On big-endian machines, the lowest bit is stored at the bit offset
611    // from the pointer given by getTypeStoreSizeInBits.  This matters for
612    // integers with a bitwidth that is not a multiple of 8.
613    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
614            TD.getTypeStoreSizeInBits(ToType) - Offset;
615  } else {
616    ShAmt = Offset;
617  }
618
619  // Note: we support negative bitwidths (with shl) which are not defined.
620  // We do this to support (f.e.) loads off the end of a structure where
621  // only some bits are used.
622  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
623    FromVal = Builder.CreateLShr(FromVal,
624                                 ConstantInt::get(FromVal->getType(),
625                                                           ShAmt), "tmp");
626  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
627    FromVal = Builder.CreateShl(FromVal,
628                                ConstantInt::get(FromVal->getType(),
629                                                          -ShAmt), "tmp");
630
631  // Finally, unconditionally truncate the integer to the right width.
632  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
633  if (LIBitWidth < NTy->getBitWidth())
634    FromVal =
635      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
636                                                    LIBitWidth), "tmp");
637  else if (LIBitWidth > NTy->getBitWidth())
638    FromVal =
639       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
640                                                    LIBitWidth), "tmp");
641
642  // If the result is an integer, this is a trunc or bitcast.
643  if (ToType->isIntegerTy()) {
644    // Should be done.
645  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
646    // Just do a bitcast, we know the sizes match up.
647    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
648  } else {
649    // Otherwise must be a pointer.
650    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
651  }
652  assert(FromVal->getType() == ToType && "Didn't convert right?");
653  return FromVal;
654}
655
656/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
657/// or vector value "Old" at the offset specified by Offset.
658///
659/// This happens when we are converting an "integer union" to a
660/// single integer scalar, or when we are converting a "vector union" to a
661/// vector with insert/extractelement instructions.
662///
663/// Offset is an offset from the original alloca, in bits that need to be
664/// shifted to the right.
665Value *ConvertToScalarInfo::
666ConvertScalar_InsertValue(Value *SV, Value *Old,
667                          uint64_t Offset, IRBuilder<> &Builder) {
668  // Convert the stored type to the actual type, shift it left to insert
669  // then 'or' into place.
670  const Type *AllocaType = Old->getType();
671  LLVMContext &Context = Old->getContext();
672
673  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
674    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
675    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
676
677    // Changing the whole vector with memset or with an access of a different
678    // vector type?
679    if (ValSize == VecSize)
680      return Builder.CreateBitCast(SV, AllocaType, "tmp");
681
682    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
683
684    // Must be an element insertion.
685    unsigned Elt = Offset/EltSize;
686
687    if (SV->getType() != VTy->getElementType())
688      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
689
690    SV = Builder.CreateInsertElement(Old, SV,
691                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
692                                     "tmp");
693    return SV;
694  }
695
696  // If SV is a first-class aggregate value, insert each value recursively.
697  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
698    const StructLayout &Layout = *TD.getStructLayout(ST);
699    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
700      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
701      Old = ConvertScalar_InsertValue(Elt, Old,
702                                      Offset+Layout.getElementOffsetInBits(i),
703                                      Builder);
704    }
705    return Old;
706  }
707
708  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
709    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
710    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
711      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
712      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
713    }
714    return Old;
715  }
716
717  // If SV is a float, convert it to the appropriate integer type.
718  // If it is a pointer, do the same.
719  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
720  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
721  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
722  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
723  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
724    SV = Builder.CreateBitCast(SV,
725                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
726  else if (SV->getType()->isPointerTy())
727    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
728
729  // Zero extend or truncate the value if needed.
730  if (SV->getType() != AllocaType) {
731    if (SV->getType()->getPrimitiveSizeInBits() <
732             AllocaType->getPrimitiveSizeInBits())
733      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
734    else {
735      // Truncation may be needed if storing more than the alloca can hold
736      // (undefined behavior).
737      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
738      SrcWidth = DestWidth;
739      SrcStoreWidth = DestStoreWidth;
740    }
741  }
742
743  // If this is a big-endian system and the store is narrower than the
744  // full alloca type, we need to do a shift to get the right bits.
745  int ShAmt = 0;
746  if (TD.isBigEndian()) {
747    // On big-endian machines, the lowest bit is stored at the bit offset
748    // from the pointer given by getTypeStoreSizeInBits.  This matters for
749    // integers with a bitwidth that is not a multiple of 8.
750    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
751  } else {
752    ShAmt = Offset;
753  }
754
755  // Note: we support negative bitwidths (with shr) which are not defined.
756  // We do this to support (f.e.) stores off the end of a structure where
757  // only some bits in the structure are set.
758  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
759  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
760    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
761                           ShAmt), "tmp");
762    Mask <<= ShAmt;
763  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
764    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
765                            -ShAmt), "tmp");
766    Mask = Mask.lshr(-ShAmt);
767  }
768
769  // Mask out the bits we are about to insert from the old value, and or
770  // in the new bits.
771  if (SrcWidth != DestWidth) {
772    assert(DestWidth > SrcWidth);
773    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
774    SV = Builder.CreateOr(Old, SV, "ins");
775  }
776  return SV;
777}
778
779
780//===----------------------------------------------------------------------===//
781// SRoA Driver
782//===----------------------------------------------------------------------===//
783
784
785bool SROA::runOnFunction(Function &F) {
786  TD = getAnalysisIfAvailable<TargetData>();
787
788  bool Changed = performPromotion(F);
789
790  // FIXME: ScalarRepl currently depends on TargetData more than it
791  // theoretically needs to. It should be refactored in order to support
792  // target-independent IR. Until this is done, just skip the actual
793  // scalar-replacement portion of this pass.
794  if (!TD) return Changed;
795
796  while (1) {
797    bool LocalChange = performScalarRepl(F);
798    if (!LocalChange) break;   // No need to repromote if no scalarrepl
799    Changed = true;
800    LocalChange = performPromotion(F);
801    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
802  }
803
804  return Changed;
805}
806
807
808bool SROA::performPromotion(Function &F) {
809  std::vector<AllocaInst*> Allocas;
810  DominatorTree         &DT = getAnalysis<DominatorTree>();
811  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
812
813  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
814
815  bool Changed = false;
816
817  while (1) {
818    Allocas.clear();
819
820    // Find allocas that are safe to promote, by looking at all instructions in
821    // the entry node
822    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
823      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
824        if (isAllocaPromotable(AI))
825          Allocas.push_back(AI);
826
827    if (Allocas.empty()) break;
828
829    PromoteMemToReg(Allocas, DT, DF);
830    NumPromoted += Allocas.size();
831    Changed = true;
832  }
833
834  return Changed;
835}
836
837
838/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
839/// SROA.  It must be a struct or array type with a small number of elements.
840static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
841  const Type *T = AI->getAllocatedType();
842  // Do not promote any struct into more than 32 separate vars.
843  if (const StructType *ST = dyn_cast<StructType>(T))
844    return ST->getNumElements() <= 32;
845  // Arrays are much less likely to be safe for SROA; only consider
846  // them if they are very small.
847  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
848    return AT->getNumElements() <= 8;
849  return false;
850}
851
852
853// performScalarRepl - This algorithm is a simple worklist driven algorithm,
854// which runs on all of the malloc/alloca instructions in the function, removing
855// them if they are only used by getelementptr instructions.
856//
857bool SROA::performScalarRepl(Function &F) {
858  std::vector<AllocaInst*> WorkList;
859
860  // Scan the entry basic block, adding allocas to the worklist.
861  BasicBlock &BB = F.getEntryBlock();
862  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
863    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
864      WorkList.push_back(A);
865
866  // Process the worklist
867  bool Changed = false;
868  while (!WorkList.empty()) {
869    AllocaInst *AI = WorkList.back();
870    WorkList.pop_back();
871
872    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
873    // with unused elements.
874    if (AI->use_empty()) {
875      AI->eraseFromParent();
876      Changed = true;
877      continue;
878    }
879
880    // If this alloca is impossible for us to promote, reject it early.
881    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
882      continue;
883
884    // Check to see if this allocation is only modified by a memcpy/memmove from
885    // a constant global.  If this is the case, we can change all users to use
886    // the constant global instead.  This is commonly produced by the CFE by
887    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
888    // is only subsequently read.
889    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
890      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
891      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
892      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
893      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
894      TheCopy->eraseFromParent();  // Don't mutate the global.
895      AI->eraseFromParent();
896      ++NumGlobals;
897      Changed = true;
898      continue;
899    }
900
901    // Check to see if we can perform the core SROA transformation.  We cannot
902    // transform the allocation instruction if it is an array allocation
903    // (allocations OF arrays are ok though), and an allocation of a scalar
904    // value cannot be decomposed at all.
905    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
906
907    // Do not promote [0 x %struct].
908    if (AllocaSize == 0) continue;
909
910    // Do not promote any struct whose size is too big.
911    if (AllocaSize > SRThreshold) continue;
912
913    // If the alloca looks like a good candidate for scalar replacement, and if
914    // all its users can be transformed, then split up the aggregate into its
915    // separate elements.
916    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
917      DoScalarReplacement(AI, WorkList);
918      Changed = true;
919      continue;
920    }
921
922    // If we can turn this aggregate value (potentially with casts) into a
923    // simple scalar value that can be mem2reg'd into a register value.
924    // IsNotTrivial tracks whether this is something that mem2reg could have
925    // promoted itself.  If so, we don't want to transform it needlessly.  Note
926    // that we can't just check based on the type: the alloca may be of an i32
927    // but that has pointer arithmetic to set byte 3 of it or something.
928    if (AllocaInst *NewAI =
929          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
930      NewAI->takeName(AI);
931      AI->eraseFromParent();
932      ++NumConverted;
933      Changed = true;
934      continue;
935    }
936
937    // Otherwise, couldn't process this alloca.
938  }
939
940  return Changed;
941}
942
943/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
944/// predicate, do SROA now.
945void SROA::DoScalarReplacement(AllocaInst *AI,
946                               std::vector<AllocaInst*> &WorkList) {
947  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
948  SmallVector<AllocaInst*, 32> ElementAllocas;
949  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
950    ElementAllocas.reserve(ST->getNumContainedTypes());
951    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
952      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
953                                      AI->getAlignment(),
954                                      AI->getName() + "." + Twine(i), AI);
955      ElementAllocas.push_back(NA);
956      WorkList.push_back(NA);  // Add to worklist for recursive processing
957    }
958  } else {
959    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
960    ElementAllocas.reserve(AT->getNumElements());
961    const Type *ElTy = AT->getElementType();
962    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
963      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
964                                      AI->getName() + "." + Twine(i), AI);
965      ElementAllocas.push_back(NA);
966      WorkList.push_back(NA);  // Add to worklist for recursive processing
967    }
968  }
969
970  // Now that we have created the new alloca instructions, rewrite all the
971  // uses of the old alloca.
972  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
973
974  // Now erase any instructions that were made dead while rewriting the alloca.
975  DeleteDeadInstructions();
976  AI->eraseFromParent();
977
978  ++NumReplaced;
979}
980
981/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
982/// recursively including all their operands that become trivially dead.
983void SROA::DeleteDeadInstructions() {
984  while (!DeadInsts.empty()) {
985    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
986
987    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
988      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
989        // Zero out the operand and see if it becomes trivially dead.
990        // (But, don't add allocas to the dead instruction list -- they are
991        // already on the worklist and will be deleted separately.)
992        *OI = 0;
993        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
994          DeadInsts.push_back(U);
995      }
996
997    I->eraseFromParent();
998  }
999}
1000
1001/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1002/// performing scalar replacement of alloca AI.  The results are flagged in
1003/// the Info parameter.  Offset indicates the position within AI that is
1004/// referenced by this instruction.
1005void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1006                               AllocaInfo &Info) {
1007  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1008    Instruction *User = cast<Instruction>(*UI);
1009
1010    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1011      isSafeForScalarRepl(BC, AI, Offset, Info);
1012    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1013      uint64_t GEPOffset = Offset;
1014      isSafeGEP(GEPI, AI, GEPOffset, Info);
1015      if (!Info.isUnsafe)
1016        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
1017    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1018      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1019      if (Length)
1020        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
1021                        UI.getOperandNo() == 0, Info);
1022      else
1023        MarkUnsafe(Info);
1024    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1025      if (!LI->isVolatile()) {
1026        const Type *LIType = LI->getType();
1027        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
1028                        LIType, false, Info);
1029      } else
1030        MarkUnsafe(Info);
1031    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1032      // Store is ok if storing INTO the pointer, not storing the pointer
1033      if (!SI->isVolatile() && SI->getOperand(0) != I) {
1034        const Type *SIType = SI->getOperand(0)->getType();
1035        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
1036                        SIType, true, Info);
1037      } else
1038        MarkUnsafe(Info);
1039    } else {
1040      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
1041      MarkUnsafe(Info);
1042    }
1043    if (Info.isUnsafe) return;
1044  }
1045}
1046
1047/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1048/// replacement.  It is safe when all the indices are constant, in-bounds
1049/// references, and when the resulting offset corresponds to an element within
1050/// the alloca type.  The results are flagged in the Info parameter.  Upon
1051/// return, Offset is adjusted as specified by the GEP indices.
1052void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
1053                     uint64_t &Offset, AllocaInfo &Info) {
1054  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1055  if (GEPIt == E)
1056    return;
1057
1058  // Walk through the GEP type indices, checking the types that this indexes
1059  // into.
1060  for (; GEPIt != E; ++GEPIt) {
1061    // Ignore struct elements, no extra checking needed for these.
1062    if ((*GEPIt)->isStructTy())
1063      continue;
1064
1065    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1066    if (!IdxVal)
1067      return MarkUnsafe(Info);
1068  }
1069
1070  // Compute the offset due to this GEP and check if the alloca has a
1071  // component element at that offset.
1072  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1073  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1074                                 &Indices[0], Indices.size());
1075  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
1076    MarkUnsafe(Info);
1077}
1078
1079/// isHomogeneousAggregate - Check if type T is a struct or array containing
1080/// elements of the same type (which is always true for arrays).  If so,
1081/// return true with NumElts and EltTy set to the number of elements and the
1082/// element type, respectively.
1083static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1084                                   const Type *&EltTy) {
1085  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1086    NumElts = AT->getNumElements();
1087    EltTy = AT->getElementType();
1088    return true;
1089  }
1090  if (const StructType *ST = dyn_cast<StructType>(T)) {
1091    NumElts = ST->getNumContainedTypes();
1092    EltTy = ST->getContainedType(0);
1093    for (unsigned n = 1; n < NumElts; ++n) {
1094      if (ST->getContainedType(n) != EltTy)
1095        return false;
1096    }
1097    return true;
1098  }
1099  return false;
1100}
1101
1102/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1103/// "homogeneous" aggregates with the same element type and number of elements.
1104static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1105  if (T1 == T2)
1106    return true;
1107
1108  unsigned NumElts1, NumElts2;
1109  const Type *EltTy1, *EltTy2;
1110  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1111      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1112      NumElts1 == NumElts2 &&
1113      EltTy1 == EltTy2)
1114    return true;
1115
1116  return false;
1117}
1118
1119/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1120/// alloca or has an offset and size that corresponds to a component element
1121/// within it.  The offset checked here may have been formed from a GEP with a
1122/// pointer bitcasted to a different type.
1123void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
1124                           const Type *MemOpType, bool isStore,
1125                           AllocaInfo &Info) {
1126  // Check if this is a load/store of the entire alloca.
1127  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
1128    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1129    // loads/stores (which are essentially the same as the MemIntrinsics with
1130    // regard to copying padding between elements).  But, if an alloca is
1131    // flagged as both a source and destination of such operations, we'll need
1132    // to check later for padding between elements.
1133    if (!MemOpType || MemOpType->isIntegerTy()) {
1134      if (isStore)
1135        Info.isMemCpyDst = true;
1136      else
1137        Info.isMemCpySrc = true;
1138      return;
1139    }
1140    // This is also safe for references using a type that is compatible with
1141    // the type of the alloca, so that loads/stores can be rewritten using
1142    // insertvalue/extractvalue.
1143    if (isCompatibleAggregate(MemOpType, AI->getAllocatedType()))
1144      return;
1145  }
1146  // Check if the offset/size correspond to a component within the alloca type.
1147  const Type *T = AI->getAllocatedType();
1148  if (TypeHasComponent(T, Offset, MemSize))
1149    return;
1150
1151  return MarkUnsafe(Info);
1152}
1153
1154/// TypeHasComponent - Return true if T has a component type with the
1155/// specified offset and size.  If Size is zero, do not check the size.
1156bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1157  const Type *EltTy;
1158  uint64_t EltSize;
1159  if (const StructType *ST = dyn_cast<StructType>(T)) {
1160    const StructLayout *Layout = TD->getStructLayout(ST);
1161    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1162    EltTy = ST->getContainedType(EltIdx);
1163    EltSize = TD->getTypeAllocSize(EltTy);
1164    Offset -= Layout->getElementOffset(EltIdx);
1165  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1166    EltTy = AT->getElementType();
1167    EltSize = TD->getTypeAllocSize(EltTy);
1168    if (Offset >= AT->getNumElements() * EltSize)
1169      return false;
1170    Offset %= EltSize;
1171  } else {
1172    return false;
1173  }
1174  if (Offset == 0 && (Size == 0 || EltSize == Size))
1175    return true;
1176  // Check if the component spans multiple elements.
1177  if (Offset + Size > EltSize)
1178    return false;
1179  return TypeHasComponent(EltTy, Offset, Size);
1180}
1181
1182/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1183/// the instruction I, which references it, to use the separate elements.
1184/// Offset indicates the position within AI that is referenced by this
1185/// instruction.
1186void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1187                                SmallVector<AllocaInst*, 32> &NewElts) {
1188  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1189    Instruction *User = cast<Instruction>(*UI);
1190
1191    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1192      RewriteBitCast(BC, AI, Offset, NewElts);
1193    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1194      RewriteGEP(GEPI, AI, Offset, NewElts);
1195    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1196      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1197      uint64_t MemSize = Length->getZExtValue();
1198      if (Offset == 0 &&
1199          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1200        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1201      // Otherwise the intrinsic can only touch a single element and the
1202      // address operand will be updated, so nothing else needs to be done.
1203    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1204      const Type *LIType = LI->getType();
1205      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1206        // Replace:
1207        //   %res = load { i32, i32 }* %alloc
1208        // with:
1209        //   %load.0 = load i32* %alloc.0
1210        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1211        //   %load.1 = load i32* %alloc.1
1212        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1213        // (Also works for arrays instead of structs)
1214        Value *Insert = UndefValue::get(LIType);
1215        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1216          Value *Load = new LoadInst(NewElts[i], "load", LI);
1217          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1218        }
1219        LI->replaceAllUsesWith(Insert);
1220        DeadInsts.push_back(LI);
1221      } else if (LIType->isIntegerTy() &&
1222                 TD->getTypeAllocSize(LIType) ==
1223                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1224        // If this is a load of the entire alloca to an integer, rewrite it.
1225        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1226      }
1227    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1228      Value *Val = SI->getOperand(0);
1229      const Type *SIType = Val->getType();
1230      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1231        // Replace:
1232        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1233        // with:
1234        //   %val.0 = extractvalue { i32, i32 } %val, 0
1235        //   store i32 %val.0, i32* %alloc.0
1236        //   %val.1 = extractvalue { i32, i32 } %val, 1
1237        //   store i32 %val.1, i32* %alloc.1
1238        // (Also works for arrays instead of structs)
1239        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1240          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1241          new StoreInst(Extract, NewElts[i], SI);
1242        }
1243        DeadInsts.push_back(SI);
1244      } else if (SIType->isIntegerTy() &&
1245                 TD->getTypeAllocSize(SIType) ==
1246                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1247        // If this is a store of the entire alloca from an integer, rewrite it.
1248        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1249      }
1250    }
1251  }
1252}
1253
1254/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1255/// and recursively continue updating all of its uses.
1256void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1257                          SmallVector<AllocaInst*, 32> &NewElts) {
1258  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1259  if (BC->getOperand(0) != AI)
1260    return;
1261
1262  // The bitcast references the original alloca.  Replace its uses with
1263  // references to the first new element alloca.
1264  Instruction *Val = NewElts[0];
1265  if (Val->getType() != BC->getDestTy()) {
1266    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1267    Val->takeName(BC);
1268  }
1269  BC->replaceAllUsesWith(Val);
1270  DeadInsts.push_back(BC);
1271}
1272
1273/// FindElementAndOffset - Return the index of the element containing Offset
1274/// within the specified type, which must be either a struct or an array.
1275/// Sets T to the type of the element and Offset to the offset within that
1276/// element.  IdxTy is set to the type of the index result to be used in a
1277/// GEP instruction.
1278uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1279                                    const Type *&IdxTy) {
1280  uint64_t Idx = 0;
1281  if (const StructType *ST = dyn_cast<StructType>(T)) {
1282    const StructLayout *Layout = TD->getStructLayout(ST);
1283    Idx = Layout->getElementContainingOffset(Offset);
1284    T = ST->getContainedType(Idx);
1285    Offset -= Layout->getElementOffset(Idx);
1286    IdxTy = Type::getInt32Ty(T->getContext());
1287    return Idx;
1288  }
1289  const ArrayType *AT = cast<ArrayType>(T);
1290  T = AT->getElementType();
1291  uint64_t EltSize = TD->getTypeAllocSize(T);
1292  Idx = Offset / EltSize;
1293  Offset -= Idx * EltSize;
1294  IdxTy = Type::getInt64Ty(T->getContext());
1295  return Idx;
1296}
1297
1298/// RewriteGEP - Check if this GEP instruction moves the pointer across
1299/// elements of the alloca that are being split apart, and if so, rewrite
1300/// the GEP to be relative to the new element.
1301void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1302                      SmallVector<AllocaInst*, 32> &NewElts) {
1303  uint64_t OldOffset = Offset;
1304  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1305  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1306                                 &Indices[0], Indices.size());
1307
1308  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1309
1310  const Type *T = AI->getAllocatedType();
1311  const Type *IdxTy;
1312  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1313  if (GEPI->getOperand(0) == AI)
1314    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1315
1316  T = AI->getAllocatedType();
1317  uint64_t EltOffset = Offset;
1318  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1319
1320  // If this GEP does not move the pointer across elements of the alloca
1321  // being split, then it does not needs to be rewritten.
1322  if (Idx == OldIdx)
1323    return;
1324
1325  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1326  SmallVector<Value*, 8> NewArgs;
1327  NewArgs.push_back(Constant::getNullValue(i32Ty));
1328  while (EltOffset != 0) {
1329    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1330    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1331  }
1332  Instruction *Val = NewElts[Idx];
1333  if (NewArgs.size() > 1) {
1334    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1335                                            NewArgs.end(), "", GEPI);
1336    Val->takeName(GEPI);
1337  }
1338  if (Val->getType() != GEPI->getType())
1339    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1340  GEPI->replaceAllUsesWith(Val);
1341  DeadInsts.push_back(GEPI);
1342}
1343
1344/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1345/// Rewrite it to copy or set the elements of the scalarized memory.
1346void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1347                                        AllocaInst *AI,
1348                                        SmallVector<AllocaInst*, 32> &NewElts) {
1349  // If this is a memcpy/memmove, construct the other pointer as the
1350  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1351  // that doesn't have anything to do with the alloca that we are promoting. For
1352  // memset, this Value* stays null.
1353  Value *OtherPtr = 0;
1354  unsigned MemAlignment = MI->getAlignment();
1355  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1356    if (Inst == MTI->getRawDest())
1357      OtherPtr = MTI->getRawSource();
1358    else {
1359      assert(Inst == MTI->getRawSource());
1360      OtherPtr = MTI->getRawDest();
1361    }
1362  }
1363
1364  // If there is an other pointer, we want to convert it to the same pointer
1365  // type as AI has, so we can GEP through it safely.
1366  if (OtherPtr) {
1367    unsigned AddrSpace =
1368      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1369
1370    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
1371    // optimization, but it's also required to detect the corner case where
1372    // both pointer operands are referencing the same memory, and where
1373    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
1374    // function is only called for mem intrinsics that access the whole
1375    // aggregate, so non-zero GEPs are not an issue here.)
1376    OtherPtr = OtherPtr->stripPointerCasts();
1377
1378    // Copying the alloca to itself is a no-op: just delete it.
1379    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1380      // This code will run twice for a no-op memcpy -- once for each operand.
1381      // Put only one reference to MI on the DeadInsts list.
1382      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1383             E = DeadInsts.end(); I != E; ++I)
1384        if (*I == MI) return;
1385      DeadInsts.push_back(MI);
1386      return;
1387    }
1388
1389    // If the pointer is not the right type, insert a bitcast to the right
1390    // type.
1391    const Type *NewTy =
1392      PointerType::get(AI->getType()->getElementType(), AddrSpace);
1393
1394    if (OtherPtr->getType() != NewTy)
1395      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1396  }
1397
1398  // Process each element of the aggregate.
1399  bool SROADest = MI->getRawDest() == Inst;
1400
1401  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1402
1403  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1404    // If this is a memcpy/memmove, emit a GEP of the other element address.
1405    Value *OtherElt = 0;
1406    unsigned OtherEltAlign = MemAlignment;
1407
1408    if (OtherPtr) {
1409      Value *Idx[2] = { Zero,
1410                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1411      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1412                                              OtherPtr->getName()+"."+Twine(i),
1413                                                   MI);
1414      uint64_t EltOffset;
1415      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1416      const Type *OtherTy = OtherPtrTy->getElementType();
1417      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1418        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1419      } else {
1420        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
1421        EltOffset = TD->getTypeAllocSize(EltTy)*i;
1422      }
1423
1424      // The alignment of the other pointer is the guaranteed alignment of the
1425      // element, which is affected by both the known alignment of the whole
1426      // mem intrinsic and the alignment of the element.  If the alignment of
1427      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1428      // known alignment is just 4 bytes.
1429      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
1430    }
1431
1432    Value *EltPtr = NewElts[i];
1433    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
1434
1435    // If we got down to a scalar, insert a load or store as appropriate.
1436    if (EltTy->isSingleValueType()) {
1437      if (isa<MemTransferInst>(MI)) {
1438        if (SROADest) {
1439          // From Other to Alloca.
1440          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
1441          new StoreInst(Elt, EltPtr, MI);
1442        } else {
1443          // From Alloca to Other.
1444          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
1445          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
1446        }
1447        continue;
1448      }
1449      assert(isa<MemSetInst>(MI));
1450
1451      // If the stored element is zero (common case), just store a null
1452      // constant.
1453      Constant *StoreVal;
1454      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
1455        if (CI->isZero()) {
1456          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
1457        } else {
1458          // If EltTy is a vector type, get the element type.
1459          const Type *ValTy = EltTy->getScalarType();
1460
1461          // Construct an integer with the right value.
1462          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
1463          APInt OneVal(EltSize, CI->getZExtValue());
1464          APInt TotalVal(OneVal);
1465          // Set each byte.
1466          for (unsigned i = 0; 8*i < EltSize; ++i) {
1467            TotalVal = TotalVal.shl(8);
1468            TotalVal |= OneVal;
1469          }
1470
1471          // Convert the integer value to the appropriate type.
1472          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
1473          if (ValTy->isPointerTy())
1474            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
1475          else if (ValTy->isFloatingPointTy())
1476            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
1477          assert(StoreVal->getType() == ValTy && "Type mismatch!");
1478
1479          // If the requested value was a vector constant, create it.
1480          if (EltTy != ValTy) {
1481            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
1482            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
1483            StoreVal = ConstantVector::get(&Elts[0], NumElts);
1484          }
1485        }
1486        new StoreInst(StoreVal, EltPtr, MI);
1487        continue;
1488      }
1489      // Otherwise, if we're storing a byte variable, use a memset call for
1490      // this element.
1491    }
1492
1493    unsigned EltSize = TD->getTypeAllocSize(EltTy);
1494
1495    IRBuilder<> Builder(MI);
1496
1497    // Finally, insert the meminst for this element.
1498    if (isa<MemSetInst>(MI)) {
1499      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
1500                           MI->isVolatile());
1501    } else {
1502      assert(isa<MemTransferInst>(MI));
1503      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
1504      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
1505
1506      if (isa<MemCpyInst>(MI))
1507        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
1508      else
1509        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
1510    }
1511  }
1512  DeadInsts.push_back(MI);
1513}
1514
1515/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
1516/// overwrites the entire allocation.  Extract out the pieces of the stored
1517/// integer and store them individually.
1518void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
1519                                         SmallVector<AllocaInst*, 32> &NewElts){
1520  // Extract each element out of the integer according to its structure offset
1521  // and store the element value to the individual alloca.
1522  Value *SrcVal = SI->getOperand(0);
1523  const Type *AllocaEltTy = AI->getAllocatedType();
1524  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1525
1526  // Handle tail padding by extending the operand
1527  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
1528    SrcVal = new ZExtInst(SrcVal,
1529                          IntegerType::get(SI->getContext(), AllocaSizeBits),
1530                          "", SI);
1531
1532  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
1533               << '\n');
1534
1535  // There are two forms here: AI could be an array or struct.  Both cases
1536  // have different ways to compute the element offset.
1537  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1538    const StructLayout *Layout = TD->getStructLayout(EltSTy);
1539
1540    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1541      // Get the number of bits to shift SrcVal to get the value.
1542      const Type *FieldTy = EltSTy->getElementType(i);
1543      uint64_t Shift = Layout->getElementOffsetInBits(i);
1544
1545      if (TD->isBigEndian())
1546        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
1547
1548      Value *EltVal = SrcVal;
1549      if (Shift) {
1550        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1551        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1552                                            "sroa.store.elt", SI);
1553      }
1554
1555      // Truncate down to an integer of the right size.
1556      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1557
1558      // Ignore zero sized fields like {}, they obviously contain no data.
1559      if (FieldSizeBits == 0) continue;
1560
1561      if (FieldSizeBits != AllocaSizeBits)
1562        EltVal = new TruncInst(EltVal,
1563                             IntegerType::get(SI->getContext(), FieldSizeBits),
1564                              "", SI);
1565      Value *DestField = NewElts[i];
1566      if (EltVal->getType() == FieldTy) {
1567        // Storing to an integer field of this size, just do it.
1568      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
1569        // Bitcast to the right element type (for fp/vector values).
1570        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
1571      } else {
1572        // Otherwise, bitcast the dest pointer (for aggregates).
1573        DestField = new BitCastInst(DestField,
1574                              PointerType::getUnqual(EltVal->getType()),
1575                                    "", SI);
1576      }
1577      new StoreInst(EltVal, DestField, SI);
1578    }
1579
1580  } else {
1581    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1582    const Type *ArrayEltTy = ATy->getElementType();
1583    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1584    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1585
1586    uint64_t Shift;
1587
1588    if (TD->isBigEndian())
1589      Shift = AllocaSizeBits-ElementOffset;
1590    else
1591      Shift = 0;
1592
1593    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1594      // Ignore zero sized fields like {}, they obviously contain no data.
1595      if (ElementSizeBits == 0) continue;
1596
1597      Value *EltVal = SrcVal;
1598      if (Shift) {
1599        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1600        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1601                                            "sroa.store.elt", SI);
1602      }
1603
1604      // Truncate down to an integer of the right size.
1605      if (ElementSizeBits != AllocaSizeBits)
1606        EltVal = new TruncInst(EltVal,
1607                               IntegerType::get(SI->getContext(),
1608                                                ElementSizeBits),"",SI);
1609      Value *DestField = NewElts[i];
1610      if (EltVal->getType() == ArrayEltTy) {
1611        // Storing to an integer field of this size, just do it.
1612      } else if (ArrayEltTy->isFloatingPointTy() ||
1613                 ArrayEltTy->isVectorTy()) {
1614        // Bitcast to the right element type (for fp/vector values).
1615        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1616      } else {
1617        // Otherwise, bitcast the dest pointer (for aggregates).
1618        DestField = new BitCastInst(DestField,
1619                              PointerType::getUnqual(EltVal->getType()),
1620                                    "", SI);
1621      }
1622      new StoreInst(EltVal, DestField, SI);
1623
1624      if (TD->isBigEndian())
1625        Shift -= ElementOffset;
1626      else
1627        Shift += ElementOffset;
1628    }
1629  }
1630
1631  DeadInsts.push_back(SI);
1632}
1633
1634/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1635/// an integer.  Load the individual pieces to form the aggregate value.
1636void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1637                                        SmallVector<AllocaInst*, 32> &NewElts) {
1638  // Extract each element out of the NewElts according to its structure offset
1639  // and form the result value.
1640  const Type *AllocaEltTy = AI->getAllocatedType();
1641  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1642
1643  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1644               << '\n');
1645
1646  // There are two forms here: AI could be an array or struct.  Both cases
1647  // have different ways to compute the element offset.
1648  const StructLayout *Layout = 0;
1649  uint64_t ArrayEltBitOffset = 0;
1650  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1651    Layout = TD->getStructLayout(EltSTy);
1652  } else {
1653    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1654    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1655  }
1656
1657  Value *ResultVal =
1658    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1659
1660  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1661    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1662    // the pointer to an integer of the same size before doing the load.
1663    Value *SrcField = NewElts[i];
1664    const Type *FieldTy =
1665      cast<PointerType>(SrcField->getType())->getElementType();
1666    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1667
1668    // Ignore zero sized fields like {}, they obviously contain no data.
1669    if (FieldSizeBits == 0) continue;
1670
1671    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1672                                                     FieldSizeBits);
1673    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
1674        !FieldTy->isVectorTy())
1675      SrcField = new BitCastInst(SrcField,
1676                                 PointerType::getUnqual(FieldIntTy),
1677                                 "", LI);
1678    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1679
1680    // If SrcField is a fp or vector of the right size but that isn't an
1681    // integer type, bitcast to an integer so we can shift it.
1682    if (SrcField->getType() != FieldIntTy)
1683      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1684
1685    // Zero extend the field to be the same size as the final alloca so that
1686    // we can shift and insert it.
1687    if (SrcField->getType() != ResultVal->getType())
1688      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1689
1690    // Determine the number of bits to shift SrcField.
1691    uint64_t Shift;
1692    if (Layout) // Struct case.
1693      Shift = Layout->getElementOffsetInBits(i);
1694    else  // Array case.
1695      Shift = i*ArrayEltBitOffset;
1696
1697    if (TD->isBigEndian())
1698      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1699
1700    if (Shift) {
1701      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1702      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1703    }
1704
1705    // Don't create an 'or x, 0' on the first iteration.
1706    if (!isa<Constant>(ResultVal) ||
1707        !cast<Constant>(ResultVal)->isNullValue())
1708      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1709    else
1710      ResultVal = SrcField;
1711  }
1712
1713  // Handle tail padding by truncating the result
1714  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1715    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1716
1717  LI->replaceAllUsesWith(ResultVal);
1718  DeadInsts.push_back(LI);
1719}
1720
1721/// HasPadding - Return true if the specified type has any structure or
1722/// alignment padding in between the elements that would be split apart
1723/// by SROA; return false otherwise.
1724static bool HasPadding(const Type *Ty, const TargetData &TD) {
1725  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1726    Ty = ATy->getElementType();
1727    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1728  }
1729
1730  // SROA currently handles only Arrays and Structs.
1731  const StructType *STy = cast<StructType>(Ty);
1732  const StructLayout *SL = TD.getStructLayout(STy);
1733  unsigned PrevFieldBitOffset = 0;
1734  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1735    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1736
1737    // Check to see if there is any padding between this element and the
1738    // previous one.
1739    if (i) {
1740      unsigned PrevFieldEnd =
1741        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1742      if (PrevFieldEnd < FieldBitOffset)
1743        return true;
1744    }
1745    PrevFieldBitOffset = FieldBitOffset;
1746  }
1747  // Check for tail padding.
1748  if (unsigned EltCount = STy->getNumElements()) {
1749    unsigned PrevFieldEnd = PrevFieldBitOffset +
1750      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1751    if (PrevFieldEnd < SL->getSizeInBits())
1752      return true;
1753  }
1754  return false;
1755}
1756
1757/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1758/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1759/// or 1 if safe after canonicalization has been performed.
1760bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1761  // Loop over the use list of the alloca.  We can only transform it if all of
1762  // the users are safe to transform.
1763  AllocaInfo Info;
1764
1765  isSafeForScalarRepl(AI, AI, 0, Info);
1766  if (Info.isUnsafe) {
1767    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
1768    return false;
1769  }
1770
1771  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1772  // source and destination, we have to be careful.  In particular, the memcpy
1773  // could be moving around elements that live in structure padding of the LLVM
1774  // types, but may actually be used.  In these cases, we refuse to promote the
1775  // struct.
1776  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1777      HasPadding(AI->getAllocatedType(), *TD))
1778    return false;
1779
1780  return true;
1781}
1782
1783
1784
1785/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1786/// some part of a constant global variable.  This intentionally only accepts
1787/// constant expressions because we don't can't rewrite arbitrary instructions.
1788static bool PointsToConstantGlobal(Value *V) {
1789  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1790    return GV->isConstant();
1791  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1792    if (CE->getOpcode() == Instruction::BitCast ||
1793        CE->getOpcode() == Instruction::GetElementPtr)
1794      return PointsToConstantGlobal(CE->getOperand(0));
1795  return false;
1796}
1797
1798/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1799/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1800/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1801/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1802/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1803/// the alloca, and if the source pointer is a pointer to a constant global, we
1804/// can optimize this.
1805static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
1806                                           bool isOffset) {
1807  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1808    User *U = cast<Instruction>(*UI);
1809
1810    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1811      // Ignore non-volatile loads, they are always ok.
1812      if (LI->isVolatile()) return false;
1813      continue;
1814    }
1815
1816    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1817      // If uses of the bitcast are ok, we are ok.
1818      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1819        return false;
1820      continue;
1821    }
1822    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
1823      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1824      // doesn't, it does.
1825      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1826                                         isOffset || !GEP->hasAllZeroIndices()))
1827        return false;
1828      continue;
1829    }
1830
1831    if (CallSite CS = U) {
1832      // If this is a readonly/readnone call site, then we know it is just a
1833      // load and we can ignore it.
1834      if (CS.onlyReadsMemory())
1835        continue;
1836
1837      // If this is the function being called then we treat it like a load and
1838      // ignore it.
1839      if (CS.isCallee(UI))
1840        continue;
1841
1842      // If this is being passed as a byval argument, the caller is making a
1843      // copy, so it is only a read of the alloca.
1844      unsigned ArgNo = CS.getArgumentNo(UI);
1845      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
1846        continue;
1847    }
1848
1849    // If this is isn't our memcpy/memmove, reject it as something we can't
1850    // handle.
1851    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
1852    if (MI == 0)
1853      return false;
1854
1855    // If the transfer is using the alloca as a source of the transfer, then
1856    // ignore it since it is a load (unless the transfer is volatile).
1857    if (UI.getOperandNo() == 1) {
1858      if (MI->isVolatile()) return false;
1859      continue;
1860    }
1861
1862    // If we already have seen a copy, reject the second one.
1863    if (TheCopy) return false;
1864
1865    // If the pointer has been offset from the start of the alloca, we can't
1866    // safely handle this.
1867    if (isOffset) return false;
1868
1869    // If the memintrinsic isn't using the alloca as the dest, reject it.
1870    if (UI.getOperandNo() != 0) return false;
1871
1872    // If the source of the memcpy/move is not a constant global, reject it.
1873    if (!PointsToConstantGlobal(MI->getSource()))
1874      return false;
1875
1876    // Otherwise, the transform is safe.  Remember the copy instruction.
1877    TheCopy = MI;
1878  }
1879  return true;
1880}
1881
1882/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1883/// modified by a copy from a constant global.  If we can prove this, we can
1884/// replace any uses of the alloca with uses of the global directly.
1885MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1886  MemTransferInst *TheCopy = 0;
1887  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1888    return TheCopy;
1889  return 0;
1890}
1891