ScalarReplAggregates.cpp revision 7afe8fa066b227bb2683b6890d6cfdc4ebac0205
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/GetElementPtrTypeIterator.h"
37#include "llvm/Support/IRBuilder.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Support/Compiler.h"
40#include "llvm/ADT/SmallVector.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/ADT/StringExtras.h"
43using namespace llvm;
44
45STATISTIC(NumReplaced,  "Number of allocas broken up");
46STATISTIC(NumPromoted,  "Number of allocas promoted");
47STATISTIC(NumConverted, "Number of aggregates converted to scalar");
48STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
49
50namespace {
51  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
52    static char ID; // Pass identification, replacement for typeid
53    explicit SROA(signed T = -1) : FunctionPass(&ID) {
54      if (T == -1)
55        SRThreshold = 128;
56      else
57        SRThreshold = T;
58    }
59
60    bool runOnFunction(Function &F);
61
62    bool performScalarRepl(Function &F);
63    bool performPromotion(Function &F);
64
65    // getAnalysisUsage - This pass does not require any passes, but we know it
66    // will not alter the CFG, so say so.
67    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
68      AU.addRequired<DominatorTree>();
69      AU.addRequired<DominanceFrontier>();
70      AU.addRequired<TargetData>();
71      AU.setPreservesCFG();
72    }
73
74  private:
75    TargetData *TD;
76
77    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
78    /// information about the uses.  All these fields are initialized to false
79    /// and set to true when something is learned.
80    struct AllocaInfo {
81      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
82      bool isUnsafe : 1;
83
84      /// needsCleanup - This is set to true if there is some use of the alloca
85      /// that requires cleanup.
86      bool needsCleanup : 1;
87
88      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
89      bool isMemCpySrc : 1;
90
91      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
92      bool isMemCpyDst : 1;
93
94      AllocaInfo()
95        : isUnsafe(false), needsCleanup(false),
96          isMemCpySrc(false), isMemCpyDst(false) {}
97    };
98
99    unsigned SRThreshold;
100
101    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
102
103    int isSafeAllocaToScalarRepl(AllocationInst *AI);
104
105    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
106                               AllocaInfo &Info);
107    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
108                         AllocaInfo &Info);
109    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
110                                        unsigned OpNo, AllocaInfo &Info);
111    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
112                                        AllocaInfo &Info);
113
114    void DoScalarReplacement(AllocationInst *AI,
115                             std::vector<AllocationInst*> &WorkList);
116    void CleanupGEP(GetElementPtrInst *GEP);
117    void CleanupAllocaUsers(AllocationInst *AI);
118    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
119
120    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
121                                    SmallVector<AllocaInst*, 32> &NewElts);
122
123    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
124                                      AllocationInst *AI,
125                                      SmallVector<AllocaInst*, 32> &NewElts);
126    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
127                                       SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
129                                      SmallVector<AllocaInst*, 32> &NewElts);
130
131    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
132                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
133    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
134    Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
135                                     uint64_t Offset, IRBuilder<> &Builder);
136    Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
137                                     uint64_t Offset, IRBuilder<> &Builder);
138    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
139  };
140}
141
142char SROA::ID = 0;
143static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
144
145// Public interface to the ScalarReplAggregates pass
146FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
147  return new SROA(Threshold);
148}
149
150
151bool SROA::runOnFunction(Function &F) {
152  TD = &getAnalysis<TargetData>();
153
154  bool Changed = performPromotion(F);
155  while (1) {
156    bool LocalChange = performScalarRepl(F);
157    if (!LocalChange) break;   // No need to repromote if no scalarrepl
158    Changed = true;
159    LocalChange = performPromotion(F);
160    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
161  }
162
163  return Changed;
164}
165
166
167bool SROA::performPromotion(Function &F) {
168  std::vector<AllocaInst*> Allocas;
169  DominatorTree         &DT = getAnalysis<DominatorTree>();
170  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
171
172  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
173
174  bool Changed = false;
175
176  while (1) {
177    Allocas.clear();
178
179    // Find allocas that are safe to promote, by looking at all instructions in
180    // the entry node
181    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
182      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
183        if (isAllocaPromotable(AI))
184          Allocas.push_back(AI);
185
186    if (Allocas.empty()) break;
187
188    PromoteMemToReg(Allocas, DT, DF);
189    NumPromoted += Allocas.size();
190    Changed = true;
191  }
192
193  return Changed;
194}
195
196/// getNumSAElements - Return the number of elements in the specific struct or
197/// array.
198static uint64_t getNumSAElements(const Type *T) {
199  if (const StructType *ST = dyn_cast<StructType>(T))
200    return ST->getNumElements();
201  return cast<ArrayType>(T)->getNumElements();
202}
203
204// performScalarRepl - This algorithm is a simple worklist driven algorithm,
205// which runs on all of the malloc/alloca instructions in the function, removing
206// them if they are only used by getelementptr instructions.
207//
208bool SROA::performScalarRepl(Function &F) {
209  std::vector<AllocationInst*> WorkList;
210
211  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
212  BasicBlock &BB = F.getEntryBlock();
213  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
214    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
215      WorkList.push_back(A);
216
217  // Process the worklist
218  bool Changed = false;
219  while (!WorkList.empty()) {
220    AllocationInst *AI = WorkList.back();
221    WorkList.pop_back();
222
223    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
224    // with unused elements.
225    if (AI->use_empty()) {
226      AI->eraseFromParent();
227      continue;
228    }
229
230    // If this alloca is impossible for us to promote, reject it early.
231    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
232      continue;
233
234    // Check to see if this allocation is only modified by a memcpy/memmove from
235    // a constant global.  If this is the case, we can change all users to use
236    // the constant global instead.  This is commonly produced by the CFE by
237    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
238    // is only subsequently read.
239    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
240      DOUT << "Found alloca equal to global: " << *AI;
241      DOUT << "  memcpy = " << *TheCopy;
242      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
243      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
244      TheCopy->eraseFromParent();  // Don't mutate the global.
245      AI->eraseFromParent();
246      ++NumGlobals;
247      Changed = true;
248      continue;
249    }
250
251    // Check to see if we can perform the core SROA transformation.  We cannot
252    // transform the allocation instruction if it is an array allocation
253    // (allocations OF arrays are ok though), and an allocation of a scalar
254    // value cannot be decomposed at all.
255    uint64_t AllocaSize = TD->getTypePaddedSize(AI->getAllocatedType());
256
257    if ((isa<StructType>(AI->getAllocatedType()) ||
258         isa<ArrayType>(AI->getAllocatedType())) &&
259        // Do not promote any struct whose size is too big.
260        AllocaSize < SRThreshold &&
261        // Do not promote any struct into more than "32" separate vars.
262        getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
263      // Check that all of the users of the allocation are capable of being
264      // transformed.
265      switch (isSafeAllocaToScalarRepl(AI)) {
266      default: assert(0 && "Unexpected value!");
267      case 0:  // Not safe to scalar replace.
268        break;
269      case 1:  // Safe, but requires cleanup/canonicalizations first
270        CleanupAllocaUsers(AI);
271        // FALL THROUGH.
272      case 3:  // Safe to scalar replace.
273        DoScalarReplacement(AI, WorkList);
274        Changed = true;
275        continue;
276      }
277    }
278
279    // If we can turn this aggregate value (potentially with casts) into a
280    // simple scalar value that can be mem2reg'd into a register value.
281    // IsNotTrivial tracks whether this is something that mem2reg could have
282    // promoted itself.  If so, we don't want to transform it needlessly.  Note
283    // that we can't just check based on the type: the alloca may be of an i32
284    // but that has pointer arithmetic to set byte 3 of it or something.
285    bool IsNotTrivial = false;
286    const Type *VectorTy = 0;
287    bool HadAVector = false;
288    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
289                           0, unsigned(AllocaSize)) && IsNotTrivial) {
290      AllocaInst *NewAI;
291      // If we were able to find a vector type that can handle this with
292      // insert/extract elements, and if there was at least one use that had
293      // a vector type, promote this to a vector.  We don't want to promote
294      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
295      // we just get a lot of insert/extracts.  If at least one vector is
296      // involved, then we probably really do have a union of vector/array.
297      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
298        DOUT << "CONVERT TO VECTOR: " << *AI << "  TYPE = " << *VectorTy <<"\n";
299
300        // Create and insert the vector alloca.
301        NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
302        ConvertUsesToScalar(AI, NewAI, 0);
303      } else {
304        DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
305
306        // Create and insert the integer alloca.
307        const Type *NewTy = IntegerType::get(AllocaSize*8);
308        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
309        ConvertUsesToScalar(AI, NewAI, 0);
310      }
311      NewAI->takeName(AI);
312      AI->eraseFromParent();
313      ++NumConverted;
314      Changed = true;
315      continue;
316    }
317
318    // Otherwise, couldn't process this alloca.
319  }
320
321  return Changed;
322}
323
324/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
325/// predicate, do SROA now.
326void SROA::DoScalarReplacement(AllocationInst *AI,
327                               std::vector<AllocationInst*> &WorkList) {
328  DOUT << "Found inst to SROA: " << *AI;
329  SmallVector<AllocaInst*, 32> ElementAllocas;
330  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
331    ElementAllocas.reserve(ST->getNumContainedTypes());
332    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
333      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
334                                      AI->getAlignment(),
335                                      AI->getName() + "." + utostr(i), AI);
336      ElementAllocas.push_back(NA);
337      WorkList.push_back(NA);  // Add to worklist for recursive processing
338    }
339  } else {
340    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
341    ElementAllocas.reserve(AT->getNumElements());
342    const Type *ElTy = AT->getElementType();
343    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
344      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
345                                      AI->getName() + "." + utostr(i), AI);
346      ElementAllocas.push_back(NA);
347      WorkList.push_back(NA);  // Add to worklist for recursive processing
348    }
349  }
350
351  // Now that we have created the alloca instructions that we want to use,
352  // expand the getelementptr instructions to use them.
353  //
354  while (!AI->use_empty()) {
355    Instruction *User = cast<Instruction>(AI->use_back());
356    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
357      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
358      BCInst->eraseFromParent();
359      continue;
360    }
361
362    // Replace:
363    //   %res = load { i32, i32 }* %alloc
364    // with:
365    //   %load.0 = load i32* %alloc.0
366    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
367    //   %load.1 = load i32* %alloc.1
368    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
369    // (Also works for arrays instead of structs)
370    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
371      Value *Insert = UndefValue::get(LI->getType());
372      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
373        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
374        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
375      }
376      LI->replaceAllUsesWith(Insert);
377      LI->eraseFromParent();
378      continue;
379    }
380
381    // Replace:
382    //   store { i32, i32 } %val, { i32, i32 }* %alloc
383    // with:
384    //   %val.0 = extractvalue { i32, i32 } %val, 0
385    //   store i32 %val.0, i32* %alloc.0
386    //   %val.1 = extractvalue { i32, i32 } %val, 1
387    //   store i32 %val.1, i32* %alloc.1
388    // (Also works for arrays instead of structs)
389    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
390      Value *Val = SI->getOperand(0);
391      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
392        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
393        new StoreInst(Extract, ElementAllocas[i], SI);
394      }
395      SI->eraseFromParent();
396      continue;
397    }
398
399    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
400    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
401    unsigned Idx =
402       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
403
404    assert(Idx < ElementAllocas.size() && "Index out of range?");
405    AllocaInst *AllocaToUse = ElementAllocas[Idx];
406
407    Value *RepValue;
408    if (GEPI->getNumOperands() == 3) {
409      // Do not insert a new getelementptr instruction with zero indices, only
410      // to have it optimized out later.
411      RepValue = AllocaToUse;
412    } else {
413      // We are indexing deeply into the structure, so we still need a
414      // getelement ptr instruction to finish the indexing.  This may be
415      // expanded itself once the worklist is rerun.
416      //
417      SmallVector<Value*, 8> NewArgs;
418      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
419      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
420      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
421                                           NewArgs.end(), "", GEPI);
422      RepValue->takeName(GEPI);
423    }
424
425    // If this GEP is to the start of the aggregate, check for memcpys.
426    if (Idx == 0 && GEPI->hasAllZeroIndices())
427      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
428
429    // Move all of the users over to the new GEP.
430    GEPI->replaceAllUsesWith(RepValue);
431    // Delete the old GEP
432    GEPI->eraseFromParent();
433  }
434
435  // Finally, delete the Alloca instruction
436  AI->eraseFromParent();
437  NumReplaced++;
438}
439
440
441/// isSafeElementUse - Check to see if this use is an allowed use for a
442/// getelementptr instruction of an array aggregate allocation.  isFirstElt
443/// indicates whether Ptr is known to the start of the aggregate.
444///
445void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
446                            AllocaInfo &Info) {
447  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
448       I != E; ++I) {
449    Instruction *User = cast<Instruction>(*I);
450    switch (User->getOpcode()) {
451    case Instruction::Load:  break;
452    case Instruction::Store:
453      // Store is ok if storing INTO the pointer, not storing the pointer
454      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
455      break;
456    case Instruction::GetElementPtr: {
457      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
458      bool AreAllZeroIndices = isFirstElt;
459      if (GEP->getNumOperands() > 1) {
460        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
461            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
462          // Using pointer arithmetic to navigate the array.
463          return MarkUnsafe(Info);
464
465        if (AreAllZeroIndices)
466          AreAllZeroIndices = GEP->hasAllZeroIndices();
467      }
468      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
469      if (Info.isUnsafe) return;
470      break;
471    }
472    case Instruction::BitCast:
473      if (isFirstElt) {
474        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
475        if (Info.isUnsafe) return;
476        break;
477      }
478      DOUT << "  Transformation preventing inst: " << *User;
479      return MarkUnsafe(Info);
480    case Instruction::Call:
481      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
482        if (isFirstElt) {
483          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
484          if (Info.isUnsafe) return;
485          break;
486        }
487      }
488      DOUT << "  Transformation preventing inst: " << *User;
489      return MarkUnsafe(Info);
490    default:
491      DOUT << "  Transformation preventing inst: " << *User;
492      return MarkUnsafe(Info);
493    }
494  }
495  return;  // All users look ok :)
496}
497
498/// AllUsersAreLoads - Return true if all users of this value are loads.
499static bool AllUsersAreLoads(Value *Ptr) {
500  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
501       I != E; ++I)
502    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
503      return false;
504  return true;
505}
506
507/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
508/// aggregate allocation.
509///
510void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
511                                 AllocaInfo &Info) {
512  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
513    return isSafeUseOfBitCastedAllocation(C, AI, Info);
514
515  if (LoadInst *LI = dyn_cast<LoadInst>(User))
516    if (!LI->isVolatile())
517      return;// Loads (returning a first class aggregrate) are always rewritable
518
519  if (StoreInst *SI = dyn_cast<StoreInst>(User))
520    if (!SI->isVolatile() && SI->getOperand(0) != AI)
521      return;// Store is ok if storing INTO the pointer, not storing the pointer
522
523  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
524  if (GEPI == 0)
525    return MarkUnsafe(Info);
526
527  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
528
529  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
530  if (I == E ||
531      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
532    return MarkUnsafe(Info);
533  }
534
535  ++I;
536  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
537
538  bool IsAllZeroIndices = true;
539
540  // If the first index is a non-constant index into an array, see if we can
541  // handle it as a special case.
542  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
543    if (!isa<ConstantInt>(I.getOperand())) {
544      IsAllZeroIndices = 0;
545      uint64_t NumElements = AT->getNumElements();
546
547      // If this is an array index and the index is not constant, we cannot
548      // promote... that is unless the array has exactly one or two elements in
549      // it, in which case we CAN promote it, but we have to canonicalize this
550      // out if this is the only problem.
551      if ((NumElements == 1 || NumElements == 2) &&
552          AllUsersAreLoads(GEPI)) {
553        Info.needsCleanup = true;
554        return;  // Canonicalization required!
555      }
556      return MarkUnsafe(Info);
557    }
558  }
559
560  // Walk through the GEP type indices, checking the types that this indexes
561  // into.
562  for (; I != E; ++I) {
563    // Ignore struct elements, no extra checking needed for these.
564    if (isa<StructType>(*I))
565      continue;
566
567    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
568    if (!IdxVal) return MarkUnsafe(Info);
569
570    // Are all indices still zero?
571    IsAllZeroIndices &= IdxVal->isZero();
572
573    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
574      // This GEP indexes an array.  Verify that this is an in-range constant
575      // integer. Specifically, consider A[0][i]. We cannot know that the user
576      // isn't doing invalid things like allowing i to index an out-of-range
577      // subscript that accesses A[1].  Because of this, we have to reject SROA
578      // of any accesses into structs where any of the components are variables.
579      if (IdxVal->getZExtValue() >= AT->getNumElements())
580        return MarkUnsafe(Info);
581    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
582      if (IdxVal->getZExtValue() >= VT->getNumElements())
583        return MarkUnsafe(Info);
584    }
585  }
586
587  // If there are any non-simple uses of this getelementptr, make sure to reject
588  // them.
589  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
590}
591
592/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
593/// intrinsic can be promoted by SROA.  At this point, we know that the operand
594/// of the memintrinsic is a pointer to the beginning of the allocation.
595void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
596                                          unsigned OpNo, AllocaInfo &Info) {
597  // If not constant length, give up.
598  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
599  if (!Length) return MarkUnsafe(Info);
600
601  // If not the whole aggregate, give up.
602  if (Length->getZExtValue() !=
603      TD->getTypePaddedSize(AI->getType()->getElementType()))
604    return MarkUnsafe(Info);
605
606  // We only know about memcpy/memset/memmove.
607  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
608    return MarkUnsafe(Info);
609
610  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
611  // into or out of the aggregate.
612  if (OpNo == 1)
613    Info.isMemCpyDst = true;
614  else {
615    assert(OpNo == 2);
616    Info.isMemCpySrc = true;
617  }
618}
619
620/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
621/// are
622void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
623                                          AllocaInfo &Info) {
624  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
625       UI != E; ++UI) {
626    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
627      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
628    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
629      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
630    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
631      if (SI->isVolatile())
632        return MarkUnsafe(Info);
633
634      // If storing the entire alloca in one chunk through a bitcasted pointer
635      // to integer, we can transform it.  This happens (for example) when you
636      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
637      // memcpy case and occurs in various "byval" cases and emulated memcpys.
638      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
639          TD->getTypePaddedSize(SI->getOperand(0)->getType()) ==
640          TD->getTypePaddedSize(AI->getType()->getElementType())) {
641        Info.isMemCpyDst = true;
642        continue;
643      }
644      return MarkUnsafe(Info);
645    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
646      if (LI->isVolatile())
647        return MarkUnsafe(Info);
648
649      // If loading the entire alloca in one chunk through a bitcasted pointer
650      // to integer, we can transform it.  This happens (for example) when you
651      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
652      // memcpy case and occurs in various "byval" cases and emulated memcpys.
653      if (isa<IntegerType>(LI->getType()) &&
654          TD->getTypePaddedSize(LI->getType()) ==
655          TD->getTypePaddedSize(AI->getType()->getElementType())) {
656        Info.isMemCpySrc = true;
657        continue;
658      }
659      return MarkUnsafe(Info);
660    } else if (isa<DbgInfoIntrinsic>(UI)) {
661      // If one user is DbgInfoIntrinsic then check if all users are
662      // DbgInfoIntrinsics.
663      if (OnlyUsedByDbgInfoIntrinsics(BC)) {
664        Info.needsCleanup = true;
665        return;
666      }
667      else
668        MarkUnsafe(Info);
669    }
670    else {
671      return MarkUnsafe(Info);
672    }
673    if (Info.isUnsafe) return;
674  }
675}
676
677/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
678/// to its first element.  Transform users of the cast to use the new values
679/// instead.
680void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
681                                      SmallVector<AllocaInst*, 32> &NewElts) {
682  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
683  while (UI != UE) {
684    Instruction *User = cast<Instruction>(*UI++);
685    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
686      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
687      if (BCU->use_empty()) BCU->eraseFromParent();
688      continue;
689    }
690
691    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
692      // This must be memcpy/memmove/memset of the entire aggregate.
693      // Split into one per element.
694      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
695      continue;
696    }
697
698    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
699      // If this is a store of the entire alloca from an integer, rewrite it.
700      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
701      continue;
702    }
703
704    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
705      // If this is a load of the entire alloca to an integer, rewrite it.
706      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
707      continue;
708    }
709
710    // Otherwise it must be some other user of a gep of the first pointer.  Just
711    // leave these alone.
712    continue;
713  }
714}
715
716/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
717/// Rewrite it to copy or set the elements of the scalarized memory.
718void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
719                                        AllocationInst *AI,
720                                        SmallVector<AllocaInst*, 32> &NewElts) {
721
722  // If this is a memcpy/memmove, construct the other pointer as the
723  // appropriate type.
724  Value *OtherPtr = 0;
725  if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
726    if (BCInst == MCI->getRawDest())
727      OtherPtr = MCI->getRawSource();
728    else {
729      assert(BCInst == MCI->getRawSource());
730      OtherPtr = MCI->getRawDest();
731    }
732  } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
733    if (BCInst == MMI->getRawDest())
734      OtherPtr = MMI->getRawSource();
735    else {
736      assert(BCInst == MMI->getRawSource());
737      OtherPtr = MMI->getRawDest();
738    }
739  }
740
741  // If there is an other pointer, we want to convert it to the same pointer
742  // type as AI has, so we can GEP through it safely.
743  if (OtherPtr) {
744    // It is likely that OtherPtr is a bitcast, if so, remove it.
745    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
746      OtherPtr = BC->getOperand(0);
747    // All zero GEPs are effectively bitcasts.
748    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
749      if (GEP->hasAllZeroIndices())
750        OtherPtr = GEP->getOperand(0);
751
752    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
753      if (BCE->getOpcode() == Instruction::BitCast)
754        OtherPtr = BCE->getOperand(0);
755
756    // If the pointer is not the right type, insert a bitcast to the right
757    // type.
758    if (OtherPtr->getType() != AI->getType())
759      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
760                                 MI);
761  }
762
763  // Process each element of the aggregate.
764  Value *TheFn = MI->getOperand(0);
765  const Type *BytePtrTy = MI->getRawDest()->getType();
766  bool SROADest = MI->getRawDest() == BCInst;
767
768  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
769
770  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
771    // If this is a memcpy/memmove, emit a GEP of the other element address.
772    Value *OtherElt = 0;
773    if (OtherPtr) {
774      Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
775      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
776                                           OtherPtr->getNameStr()+"."+utostr(i),
777                                           MI);
778    }
779
780    Value *EltPtr = NewElts[i];
781    const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
782
783    // If we got down to a scalar, insert a load or store as appropriate.
784    if (EltTy->isSingleValueType()) {
785      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
786        Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
787                                  MI);
788        new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
789        continue;
790      }
791      assert(isa<MemSetInst>(MI));
792
793      // If the stored element is zero (common case), just store a null
794      // constant.
795      Constant *StoreVal;
796      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
797        if (CI->isZero()) {
798          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
799        } else {
800          // If EltTy is a vector type, get the element type.
801          const Type *ValTy = EltTy;
802          if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
803            ValTy = VTy->getElementType();
804
805          // Construct an integer with the right value.
806          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
807          APInt OneVal(EltSize, CI->getZExtValue());
808          APInt TotalVal(OneVal);
809          // Set each byte.
810          for (unsigned i = 0; 8*i < EltSize; ++i) {
811            TotalVal = TotalVal.shl(8);
812            TotalVal |= OneVal;
813          }
814
815          // Convert the integer value to the appropriate type.
816          StoreVal = ConstantInt::get(TotalVal);
817          if (isa<PointerType>(ValTy))
818            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
819          else if (ValTy->isFloatingPoint())
820            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
821          assert(StoreVal->getType() == ValTy && "Type mismatch!");
822
823          // If the requested value was a vector constant, create it.
824          if (EltTy != ValTy) {
825            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
826            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
827            StoreVal = ConstantVector::get(&Elts[0], NumElts);
828          }
829        }
830        new StoreInst(StoreVal, EltPtr, MI);
831        continue;
832      }
833      // Otherwise, if we're storing a byte variable, use a memset call for
834      // this element.
835    }
836
837    // Cast the element pointer to BytePtrTy.
838    if (EltPtr->getType() != BytePtrTy)
839      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
840
841    // Cast the other pointer (if we have one) to BytePtrTy.
842    if (OtherElt && OtherElt->getType() != BytePtrTy)
843      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
844                                 MI);
845
846    unsigned EltSize = TD->getTypePaddedSize(EltTy);
847
848    // Finally, insert the meminst for this element.
849    if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
850      Value *Ops[] = {
851        SROADest ? EltPtr : OtherElt,  // Dest ptr
852        SROADest ? OtherElt : EltPtr,  // Src ptr
853        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
854        Zero  // Align
855      };
856      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
857    } else {
858      assert(isa<MemSetInst>(MI));
859      Value *Ops[] = {
860        EltPtr, MI->getOperand(2),  // Dest, Value,
861        ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
862        Zero  // Align
863      };
864      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
865    }
866  }
867  MI->eraseFromParent();
868}
869
870/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
871/// overwrites the entire allocation.  Extract out the pieces of the stored
872/// integer and store them individually.
873void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
874                                         AllocationInst *AI,
875                                         SmallVector<AllocaInst*, 32> &NewElts){
876  // Extract each element out of the integer according to its structure offset
877  // and store the element value to the individual alloca.
878  Value *SrcVal = SI->getOperand(0);
879  const Type *AllocaEltTy = AI->getType()->getElementType();
880  uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
881
882  // If this isn't a store of an integer to the whole alloca, it may be a store
883  // to the first element.  Just ignore the store in this case and normal SROA
884  // will handle it.
885  if (!isa<IntegerType>(SrcVal->getType()) ||
886      TD->getTypePaddedSizeInBits(SrcVal->getType()) != AllocaSizeBits)
887    return;
888
889  DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
890
891  // There are two forms here: AI could be an array or struct.  Both cases
892  // have different ways to compute the element offset.
893  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
894    const StructLayout *Layout = TD->getStructLayout(EltSTy);
895
896    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
897      // Get the number of bits to shift SrcVal to get the value.
898      const Type *FieldTy = EltSTy->getElementType(i);
899      uint64_t Shift = Layout->getElementOffsetInBits(i);
900
901      if (TD->isBigEndian())
902        Shift = AllocaSizeBits-Shift-TD->getTypePaddedSizeInBits(FieldTy);
903
904      Value *EltVal = SrcVal;
905      if (Shift) {
906        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
907        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
908                                            "sroa.store.elt", SI);
909      }
910
911      // Truncate down to an integer of the right size.
912      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
913
914      // Ignore zero sized fields like {}, they obviously contain no data.
915      if (FieldSizeBits == 0) continue;
916
917      if (FieldSizeBits != AllocaSizeBits)
918        EltVal = new TruncInst(EltVal, IntegerType::get(FieldSizeBits), "", SI);
919      Value *DestField = NewElts[i];
920      if (EltVal->getType() == FieldTy) {
921        // Storing to an integer field of this size, just do it.
922      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
923        // Bitcast to the right element type (for fp/vector values).
924        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
925      } else {
926        // Otherwise, bitcast the dest pointer (for aggregates).
927        DestField = new BitCastInst(DestField,
928                                    PointerType::getUnqual(EltVal->getType()),
929                                    "", SI);
930      }
931      new StoreInst(EltVal, DestField, SI);
932    }
933
934  } else {
935    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
936    const Type *ArrayEltTy = ATy->getElementType();
937    uint64_t ElementOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
938    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
939
940    uint64_t Shift;
941
942    if (TD->isBigEndian())
943      Shift = AllocaSizeBits-ElementOffset;
944    else
945      Shift = 0;
946
947    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
948      // Ignore zero sized fields like {}, they obviously contain no data.
949      if (ElementSizeBits == 0) continue;
950
951      Value *EltVal = SrcVal;
952      if (Shift) {
953        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
954        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
955                                            "sroa.store.elt", SI);
956      }
957
958      // Truncate down to an integer of the right size.
959      if (ElementSizeBits != AllocaSizeBits)
960        EltVal = new TruncInst(EltVal, IntegerType::get(ElementSizeBits),"",SI);
961      Value *DestField = NewElts[i];
962      if (EltVal->getType() == ArrayEltTy) {
963        // Storing to an integer field of this size, just do it.
964      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
965        // Bitcast to the right element type (for fp/vector values).
966        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
967      } else {
968        // Otherwise, bitcast the dest pointer (for aggregates).
969        DestField = new BitCastInst(DestField,
970                                    PointerType::getUnqual(EltVal->getType()),
971                                    "", SI);
972      }
973      new StoreInst(EltVal, DestField, SI);
974
975      if (TD->isBigEndian())
976        Shift -= ElementOffset;
977      else
978        Shift += ElementOffset;
979    }
980  }
981
982  SI->eraseFromParent();
983}
984
985/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
986/// an integer.  Load the individual pieces to form the aggregate value.
987void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
988                                        SmallVector<AllocaInst*, 32> &NewElts) {
989  // Extract each element out of the NewElts according to its structure offset
990  // and form the result value.
991  const Type *AllocaEltTy = AI->getType()->getElementType();
992  uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
993
994  // If this isn't a load of the whole alloca to an integer, it may be a load
995  // of the first element.  Just ignore the load in this case and normal SROA
996  // will handle it.
997  if (!isa<IntegerType>(LI->getType()) ||
998      TD->getTypePaddedSizeInBits(LI->getType()) != AllocaSizeBits)
999    return;
1000
1001  DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
1002
1003  // There are two forms here: AI could be an array or struct.  Both cases
1004  // have different ways to compute the element offset.
1005  const StructLayout *Layout = 0;
1006  uint64_t ArrayEltBitOffset = 0;
1007  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1008    Layout = TD->getStructLayout(EltSTy);
1009  } else {
1010    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1011    ArrayEltBitOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
1012  }
1013
1014  Value *ResultVal = Constant::getNullValue(LI->getType());
1015
1016  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1017    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1018    // the pointer to an integer of the same size before doing the load.
1019    Value *SrcField = NewElts[i];
1020    const Type *FieldTy =
1021      cast<PointerType>(SrcField->getType())->getElementType();
1022    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1023
1024    // Ignore zero sized fields like {}, they obviously contain no data.
1025    if (FieldSizeBits == 0) continue;
1026
1027    const IntegerType *FieldIntTy = IntegerType::get(FieldSizeBits);
1028    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1029        !isa<VectorType>(FieldTy))
1030      SrcField = new BitCastInst(SrcField, PointerType::getUnqual(FieldIntTy),
1031                                 "", LI);
1032    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1033
1034    // If SrcField is a fp or vector of the right size but that isn't an
1035    // integer type, bitcast to an integer so we can shift it.
1036    if (SrcField->getType() != FieldIntTy)
1037      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1038
1039    // Zero extend the field to be the same size as the final alloca so that
1040    // we can shift and insert it.
1041    if (SrcField->getType() != ResultVal->getType())
1042      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1043
1044    // Determine the number of bits to shift SrcField.
1045    uint64_t Shift;
1046    if (Layout) // Struct case.
1047      Shift = Layout->getElementOffsetInBits(i);
1048    else  // Array case.
1049      Shift = i*ArrayEltBitOffset;
1050
1051    if (TD->isBigEndian())
1052      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1053
1054    if (Shift) {
1055      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1056      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1057    }
1058
1059    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1060  }
1061
1062  LI->replaceAllUsesWith(ResultVal);
1063  LI->eraseFromParent();
1064}
1065
1066
1067/// HasPadding - Return true if the specified type has any structure or
1068/// alignment padding, false otherwise.
1069static bool HasPadding(const Type *Ty, const TargetData &TD) {
1070  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1071    const StructLayout *SL = TD.getStructLayout(STy);
1072    unsigned PrevFieldBitOffset = 0;
1073    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1074      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1075
1076      // Padding in sub-elements?
1077      if (HasPadding(STy->getElementType(i), TD))
1078        return true;
1079
1080      // Check to see if there is any padding between this element and the
1081      // previous one.
1082      if (i) {
1083        unsigned PrevFieldEnd =
1084        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1085        if (PrevFieldEnd < FieldBitOffset)
1086          return true;
1087      }
1088
1089      PrevFieldBitOffset = FieldBitOffset;
1090    }
1091
1092    //  Check for tail padding.
1093    if (unsigned EltCount = STy->getNumElements()) {
1094      unsigned PrevFieldEnd = PrevFieldBitOffset +
1095                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1096      if (PrevFieldEnd < SL->getSizeInBits())
1097        return true;
1098    }
1099
1100  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1101    return HasPadding(ATy->getElementType(), TD);
1102  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1103    return HasPadding(VTy->getElementType(), TD);
1104  }
1105  return TD.getTypeSizeInBits(Ty) != TD.getTypePaddedSizeInBits(Ty);
1106}
1107
1108/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1109/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1110/// or 1 if safe after canonicalization has been performed.
1111///
1112int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1113  // Loop over the use list of the alloca.  We can only transform it if all of
1114  // the users are safe to transform.
1115  AllocaInfo Info;
1116
1117  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1118       I != E; ++I) {
1119    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1120    if (Info.isUnsafe) {
1121      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
1122      return 0;
1123    }
1124  }
1125
1126  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1127  // source and destination, we have to be careful.  In particular, the memcpy
1128  // could be moving around elements that live in structure padding of the LLVM
1129  // types, but may actually be used.  In these cases, we refuse to promote the
1130  // struct.
1131  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1132      HasPadding(AI->getType()->getElementType(), *TD))
1133    return 0;
1134
1135  // If we require cleanup, return 1, otherwise return 3.
1136  return Info.needsCleanup ? 1 : 3;
1137}
1138
1139/// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1140/// is canonicalized here.
1141void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1142  gep_type_iterator I = gep_type_begin(GEPI);
1143  ++I;
1144
1145  const ArrayType *AT = dyn_cast<ArrayType>(*I);
1146  if (!AT)
1147    return;
1148
1149  uint64_t NumElements = AT->getNumElements();
1150
1151  if (isa<ConstantInt>(I.getOperand()))
1152    return;
1153
1154  if (NumElements == 1) {
1155    GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
1156    return;
1157  }
1158
1159  assert(NumElements == 2 && "Unhandled case!");
1160  // All users of the GEP must be loads.  At each use of the GEP, insert
1161  // two loads of the appropriate indexed GEP and select between them.
1162  Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
1163                              Constant::getNullValue(I.getOperand()->getType()),
1164                              "isone", GEPI);
1165  // Insert the new GEP instructions, which are properly indexed.
1166  SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1167  Indices[1] = Constant::getNullValue(Type::Int32Ty);
1168  Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1169                                             Indices.begin(),
1170                                             Indices.end(),
1171                                             GEPI->getName()+".0", GEPI);
1172  Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
1173  Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1174                                            Indices.begin(),
1175                                            Indices.end(),
1176                                            GEPI->getName()+".1", GEPI);
1177  // Replace all loads of the variable index GEP with loads from both
1178  // indexes and a select.
1179  while (!GEPI->use_empty()) {
1180    LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1181    Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1182    Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1183    Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1184    LI->replaceAllUsesWith(R);
1185    LI->eraseFromParent();
1186  }
1187  GEPI->eraseFromParent();
1188}
1189
1190
1191/// CleanupAllocaUsers - If SROA reported that it can promote the specified
1192/// allocation, but only if cleaned up, perform the cleanups required.
1193void SROA::CleanupAllocaUsers(AllocationInst *AI) {
1194  // At this point, we know that the end result will be SROA'd and promoted, so
1195  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1196  // up.
1197  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1198       UI != E; ) {
1199    User *U = *UI++;
1200    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1201      CleanupGEP(GEPI);
1202    else if (Instruction *I = dyn_cast<Instruction>(U)) {
1203      SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1204      if (OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1205        // Safe to remove debug info uses.
1206        while (!DbgInUses.empty()) {
1207          DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1208          DI->eraseFromParent();
1209        }
1210        I->eraseFromParent();
1211      }
1212    }
1213  }
1214}
1215
1216/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1217/// the offset specified by Offset (which is specified in bytes).
1218///
1219/// There are two cases we handle here:
1220///   1) A union of vector types of the same size and potentially its elements.
1221///      Here we turn element accesses into insert/extract element operations.
1222///      This promotes a <4 x float> with a store of float to the third element
1223///      into a <4 x float> that uses insert element.
1224///   2) A fully general blob of memory, which we turn into some (potentially
1225///      large) integer type with extract and insert operations where the loads
1226///      and stores would mutate the memory.
1227static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1228                        unsigned AllocaSize, const TargetData &TD) {
1229  // If this could be contributing to a vector, analyze it.
1230  if (VecTy != Type::VoidTy) { // either null or a vector type.
1231
1232    // If the In type is a vector that is the same size as the alloca, see if it
1233    // matches the existing VecTy.
1234    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1235      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1236        // If we're storing/loading a vector of the right size, allow it as a
1237        // vector.  If this the first vector we see, remember the type so that
1238        // we know the element size.
1239        if (VecTy == 0)
1240          VecTy = VInTy;
1241        return;
1242      }
1243    } else if (In == Type::FloatTy || In == Type::DoubleTy ||
1244               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1245                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1246      // If we're accessing something that could be an element of a vector, see
1247      // if the implied vector agrees with what we already have and if Offset is
1248      // compatible with it.
1249      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1250      if (Offset % EltSize == 0 &&
1251          AllocaSize % EltSize == 0 &&
1252          (VecTy == 0 ||
1253           cast<VectorType>(VecTy)->getElementType()
1254                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1255        if (VecTy == 0)
1256          VecTy = VectorType::get(In, AllocaSize/EltSize);
1257        return;
1258      }
1259    }
1260  }
1261
1262  // Otherwise, we have a case that we can't handle with an optimized vector
1263  // form.  We can still turn this into a large integer.
1264  VecTy = Type::VoidTy;
1265}
1266
1267/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1268/// its accesses to use a to single vector type, return true, and set VecTy to
1269/// the new type.  If we could convert the alloca into a single promotable
1270/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1271/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1272/// is the current offset from the base of the alloca being analyzed.
1273///
1274/// If we see at least one access to the value that is as a vector type, set the
1275/// SawVec flag.
1276///
1277bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1278                              bool &SawVec, uint64_t Offset,
1279                              unsigned AllocaSize) {
1280  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1281    Instruction *User = cast<Instruction>(*UI);
1282
1283    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1284      // Don't break volatile loads.
1285      if (LI->isVolatile())
1286        return false;
1287      MergeInType(LI->getType(), Offset, VecTy, AllocaSize, *TD);
1288      SawVec |= isa<VectorType>(LI->getType());
1289      continue;
1290    }
1291
1292    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1293      // Storing the pointer, not into the value?
1294      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1295      MergeInType(SI->getOperand(0)->getType(), Offset, VecTy, AllocaSize, *TD);
1296      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1297      continue;
1298    }
1299
1300    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1301      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1302                              AllocaSize))
1303        return false;
1304      IsNotTrivial = true;
1305      continue;
1306    }
1307
1308    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1309      // If this is a GEP with a variable indices, we can't handle it.
1310      if (!GEP->hasAllConstantIndices())
1311        return false;
1312
1313      // Compute the offset that this GEP adds to the pointer.
1314      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1315      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1316                                                &Indices[0], Indices.size());
1317      // See if all uses can be converted.
1318      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1319                              AllocaSize))
1320        return false;
1321      IsNotTrivial = true;
1322      continue;
1323    }
1324
1325    // If this is a constant sized memset of a constant value (e.g. 0) we can
1326    // handle it.
1327    if (isa<MemSetInst>(User) &&
1328        // Store of constant value.
1329        isa<ConstantInt>(User->getOperand(2)) &&
1330        // Store with constant size.
1331        isa<ConstantInt>(User->getOperand(3))) {
1332      VecTy = Type::VoidTy;
1333      IsNotTrivial = true;
1334      continue;
1335    }
1336
1337    // Otherwise, we cannot handle this!
1338    return false;
1339  }
1340
1341  return true;
1342}
1343
1344
1345/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1346/// directly.  This happens when we are converting an "integer union" to a
1347/// single integer scalar, or when we are converting a "vector union" to a
1348/// vector with insert/extractelement instructions.
1349///
1350/// Offset is an offset from the original alloca, in bits that need to be
1351/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1352void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1353  while (!Ptr->use_empty()) {
1354    Instruction *User = cast<Instruction>(Ptr->use_back());
1355
1356    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1357      ConvertUsesToScalar(CI, NewAI, Offset);
1358      CI->eraseFromParent();
1359      continue;
1360    }
1361
1362    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1363      // Compute the offset that this GEP adds to the pointer.
1364      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1365      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1366                                                &Indices[0], Indices.size());
1367      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1368      GEP->eraseFromParent();
1369      continue;
1370    }
1371
1372    IRBuilder<> Builder(User->getParent(), User);
1373
1374    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1375      // The load is a bit extract from NewAI shifted right by Offset bits.
1376      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1377      Value *NewLoadVal
1378        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1379      LI->replaceAllUsesWith(NewLoadVal);
1380      LI->eraseFromParent();
1381      continue;
1382    }
1383
1384    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1385      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1386      Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
1387      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1388                                             Builder);
1389      Builder.CreateStore(New, NewAI);
1390      SI->eraseFromParent();
1391      continue;
1392    }
1393
1394    // If this is a constant sized memset of a constant value (e.g. 0) we can
1395    // transform it into a store of the expanded constant value.
1396    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1397      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1398      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1399      unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1400
1401      // Compute the value replicated the right number of times.
1402      APInt APVal(NumBytes*8, Val);
1403
1404      // Splat the value if non-zero.
1405      if (Val)
1406        for (unsigned i = 1; i != NumBytes; ++i)
1407          APVal |= APVal << 8;
1408
1409      Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
1410      Value *New = ConvertScalar_InsertValue(ConstantInt::get(APVal), Old,
1411                                             Offset, Builder);
1412      Builder.CreateStore(New, NewAI);
1413      MSI->eraseFromParent();
1414      continue;
1415    }
1416
1417
1418    assert(0 && "Unsupported operation!");
1419    abort();
1420  }
1421}
1422
1423/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1424/// or vector value FromVal, extracting the bits from the offset specified by
1425/// Offset.  This returns the value, which is of type ToType.
1426///
1427/// This happens when we are converting an "integer union" to a single
1428/// integer scalar, or when we are converting a "vector union" to a vector with
1429/// insert/extractelement instructions.
1430///
1431/// Offset is an offset from the original alloca, in bits that need to be
1432/// shifted to the right.
1433Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1434                                        uint64_t Offset, IRBuilder<> &Builder) {
1435  // If the load is of the whole new alloca, no conversion is needed.
1436  if (FromVal->getType() == ToType && Offset == 0)
1437    return FromVal;
1438
1439  // If the result alloca is a vector type, this is either an element
1440  // access or a bitcast to another vector type of the same size.
1441  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1442    if (isa<VectorType>(ToType))
1443      return Builder.CreateBitCast(FromVal, ToType, "tmp");
1444
1445    // Otherwise it must be an element access.
1446    unsigned Elt = 0;
1447    if (Offset) {
1448      unsigned EltSize = TD->getTypePaddedSizeInBits(VTy->getElementType());
1449      Elt = Offset/EltSize;
1450      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1451    }
1452    // Return the element extracted out of it.
1453    Value *V = Builder.CreateExtractElement(FromVal,
1454                                            ConstantInt::get(Type::Int32Ty,Elt),
1455                                            "tmp");
1456    if (V->getType() != ToType)
1457      V = Builder.CreateBitCast(V, ToType, "tmp");
1458    return V;
1459  }
1460
1461  // If ToType is a first class aggregate, extract out each of the pieces and
1462  // use insertvalue's to form the FCA.
1463  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1464    const StructLayout &Layout = *TD->getStructLayout(ST);
1465    Value *Res = UndefValue::get(ST);
1466    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1467      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1468                                        Offset+Layout.getElementOffsetInBits(i),
1469                                              Builder);
1470      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1471    }
1472    return Res;
1473  }
1474
1475  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1476    uint64_t EltSize = TD->getTypePaddedSizeInBits(AT->getElementType());
1477    Value *Res = UndefValue::get(AT);
1478    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1479      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1480                                              Offset+i*EltSize, Builder);
1481      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1482    }
1483    return Res;
1484  }
1485
1486  // Otherwise, this must be a union that was converted to an integer value.
1487  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1488
1489  // If this is a big-endian system and the load is narrower than the
1490  // full alloca type, we need to do a shift to get the right bits.
1491  int ShAmt = 0;
1492  if (TD->isBigEndian()) {
1493    // On big-endian machines, the lowest bit is stored at the bit offset
1494    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1495    // integers with a bitwidth that is not a multiple of 8.
1496    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1497            TD->getTypeStoreSizeInBits(ToType) - Offset;
1498  } else {
1499    ShAmt = Offset;
1500  }
1501
1502  // Note: we support negative bitwidths (with shl) which are not defined.
1503  // We do this to support (f.e.) loads off the end of a structure where
1504  // only some bits are used.
1505  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1506    FromVal = Builder.CreateLShr(FromVal, ConstantInt::get(FromVal->getType(),
1507                                                           ShAmt), "tmp");
1508  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1509    FromVal = Builder.CreateShl(FromVal, ConstantInt::get(FromVal->getType(),
1510                                                          -ShAmt), "tmp");
1511
1512  // Finally, unconditionally truncate the integer to the right width.
1513  unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1514  if (LIBitWidth < NTy->getBitWidth())
1515    FromVal = Builder.CreateTrunc(FromVal, IntegerType::get(LIBitWidth), "tmp");
1516  else if (LIBitWidth > NTy->getBitWidth())
1517    FromVal = Builder.CreateZExt(FromVal, IntegerType::get(LIBitWidth), "tmp");
1518
1519  // If the result is an integer, this is a trunc or bitcast.
1520  if (isa<IntegerType>(ToType)) {
1521    // Should be done.
1522  } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1523    // Just do a bitcast, we know the sizes match up.
1524    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1525  } else {
1526    // Otherwise must be a pointer.
1527    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1528  }
1529  assert(FromVal->getType() == ToType && "Didn't convert right?");
1530  return FromVal;
1531}
1532
1533
1534/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1535/// or vector value "Old" at the offset specified by Offset.
1536///
1537/// This happens when we are converting an "integer union" to a
1538/// single integer scalar, or when we are converting a "vector union" to a
1539/// vector with insert/extractelement instructions.
1540///
1541/// Offset is an offset from the original alloca, in bits that need to be
1542/// shifted to the right.
1543Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1544                                       uint64_t Offset, IRBuilder<> &Builder) {
1545
1546  // Convert the stored type to the actual type, shift it left to insert
1547  // then 'or' into place.
1548  const Type *AllocaType = Old->getType();
1549
1550  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1551    // If the result alloca is a vector type, this is either an element
1552    // access or a bitcast to another vector type.
1553    if (isa<VectorType>(SV->getType())) {
1554      SV = Builder.CreateBitCast(SV, AllocaType, "tmp");
1555    } else {
1556      // Must be an element insertion.
1557      unsigned Elt = Offset/TD->getTypePaddedSizeInBits(VTy->getElementType());
1558
1559      if (SV->getType() != VTy->getElementType())
1560        SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1561
1562      SV = Builder.CreateInsertElement(Old, SV,
1563                                       ConstantInt::get(Type::Int32Ty, Elt),
1564                                       "tmp");
1565    }
1566    return SV;
1567  }
1568
1569  // If SV is a first-class aggregate value, insert each value recursively.
1570  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1571    const StructLayout &Layout = *TD->getStructLayout(ST);
1572    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1573      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1574      Old = ConvertScalar_InsertValue(Elt, Old,
1575                                      Offset+Layout.getElementOffsetInBits(i),
1576                                      Builder);
1577    }
1578    return Old;
1579  }
1580
1581  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1582    uint64_t EltSize = TD->getTypePaddedSizeInBits(AT->getElementType());
1583    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1584      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1585      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1586    }
1587    return Old;
1588  }
1589
1590  // If SV is a float, convert it to the appropriate integer type.
1591  // If it is a pointer, do the same.
1592  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1593  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1594  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1595  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1596  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1597    SV = Builder.CreateBitCast(SV, IntegerType::get(SrcWidth), "tmp");
1598  else if (isa<PointerType>(SV->getType()))
1599    SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(), "tmp");
1600
1601  // Zero extend or truncate the value if needed.
1602  if (SV->getType() != AllocaType) {
1603    if (SV->getType()->getPrimitiveSizeInBits() <
1604             AllocaType->getPrimitiveSizeInBits())
1605      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1606    else {
1607      // Truncation may be needed if storing more than the alloca can hold
1608      // (undefined behavior).
1609      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1610      SrcWidth = DestWidth;
1611      SrcStoreWidth = DestStoreWidth;
1612    }
1613  }
1614
1615  // If this is a big-endian system and the store is narrower than the
1616  // full alloca type, we need to do a shift to get the right bits.
1617  int ShAmt = 0;
1618  if (TD->isBigEndian()) {
1619    // On big-endian machines, the lowest bit is stored at the bit offset
1620    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1621    // integers with a bitwidth that is not a multiple of 8.
1622    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1623  } else {
1624    ShAmt = Offset;
1625  }
1626
1627  // Note: we support negative bitwidths (with shr) which are not defined.
1628  // We do this to support (f.e.) stores off the end of a structure where
1629  // only some bits in the structure are set.
1630  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1631  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1632    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt), "tmp");
1633    Mask <<= ShAmt;
1634  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1635    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt), "tmp");
1636    Mask = Mask.lshr(-ShAmt);
1637  }
1638
1639  // Mask out the bits we are about to insert from the old value, and or
1640  // in the new bits.
1641  if (SrcWidth != DestWidth) {
1642    assert(DestWidth > SrcWidth);
1643    Old = Builder.CreateAnd(Old, ConstantInt::get(~Mask), "mask");
1644    SV = Builder.CreateOr(Old, SV, "ins");
1645  }
1646  return SV;
1647}
1648
1649
1650
1651/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1652/// some part of a constant global variable.  This intentionally only accepts
1653/// constant expressions because we don't can't rewrite arbitrary instructions.
1654static bool PointsToConstantGlobal(Value *V) {
1655  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1656    return GV->isConstant();
1657  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1658    if (CE->getOpcode() == Instruction::BitCast ||
1659        CE->getOpcode() == Instruction::GetElementPtr)
1660      return PointsToConstantGlobal(CE->getOperand(0));
1661  return false;
1662}
1663
1664/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1665/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1666/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1667/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1668/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1669/// the alloca, and if the source pointer is a pointer to a constant  global, we
1670/// can optimize this.
1671static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1672                                           bool isOffset) {
1673  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1674    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1675      // Ignore non-volatile loads, they are always ok.
1676      if (!LI->isVolatile())
1677        continue;
1678
1679    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1680      // If uses of the bitcast are ok, we are ok.
1681      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1682        return false;
1683      continue;
1684    }
1685    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1686      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1687      // doesn't, it does.
1688      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1689                                         isOffset || !GEP->hasAllZeroIndices()))
1690        return false;
1691      continue;
1692    }
1693
1694    // If this is isn't our memcpy/memmove, reject it as something we can't
1695    // handle.
1696    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1697      return false;
1698
1699    // If we already have seen a copy, reject the second one.
1700    if (TheCopy) return false;
1701
1702    // If the pointer has been offset from the start of the alloca, we can't
1703    // safely handle this.
1704    if (isOffset) return false;
1705
1706    // If the memintrinsic isn't using the alloca as the dest, reject it.
1707    if (UI.getOperandNo() != 1) return false;
1708
1709    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1710
1711    // If the source of the memcpy/move is not a constant global, reject it.
1712    if (!PointsToConstantGlobal(MI->getOperand(2)))
1713      return false;
1714
1715    // Otherwise, the transform is safe.  Remember the copy instruction.
1716    TheCopy = MI;
1717  }
1718  return true;
1719}
1720
1721/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1722/// modified by a copy from a constant global.  If we can prove this, we can
1723/// replace any uses of the alloca with uses of the global directly.
1724Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1725  Instruction *TheCopy = 0;
1726  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1727    return TheCopy;
1728  return 0;
1729}
1730