ScalarReplAggregates.cpp revision 90747e34e6ca7162eaf8dde032649071045f161d
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DebugInfo.h"
34#include "llvm/Analysis/DIBuilder.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/Loads.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Transforms/Utils/PromoteMemToReg.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include "llvm/Transforms/Utils/SSAUpdater.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/GetElementPtrTypeIterator.h"
46#include "llvm/Support/IRBuilder.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/SetVector.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/Statistic.h"
52using namespace llvm;
53
54STATISTIC(NumReplaced,  "Number of allocas broken up");
55STATISTIC(NumPromoted,  "Number of allocas promoted");
56STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
57STATISTIC(NumConverted, "Number of aggregates converted to scalar");
58STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
59
60namespace {
61  struct SROA : public FunctionPass {
62    SROA(int T, bool hasDT, char &ID)
63      : FunctionPass(ID), HasDomTree(hasDT) {
64      if (T == -1)
65        SRThreshold = 128;
66      else
67        SRThreshold = T;
68    }
69
70    bool runOnFunction(Function &F);
71
72    bool performScalarRepl(Function &F);
73    bool performPromotion(Function &F);
74
75  private:
76    bool HasDomTree;
77    TargetData *TD;
78
79    /// DeadInsts - Keep track of instructions we have made dead, so that
80    /// we can remove them after we are done working.
81    SmallVector<Value*, 32> DeadInsts;
82
83    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84    /// information about the uses.  All these fields are initialized to false
85    /// and set to true when something is learned.
86    struct AllocaInfo {
87      /// The alloca to promote.
88      AllocaInst *AI;
89
90      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
91      /// looping and avoid redundant work.
92      SmallPtrSet<PHINode*, 8> CheckedPHIs;
93
94      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
95      bool isUnsafe : 1;
96
97      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
98      bool isMemCpySrc : 1;
99
100      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
101      bool isMemCpyDst : 1;
102
103      /// hasSubelementAccess - This is true if a subelement of the alloca is
104      /// ever accessed, or false if the alloca is only accessed with mem
105      /// intrinsics or load/store that only access the entire alloca at once.
106      bool hasSubelementAccess : 1;
107
108      /// hasALoadOrStore - This is true if there are any loads or stores to it.
109      /// The alloca may just be accessed with memcpy, for example, which would
110      /// not set this.
111      bool hasALoadOrStore : 1;
112
113      explicit AllocaInfo(AllocaInst *ai)
114        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
115          hasSubelementAccess(false), hasALoadOrStore(false) {}
116    };
117
118    unsigned SRThreshold;
119
120    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
121      I.isUnsafe = true;
122      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
123    }
124
125    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
126
127    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
128    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
129                                         AllocaInfo &Info);
130    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
131    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
132                         Type *MemOpType, bool isStore, AllocaInfo &Info,
133                         Instruction *TheAccess, bool AllowWholeAccess);
134    bool TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size);
135    uint64_t FindElementAndOffset(Type *&T, uint64_t &Offset,
136                                  Type *&IdxTy);
137
138    void DoScalarReplacement(AllocaInst *AI,
139                             std::vector<AllocaInst*> &WorkList);
140    void DeleteDeadInstructions();
141
142    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
143                              SmallVector<AllocaInst*, 32> &NewElts);
144    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
145                        SmallVector<AllocaInst*, 32> &NewElts);
146    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
147                    SmallVector<AllocaInst*, 32> &NewElts);
148    void RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
149                                  uint64_t Offset,
150                                  SmallVector<AllocaInst*, 32> &NewElts);
151    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
152                                      AllocaInst *AI,
153                                      SmallVector<AllocaInst*, 32> &NewElts);
154    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
155                                       SmallVector<AllocaInst*, 32> &NewElts);
156    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
157                                      SmallVector<AllocaInst*, 32> &NewElts);
158
159    static MemTransferInst *isOnlyCopiedFromConstantGlobal(
160        AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
161  };
162
163  // SROA_DT - SROA that uses DominatorTree.
164  struct SROA_DT : public SROA {
165    static char ID;
166  public:
167    SROA_DT(int T = -1) : SROA(T, true, ID) {
168      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
169    }
170
171    // getAnalysisUsage - This pass does not require any passes, but we know it
172    // will not alter the CFG, so say so.
173    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
174      AU.addRequired<DominatorTree>();
175      AU.setPreservesCFG();
176    }
177  };
178
179  // SROA_SSAUp - SROA that uses SSAUpdater.
180  struct SROA_SSAUp : public SROA {
181    static char ID;
182  public:
183    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
184      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
185    }
186
187    // getAnalysisUsage - This pass does not require any passes, but we know it
188    // will not alter the CFG, so say so.
189    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
190      AU.setPreservesCFG();
191    }
192  };
193
194}
195
196char SROA_DT::ID = 0;
197char SROA_SSAUp::ID = 0;
198
199INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
200                "Scalar Replacement of Aggregates (DT)", false, false)
201INITIALIZE_PASS_DEPENDENCY(DominatorTree)
202INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
203                "Scalar Replacement of Aggregates (DT)", false, false)
204
205INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
206                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
207INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
208                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
209
210// Public interface to the ScalarReplAggregates pass
211FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
212                                                   bool UseDomTree) {
213  if (UseDomTree)
214    return new SROA_DT(Threshold);
215  return new SROA_SSAUp(Threshold);
216}
217
218
219//===----------------------------------------------------------------------===//
220// Convert To Scalar Optimization.
221//===----------------------------------------------------------------------===//
222
223namespace {
224/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
225/// optimization, which scans the uses of an alloca and determines if it can
226/// rewrite it in terms of a single new alloca that can be mem2reg'd.
227class ConvertToScalarInfo {
228  /// AllocaSize - The size of the alloca being considered in bytes.
229  unsigned AllocaSize;
230  const TargetData &TD;
231
232  /// IsNotTrivial - This is set to true if there is some access to the object
233  /// which means that mem2reg can't promote it.
234  bool IsNotTrivial;
235
236  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
237  /// computed based on the uses of the alloca rather than the LLVM type system.
238  enum {
239    Unknown,
240
241    // Accesses via GEPs that are consistent with element access of a vector
242    // type. This will not be converted into a vector unless there is a later
243    // access using an actual vector type.
244    ImplicitVector,
245
246    // Accesses via vector operations and GEPs that are consistent with the
247    // layout of a vector type.
248    Vector,
249
250    // An integer bag-of-bits with bitwise operations for insertion and
251    // extraction. Any combination of types can be converted into this kind
252    // of scalar.
253    Integer
254  } ScalarKind;
255
256  /// VectorTy - This tracks the type that we should promote the vector to if
257  /// it is possible to turn it into a vector.  This starts out null, and if it
258  /// isn't possible to turn into a vector type, it gets set to VoidTy.
259  VectorType *VectorTy;
260
261  /// HadNonMemTransferAccess - True if there is at least one access to the
262  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
263  /// large integers unless there is some potential for optimization.
264  bool HadNonMemTransferAccess;
265
266public:
267  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
268    : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
269      VectorTy(0), HadNonMemTransferAccess(false) { }
270
271  AllocaInst *TryConvert(AllocaInst *AI);
272
273private:
274  bool CanConvertToScalar(Value *V, uint64_t Offset);
275  void MergeInTypeForLoadOrStore(Type *In, uint64_t Offset);
276  bool MergeInVectorType(VectorType *VInTy, uint64_t Offset);
277  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
278
279  Value *ConvertScalar_ExtractValue(Value *NV, Type *ToType,
280                                    uint64_t Offset, IRBuilder<> &Builder);
281  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
282                                   uint64_t Offset, IRBuilder<> &Builder);
283};
284} // end anonymous namespace.
285
286
287/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
288/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
289/// alloca if possible or null if not.
290AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
291  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
292  // out.
293  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
294    return 0;
295
296  // If an alloca has only memset / memcpy uses, it may still have an Unknown
297  // ScalarKind. Treat it as an Integer below.
298  if (ScalarKind == Unknown)
299    ScalarKind = Integer;
300
301  if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
302    ScalarKind = Integer;
303
304  // If we were able to find a vector type that can handle this with
305  // insert/extract elements, and if there was at least one use that had
306  // a vector type, promote this to a vector.  We don't want to promote
307  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
308  // we just get a lot of insert/extracts.  If at least one vector is
309  // involved, then we probably really do have a union of vector/array.
310  Type *NewTy;
311  if (ScalarKind == Vector) {
312    assert(VectorTy && "Missing type for vector scalar.");
313    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
314          << *VectorTy << '\n');
315    NewTy = VectorTy;  // Use the vector type.
316  } else {
317    unsigned BitWidth = AllocaSize * 8;
318    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
319        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
320      return 0;
321
322    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
323    // Create and insert the integer alloca.
324    NewTy = IntegerType::get(AI->getContext(), BitWidth);
325  }
326  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
327  ConvertUsesToScalar(AI, NewAI, 0);
328  return NewAI;
329}
330
331/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
332/// (VectorTy) so far at the offset specified by Offset (which is specified in
333/// bytes).
334///
335/// There are two cases we handle here:
336///   1) A union of vector types of the same size and potentially its elements.
337///      Here we turn element accesses into insert/extract element operations.
338///      This promotes a <4 x float> with a store of float to the third element
339///      into a <4 x float> that uses insert element.
340///   2) A fully general blob of memory, which we turn into some (potentially
341///      large) integer type with extract and insert operations where the loads
342///      and stores would mutate the memory.  We mark this by setting VectorTy
343///      to VoidTy.
344void ConvertToScalarInfo::MergeInTypeForLoadOrStore(Type *In,
345                                                    uint64_t Offset) {
346  // If we already decided to turn this into a blob of integer memory, there is
347  // nothing to be done.
348  if (ScalarKind == Integer)
349    return;
350
351  // If this could be contributing to a vector, analyze it.
352
353  // If the In type is a vector that is the same size as the alloca, see if it
354  // matches the existing VecTy.
355  if (VectorType *VInTy = dyn_cast<VectorType>(In)) {
356    if (MergeInVectorType(VInTy, Offset))
357      return;
358  } else if (In->isFloatTy() || In->isDoubleTy() ||
359             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
360              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
361    // Full width accesses can be ignored, because they can always be turned
362    // into bitcasts.
363    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
364    if (EltSize == AllocaSize)
365      return;
366
367    // If we're accessing something that could be an element of a vector, see
368    // if the implied vector agrees with what we already have and if Offset is
369    // compatible with it.
370    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
371        (!VectorTy || EltSize == VectorTy->getElementType()
372                                         ->getPrimitiveSizeInBits()/8)) {
373      if (!VectorTy) {
374        ScalarKind = ImplicitVector;
375        VectorTy = VectorType::get(In, AllocaSize/EltSize);
376      }
377      return;
378    }
379  }
380
381  // Otherwise, we have a case that we can't handle with an optimized vector
382  // form.  We can still turn this into a large integer.
383  ScalarKind = Integer;
384}
385
386/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
387/// returning true if the type was successfully merged and false otherwise.
388bool ConvertToScalarInfo::MergeInVectorType(VectorType *VInTy,
389                                            uint64_t Offset) {
390  if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
391    // If we're storing/loading a vector of the right size, allow it as a
392    // vector.  If this the first vector we see, remember the type so that
393    // we know the element size. If this is a subsequent access, ignore it
394    // even if it is a differing type but the same size. Worst case we can
395    // bitcast the resultant vectors.
396    if (!VectorTy)
397      VectorTy = VInTy;
398    ScalarKind = Vector;
399    return true;
400  }
401
402  return false;
403}
404
405/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
406/// its accesses to a single vector type, return true and set VecTy to
407/// the new type.  If we could convert the alloca into a single promotable
408/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
409/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
410/// is the current offset from the base of the alloca being analyzed.
411///
412/// If we see at least one access to the value that is as a vector type, set the
413/// SawVec flag.
414bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
415  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
416    Instruction *User = cast<Instruction>(*UI);
417
418    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
419      // Don't break volatile loads.
420      if (!LI->isSimple())
421        return false;
422      // Don't touch MMX operations.
423      if (LI->getType()->isX86_MMXTy())
424        return false;
425      HadNonMemTransferAccess = true;
426      MergeInTypeForLoadOrStore(LI->getType(), Offset);
427      continue;
428    }
429
430    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
431      // Storing the pointer, not into the value?
432      if (SI->getOperand(0) == V || !SI->isSimple()) return false;
433      // Don't touch MMX operations.
434      if (SI->getOperand(0)->getType()->isX86_MMXTy())
435        return false;
436      HadNonMemTransferAccess = true;
437      MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
438      continue;
439    }
440
441    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
442      if (!onlyUsedByLifetimeMarkers(BCI))
443        IsNotTrivial = true;  // Can't be mem2reg'd.
444      if (!CanConvertToScalar(BCI, Offset))
445        return false;
446      continue;
447    }
448
449    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
450      // If this is a GEP with a variable indices, we can't handle it.
451      if (!GEP->hasAllConstantIndices())
452        return false;
453
454      // Compute the offset that this GEP adds to the pointer.
455      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
456      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
457                                               Indices);
458      // See if all uses can be converted.
459      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
460        return false;
461      IsNotTrivial = true;  // Can't be mem2reg'd.
462      HadNonMemTransferAccess = true;
463      continue;
464    }
465
466    // If this is a constant sized memset of a constant value (e.g. 0) we can
467    // handle it.
468    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
469      // Store of constant value.
470      if (!isa<ConstantInt>(MSI->getValue()))
471        return false;
472
473      // Store of constant size.
474      ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
475      if (!Len)
476        return false;
477
478      // If the size differs from the alloca, we can only convert the alloca to
479      // an integer bag-of-bits.
480      // FIXME: This should handle all of the cases that are currently accepted
481      // as vector element insertions.
482      if (Len->getZExtValue() != AllocaSize || Offset != 0)
483        ScalarKind = Integer;
484
485      IsNotTrivial = true;  // Can't be mem2reg'd.
486      HadNonMemTransferAccess = true;
487      continue;
488    }
489
490    // If this is a memcpy or memmove into or out of the whole allocation, we
491    // can handle it like a load or store of the scalar type.
492    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
493      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
494      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
495        return false;
496
497      IsNotTrivial = true;  // Can't be mem2reg'd.
498      continue;
499    }
500
501    // If this is a lifetime intrinsic, we can handle it.
502    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
503      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
504          II->getIntrinsicID() == Intrinsic::lifetime_end) {
505        continue;
506      }
507    }
508
509    // Otherwise, we cannot handle this!
510    return false;
511  }
512
513  return true;
514}
515
516/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
517/// directly.  This happens when we are converting an "integer union" to a
518/// single integer scalar, or when we are converting a "vector union" to a
519/// vector with insert/extractelement instructions.
520///
521/// Offset is an offset from the original alloca, in bits that need to be
522/// shifted to the right.  By the end of this, there should be no uses of Ptr.
523void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
524                                              uint64_t Offset) {
525  while (!Ptr->use_empty()) {
526    Instruction *User = cast<Instruction>(Ptr->use_back());
527
528    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
529      ConvertUsesToScalar(CI, NewAI, Offset);
530      CI->eraseFromParent();
531      continue;
532    }
533
534    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
535      // Compute the offset that this GEP adds to the pointer.
536      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
537      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
538                                               Indices);
539      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
540      GEP->eraseFromParent();
541      continue;
542    }
543
544    IRBuilder<> Builder(User);
545
546    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
547      // The load is a bit extract from NewAI shifted right by Offset bits.
548      Value *LoadedVal = Builder.CreateLoad(NewAI);
549      Value *NewLoadVal
550        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
551      LI->replaceAllUsesWith(NewLoadVal);
552      LI->eraseFromParent();
553      continue;
554    }
555
556    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
557      assert(SI->getOperand(0) != Ptr && "Consistency error!");
558      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
559      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
560                                             Builder);
561      Builder.CreateStore(New, NewAI);
562      SI->eraseFromParent();
563
564      // If the load we just inserted is now dead, then the inserted store
565      // overwrote the entire thing.
566      if (Old->use_empty())
567        Old->eraseFromParent();
568      continue;
569    }
570
571    // If this is a constant sized memset of a constant value (e.g. 0) we can
572    // transform it into a store of the expanded constant value.
573    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
574      assert(MSI->getRawDest() == Ptr && "Consistency error!");
575      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
576      if (NumBytes != 0) {
577        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
578
579        // Compute the value replicated the right number of times.
580        APInt APVal(NumBytes*8, Val);
581
582        // Splat the value if non-zero.
583        if (Val)
584          for (unsigned i = 1; i != NumBytes; ++i)
585            APVal |= APVal << 8;
586
587        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
588        Value *New = ConvertScalar_InsertValue(
589                                    ConstantInt::get(User->getContext(), APVal),
590                                               Old, Offset, Builder);
591        Builder.CreateStore(New, NewAI);
592
593        // If the load we just inserted is now dead, then the memset overwrote
594        // the entire thing.
595        if (Old->use_empty())
596          Old->eraseFromParent();
597      }
598      MSI->eraseFromParent();
599      continue;
600    }
601
602    // If this is a memcpy or memmove into or out of the whole allocation, we
603    // can handle it like a load or store of the scalar type.
604    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
605      assert(Offset == 0 && "must be store to start of alloca");
606
607      // If the source and destination are both to the same alloca, then this is
608      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
609      // as appropriate.
610      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
611
612      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
613        // Dest must be OrigAI, change this to be a load from the original
614        // pointer (bitcasted), then a store to our new alloca.
615        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
616        Value *SrcPtr = MTI->getSource();
617        PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
618        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
619        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
620          AIPTy = PointerType::get(AIPTy->getElementType(),
621                                   SPTy->getAddressSpace());
622        }
623        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
624
625        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
626        SrcVal->setAlignment(MTI->getAlignment());
627        Builder.CreateStore(SrcVal, NewAI);
628      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
629        // Src must be OrigAI, change this to be a load from NewAI then a store
630        // through the original dest pointer (bitcasted).
631        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
632        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
633
634        PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
635        PointerType* AIPTy = cast<PointerType>(NewAI->getType());
636        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
637          AIPTy = PointerType::get(AIPTy->getElementType(),
638                                   DPTy->getAddressSpace());
639        }
640        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
641
642        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
643        NewStore->setAlignment(MTI->getAlignment());
644      } else {
645        // Noop transfer. Src == Dst
646      }
647
648      MTI->eraseFromParent();
649      continue;
650    }
651
652    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
653      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
654          II->getIntrinsicID() == Intrinsic::lifetime_end) {
655        // There's no need to preserve these, as the resulting alloca will be
656        // converted to a register anyways.
657        II->eraseFromParent();
658        continue;
659      }
660    }
661
662    llvm_unreachable("Unsupported operation!");
663  }
664}
665
666/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
667/// or vector value FromVal, extracting the bits from the offset specified by
668/// Offset.  This returns the value, which is of type ToType.
669///
670/// This happens when we are converting an "integer union" to a single
671/// integer scalar, or when we are converting a "vector union" to a vector with
672/// insert/extractelement instructions.
673///
674/// Offset is an offset from the original alloca, in bits that need to be
675/// shifted to the right.
676Value *ConvertToScalarInfo::
677ConvertScalar_ExtractValue(Value *FromVal, Type *ToType,
678                           uint64_t Offset, IRBuilder<> &Builder) {
679  // If the load is of the whole new alloca, no conversion is needed.
680  Type *FromType = FromVal->getType();
681  if (FromType == ToType && Offset == 0)
682    return FromVal;
683
684  // If the result alloca is a vector type, this is either an element
685  // access or a bitcast to another vector type of the same size.
686  if (VectorType *VTy = dyn_cast<VectorType>(FromType)) {
687    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
688    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
689    if (FromTypeSize == ToTypeSize)
690        return Builder.CreateBitCast(FromVal, ToType);
691
692    // Otherwise it must be an element access.
693    unsigned Elt = 0;
694    if (Offset) {
695      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
696      Elt = Offset/EltSize;
697      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
698    }
699    // Return the element extracted out of it.
700    Value *V = Builder.CreateExtractElement(FromVal, Builder.getInt32(Elt));
701    if (V->getType() != ToType)
702      V = Builder.CreateBitCast(V, ToType);
703    return V;
704  }
705
706  // If ToType is a first class aggregate, extract out each of the pieces and
707  // use insertvalue's to form the FCA.
708  if (StructType *ST = dyn_cast<StructType>(ToType)) {
709    const StructLayout &Layout = *TD.getStructLayout(ST);
710    Value *Res = UndefValue::get(ST);
711    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
712      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
713                                        Offset+Layout.getElementOffsetInBits(i),
714                                              Builder);
715      Res = Builder.CreateInsertValue(Res, Elt, i);
716    }
717    return Res;
718  }
719
720  if (ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
721    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
722    Value *Res = UndefValue::get(AT);
723    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
724      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
725                                              Offset+i*EltSize, Builder);
726      Res = Builder.CreateInsertValue(Res, Elt, i);
727    }
728    return Res;
729  }
730
731  // Otherwise, this must be a union that was converted to an integer value.
732  IntegerType *NTy = cast<IntegerType>(FromVal->getType());
733
734  // If this is a big-endian system and the load is narrower than the
735  // full alloca type, we need to do a shift to get the right bits.
736  int ShAmt = 0;
737  if (TD.isBigEndian()) {
738    // On big-endian machines, the lowest bit is stored at the bit offset
739    // from the pointer given by getTypeStoreSizeInBits.  This matters for
740    // integers with a bitwidth that is not a multiple of 8.
741    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
742            TD.getTypeStoreSizeInBits(ToType) - Offset;
743  } else {
744    ShAmt = Offset;
745  }
746
747  // Note: we support negative bitwidths (with shl) which are not defined.
748  // We do this to support (f.e.) loads off the end of a structure where
749  // only some bits are used.
750  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
751    FromVal = Builder.CreateLShr(FromVal,
752                                 ConstantInt::get(FromVal->getType(), ShAmt));
753  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
754    FromVal = Builder.CreateShl(FromVal,
755                                ConstantInt::get(FromVal->getType(), -ShAmt));
756
757  // Finally, unconditionally truncate the integer to the right width.
758  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
759  if (LIBitWidth < NTy->getBitWidth())
760    FromVal =
761      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
762                                                    LIBitWidth));
763  else if (LIBitWidth > NTy->getBitWidth())
764    FromVal =
765       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
766                                                    LIBitWidth));
767
768  // If the result is an integer, this is a trunc or bitcast.
769  if (ToType->isIntegerTy()) {
770    // Should be done.
771  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
772    // Just do a bitcast, we know the sizes match up.
773    FromVal = Builder.CreateBitCast(FromVal, ToType);
774  } else {
775    // Otherwise must be a pointer.
776    FromVal = Builder.CreateIntToPtr(FromVal, ToType);
777  }
778  assert(FromVal->getType() == ToType && "Didn't convert right?");
779  return FromVal;
780}
781
782/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
783/// or vector value "Old" at the offset specified by Offset.
784///
785/// This happens when we are converting an "integer union" to a
786/// single integer scalar, or when we are converting a "vector union" to a
787/// vector with insert/extractelement instructions.
788///
789/// Offset is an offset from the original alloca, in bits that need to be
790/// shifted to the right.
791Value *ConvertToScalarInfo::
792ConvertScalar_InsertValue(Value *SV, Value *Old,
793                          uint64_t Offset, IRBuilder<> &Builder) {
794  // Convert the stored type to the actual type, shift it left to insert
795  // then 'or' into place.
796  Type *AllocaType = Old->getType();
797  LLVMContext &Context = Old->getContext();
798
799  if (VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
800    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
801    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
802
803    // Changing the whole vector with memset or with an access of a different
804    // vector type?
805    if (ValSize == VecSize)
806        return Builder.CreateBitCast(SV, AllocaType);
807
808    // Must be an element insertion.
809    Type *EltTy = VTy->getElementType();
810    if (SV->getType() != EltTy)
811      SV = Builder.CreateBitCast(SV, EltTy);
812    uint64_t EltSize = TD.getTypeAllocSizeInBits(EltTy);
813    unsigned Elt = Offset/EltSize;
814    return Builder.CreateInsertElement(Old, SV, Builder.getInt32(Elt));
815  }
816
817  // If SV is a first-class aggregate value, insert each value recursively.
818  if (StructType *ST = dyn_cast<StructType>(SV->getType())) {
819    const StructLayout &Layout = *TD.getStructLayout(ST);
820    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
821      Value *Elt = Builder.CreateExtractValue(SV, i);
822      Old = ConvertScalar_InsertValue(Elt, Old,
823                                      Offset+Layout.getElementOffsetInBits(i),
824                                      Builder);
825    }
826    return Old;
827  }
828
829  if (ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
830    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
831    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
832      Value *Elt = Builder.CreateExtractValue(SV, i);
833      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
834    }
835    return Old;
836  }
837
838  // If SV is a float, convert it to the appropriate integer type.
839  // If it is a pointer, do the same.
840  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
841  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
842  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
843  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
844  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
845    SV = Builder.CreateBitCast(SV, IntegerType::get(SV->getContext(),SrcWidth));
846  else if (SV->getType()->isPointerTy())
847    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()));
848
849  // Zero extend or truncate the value if needed.
850  if (SV->getType() != AllocaType) {
851    if (SV->getType()->getPrimitiveSizeInBits() <
852             AllocaType->getPrimitiveSizeInBits())
853      SV = Builder.CreateZExt(SV, AllocaType);
854    else {
855      // Truncation may be needed if storing more than the alloca can hold
856      // (undefined behavior).
857      SV = Builder.CreateTrunc(SV, AllocaType);
858      SrcWidth = DestWidth;
859      SrcStoreWidth = DestStoreWidth;
860    }
861  }
862
863  // If this is a big-endian system and the store is narrower than the
864  // full alloca type, we need to do a shift to get the right bits.
865  int ShAmt = 0;
866  if (TD.isBigEndian()) {
867    // On big-endian machines, the lowest bit is stored at the bit offset
868    // from the pointer given by getTypeStoreSizeInBits.  This matters for
869    // integers with a bitwidth that is not a multiple of 8.
870    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
871  } else {
872    ShAmt = Offset;
873  }
874
875  // Note: we support negative bitwidths (with shr) which are not defined.
876  // We do this to support (f.e.) stores off the end of a structure where
877  // only some bits in the structure are set.
878  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
879  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
880    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(), ShAmt));
881    Mask <<= ShAmt;
882  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
883    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(), -ShAmt));
884    Mask = Mask.lshr(-ShAmt);
885  }
886
887  // Mask out the bits we are about to insert from the old value, and or
888  // in the new bits.
889  if (SrcWidth != DestWidth) {
890    assert(DestWidth > SrcWidth);
891    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
892    SV = Builder.CreateOr(Old, SV, "ins");
893  }
894  return SV;
895}
896
897
898//===----------------------------------------------------------------------===//
899// SRoA Driver
900//===----------------------------------------------------------------------===//
901
902
903bool SROA::runOnFunction(Function &F) {
904  TD = getAnalysisIfAvailable<TargetData>();
905
906  bool Changed = performPromotion(F);
907
908  // FIXME: ScalarRepl currently depends on TargetData more than it
909  // theoretically needs to. It should be refactored in order to support
910  // target-independent IR. Until this is done, just skip the actual
911  // scalar-replacement portion of this pass.
912  if (!TD) return Changed;
913
914  while (1) {
915    bool LocalChange = performScalarRepl(F);
916    if (!LocalChange) break;   // No need to repromote if no scalarrepl
917    Changed = true;
918    LocalChange = performPromotion(F);
919    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
920  }
921
922  return Changed;
923}
924
925namespace {
926class AllocaPromoter : public LoadAndStorePromoter {
927  AllocaInst *AI;
928  DIBuilder *DIB;
929  SmallVector<DbgDeclareInst *, 4> DDIs;
930  SmallVector<DbgValueInst *, 4> DVIs;
931public:
932  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
933                 DIBuilder *DB)
934    : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
935
936  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
937    // Remember which alloca we're promoting (for isInstInList).
938    this->AI = AI;
939    if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI))
940      for (Value::use_iterator UI = DebugNode->use_begin(),
941             E = DebugNode->use_end(); UI != E; ++UI)
942        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
943          DDIs.push_back(DDI);
944        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
945          DVIs.push_back(DVI);
946
947    LoadAndStorePromoter::run(Insts);
948    AI->eraseFromParent();
949    for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
950           E = DDIs.end(); I != E; ++I) {
951      DbgDeclareInst *DDI = *I;
952      DDI->eraseFromParent();
953    }
954    for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
955           E = DVIs.end(); I != E; ++I) {
956      DbgValueInst *DVI = *I;
957      DVI->eraseFromParent();
958    }
959  }
960
961  virtual bool isInstInList(Instruction *I,
962                            const SmallVectorImpl<Instruction*> &Insts) const {
963    if (LoadInst *LI = dyn_cast<LoadInst>(I))
964      return LI->getOperand(0) == AI;
965    return cast<StoreInst>(I)->getPointerOperand() == AI;
966  }
967
968  virtual void updateDebugInfo(Instruction *Inst) const {
969    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
970           E = DDIs.end(); I != E; ++I) {
971      DbgDeclareInst *DDI = *I;
972      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
973        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
974      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
975        ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
976    }
977    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
978           E = DVIs.end(); I != E; ++I) {
979      DbgValueInst *DVI = *I;
980      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
981        Instruction *DbgVal = NULL;
982        // If an argument is zero extended then use argument directly. The ZExt
983        // may be zapped by an optimization pass in future.
984        Argument *ExtendedArg = NULL;
985        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
986          ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
987        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
988          ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
989        if (ExtendedArg)
990          DbgVal = DIB->insertDbgValueIntrinsic(ExtendedArg, 0,
991                                                DIVariable(DVI->getVariable()),
992                                                SI);
993        else
994          DbgVal = DIB->insertDbgValueIntrinsic(SI->getOperand(0), 0,
995                                                DIVariable(DVI->getVariable()),
996                                                SI);
997        DbgVal->setDebugLoc(DVI->getDebugLoc());
998      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
999        Instruction *DbgVal =
1000          DIB->insertDbgValueIntrinsic(LI->getOperand(0), 0,
1001                                       DIVariable(DVI->getVariable()), LI);
1002        DbgVal->setDebugLoc(DVI->getDebugLoc());
1003      }
1004    }
1005  }
1006};
1007} // end anon namespace
1008
1009/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1010/// subsequently loaded can be rewritten to load both input pointers and then
1011/// select between the result, allowing the load of the alloca to be promoted.
1012/// From this:
1013///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1014///   %V = load i32* %P2
1015/// to:
1016///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1017///   %V2 = load i32* %Other
1018///   %V = select i1 %cond, i32 %V1, i32 %V2
1019///
1020/// We can do this to a select if its only uses are loads and if the operand to
1021/// the select can be loaded unconditionally.
1022static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1023  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1024  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1025
1026  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1027       UI != UE; ++UI) {
1028    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1029    if (LI == 0 || !LI->isSimple()) return false;
1030
1031    // Both operands to the select need to be dereferencable, either absolutely
1032    // (e.g. allocas) or at this point because we can see other accesses to it.
1033    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1034                                                    LI->getAlignment(), TD))
1035      return false;
1036    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1037                                                    LI->getAlignment(), TD))
1038      return false;
1039  }
1040
1041  return true;
1042}
1043
1044/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1045/// subsequently loaded can be rewritten to load both input pointers in the pred
1046/// blocks and then PHI the results, allowing the load of the alloca to be
1047/// promoted.
1048/// From this:
1049///   %P2 = phi [i32* %Alloca, i32* %Other]
1050///   %V = load i32* %P2
1051/// to:
1052///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1053///   ...
1054///   %V2 = load i32* %Other
1055///   ...
1056///   %V = phi [i32 %V1, i32 %V2]
1057///
1058/// We can do this to a select if its only uses are loads and if the operand to
1059/// the select can be loaded unconditionally.
1060static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1061  // For now, we can only do this promotion if the load is in the same block as
1062  // the PHI, and if there are no stores between the phi and load.
1063  // TODO: Allow recursive phi users.
1064  // TODO: Allow stores.
1065  BasicBlock *BB = PN->getParent();
1066  unsigned MaxAlign = 0;
1067  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1068       UI != UE; ++UI) {
1069    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1070    if (LI == 0 || !LI->isSimple()) return false;
1071
1072    // For now we only allow loads in the same block as the PHI.  This is a
1073    // common case that happens when instcombine merges two loads through a PHI.
1074    if (LI->getParent() != BB) return false;
1075
1076    // Ensure that there are no instructions between the PHI and the load that
1077    // could store.
1078    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1079      if (BBI->mayWriteToMemory())
1080        return false;
1081
1082    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1083  }
1084
1085  // Okay, we know that we have one or more loads in the same block as the PHI.
1086  // We can transform this if it is safe to push the loads into the predecessor
1087  // blocks.  The only thing to watch out for is that we can't put a possibly
1088  // trapping load in the predecessor if it is a critical edge.
1089  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1090    BasicBlock *Pred = PN->getIncomingBlock(i);
1091    Value *InVal = PN->getIncomingValue(i);
1092
1093    // If the terminator of the predecessor has side-effects (an invoke),
1094    // there is no safe place to put a load in the predecessor.
1095    if (Pred->getTerminator()->mayHaveSideEffects())
1096      return false;
1097
1098    // If the value is produced by the terminator of the predecessor
1099    // (an invoke), there is no valid place to put a load in the predecessor.
1100    if (Pred->getTerminator() == InVal)
1101      return false;
1102
1103    // If the predecessor has a single successor, then the edge isn't critical.
1104    if (Pred->getTerminator()->getNumSuccessors() == 1)
1105      continue;
1106
1107    // If this pointer is always safe to load, or if we can prove that there is
1108    // already a load in the block, then we can move the load to the pred block.
1109    if (InVal->isDereferenceablePointer() ||
1110        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1111      continue;
1112
1113    return false;
1114  }
1115
1116  return true;
1117}
1118
1119
1120/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1121/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1122/// not quite there, this will transform the code to allow promotion.  As such,
1123/// it is a non-pure predicate.
1124static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1125  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1126            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1127
1128  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1129       UI != UE; ++UI) {
1130    User *U = *UI;
1131    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1132      if (!LI->isSimple())
1133        return false;
1134      continue;
1135    }
1136
1137    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1138      if (SI->getOperand(0) == AI || !SI->isSimple())
1139        return false;   // Don't allow a store OF the AI, only INTO the AI.
1140      continue;
1141    }
1142
1143    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1144      // If the condition being selected on is a constant, fold the select, yes
1145      // this does (rarely) happen early on.
1146      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1147        Value *Result = SI->getOperand(1+CI->isZero());
1148        SI->replaceAllUsesWith(Result);
1149        SI->eraseFromParent();
1150
1151        // This is very rare and we just scrambled the use list of AI, start
1152        // over completely.
1153        return tryToMakeAllocaBePromotable(AI, TD);
1154      }
1155
1156      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1157      // loads, then we can transform this by rewriting the select.
1158      if (!isSafeSelectToSpeculate(SI, TD))
1159        return false;
1160
1161      InstsToRewrite.insert(SI);
1162      continue;
1163    }
1164
1165    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1166      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1167        InstsToRewrite.insert(PN);
1168        continue;
1169      }
1170
1171      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1172      // in the pred blocks, then we can transform this by rewriting the PHI.
1173      if (!isSafePHIToSpeculate(PN, TD))
1174        return false;
1175
1176      InstsToRewrite.insert(PN);
1177      continue;
1178    }
1179
1180    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1181      if (onlyUsedByLifetimeMarkers(BCI)) {
1182        InstsToRewrite.insert(BCI);
1183        continue;
1184      }
1185    }
1186
1187    return false;
1188  }
1189
1190  // If there are no instructions to rewrite, then all uses are load/stores and
1191  // we're done!
1192  if (InstsToRewrite.empty())
1193    return true;
1194
1195  // If we have instructions that need to be rewritten for this to be promotable
1196  // take care of it now.
1197  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1198    if (BitCastInst *BCI = dyn_cast<BitCastInst>(InstsToRewrite[i])) {
1199      // This could only be a bitcast used by nothing but lifetime intrinsics.
1200      for (BitCastInst::use_iterator I = BCI->use_begin(), E = BCI->use_end();
1201           I != E;) {
1202        Use &U = I.getUse();
1203        ++I;
1204        cast<Instruction>(U.getUser())->eraseFromParent();
1205      }
1206      BCI->eraseFromParent();
1207      continue;
1208    }
1209
1210    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1211      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1212      // loads with a new select.
1213      while (!SI->use_empty()) {
1214        LoadInst *LI = cast<LoadInst>(SI->use_back());
1215
1216        IRBuilder<> Builder(LI);
1217        LoadInst *TrueLoad =
1218          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1219        LoadInst *FalseLoad =
1220          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1221
1222        // Transfer alignment and TBAA info if present.
1223        TrueLoad->setAlignment(LI->getAlignment());
1224        FalseLoad->setAlignment(LI->getAlignment());
1225        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1226          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1227          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1228        }
1229
1230        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1231        V->takeName(LI);
1232        LI->replaceAllUsesWith(V);
1233        LI->eraseFromParent();
1234      }
1235
1236      // Now that all the loads are gone, the select is gone too.
1237      SI->eraseFromParent();
1238      continue;
1239    }
1240
1241    // Otherwise, we have a PHI node which allows us to push the loads into the
1242    // predecessors.
1243    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1244    if (PN->use_empty()) {
1245      PN->eraseFromParent();
1246      continue;
1247    }
1248
1249    Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1250    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1251                                     PN->getName()+".ld", PN);
1252
1253    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1254    // matter which one we get and if any differ, it doesn't matter.
1255    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1256    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1257    unsigned Align = SomeLoad->getAlignment();
1258
1259    // Rewrite all loads of the PN to use the new PHI.
1260    while (!PN->use_empty()) {
1261      LoadInst *LI = cast<LoadInst>(PN->use_back());
1262      LI->replaceAllUsesWith(NewPN);
1263      LI->eraseFromParent();
1264    }
1265
1266    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1267    // insert them into in case we have multiple edges from the same block.
1268    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1269
1270    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1271      BasicBlock *Pred = PN->getIncomingBlock(i);
1272      LoadInst *&Load = InsertedLoads[Pred];
1273      if (Load == 0) {
1274        Load = new LoadInst(PN->getIncomingValue(i),
1275                            PN->getName() + "." + Pred->getName(),
1276                            Pred->getTerminator());
1277        Load->setAlignment(Align);
1278        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1279      }
1280
1281      NewPN->addIncoming(Load, Pred);
1282    }
1283
1284    PN->eraseFromParent();
1285  }
1286
1287  ++NumAdjusted;
1288  return true;
1289}
1290
1291bool SROA::performPromotion(Function &F) {
1292  std::vector<AllocaInst*> Allocas;
1293  DominatorTree *DT = 0;
1294  if (HasDomTree)
1295    DT = &getAnalysis<DominatorTree>();
1296
1297  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1298  DIBuilder DIB(*F.getParent());
1299  bool Changed = false;
1300  SmallVector<Instruction*, 64> Insts;
1301  while (1) {
1302    Allocas.clear();
1303
1304    // Find allocas that are safe to promote, by looking at all instructions in
1305    // the entry node
1306    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1307      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1308        if (tryToMakeAllocaBePromotable(AI, TD))
1309          Allocas.push_back(AI);
1310
1311    if (Allocas.empty()) break;
1312
1313    if (HasDomTree)
1314      PromoteMemToReg(Allocas, *DT);
1315    else {
1316      SSAUpdater SSA;
1317      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1318        AllocaInst *AI = Allocas[i];
1319
1320        // Build list of instructions to promote.
1321        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1322             UI != E; ++UI)
1323          Insts.push_back(cast<Instruction>(*UI));
1324        AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1325        Insts.clear();
1326      }
1327    }
1328    NumPromoted += Allocas.size();
1329    Changed = true;
1330  }
1331
1332  return Changed;
1333}
1334
1335
1336/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1337/// SROA.  It must be a struct or array type with a small number of elements.
1338static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1339  Type *T = AI->getAllocatedType();
1340  // Do not promote any struct into more than 32 separate vars.
1341  if (StructType *ST = dyn_cast<StructType>(T))
1342    return ST->getNumElements() <= 32;
1343  // Arrays are much less likely to be safe for SROA; only consider
1344  // them if they are very small.
1345  if (ArrayType *AT = dyn_cast<ArrayType>(T))
1346    return AT->getNumElements() <= 8;
1347  return false;
1348}
1349
1350
1351// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1352// which runs on all of the alloca instructions in the function, removing them
1353// if they are only used by getelementptr instructions.
1354//
1355bool SROA::performScalarRepl(Function &F) {
1356  std::vector<AllocaInst*> WorkList;
1357
1358  // Scan the entry basic block, adding allocas to the worklist.
1359  BasicBlock &BB = F.getEntryBlock();
1360  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1361    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1362      WorkList.push_back(A);
1363
1364  // Process the worklist
1365  bool Changed = false;
1366  while (!WorkList.empty()) {
1367    AllocaInst *AI = WorkList.back();
1368    WorkList.pop_back();
1369
1370    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1371    // with unused elements.
1372    if (AI->use_empty()) {
1373      AI->eraseFromParent();
1374      Changed = true;
1375      continue;
1376    }
1377
1378    // If this alloca is impossible for us to promote, reject it early.
1379    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1380      continue;
1381
1382    // Check to see if this allocation is only modified by a memcpy/memmove from
1383    // a constant global.  If this is the case, we can change all users to use
1384    // the constant global instead.  This is commonly produced by the CFE by
1385    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1386    // is only subsequently read.
1387    SmallVector<Instruction *, 4> ToDelete;
1388    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
1389      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1390      DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
1391      for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
1392        ToDelete[i]->eraseFromParent();
1393      Constant *TheSrc = cast<Constant>(Copy->getSource());
1394      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1395      Copy->eraseFromParent();  // Don't mutate the global.
1396      AI->eraseFromParent();
1397      ++NumGlobals;
1398      Changed = true;
1399      continue;
1400    }
1401
1402    // Check to see if we can perform the core SROA transformation.  We cannot
1403    // transform the allocation instruction if it is an array allocation
1404    // (allocations OF arrays are ok though), and an allocation of a scalar
1405    // value cannot be decomposed at all.
1406    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1407
1408    // Do not promote [0 x %struct].
1409    if (AllocaSize == 0) continue;
1410
1411    // Do not promote any struct whose size is too big.
1412    if (AllocaSize > SRThreshold) continue;
1413
1414    // If the alloca looks like a good candidate for scalar replacement, and if
1415    // all its users can be transformed, then split up the aggregate into its
1416    // separate elements.
1417    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1418      DoScalarReplacement(AI, WorkList);
1419      Changed = true;
1420      continue;
1421    }
1422
1423    // If we can turn this aggregate value (potentially with casts) into a
1424    // simple scalar value that can be mem2reg'd into a register value.
1425    // IsNotTrivial tracks whether this is something that mem2reg could have
1426    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1427    // that we can't just check based on the type: the alloca may be of an i32
1428    // but that has pointer arithmetic to set byte 3 of it or something.
1429    if (AllocaInst *NewAI =
1430          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1431      NewAI->takeName(AI);
1432      AI->eraseFromParent();
1433      ++NumConverted;
1434      Changed = true;
1435      continue;
1436    }
1437
1438    // Otherwise, couldn't process this alloca.
1439  }
1440
1441  return Changed;
1442}
1443
1444/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1445/// predicate, do SROA now.
1446void SROA::DoScalarReplacement(AllocaInst *AI,
1447                               std::vector<AllocaInst*> &WorkList) {
1448  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1449  SmallVector<AllocaInst*, 32> ElementAllocas;
1450  if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1451    ElementAllocas.reserve(ST->getNumContainedTypes());
1452    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1453      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1454                                      AI->getAlignment(),
1455                                      AI->getName() + "." + Twine(i), AI);
1456      ElementAllocas.push_back(NA);
1457      WorkList.push_back(NA);  // Add to worklist for recursive processing
1458    }
1459  } else {
1460    ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1461    ElementAllocas.reserve(AT->getNumElements());
1462    Type *ElTy = AT->getElementType();
1463    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1464      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1465                                      AI->getName() + "." + Twine(i), AI);
1466      ElementAllocas.push_back(NA);
1467      WorkList.push_back(NA);  // Add to worklist for recursive processing
1468    }
1469  }
1470
1471  // Now that we have created the new alloca instructions, rewrite all the
1472  // uses of the old alloca.
1473  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1474
1475  // Now erase any instructions that were made dead while rewriting the alloca.
1476  DeleteDeadInstructions();
1477  AI->eraseFromParent();
1478
1479  ++NumReplaced;
1480}
1481
1482/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1483/// recursively including all their operands that become trivially dead.
1484void SROA::DeleteDeadInstructions() {
1485  while (!DeadInsts.empty()) {
1486    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1487
1488    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1489      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1490        // Zero out the operand and see if it becomes trivially dead.
1491        // (But, don't add allocas to the dead instruction list -- they are
1492        // already on the worklist and will be deleted separately.)
1493        *OI = 0;
1494        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1495          DeadInsts.push_back(U);
1496      }
1497
1498    I->eraseFromParent();
1499  }
1500}
1501
1502/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1503/// performing scalar replacement of alloca AI.  The results are flagged in
1504/// the Info parameter.  Offset indicates the position within AI that is
1505/// referenced by this instruction.
1506void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1507                               AllocaInfo &Info) {
1508  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1509    Instruction *User = cast<Instruction>(*UI);
1510
1511    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1512      isSafeForScalarRepl(BC, Offset, Info);
1513    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1514      uint64_t GEPOffset = Offset;
1515      isSafeGEP(GEPI, GEPOffset, Info);
1516      if (!Info.isUnsafe)
1517        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1518    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1519      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1520      if (Length == 0)
1521        return MarkUnsafe(Info, User);
1522      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1523                      UI.getOperandNo() == 0, Info, MI,
1524                      true /*AllowWholeAccess*/);
1525    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1526      if (!LI->isSimple())
1527        return MarkUnsafe(Info, User);
1528      Type *LIType = LI->getType();
1529      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1530                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1531      Info.hasALoadOrStore = true;
1532
1533    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1534      // Store is ok if storing INTO the pointer, not storing the pointer
1535      if (!SI->isSimple() || SI->getOperand(0) == I)
1536        return MarkUnsafe(Info, User);
1537
1538      Type *SIType = SI->getOperand(0)->getType();
1539      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1540                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1541      Info.hasALoadOrStore = true;
1542    } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1543      if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1544          II->getIntrinsicID() != Intrinsic::lifetime_end)
1545        return MarkUnsafe(Info, User);
1546    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1547      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1548    } else {
1549      return MarkUnsafe(Info, User);
1550    }
1551    if (Info.isUnsafe) return;
1552  }
1553}
1554
1555
1556/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1557/// derived from the alloca, we can often still split the alloca into elements.
1558/// This is useful if we have a large alloca where one element is phi'd
1559/// together somewhere: we can SRoA and promote all the other elements even if
1560/// we end up not being able to promote this one.
1561///
1562/// All we require is that the uses of the PHI do not index into other parts of
1563/// the alloca.  The most important use case for this is single load and stores
1564/// that are PHI'd together, which can happen due to code sinking.
1565void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1566                                           AllocaInfo &Info) {
1567  // If we've already checked this PHI, don't do it again.
1568  if (PHINode *PN = dyn_cast<PHINode>(I))
1569    if (!Info.CheckedPHIs.insert(PN))
1570      return;
1571
1572  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1573    Instruction *User = cast<Instruction>(*UI);
1574
1575    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1576      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1577    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1578      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1579      // but would have to prove that we're staying inside of an element being
1580      // promoted.
1581      if (!GEPI->hasAllZeroIndices())
1582        return MarkUnsafe(Info, User);
1583      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1584    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1585      if (!LI->isSimple())
1586        return MarkUnsafe(Info, User);
1587      Type *LIType = LI->getType();
1588      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1589                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1590      Info.hasALoadOrStore = true;
1591
1592    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1593      // Store is ok if storing INTO the pointer, not storing the pointer
1594      if (!SI->isSimple() || SI->getOperand(0) == I)
1595        return MarkUnsafe(Info, User);
1596
1597      Type *SIType = SI->getOperand(0)->getType();
1598      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1599                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1600      Info.hasALoadOrStore = true;
1601    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1602      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1603    } else {
1604      return MarkUnsafe(Info, User);
1605    }
1606    if (Info.isUnsafe) return;
1607  }
1608}
1609
1610/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1611/// replacement.  It is safe when all the indices are constant, in-bounds
1612/// references, and when the resulting offset corresponds to an element within
1613/// the alloca type.  The results are flagged in the Info parameter.  Upon
1614/// return, Offset is adjusted as specified by the GEP indices.
1615void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1616                     uint64_t &Offset, AllocaInfo &Info) {
1617  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1618  if (GEPIt == E)
1619    return;
1620
1621  // Walk through the GEP type indices, checking the types that this indexes
1622  // into.
1623  for (; GEPIt != E; ++GEPIt) {
1624    // Ignore struct elements, no extra checking needed for these.
1625    if ((*GEPIt)->isStructTy())
1626      continue;
1627
1628    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1629    if (!IdxVal)
1630      return MarkUnsafe(Info, GEPI);
1631  }
1632
1633  // Compute the offset due to this GEP and check if the alloca has a
1634  // component element at that offset.
1635  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1636  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1637  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1638    MarkUnsafe(Info, GEPI);
1639}
1640
1641/// isHomogeneousAggregate - Check if type T is a struct or array containing
1642/// elements of the same type (which is always true for arrays).  If so,
1643/// return true with NumElts and EltTy set to the number of elements and the
1644/// element type, respectively.
1645static bool isHomogeneousAggregate(Type *T, unsigned &NumElts,
1646                                   Type *&EltTy) {
1647  if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1648    NumElts = AT->getNumElements();
1649    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1650    return true;
1651  }
1652  if (StructType *ST = dyn_cast<StructType>(T)) {
1653    NumElts = ST->getNumContainedTypes();
1654    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1655    for (unsigned n = 1; n < NumElts; ++n) {
1656      if (ST->getContainedType(n) != EltTy)
1657        return false;
1658    }
1659    return true;
1660  }
1661  return false;
1662}
1663
1664/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1665/// "homogeneous" aggregates with the same element type and number of elements.
1666static bool isCompatibleAggregate(Type *T1, Type *T2) {
1667  if (T1 == T2)
1668    return true;
1669
1670  unsigned NumElts1, NumElts2;
1671  Type *EltTy1, *EltTy2;
1672  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1673      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1674      NumElts1 == NumElts2 &&
1675      EltTy1 == EltTy2)
1676    return true;
1677
1678  return false;
1679}
1680
1681/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1682/// alloca or has an offset and size that corresponds to a component element
1683/// within it.  The offset checked here may have been formed from a GEP with a
1684/// pointer bitcasted to a different type.
1685///
1686/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1687/// unit.  If false, it only allows accesses known to be in a single element.
1688void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1689                           Type *MemOpType, bool isStore,
1690                           AllocaInfo &Info, Instruction *TheAccess,
1691                           bool AllowWholeAccess) {
1692  // Check if this is a load/store of the entire alloca.
1693  if (Offset == 0 && AllowWholeAccess &&
1694      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1695    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1696    // loads/stores (which are essentially the same as the MemIntrinsics with
1697    // regard to copying padding between elements).  But, if an alloca is
1698    // flagged as both a source and destination of such operations, we'll need
1699    // to check later for padding between elements.
1700    if (!MemOpType || MemOpType->isIntegerTy()) {
1701      if (isStore)
1702        Info.isMemCpyDst = true;
1703      else
1704        Info.isMemCpySrc = true;
1705      return;
1706    }
1707    // This is also safe for references using a type that is compatible with
1708    // the type of the alloca, so that loads/stores can be rewritten using
1709    // insertvalue/extractvalue.
1710    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1711      Info.hasSubelementAccess = true;
1712      return;
1713    }
1714  }
1715  // Check if the offset/size correspond to a component within the alloca type.
1716  Type *T = Info.AI->getAllocatedType();
1717  if (TypeHasComponent(T, Offset, MemSize)) {
1718    Info.hasSubelementAccess = true;
1719    return;
1720  }
1721
1722  return MarkUnsafe(Info, TheAccess);
1723}
1724
1725/// TypeHasComponent - Return true if T has a component type with the
1726/// specified offset and size.  If Size is zero, do not check the size.
1727bool SROA::TypeHasComponent(Type *T, uint64_t Offset, uint64_t Size) {
1728  Type *EltTy;
1729  uint64_t EltSize;
1730  if (StructType *ST = dyn_cast<StructType>(T)) {
1731    const StructLayout *Layout = TD->getStructLayout(ST);
1732    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1733    EltTy = ST->getContainedType(EltIdx);
1734    EltSize = TD->getTypeAllocSize(EltTy);
1735    Offset -= Layout->getElementOffset(EltIdx);
1736  } else if (ArrayType *AT = dyn_cast<ArrayType>(T)) {
1737    EltTy = AT->getElementType();
1738    EltSize = TD->getTypeAllocSize(EltTy);
1739    if (Offset >= AT->getNumElements() * EltSize)
1740      return false;
1741    Offset %= EltSize;
1742  } else {
1743    return false;
1744  }
1745  if (Offset == 0 && (Size == 0 || EltSize == Size))
1746    return true;
1747  // Check if the component spans multiple elements.
1748  if (Offset + Size > EltSize)
1749    return false;
1750  return TypeHasComponent(EltTy, Offset, Size);
1751}
1752
1753/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1754/// the instruction I, which references it, to use the separate elements.
1755/// Offset indicates the position within AI that is referenced by this
1756/// instruction.
1757void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1758                                SmallVector<AllocaInst*, 32> &NewElts) {
1759  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1760    Use &TheUse = UI.getUse();
1761    Instruction *User = cast<Instruction>(*UI++);
1762
1763    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1764      RewriteBitCast(BC, AI, Offset, NewElts);
1765      continue;
1766    }
1767
1768    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1769      RewriteGEP(GEPI, AI, Offset, NewElts);
1770      continue;
1771    }
1772
1773    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1774      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1775      uint64_t MemSize = Length->getZExtValue();
1776      if (Offset == 0 &&
1777          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1778        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1779      // Otherwise the intrinsic can only touch a single element and the
1780      // address operand will be updated, so nothing else needs to be done.
1781      continue;
1782    }
1783
1784    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(User)) {
1785      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
1786          II->getIntrinsicID() == Intrinsic::lifetime_end) {
1787        RewriteLifetimeIntrinsic(II, AI, Offset, NewElts);
1788      }
1789      continue;
1790    }
1791
1792    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1793      Type *LIType = LI->getType();
1794
1795      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1796        // Replace:
1797        //   %res = load { i32, i32 }* %alloc
1798        // with:
1799        //   %load.0 = load i32* %alloc.0
1800        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1801        //   %load.1 = load i32* %alloc.1
1802        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1803        // (Also works for arrays instead of structs)
1804        Value *Insert = UndefValue::get(LIType);
1805        IRBuilder<> Builder(LI);
1806        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1807          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1808          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1809        }
1810        LI->replaceAllUsesWith(Insert);
1811        DeadInsts.push_back(LI);
1812      } else if (LIType->isIntegerTy() &&
1813                 TD->getTypeAllocSize(LIType) ==
1814                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1815        // If this is a load of the entire alloca to an integer, rewrite it.
1816        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1817      }
1818      continue;
1819    }
1820
1821    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1822      Value *Val = SI->getOperand(0);
1823      Type *SIType = Val->getType();
1824      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1825        // Replace:
1826        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1827        // with:
1828        //   %val.0 = extractvalue { i32, i32 } %val, 0
1829        //   store i32 %val.0, i32* %alloc.0
1830        //   %val.1 = extractvalue { i32, i32 } %val, 1
1831        //   store i32 %val.1, i32* %alloc.1
1832        // (Also works for arrays instead of structs)
1833        IRBuilder<> Builder(SI);
1834        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1835          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1836          Builder.CreateStore(Extract, NewElts[i]);
1837        }
1838        DeadInsts.push_back(SI);
1839      } else if (SIType->isIntegerTy() &&
1840                 TD->getTypeAllocSize(SIType) ==
1841                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1842        // If this is a store of the entire alloca from an integer, rewrite it.
1843        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1844      }
1845      continue;
1846    }
1847
1848    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1849      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1850      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1851      // the new pointer.
1852      if (!isa<AllocaInst>(I)) continue;
1853
1854      assert(Offset == 0 && NewElts[0] &&
1855             "Direct alloca use should have a zero offset");
1856
1857      // If we have a use of the alloca, we know the derived uses will be
1858      // utilizing just the first element of the scalarized result.  Insert a
1859      // bitcast of the first alloca before the user as required.
1860      AllocaInst *NewAI = NewElts[0];
1861      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1862      NewAI->moveBefore(BCI);
1863      TheUse = BCI;
1864      continue;
1865    }
1866  }
1867}
1868
1869/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1870/// and recursively continue updating all of its uses.
1871void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1872                          SmallVector<AllocaInst*, 32> &NewElts) {
1873  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1874  if (BC->getOperand(0) != AI)
1875    return;
1876
1877  // The bitcast references the original alloca.  Replace its uses with
1878  // references to the first new element alloca.
1879  Instruction *Val = NewElts[0];
1880  if (Val->getType() != BC->getDestTy()) {
1881    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1882    Val->takeName(BC);
1883  }
1884  BC->replaceAllUsesWith(Val);
1885  DeadInsts.push_back(BC);
1886}
1887
1888/// FindElementAndOffset - Return the index of the element containing Offset
1889/// within the specified type, which must be either a struct or an array.
1890/// Sets T to the type of the element and Offset to the offset within that
1891/// element.  IdxTy is set to the type of the index result to be used in a
1892/// GEP instruction.
1893uint64_t SROA::FindElementAndOffset(Type *&T, uint64_t &Offset,
1894                                    Type *&IdxTy) {
1895  uint64_t Idx = 0;
1896  if (StructType *ST = dyn_cast<StructType>(T)) {
1897    const StructLayout *Layout = TD->getStructLayout(ST);
1898    Idx = Layout->getElementContainingOffset(Offset);
1899    T = ST->getContainedType(Idx);
1900    Offset -= Layout->getElementOffset(Idx);
1901    IdxTy = Type::getInt32Ty(T->getContext());
1902    return Idx;
1903  }
1904  ArrayType *AT = cast<ArrayType>(T);
1905  T = AT->getElementType();
1906  uint64_t EltSize = TD->getTypeAllocSize(T);
1907  Idx = Offset / EltSize;
1908  Offset -= Idx * EltSize;
1909  IdxTy = Type::getInt64Ty(T->getContext());
1910  return Idx;
1911}
1912
1913/// RewriteGEP - Check if this GEP instruction moves the pointer across
1914/// elements of the alloca that are being split apart, and if so, rewrite
1915/// the GEP to be relative to the new element.
1916void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1917                      SmallVector<AllocaInst*, 32> &NewElts) {
1918  uint64_t OldOffset = Offset;
1919  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1920  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(), Indices);
1921
1922  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1923
1924  Type *T = AI->getAllocatedType();
1925  Type *IdxTy;
1926  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1927  if (GEPI->getOperand(0) == AI)
1928    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1929
1930  T = AI->getAllocatedType();
1931  uint64_t EltOffset = Offset;
1932  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1933
1934  // If this GEP does not move the pointer across elements of the alloca
1935  // being split, then it does not needs to be rewritten.
1936  if (Idx == OldIdx)
1937    return;
1938
1939  Type *i32Ty = Type::getInt32Ty(AI->getContext());
1940  SmallVector<Value*, 8> NewArgs;
1941  NewArgs.push_back(Constant::getNullValue(i32Ty));
1942  while (EltOffset != 0) {
1943    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1944    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1945  }
1946  Instruction *Val = NewElts[Idx];
1947  if (NewArgs.size() > 1) {
1948    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs, "", GEPI);
1949    Val->takeName(GEPI);
1950  }
1951  if (Val->getType() != GEPI->getType())
1952    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1953  GEPI->replaceAllUsesWith(Val);
1954  DeadInsts.push_back(GEPI);
1955}
1956
1957/// RewriteLifetimeIntrinsic - II is a lifetime.start/lifetime.end. Rewrite it
1958/// to mark the lifetime of the scalarized memory.
1959void SROA::RewriteLifetimeIntrinsic(IntrinsicInst *II, AllocaInst *AI,
1960                                    uint64_t Offset,
1961                                    SmallVector<AllocaInst*, 32> &NewElts) {
1962  ConstantInt *OldSize = cast<ConstantInt>(II->getArgOperand(0));
1963  // Put matching lifetime markers on everything from Offset up to
1964  // Offset+OldSize.
1965  Type *AIType = AI->getAllocatedType();
1966  uint64_t NewOffset = Offset;
1967  Type *IdxTy;
1968  uint64_t Idx = FindElementAndOffset(AIType, NewOffset, IdxTy);
1969
1970  IRBuilder<> Builder(II);
1971  uint64_t Size = OldSize->getLimitedValue();
1972
1973  if (NewOffset) {
1974    // Splice the first element and index 'NewOffset' bytes in.  SROA will
1975    // split the alloca again later.
1976    Value *V = Builder.CreateBitCast(NewElts[Idx], Builder.getInt8PtrTy());
1977    V = Builder.CreateGEP(V, Builder.getInt64(NewOffset));
1978
1979    IdxTy = NewElts[Idx]->getAllocatedType();
1980    uint64_t EltSize = TD->getTypeAllocSize(IdxTy) - NewOffset;
1981    if (EltSize > Size) {
1982      EltSize = Size;
1983      Size = 0;
1984    } else {
1985      Size -= EltSize;
1986    }
1987    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1988      Builder.CreateLifetimeStart(V, Builder.getInt64(EltSize));
1989    else
1990      Builder.CreateLifetimeEnd(V, Builder.getInt64(EltSize));
1991    ++Idx;
1992  }
1993
1994  for (; Idx != NewElts.size() && Size; ++Idx) {
1995    IdxTy = NewElts[Idx]->getAllocatedType();
1996    uint64_t EltSize = TD->getTypeAllocSize(IdxTy);
1997    if (EltSize > Size) {
1998      EltSize = Size;
1999      Size = 0;
2000    } else {
2001      Size -= EltSize;
2002    }
2003    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
2004      Builder.CreateLifetimeStart(NewElts[Idx],
2005                                  Builder.getInt64(EltSize));
2006    else
2007      Builder.CreateLifetimeEnd(NewElts[Idx],
2008                                Builder.getInt64(EltSize));
2009  }
2010  DeadInsts.push_back(II);
2011}
2012
2013/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2014/// Rewrite it to copy or set the elements of the scalarized memory.
2015void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2016                                        AllocaInst *AI,
2017                                        SmallVector<AllocaInst*, 32> &NewElts) {
2018  // If this is a memcpy/memmove, construct the other pointer as the
2019  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2020  // that doesn't have anything to do with the alloca that we are promoting. For
2021  // memset, this Value* stays null.
2022  Value *OtherPtr = 0;
2023  unsigned MemAlignment = MI->getAlignment();
2024  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2025    if (Inst == MTI->getRawDest())
2026      OtherPtr = MTI->getRawSource();
2027    else {
2028      assert(Inst == MTI->getRawSource());
2029      OtherPtr = MTI->getRawDest();
2030    }
2031  }
2032
2033  // If there is an other pointer, we want to convert it to the same pointer
2034  // type as AI has, so we can GEP through it safely.
2035  if (OtherPtr) {
2036    unsigned AddrSpace =
2037      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2038
2039    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2040    // optimization, but it's also required to detect the corner case where
2041    // both pointer operands are referencing the same memory, and where
2042    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2043    // function is only called for mem intrinsics that access the whole
2044    // aggregate, so non-zero GEPs are not an issue here.)
2045    OtherPtr = OtherPtr->stripPointerCasts();
2046
2047    // Copying the alloca to itself is a no-op: just delete it.
2048    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2049      // This code will run twice for a no-op memcpy -- once for each operand.
2050      // Put only one reference to MI on the DeadInsts list.
2051      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2052             E = DeadInsts.end(); I != E; ++I)
2053        if (*I == MI) return;
2054      DeadInsts.push_back(MI);
2055      return;
2056    }
2057
2058    // If the pointer is not the right type, insert a bitcast to the right
2059    // type.
2060    Type *NewTy =
2061      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2062
2063    if (OtherPtr->getType() != NewTy)
2064      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2065  }
2066
2067  // Process each element of the aggregate.
2068  bool SROADest = MI->getRawDest() == Inst;
2069
2070  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2071
2072  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2073    // If this is a memcpy/memmove, emit a GEP of the other element address.
2074    Value *OtherElt = 0;
2075    unsigned OtherEltAlign = MemAlignment;
2076
2077    if (OtherPtr) {
2078      Value *Idx[2] = { Zero,
2079                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2080      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx,
2081                                              OtherPtr->getName()+"."+Twine(i),
2082                                                   MI);
2083      uint64_t EltOffset;
2084      PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2085      Type *OtherTy = OtherPtrTy->getElementType();
2086      if (StructType *ST = dyn_cast<StructType>(OtherTy)) {
2087        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2088      } else {
2089        Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2090        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2091      }
2092
2093      // The alignment of the other pointer is the guaranteed alignment of the
2094      // element, which is affected by both the known alignment of the whole
2095      // mem intrinsic and the alignment of the element.  If the alignment of
2096      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2097      // known alignment is just 4 bytes.
2098      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2099    }
2100
2101    Value *EltPtr = NewElts[i];
2102    Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2103
2104    // If we got down to a scalar, insert a load or store as appropriate.
2105    if (EltTy->isSingleValueType()) {
2106      if (isa<MemTransferInst>(MI)) {
2107        if (SROADest) {
2108          // From Other to Alloca.
2109          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2110          new StoreInst(Elt, EltPtr, MI);
2111        } else {
2112          // From Alloca to Other.
2113          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2114          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2115        }
2116        continue;
2117      }
2118      assert(isa<MemSetInst>(MI));
2119
2120      // If the stored element is zero (common case), just store a null
2121      // constant.
2122      Constant *StoreVal;
2123      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2124        if (CI->isZero()) {
2125          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2126        } else {
2127          // If EltTy is a vector type, get the element type.
2128          Type *ValTy = EltTy->getScalarType();
2129
2130          // Construct an integer with the right value.
2131          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2132          APInt OneVal(EltSize, CI->getZExtValue());
2133          APInt TotalVal(OneVal);
2134          // Set each byte.
2135          for (unsigned i = 0; 8*i < EltSize; ++i) {
2136            TotalVal = TotalVal.shl(8);
2137            TotalVal |= OneVal;
2138          }
2139
2140          // Convert the integer value to the appropriate type.
2141          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2142          if (ValTy->isPointerTy())
2143            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2144          else if (ValTy->isFloatingPointTy())
2145            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2146          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2147
2148          // If the requested value was a vector constant, create it.
2149          if (EltTy->isVectorTy()) {
2150            unsigned NumElts = cast<VectorType>(EltTy)->getNumElements();
2151            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2152            StoreVal = ConstantVector::get(Elts);
2153          }
2154        }
2155        new StoreInst(StoreVal, EltPtr, MI);
2156        continue;
2157      }
2158      // Otherwise, if we're storing a byte variable, use a memset call for
2159      // this element.
2160    }
2161
2162    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2163
2164    IRBuilder<> Builder(MI);
2165
2166    // Finally, insert the meminst for this element.
2167    if (isa<MemSetInst>(MI)) {
2168      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2169                           MI->isVolatile());
2170    } else {
2171      assert(isa<MemTransferInst>(MI));
2172      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2173      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2174
2175      if (isa<MemCpyInst>(MI))
2176        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2177      else
2178        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2179    }
2180  }
2181  DeadInsts.push_back(MI);
2182}
2183
2184/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2185/// overwrites the entire allocation.  Extract out the pieces of the stored
2186/// integer and store them individually.
2187void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2188                                         SmallVector<AllocaInst*, 32> &NewElts){
2189  // Extract each element out of the integer according to its structure offset
2190  // and store the element value to the individual alloca.
2191  Value *SrcVal = SI->getOperand(0);
2192  Type *AllocaEltTy = AI->getAllocatedType();
2193  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2194
2195  IRBuilder<> Builder(SI);
2196
2197  // Handle tail padding by extending the operand
2198  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2199    SrcVal = Builder.CreateZExt(SrcVal,
2200                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2201
2202  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2203               << '\n');
2204
2205  // There are two forms here: AI could be an array or struct.  Both cases
2206  // have different ways to compute the element offset.
2207  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2208    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2209
2210    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2211      // Get the number of bits to shift SrcVal to get the value.
2212      Type *FieldTy = EltSTy->getElementType(i);
2213      uint64_t Shift = Layout->getElementOffsetInBits(i);
2214
2215      if (TD->isBigEndian())
2216        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2217
2218      Value *EltVal = SrcVal;
2219      if (Shift) {
2220        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2221        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2222      }
2223
2224      // Truncate down to an integer of the right size.
2225      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2226
2227      // Ignore zero sized fields like {}, they obviously contain no data.
2228      if (FieldSizeBits == 0) continue;
2229
2230      if (FieldSizeBits != AllocaSizeBits)
2231        EltVal = Builder.CreateTrunc(EltVal,
2232                             IntegerType::get(SI->getContext(), FieldSizeBits));
2233      Value *DestField = NewElts[i];
2234      if (EltVal->getType() == FieldTy) {
2235        // Storing to an integer field of this size, just do it.
2236      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2237        // Bitcast to the right element type (for fp/vector values).
2238        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2239      } else {
2240        // Otherwise, bitcast the dest pointer (for aggregates).
2241        DestField = Builder.CreateBitCast(DestField,
2242                                     PointerType::getUnqual(EltVal->getType()));
2243      }
2244      new StoreInst(EltVal, DestField, SI);
2245    }
2246
2247  } else {
2248    ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2249    Type *ArrayEltTy = ATy->getElementType();
2250    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2251    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2252
2253    uint64_t Shift;
2254
2255    if (TD->isBigEndian())
2256      Shift = AllocaSizeBits-ElementOffset;
2257    else
2258      Shift = 0;
2259
2260    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2261      // Ignore zero sized fields like {}, they obviously contain no data.
2262      if (ElementSizeBits == 0) continue;
2263
2264      Value *EltVal = SrcVal;
2265      if (Shift) {
2266        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2267        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2268      }
2269
2270      // Truncate down to an integer of the right size.
2271      if (ElementSizeBits != AllocaSizeBits)
2272        EltVal = Builder.CreateTrunc(EltVal,
2273                                     IntegerType::get(SI->getContext(),
2274                                                      ElementSizeBits));
2275      Value *DestField = NewElts[i];
2276      if (EltVal->getType() == ArrayEltTy) {
2277        // Storing to an integer field of this size, just do it.
2278      } else if (ArrayEltTy->isFloatingPointTy() ||
2279                 ArrayEltTy->isVectorTy()) {
2280        // Bitcast to the right element type (for fp/vector values).
2281        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2282      } else {
2283        // Otherwise, bitcast the dest pointer (for aggregates).
2284        DestField = Builder.CreateBitCast(DestField,
2285                                     PointerType::getUnqual(EltVal->getType()));
2286      }
2287      new StoreInst(EltVal, DestField, SI);
2288
2289      if (TD->isBigEndian())
2290        Shift -= ElementOffset;
2291      else
2292        Shift += ElementOffset;
2293    }
2294  }
2295
2296  DeadInsts.push_back(SI);
2297}
2298
2299/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2300/// an integer.  Load the individual pieces to form the aggregate value.
2301void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2302                                        SmallVector<AllocaInst*, 32> &NewElts) {
2303  // Extract each element out of the NewElts according to its structure offset
2304  // and form the result value.
2305  Type *AllocaEltTy = AI->getAllocatedType();
2306  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2307
2308  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2309               << '\n');
2310
2311  // There are two forms here: AI could be an array or struct.  Both cases
2312  // have different ways to compute the element offset.
2313  const StructLayout *Layout = 0;
2314  uint64_t ArrayEltBitOffset = 0;
2315  if (StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2316    Layout = TD->getStructLayout(EltSTy);
2317  } else {
2318    Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2319    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2320  }
2321
2322  Value *ResultVal =
2323    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2324
2325  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2326    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2327    // the pointer to an integer of the same size before doing the load.
2328    Value *SrcField = NewElts[i];
2329    Type *FieldTy =
2330      cast<PointerType>(SrcField->getType())->getElementType();
2331    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2332
2333    // Ignore zero sized fields like {}, they obviously contain no data.
2334    if (FieldSizeBits == 0) continue;
2335
2336    IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2337                                                     FieldSizeBits);
2338    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2339        !FieldTy->isVectorTy())
2340      SrcField = new BitCastInst(SrcField,
2341                                 PointerType::getUnqual(FieldIntTy),
2342                                 "", LI);
2343    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2344
2345    // If SrcField is a fp or vector of the right size but that isn't an
2346    // integer type, bitcast to an integer so we can shift it.
2347    if (SrcField->getType() != FieldIntTy)
2348      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2349
2350    // Zero extend the field to be the same size as the final alloca so that
2351    // we can shift and insert it.
2352    if (SrcField->getType() != ResultVal->getType())
2353      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2354
2355    // Determine the number of bits to shift SrcField.
2356    uint64_t Shift;
2357    if (Layout) // Struct case.
2358      Shift = Layout->getElementOffsetInBits(i);
2359    else  // Array case.
2360      Shift = i*ArrayEltBitOffset;
2361
2362    if (TD->isBigEndian())
2363      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2364
2365    if (Shift) {
2366      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2367      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2368    }
2369
2370    // Don't create an 'or x, 0' on the first iteration.
2371    if (!isa<Constant>(ResultVal) ||
2372        !cast<Constant>(ResultVal)->isNullValue())
2373      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2374    else
2375      ResultVal = SrcField;
2376  }
2377
2378  // Handle tail padding by truncating the result
2379  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2380    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2381
2382  LI->replaceAllUsesWith(ResultVal);
2383  DeadInsts.push_back(LI);
2384}
2385
2386/// HasPadding - Return true if the specified type has any structure or
2387/// alignment padding in between the elements that would be split apart
2388/// by SROA; return false otherwise.
2389static bool HasPadding(Type *Ty, const TargetData &TD) {
2390  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2391    Ty = ATy->getElementType();
2392    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2393  }
2394
2395  // SROA currently handles only Arrays and Structs.
2396  StructType *STy = cast<StructType>(Ty);
2397  const StructLayout *SL = TD.getStructLayout(STy);
2398  unsigned PrevFieldBitOffset = 0;
2399  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2400    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2401
2402    // Check to see if there is any padding between this element and the
2403    // previous one.
2404    if (i) {
2405      unsigned PrevFieldEnd =
2406        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2407      if (PrevFieldEnd < FieldBitOffset)
2408        return true;
2409    }
2410    PrevFieldBitOffset = FieldBitOffset;
2411  }
2412  // Check for tail padding.
2413  if (unsigned EltCount = STy->getNumElements()) {
2414    unsigned PrevFieldEnd = PrevFieldBitOffset +
2415      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2416    if (PrevFieldEnd < SL->getSizeInBits())
2417      return true;
2418  }
2419  return false;
2420}
2421
2422/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2423/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2424/// or 1 if safe after canonicalization has been performed.
2425bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2426  // Loop over the use list of the alloca.  We can only transform it if all of
2427  // the users are safe to transform.
2428  AllocaInfo Info(AI);
2429
2430  isSafeForScalarRepl(AI, 0, Info);
2431  if (Info.isUnsafe) {
2432    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2433    return false;
2434  }
2435
2436  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2437  // source and destination, we have to be careful.  In particular, the memcpy
2438  // could be moving around elements that live in structure padding of the LLVM
2439  // types, but may actually be used.  In these cases, we refuse to promote the
2440  // struct.
2441  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2442      HasPadding(AI->getAllocatedType(), *TD))
2443    return false;
2444
2445  // If the alloca never has an access to just *part* of it, but is accessed
2446  // via loads and stores, then we should use ConvertToScalarInfo to promote
2447  // the alloca instead of promoting each piece at a time and inserting fission
2448  // and fusion code.
2449  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2450    // If the struct/array just has one element, use basic SRoA.
2451    if (StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2452      if (ST->getNumElements() > 1) return false;
2453    } else {
2454      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2455        return false;
2456    }
2457  }
2458
2459  return true;
2460}
2461
2462
2463
2464/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2465/// some part of a constant global variable.  This intentionally only accepts
2466/// constant expressions because we don't can't rewrite arbitrary instructions.
2467static bool PointsToConstantGlobal(Value *V) {
2468  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2469    return GV->isConstant();
2470  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2471    if (CE->getOpcode() == Instruction::BitCast ||
2472        CE->getOpcode() == Instruction::GetElementPtr)
2473      return PointsToConstantGlobal(CE->getOperand(0));
2474  return false;
2475}
2476
2477/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2478/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2479/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2480/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2481/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2482/// the alloca, and if the source pointer is a pointer to a constant global, we
2483/// can optimize this.
2484static bool
2485isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2486                               bool isOffset,
2487                               SmallVector<Instruction *, 4> &LifetimeMarkers) {
2488  // We track lifetime intrinsics as we encounter them.  If we decide to go
2489  // ahead and replace the value with the global, this lets the caller quickly
2490  // eliminate the markers.
2491
2492  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2493    User *U = cast<Instruction>(*UI);
2494
2495    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2496      // Ignore non-volatile loads, they are always ok.
2497      if (!LI->isSimple()) return false;
2498      continue;
2499    }
2500
2501    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2502      // If uses of the bitcast are ok, we are ok.
2503      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
2504                                          LifetimeMarkers))
2505        return false;
2506      continue;
2507    }
2508    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2509      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2510      // doesn't, it does.
2511      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2512                                          isOffset || !GEP->hasAllZeroIndices(),
2513                                          LifetimeMarkers))
2514        return false;
2515      continue;
2516    }
2517
2518    if (CallSite CS = U) {
2519      // If this is the function being called then we treat it like a load and
2520      // ignore it.
2521      if (CS.isCallee(UI))
2522        continue;
2523
2524      // If this is a readonly/readnone call site, then we know it is just a
2525      // load (but one that potentially returns the value itself), so we can
2526      // ignore it if we know that the value isn't captured.
2527      unsigned ArgNo = CS.getArgumentNo(UI);
2528      if (CS.onlyReadsMemory() &&
2529          (CS.getInstruction()->use_empty() ||
2530           CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2531        continue;
2532
2533      // If this is being passed as a byval argument, the caller is making a
2534      // copy, so it is only a read of the alloca.
2535      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2536        continue;
2537    }
2538
2539    // Lifetime intrinsics can be handled by the caller.
2540    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
2541      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2542          II->getIntrinsicID() == Intrinsic::lifetime_end) {
2543        assert(II->use_empty() && "Lifetime markers have no result to use!");
2544        LifetimeMarkers.push_back(II);
2545        continue;
2546      }
2547    }
2548
2549    // If this is isn't our memcpy/memmove, reject it as something we can't
2550    // handle.
2551    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2552    if (MI == 0)
2553      return false;
2554
2555    // If the transfer is using the alloca as a source of the transfer, then
2556    // ignore it since it is a load (unless the transfer is volatile).
2557    if (UI.getOperandNo() == 1) {
2558      if (MI->isVolatile()) return false;
2559      continue;
2560    }
2561
2562    // If we already have seen a copy, reject the second one.
2563    if (TheCopy) return false;
2564
2565    // If the pointer has been offset from the start of the alloca, we can't
2566    // safely handle this.
2567    if (isOffset) return false;
2568
2569    // If the memintrinsic isn't using the alloca as the dest, reject it.
2570    if (UI.getOperandNo() != 0) return false;
2571
2572    // If the source of the memcpy/move is not a constant global, reject it.
2573    if (!PointsToConstantGlobal(MI->getSource()))
2574      return false;
2575
2576    // Otherwise, the transform is safe.  Remember the copy instruction.
2577    TheCopy = MI;
2578  }
2579  return true;
2580}
2581
2582/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2583/// modified by a copy from a constant global.  If we can prove this, we can
2584/// replace any uses of the alloca with uses of the global directly.
2585MemTransferInst *
2586SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
2587                                     SmallVector<Instruction*, 4> &ToDelete) {
2588  MemTransferInst *TheCopy = 0;
2589  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
2590    return TheCopy;
2591  return 0;
2592}
2593