ScalarReplAggregates.cpp revision 96cc1d0dfbcf9c7ffffc65f0aa008ff532d444f4
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DIBuilder.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/Loads.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Transforms/Utils/PromoteMemToReg.h"
39#include "llvm/Transforms/Utils/Local.h"
40#include "llvm/Transforms/Utils/SSAUpdater.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/MathExtras.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/Statistic.h"
51using namespace llvm;
52
53STATISTIC(NumReplaced,  "Number of allocas broken up");
54STATISTIC(NumPromoted,  "Number of allocas promoted");
55STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
56STATISTIC(NumConverted, "Number of aggregates converted to scalar");
57STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
58
59namespace {
60  struct SROA : public FunctionPass {
61    SROA(int T, bool hasDT, char &ID)
62      : FunctionPass(ID), HasDomTree(hasDT) {
63      if (T == -1)
64        SRThreshold = 128;
65      else
66        SRThreshold = T;
67    }
68
69    bool runOnFunction(Function &F);
70
71    bool performScalarRepl(Function &F);
72    bool performPromotion(Function &F);
73
74  private:
75    bool HasDomTree;
76    TargetData *TD;
77
78    /// DeadInsts - Keep track of instructions we have made dead, so that
79    /// we can remove them after we are done working.
80    SmallVector<Value*, 32> DeadInsts;
81
82    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
83    /// information about the uses.  All these fields are initialized to false
84    /// and set to true when something is learned.
85    struct AllocaInfo {
86      /// The alloca to promote.
87      AllocaInst *AI;
88
89      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
90      /// looping and avoid redundant work.
91      SmallPtrSet<PHINode*, 8> CheckedPHIs;
92
93      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
94      bool isUnsafe : 1;
95
96      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
97      bool isMemCpySrc : 1;
98
99      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
100      bool isMemCpyDst : 1;
101
102      /// hasSubelementAccess - This is true if a subelement of the alloca is
103      /// ever accessed, or false if the alloca is only accessed with mem
104      /// intrinsics or load/store that only access the entire alloca at once.
105      bool hasSubelementAccess : 1;
106
107      /// hasALoadOrStore - This is true if there are any loads or stores to it.
108      /// The alloca may just be accessed with memcpy, for example, which would
109      /// not set this.
110      bool hasALoadOrStore : 1;
111
112      explicit AllocaInfo(AllocaInst *ai)
113        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
114          hasSubelementAccess(false), hasALoadOrStore(false) {}
115    };
116
117    unsigned SRThreshold;
118
119    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
120      I.isUnsafe = true;
121      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
122    }
123
124    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
125
126    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
127    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
128                                         AllocaInfo &Info);
129    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
130    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
131                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
132                         Instruction *TheAccess, bool AllowWholeAccess);
133    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
134    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
135                                  const Type *&IdxTy);
136
137    void DoScalarReplacement(AllocaInst *AI,
138                             std::vector<AllocaInst*> &WorkList);
139    void DeleteDeadInstructions();
140
141    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
142                              SmallVector<AllocaInst*, 32> &NewElts);
143    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
144                        SmallVector<AllocaInst*, 32> &NewElts);
145    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
146                    SmallVector<AllocaInst*, 32> &NewElts);
147    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
148                                      AllocaInst *AI,
149                                      SmallVector<AllocaInst*, 32> &NewElts);
150    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
151                                       SmallVector<AllocaInst*, 32> &NewElts);
152    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
153                                      SmallVector<AllocaInst*, 32> &NewElts);
154
155    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
156  };
157
158  // SROA_DT - SROA that uses DominatorTree.
159  struct SROA_DT : public SROA {
160    static char ID;
161  public:
162    SROA_DT(int T = -1) : SROA(T, true, ID) {
163      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
164    }
165
166    // getAnalysisUsage - This pass does not require any passes, but we know it
167    // will not alter the CFG, so say so.
168    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
169      AU.addRequired<DominatorTree>();
170      AU.setPreservesCFG();
171    }
172  };
173
174  // SROA_SSAUp - SROA that uses SSAUpdater.
175  struct SROA_SSAUp : public SROA {
176    static char ID;
177  public:
178    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
179      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
180    }
181
182    // getAnalysisUsage - This pass does not require any passes, but we know it
183    // will not alter the CFG, so say so.
184    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
185      AU.setPreservesCFG();
186    }
187  };
188
189}
190
191char SROA_DT::ID = 0;
192char SROA_SSAUp::ID = 0;
193
194INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
195                "Scalar Replacement of Aggregates (DT)", false, false)
196INITIALIZE_PASS_DEPENDENCY(DominatorTree)
197INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
198                "Scalar Replacement of Aggregates (DT)", false, false)
199
200INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
201                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
202INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
203                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
204
205// Public interface to the ScalarReplAggregates pass
206FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
207                                                   bool UseDomTree) {
208  if (UseDomTree)
209    return new SROA_DT(Threshold);
210  return new SROA_SSAUp(Threshold);
211}
212
213
214//===----------------------------------------------------------------------===//
215// Convert To Scalar Optimization.
216//===----------------------------------------------------------------------===//
217
218namespace {
219/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
220/// optimization, which scans the uses of an alloca and determines if it can
221/// rewrite it in terms of a single new alloca that can be mem2reg'd.
222class ConvertToScalarInfo {
223  /// AllocaSize - The size of the alloca being considered in bytes.
224  unsigned AllocaSize;
225  const TargetData &TD;
226
227  /// IsNotTrivial - This is set to true if there is some access to the object
228  /// which means that mem2reg can't promote it.
229  bool IsNotTrivial;
230
231  /// VectorTy - This tracks the type that we should promote the vector to if
232  /// it is possible to turn it into a vector.  This starts out null, and if it
233  /// isn't possible to turn into a vector type, it gets set to VoidTy.
234  const Type *VectorTy;
235
236  /// HadAVector - True if there is at least one vector access to the alloca.
237  /// We don't want to turn random arrays into vectors and use vector element
238  /// insert/extract, but if there are element accesses to something that is
239  /// also declared as a vector, we do want to promote to a vector.
240  bool HadAVector;
241
242  /// HadNonMemTransferAccess - True if there is at least one access to the
243  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
244  /// large integers unless there is some potential for optimization.
245  bool HadNonMemTransferAccess;
246
247public:
248  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
249    : AllocaSize(Size), TD(td), IsNotTrivial(false), VectorTy(0),
250      HadAVector(false), HadNonMemTransferAccess(false) { }
251
252  AllocaInst *TryConvert(AllocaInst *AI);
253
254private:
255  bool CanConvertToScalar(Value *V, uint64_t Offset);
256  void MergeInType(const Type *In, uint64_t Offset, bool IsLoadOrStore);
257  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
258  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
259
260  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
261                                    uint64_t Offset, IRBuilder<> &Builder);
262  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
263                                   uint64_t Offset, IRBuilder<> &Builder);
264};
265} // end anonymous namespace.
266
267
268/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
269/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
270/// alloca if possible or null if not.
271AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
272  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
273  // out.
274  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
275    return 0;
276
277  // If we were able to find a vector type that can handle this with
278  // insert/extract elements, and if there was at least one use that had
279  // a vector type, promote this to a vector.  We don't want to promote
280  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
281  // we just get a lot of insert/extracts.  If at least one vector is
282  // involved, then we probably really do have a union of vector/array.
283  const Type *NewTy;
284  if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
285    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
286          << *VectorTy << '\n');
287    NewTy = VectorTy;  // Use the vector type.
288  } else {
289    unsigned BitWidth = AllocaSize * 8;
290    if (!HadAVector && !HadNonMemTransferAccess &&
291        !TD.fitsInLegalInteger(BitWidth))
292      return 0;
293
294    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
295    // Create and insert the integer alloca.
296    NewTy = IntegerType::get(AI->getContext(), BitWidth);
297  }
298  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
299  ConvertUsesToScalar(AI, NewAI, 0);
300  return NewAI;
301}
302
303/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
304/// so far at the offset specified by Offset (which is specified in bytes).
305///
306/// There are three cases we handle here:
307///   1) A union of vector types of the same size and potentially its elements.
308///      Here we turn element accesses into insert/extract element operations.
309///      This promotes a <4 x float> with a store of float to the third element
310///      into a <4 x float> that uses insert element.
311///   2) A union of vector types with power-of-2 size differences, e.g. a float,
312///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
313///      and extract element operations, and <2 x float> accesses into a cast to
314///      <2 x double>, an extract, and a cast back to <2 x float>.
315///   3) A fully general blob of memory, which we turn into some (potentially
316///      large) integer type with extract and insert operations where the loads
317///      and stores would mutate the memory.  We mark this by setting VectorTy
318///      to VoidTy.
319void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset,
320                                      bool IsLoadOrStore) {
321  // If we already decided to turn this into a blob of integer memory, there is
322  // nothing to be done.
323  if (VectorTy && VectorTy->isVoidTy())
324    return;
325
326  // If this could be contributing to a vector, analyze it.
327
328  // If the In type is a vector that is the same size as the alloca, see if it
329  // matches the existing VecTy.
330  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
331    if (MergeInVectorType(VInTy, Offset))
332      return;
333  } else if (In->isFloatTy() || In->isDoubleTy() ||
334             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
335              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
336    // Full width accesses can be ignored, because they can always be turned
337    // into bitcasts.
338    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
339    if (IsLoadOrStore && EltSize == AllocaSize)
340      return;
341
342    // If we're accessing something that could be an element of a vector, see
343    // if the implied vector agrees with what we already have and if Offset is
344    // compatible with it.
345    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
346        Offset * 8 <
347          (VectorTy ? VectorTy->getPrimitiveSizeInBits()
348                    : (AllocaSize / EltSize) * In->getPrimitiveSizeInBits())) {
349      if (!VectorTy) {
350        VectorTy = VectorType::get(In, AllocaSize/EltSize);
351        return;
352      }
353
354      unsigned CurrentEltSize = cast<VectorType>(VectorTy)->getElementType()
355                                ->getPrimitiveSizeInBits()/8;
356      if (EltSize == CurrentEltSize)
357        return;
358
359      if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
360        return;
361    }
362  }
363
364  // Otherwise, we have a case that we can't handle with an optimized vector
365  // form.  We can still turn this into a large integer.
366  VectorTy = Type::getVoidTy(In->getContext());
367}
368
369/// MergeInVectorType - Handles the vector case of MergeInType, returning true
370/// if the type was successfully merged and false otherwise.
371bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
372                                            uint64_t Offset) {
373  // Remember if we saw a vector type.
374  HadAVector = true;
375
376  // TODO: Support nonzero offsets?
377  if (Offset != 0)
378    return false;
379
380  // Only allow vectors that are a power-of-2 away from the size of the alloca.
381  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
382    return false;
383
384  // If this the first vector we see, remember the type so that we know the
385  // element size.
386  if (!VectorTy) {
387    VectorTy = VInTy;
388    return true;
389  }
390
391  unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
392  unsigned InBitWidth = VInTy->getBitWidth();
393
394  // Vectors of the same size can be converted using a simple bitcast.
395  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
396    return true;
397
398  const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
399  const Type *InElementTy = cast<VectorType>(VInTy)->getElementType();
400
401  // Do not allow mixed integer and floating-point accesses from vectors of
402  // different sizes.
403  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
404    return false;
405
406  if (ElementTy->isFloatingPointTy()) {
407    // Only allow floating-point vectors of different sizes if they have the
408    // same element type.
409    // TODO: This could be loosened a bit, but would anything benefit?
410    if (ElementTy != InElementTy)
411      return false;
412
413    // There are no arbitrary-precision floating-point types, which limits the
414    // number of legal vector types with larger element types that we can form
415    // to bitcast and extract a subvector.
416    // TODO: We could support some more cases with mixed fp128 and double here.
417    if (!(BitWidth == 64 || BitWidth == 128) ||
418        !(InBitWidth == 64 || InBitWidth == 128))
419      return false;
420  } else {
421    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
422                                       "or floating-point.");
423    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
424    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
425
426    // Do not allow integer types smaller than a byte or types whose widths are
427    // not a multiple of a byte.
428    if (BitWidth < 8 || InBitWidth < 8 ||
429        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
430      return false;
431  }
432
433  // Pick the largest of the two vector types.
434  if (InBitWidth > BitWidth)
435    VectorTy = VInTy;
436
437  return true;
438}
439
440/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
441/// its accesses to a single vector type, return true and set VecTy to
442/// the new type.  If we could convert the alloca into a single promotable
443/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
444/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
445/// is the current offset from the base of the alloca being analyzed.
446///
447/// If we see at least one access to the value that is as a vector type, set the
448/// SawVec flag.
449bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
450  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
451    Instruction *User = cast<Instruction>(*UI);
452
453    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
454      // Don't break volatile loads.
455      if (LI->isVolatile())
456        return false;
457      // Don't touch MMX operations.
458      if (LI->getType()->isX86_MMXTy())
459        return false;
460      HadNonMemTransferAccess = true;
461      MergeInType(LI->getType(), Offset, true);
462      continue;
463    }
464
465    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
466      // Storing the pointer, not into the value?
467      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
468      // Don't touch MMX operations.
469      if (SI->getOperand(0)->getType()->isX86_MMXTy())
470        return false;
471      HadNonMemTransferAccess = true;
472      MergeInType(SI->getOperand(0)->getType(), Offset, true);
473      continue;
474    }
475
476    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
477      IsNotTrivial = true;  // Can't be mem2reg'd.
478      if (!CanConvertToScalar(BCI, Offset))
479        return false;
480      continue;
481    }
482
483    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
484      // If this is a GEP with a variable indices, we can't handle it.
485      if (!GEP->hasAllConstantIndices())
486        return false;
487
488      // Compute the offset that this GEP adds to the pointer.
489      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
490      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
491                                               &Indices[0], Indices.size());
492      // See if all uses can be converted.
493      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
494        return false;
495      IsNotTrivial = true;  // Can't be mem2reg'd.
496      HadNonMemTransferAccess = true;
497      continue;
498    }
499
500    // If this is a constant sized memset of a constant value (e.g. 0) we can
501    // handle it.
502    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
503      // Store of constant value and constant size.
504      if (!isa<ConstantInt>(MSI->getValue()) ||
505          !isa<ConstantInt>(MSI->getLength()))
506        return false;
507      IsNotTrivial = true;  // Can't be mem2reg'd.
508      HadNonMemTransferAccess = true;
509      continue;
510    }
511
512    // If this is a memcpy or memmove into or out of the whole allocation, we
513    // can handle it like a load or store of the scalar type.
514    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
515      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
516      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
517        return false;
518
519      IsNotTrivial = true;  // Can't be mem2reg'd.
520      continue;
521    }
522
523    // Otherwise, we cannot handle this!
524    return false;
525  }
526
527  return true;
528}
529
530/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
531/// directly.  This happens when we are converting an "integer union" to a
532/// single integer scalar, or when we are converting a "vector union" to a
533/// vector with insert/extractelement instructions.
534///
535/// Offset is an offset from the original alloca, in bits that need to be
536/// shifted to the right.  By the end of this, there should be no uses of Ptr.
537void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
538                                              uint64_t Offset) {
539  while (!Ptr->use_empty()) {
540    Instruction *User = cast<Instruction>(Ptr->use_back());
541
542    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
543      ConvertUsesToScalar(CI, NewAI, Offset);
544      CI->eraseFromParent();
545      continue;
546    }
547
548    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
549      // Compute the offset that this GEP adds to the pointer.
550      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
551      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
552                                               &Indices[0], Indices.size());
553      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
554      GEP->eraseFromParent();
555      continue;
556    }
557
558    IRBuilder<> Builder(User);
559
560    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
561      // The load is a bit extract from NewAI shifted right by Offset bits.
562      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
563      Value *NewLoadVal
564        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
565      LI->replaceAllUsesWith(NewLoadVal);
566      LI->eraseFromParent();
567      continue;
568    }
569
570    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
571      assert(SI->getOperand(0) != Ptr && "Consistency error!");
572      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
573      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
574                                             Builder);
575      Builder.CreateStore(New, NewAI);
576      SI->eraseFromParent();
577
578      // If the load we just inserted is now dead, then the inserted store
579      // overwrote the entire thing.
580      if (Old->use_empty())
581        Old->eraseFromParent();
582      continue;
583    }
584
585    // If this is a constant sized memset of a constant value (e.g. 0) we can
586    // transform it into a store of the expanded constant value.
587    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
588      assert(MSI->getRawDest() == Ptr && "Consistency error!");
589      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
590      if (NumBytes != 0) {
591        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
592
593        // Compute the value replicated the right number of times.
594        APInt APVal(NumBytes*8, Val);
595
596        // Splat the value if non-zero.
597        if (Val)
598          for (unsigned i = 1; i != NumBytes; ++i)
599            APVal |= APVal << 8;
600
601        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
602        Value *New = ConvertScalar_InsertValue(
603                                    ConstantInt::get(User->getContext(), APVal),
604                                               Old, Offset, Builder);
605        Builder.CreateStore(New, NewAI);
606
607        // If the load we just inserted is now dead, then the memset overwrote
608        // the entire thing.
609        if (Old->use_empty())
610          Old->eraseFromParent();
611      }
612      MSI->eraseFromParent();
613      continue;
614    }
615
616    // If this is a memcpy or memmove into or out of the whole allocation, we
617    // can handle it like a load or store of the scalar type.
618    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
619      assert(Offset == 0 && "must be store to start of alloca");
620
621      // If the source and destination are both to the same alloca, then this is
622      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
623      // as appropriate.
624      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
625
626      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
627        // Dest must be OrigAI, change this to be a load from the original
628        // pointer (bitcasted), then a store to our new alloca.
629        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
630        Value *SrcPtr = MTI->getSource();
631        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
632        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
633        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
634          AIPTy = PointerType::get(AIPTy->getElementType(),
635                                   SPTy->getAddressSpace());
636        }
637        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
638
639        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
640        SrcVal->setAlignment(MTI->getAlignment());
641        Builder.CreateStore(SrcVal, NewAI);
642      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
643        // Src must be OrigAI, change this to be a load from NewAI then a store
644        // through the original dest pointer (bitcasted).
645        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
646        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
647
648        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
649        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
650        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
651          AIPTy = PointerType::get(AIPTy->getElementType(),
652                                   DPTy->getAddressSpace());
653        }
654        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
655
656        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
657        NewStore->setAlignment(MTI->getAlignment());
658      } else {
659        // Noop transfer. Src == Dst
660      }
661
662      MTI->eraseFromParent();
663      continue;
664    }
665
666    llvm_unreachable("Unsupported operation!");
667  }
668}
669
670/// getScaledElementType - Gets a scaled element type for a partial vector
671/// access of an alloca. The input types must be integer or floating-point
672/// scalar or vector types, and the resulting type is an integer, float or
673/// double.
674static const Type *getScaledElementType(const Type *Ty1, const Type *Ty2,
675                                        unsigned NewBitWidth) {
676  bool IsFP1 = Ty1->isFloatingPointTy() ||
677               (Ty1->isVectorTy() &&
678                cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
679  bool IsFP2 = Ty2->isFloatingPointTy() ||
680               (Ty2->isVectorTy() &&
681                cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
682
683  LLVMContext &Context = Ty1->getContext();
684
685  // Prefer floating-point types over integer types, as integer types may have
686  // been created by earlier scalar replacement.
687  if (IsFP1 || IsFP2) {
688    if (NewBitWidth == 32)
689      return Type::getFloatTy(Context);
690    if (NewBitWidth == 64)
691      return Type::getDoubleTy(Context);
692  }
693
694  return Type::getIntNTy(Context, NewBitWidth);
695}
696
697/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
698/// to another vector of the same element type which has the same allocation
699/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
700static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
701                                      IRBuilder<> &Builder) {
702  const Type *FromType = FromVal->getType();
703  const VectorType *FromVTy = cast<VectorType>(FromType);
704  const VectorType *ToVTy = cast<VectorType>(ToType);
705  assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
706         "Vectors must have the same element type");
707   Value *UnV = UndefValue::get(FromType);
708   unsigned numEltsFrom = FromVTy->getNumElements();
709   unsigned numEltsTo = ToVTy->getNumElements();
710
711   SmallVector<Constant*, 3> Args;
712   const Type* Int32Ty = Builder.getInt32Ty();
713   unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
714   unsigned i;
715   for (i=0; i != minNumElts; ++i)
716     Args.push_back(ConstantInt::get(Int32Ty, i));
717
718   if (i < numEltsTo) {
719     Constant* UnC = UndefValue::get(Int32Ty);
720     for (; i != numEltsTo; ++i)
721       Args.push_back(UnC);
722   }
723   Constant *Mask = ConstantVector::get(Args);
724   return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
725}
726
727/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
728/// or vector value FromVal, extracting the bits from the offset specified by
729/// Offset.  This returns the value, which is of type ToType.
730///
731/// This happens when we are converting an "integer union" to a single
732/// integer scalar, or when we are converting a "vector union" to a vector with
733/// insert/extractelement instructions.
734///
735/// Offset is an offset from the original alloca, in bits that need to be
736/// shifted to the right.
737Value *ConvertToScalarInfo::
738ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
739                           uint64_t Offset, IRBuilder<> &Builder) {
740  // If the load is of the whole new alloca, no conversion is needed.
741  const Type *FromType = FromVal->getType();
742  if (FromType == ToType && Offset == 0)
743    return FromVal;
744
745  // If the result alloca is a vector type, this is either an element
746  // access or a bitcast to another vector type of the same size.
747  if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
748    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
749    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
750    if (FromTypeSize == ToTypeSize) {
751      // If the two types have the same primitive size, use a bit cast.
752      // Otherwise, it is two vectors with the same element type that has
753      // the same allocation size but different number of elements so use
754      // a shuffle vector.
755      if (FromType->getPrimitiveSizeInBits() ==
756          ToType->getPrimitiveSizeInBits())
757        return Builder.CreateBitCast(FromVal, ToType, "tmp");
758      else
759        return CreateShuffleVectorCast(FromVal, ToType, Builder);
760    }
761
762    if (isPowerOf2_64(FromTypeSize / ToTypeSize)) {
763      assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
764             "of a smaller vector type at a nonzero offset.");
765
766      const Type *CastElementTy = getScaledElementType(FromType, ToType,
767                                                       ToTypeSize * 8);
768      unsigned NumCastVectorElements = FromTypeSize / ToTypeSize;
769
770      LLVMContext &Context = FromVal->getContext();
771      const Type *CastTy = VectorType::get(CastElementTy,
772                                           NumCastVectorElements);
773      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
774
775      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
776      unsigned Elt = Offset/EltSize;
777      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
778      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
779                                        Type::getInt32Ty(Context), Elt), "tmp");
780      return Builder.CreateBitCast(Extract, ToType, "tmp");
781    }
782
783    // Otherwise it must be an element access.
784    unsigned Elt = 0;
785    if (Offset) {
786      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
787      Elt = Offset/EltSize;
788      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
789    }
790    // Return the element extracted out of it.
791    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
792                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
793    if (V->getType() != ToType)
794      V = Builder.CreateBitCast(V, ToType, "tmp");
795    return V;
796  }
797
798  // If ToType is a first class aggregate, extract out each of the pieces and
799  // use insertvalue's to form the FCA.
800  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
801    const StructLayout &Layout = *TD.getStructLayout(ST);
802    Value *Res = UndefValue::get(ST);
803    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
804      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
805                                        Offset+Layout.getElementOffsetInBits(i),
806                                              Builder);
807      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
808    }
809    return Res;
810  }
811
812  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
813    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
814    Value *Res = UndefValue::get(AT);
815    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
816      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
817                                              Offset+i*EltSize, Builder);
818      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
819    }
820    return Res;
821  }
822
823  // Otherwise, this must be a union that was converted to an integer value.
824  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
825
826  // If this is a big-endian system and the load is narrower than the
827  // full alloca type, we need to do a shift to get the right bits.
828  int ShAmt = 0;
829  if (TD.isBigEndian()) {
830    // On big-endian machines, the lowest bit is stored at the bit offset
831    // from the pointer given by getTypeStoreSizeInBits.  This matters for
832    // integers with a bitwidth that is not a multiple of 8.
833    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
834            TD.getTypeStoreSizeInBits(ToType) - Offset;
835  } else {
836    ShAmt = Offset;
837  }
838
839  // Note: we support negative bitwidths (with shl) which are not defined.
840  // We do this to support (f.e.) loads off the end of a structure where
841  // only some bits are used.
842  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
843    FromVal = Builder.CreateLShr(FromVal,
844                                 ConstantInt::get(FromVal->getType(),
845                                                           ShAmt), "tmp");
846  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
847    FromVal = Builder.CreateShl(FromVal,
848                                ConstantInt::get(FromVal->getType(),
849                                                          -ShAmt), "tmp");
850
851  // Finally, unconditionally truncate the integer to the right width.
852  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
853  if (LIBitWidth < NTy->getBitWidth())
854    FromVal =
855      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
856                                                    LIBitWidth), "tmp");
857  else if (LIBitWidth > NTy->getBitWidth())
858    FromVal =
859       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
860                                                    LIBitWidth), "tmp");
861
862  // If the result is an integer, this is a trunc or bitcast.
863  if (ToType->isIntegerTy()) {
864    // Should be done.
865  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
866    // Just do a bitcast, we know the sizes match up.
867    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
868  } else {
869    // Otherwise must be a pointer.
870    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
871  }
872  assert(FromVal->getType() == ToType && "Didn't convert right?");
873  return FromVal;
874}
875
876/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
877/// or vector value "Old" at the offset specified by Offset.
878///
879/// This happens when we are converting an "integer union" to a
880/// single integer scalar, or when we are converting a "vector union" to a
881/// vector with insert/extractelement instructions.
882///
883/// Offset is an offset from the original alloca, in bits that need to be
884/// shifted to the right.
885Value *ConvertToScalarInfo::
886ConvertScalar_InsertValue(Value *SV, Value *Old,
887                          uint64_t Offset, IRBuilder<> &Builder) {
888  // Convert the stored type to the actual type, shift it left to insert
889  // then 'or' into place.
890  const Type *AllocaType = Old->getType();
891  LLVMContext &Context = Old->getContext();
892
893  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
894    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
895    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
896
897    // Changing the whole vector with memset or with an access of a different
898    // vector type?
899    if (ValSize == VecSize) {
900      // If the two types have the same primitive size, use a bit cast.
901      // Otherwise, it is two vectors with the same element type that has
902      // the same allocation size but different number of elements so use
903      // a shuffle vector.
904      if (VTy->getPrimitiveSizeInBits() ==
905          SV->getType()->getPrimitiveSizeInBits())
906        return Builder.CreateBitCast(SV, AllocaType, "tmp");
907      else
908        return CreateShuffleVectorCast(SV, VTy, Builder);
909    }
910
911    if (isPowerOf2_64(VecSize / ValSize)) {
912      assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
913             "value of a smaller vector type at a nonzero offset.");
914
915      const Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
916                                                       ValSize);
917      unsigned NumCastVectorElements = VecSize / ValSize;
918
919      LLVMContext &Context = SV->getContext();
920      const Type *OldCastTy = VectorType::get(CastElementTy,
921                                              NumCastVectorElements);
922      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
923
924      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
925
926      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
927      unsigned Elt = Offset/EltSize;
928      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
929      Value *Insert =
930        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
931                                        Type::getInt32Ty(Context), Elt), "tmp");
932      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
933    }
934
935    // Must be an element insertion.
936    assert(SV->getType() == VTy->getElementType());
937    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
938    unsigned Elt = Offset/EltSize;
939    return Builder.CreateInsertElement(Old, SV,
940                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
941                                     "tmp");
942  }
943
944  // If SV is a first-class aggregate value, insert each value recursively.
945  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
946    const StructLayout &Layout = *TD.getStructLayout(ST);
947    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
948      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
949      Old = ConvertScalar_InsertValue(Elt, Old,
950                                      Offset+Layout.getElementOffsetInBits(i),
951                                      Builder);
952    }
953    return Old;
954  }
955
956  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
957    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
958    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
959      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
960      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
961    }
962    return Old;
963  }
964
965  // If SV is a float, convert it to the appropriate integer type.
966  // If it is a pointer, do the same.
967  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
968  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
969  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
970  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
971  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
972    SV = Builder.CreateBitCast(SV,
973                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
974  else if (SV->getType()->isPointerTy())
975    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
976
977  // Zero extend or truncate the value if needed.
978  if (SV->getType() != AllocaType) {
979    if (SV->getType()->getPrimitiveSizeInBits() <
980             AllocaType->getPrimitiveSizeInBits())
981      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
982    else {
983      // Truncation may be needed if storing more than the alloca can hold
984      // (undefined behavior).
985      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
986      SrcWidth = DestWidth;
987      SrcStoreWidth = DestStoreWidth;
988    }
989  }
990
991  // If this is a big-endian system and the store is narrower than the
992  // full alloca type, we need to do a shift to get the right bits.
993  int ShAmt = 0;
994  if (TD.isBigEndian()) {
995    // On big-endian machines, the lowest bit is stored at the bit offset
996    // from the pointer given by getTypeStoreSizeInBits.  This matters for
997    // integers with a bitwidth that is not a multiple of 8.
998    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
999  } else {
1000    ShAmt = Offset;
1001  }
1002
1003  // Note: we support negative bitwidths (with shr) which are not defined.
1004  // We do this to support (f.e.) stores off the end of a structure where
1005  // only some bits in the structure are set.
1006  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1007  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1008    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1009                           ShAmt), "tmp");
1010    Mask <<= ShAmt;
1011  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1012    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1013                            -ShAmt), "tmp");
1014    Mask = Mask.lshr(-ShAmt);
1015  }
1016
1017  // Mask out the bits we are about to insert from the old value, and or
1018  // in the new bits.
1019  if (SrcWidth != DestWidth) {
1020    assert(DestWidth > SrcWidth);
1021    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1022    SV = Builder.CreateOr(Old, SV, "ins");
1023  }
1024  return SV;
1025}
1026
1027
1028//===----------------------------------------------------------------------===//
1029// SRoA Driver
1030//===----------------------------------------------------------------------===//
1031
1032
1033bool SROA::runOnFunction(Function &F) {
1034  TD = getAnalysisIfAvailable<TargetData>();
1035
1036  bool Changed = performPromotion(F);
1037
1038  // FIXME: ScalarRepl currently depends on TargetData more than it
1039  // theoretically needs to. It should be refactored in order to support
1040  // target-independent IR. Until this is done, just skip the actual
1041  // scalar-replacement portion of this pass.
1042  if (!TD) return Changed;
1043
1044  while (1) {
1045    bool LocalChange = performScalarRepl(F);
1046    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1047    Changed = true;
1048    LocalChange = performPromotion(F);
1049    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1050  }
1051
1052  return Changed;
1053}
1054
1055namespace {
1056class AllocaPromoter : public LoadAndStorePromoter {
1057  AllocaInst *AI;
1058public:
1059  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1060                 DbgDeclareInst *DD, DIBuilder *&DB)
1061    : LoadAndStorePromoter(Insts, S, DD, DB), AI(0) {}
1062
1063  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1064    // Remember which alloca we're promoting (for isInstInList).
1065    this->AI = AI;
1066    LoadAndStorePromoter::run(Insts);
1067    AI->eraseFromParent();
1068  }
1069
1070  virtual bool isInstInList(Instruction *I,
1071                            const SmallVectorImpl<Instruction*> &Insts) const {
1072    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1073      return LI->getOperand(0) == AI;
1074    return cast<StoreInst>(I)->getPointerOperand() == AI;
1075  }
1076};
1077} // end anon namespace
1078
1079/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1080/// subsequently loaded can be rewritten to load both input pointers and then
1081/// select between the result, allowing the load of the alloca to be promoted.
1082/// From this:
1083///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1084///   %V = load i32* %P2
1085/// to:
1086///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1087///   %V2 = load i32* %Other
1088///   %V = select i1 %cond, i32 %V1, i32 %V2
1089///
1090/// We can do this to a select if its only uses are loads and if the operand to
1091/// the select can be loaded unconditionally.
1092static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1093  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1094  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1095
1096  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1097       UI != UE; ++UI) {
1098    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1099    if (LI == 0 || LI->isVolatile()) return false;
1100
1101    // Both operands to the select need to be dereferencable, either absolutely
1102    // (e.g. allocas) or at this point because we can see other accesses to it.
1103    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1104                                                    LI->getAlignment(), TD))
1105      return false;
1106    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1107                                                    LI->getAlignment(), TD))
1108      return false;
1109  }
1110
1111  return true;
1112}
1113
1114/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1115/// subsequently loaded can be rewritten to load both input pointers in the pred
1116/// blocks and then PHI the results, allowing the load of the alloca to be
1117/// promoted.
1118/// From this:
1119///   %P2 = phi [i32* %Alloca, i32* %Other]
1120///   %V = load i32* %P2
1121/// to:
1122///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1123///   ...
1124///   %V2 = load i32* %Other
1125///   ...
1126///   %V = phi [i32 %V1, i32 %V2]
1127///
1128/// We can do this to a select if its only uses are loads and if the operand to
1129/// the select can be loaded unconditionally.
1130static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1131  // For now, we can only do this promotion if the load is in the same block as
1132  // the PHI, and if there are no stores between the phi and load.
1133  // TODO: Allow recursive phi users.
1134  // TODO: Allow stores.
1135  BasicBlock *BB = PN->getParent();
1136  unsigned MaxAlign = 0;
1137  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1138       UI != UE; ++UI) {
1139    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1140    if (LI == 0 || LI->isVolatile()) return false;
1141
1142    // For now we only allow loads in the same block as the PHI.  This is a
1143    // common case that happens when instcombine merges two loads through a PHI.
1144    if (LI->getParent() != BB) return false;
1145
1146    // Ensure that there are no instructions between the PHI and the load that
1147    // could store.
1148    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1149      if (BBI->mayWriteToMemory())
1150        return false;
1151
1152    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1153  }
1154
1155  // Okay, we know that we have one or more loads in the same block as the PHI.
1156  // We can transform this if it is safe to push the loads into the predecessor
1157  // blocks.  The only thing to watch out for is that we can't put a possibly
1158  // trapping load in the predecessor if it is a critical edge.
1159  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1160    BasicBlock *Pred = PN->getIncomingBlock(i);
1161
1162    // If the predecessor has a single successor, then the edge isn't critical.
1163    if (Pred->getTerminator()->getNumSuccessors() == 1)
1164      continue;
1165
1166    Value *InVal = PN->getIncomingValue(i);
1167
1168    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1169    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1170      if (II->getParent() == Pred)
1171        return false;
1172
1173    // If this pointer is always safe to load, or if we can prove that there is
1174    // already a load in the block, then we can move the load to the pred block.
1175    if (InVal->isDereferenceablePointer() ||
1176        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1177      continue;
1178
1179    return false;
1180  }
1181
1182  return true;
1183}
1184
1185
1186/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1187/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1188/// not quite there, this will transform the code to allow promotion.  As such,
1189/// it is a non-pure predicate.
1190static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1191  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1192            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1193
1194  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1195       UI != UE; ++UI) {
1196    User *U = *UI;
1197    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1198      if (LI->isVolatile())
1199        return false;
1200      continue;
1201    }
1202
1203    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1204      if (SI->getOperand(0) == AI || SI->isVolatile())
1205        return false;   // Don't allow a store OF the AI, only INTO the AI.
1206      continue;
1207    }
1208
1209    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1210      // If the condition being selected on is a constant, fold the select, yes
1211      // this does (rarely) happen early on.
1212      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1213        Value *Result = SI->getOperand(1+CI->isZero());
1214        SI->replaceAllUsesWith(Result);
1215        SI->eraseFromParent();
1216
1217        // This is very rare and we just scrambled the use list of AI, start
1218        // over completely.
1219        return tryToMakeAllocaBePromotable(AI, TD);
1220      }
1221
1222      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1223      // loads, then we can transform this by rewriting the select.
1224      if (!isSafeSelectToSpeculate(SI, TD))
1225        return false;
1226
1227      InstsToRewrite.insert(SI);
1228      continue;
1229    }
1230
1231    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1232      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1233        InstsToRewrite.insert(PN);
1234        continue;
1235      }
1236
1237      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1238      // in the pred blocks, then we can transform this by rewriting the PHI.
1239      if (!isSafePHIToSpeculate(PN, TD))
1240        return false;
1241
1242      InstsToRewrite.insert(PN);
1243      continue;
1244    }
1245
1246    return false;
1247  }
1248
1249  // If there are no instructions to rewrite, then all uses are load/stores and
1250  // we're done!
1251  if (InstsToRewrite.empty())
1252    return true;
1253
1254  // If we have instructions that need to be rewritten for this to be promotable
1255  // take care of it now.
1256  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1257    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1258      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1259      // loads with a new select.
1260      while (!SI->use_empty()) {
1261        LoadInst *LI = cast<LoadInst>(SI->use_back());
1262
1263        IRBuilder<> Builder(LI);
1264        LoadInst *TrueLoad =
1265          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1266        LoadInst *FalseLoad =
1267          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1268
1269        // Transfer alignment and TBAA info if present.
1270        TrueLoad->setAlignment(LI->getAlignment());
1271        FalseLoad->setAlignment(LI->getAlignment());
1272        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1273          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1274          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1275        }
1276
1277        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1278        V->takeName(LI);
1279        LI->replaceAllUsesWith(V);
1280        LI->eraseFromParent();
1281      }
1282
1283      // Now that all the loads are gone, the select is gone too.
1284      SI->eraseFromParent();
1285      continue;
1286    }
1287
1288    // Otherwise, we have a PHI node which allows us to push the loads into the
1289    // predecessors.
1290    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1291    if (PN->use_empty()) {
1292      PN->eraseFromParent();
1293      continue;
1294    }
1295
1296    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1297    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1298                                     PN->getName()+".ld", PN);
1299
1300    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1301    // matter which one we get and if any differ, it doesn't matter.
1302    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1303    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1304    unsigned Align = SomeLoad->getAlignment();
1305
1306    // Rewrite all loads of the PN to use the new PHI.
1307    while (!PN->use_empty()) {
1308      LoadInst *LI = cast<LoadInst>(PN->use_back());
1309      LI->replaceAllUsesWith(NewPN);
1310      LI->eraseFromParent();
1311    }
1312
1313    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1314    // insert them into in case we have multiple edges from the same block.
1315    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1316
1317    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1318      BasicBlock *Pred = PN->getIncomingBlock(i);
1319      LoadInst *&Load = InsertedLoads[Pred];
1320      if (Load == 0) {
1321        Load = new LoadInst(PN->getIncomingValue(i),
1322                            PN->getName() + "." + Pred->getName(),
1323                            Pred->getTerminator());
1324        Load->setAlignment(Align);
1325        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1326      }
1327
1328      NewPN->addIncoming(Load, Pred);
1329    }
1330
1331    PN->eraseFromParent();
1332  }
1333
1334  ++NumAdjusted;
1335  return true;
1336}
1337
1338bool SROA::performPromotion(Function &F) {
1339  std::vector<AllocaInst*> Allocas;
1340  DominatorTree *DT = 0;
1341  if (HasDomTree)
1342    DT = &getAnalysis<DominatorTree>();
1343
1344  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1345
1346  bool Changed = false;
1347  SmallVector<Instruction*, 64> Insts;
1348  DIBuilder *DIB = 0;
1349  while (1) {
1350    Allocas.clear();
1351
1352    // Find allocas that are safe to promote, by looking at all instructions in
1353    // the entry node
1354    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1355      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1356        if (tryToMakeAllocaBePromotable(AI, TD))
1357          Allocas.push_back(AI);
1358
1359    if (Allocas.empty()) break;
1360
1361    if (HasDomTree)
1362      PromoteMemToReg(Allocas, *DT);
1363    else {
1364      SSAUpdater SSA;
1365      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1366        AllocaInst *AI = Allocas[i];
1367
1368        // Build list of instructions to promote.
1369        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1370             UI != E; ++UI)
1371          Insts.push_back(cast<Instruction>(*UI));
1372
1373        DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
1374        if (DDI && !DIB)
1375          DIB = new DIBuilder(*AI->getParent()->getParent()->getParent());
1376        AllocaPromoter(Insts, SSA, DDI, DIB).run(AI, Insts);
1377        Insts.clear();
1378      }
1379    }
1380    NumPromoted += Allocas.size();
1381    Changed = true;
1382  }
1383
1384  // FIXME: Is there a better way to handle the lazy initialization of DIB
1385  // so that there doesn't need to be an explicit delete?
1386  delete DIB;
1387
1388  return Changed;
1389}
1390
1391
1392/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1393/// SROA.  It must be a struct or array type with a small number of elements.
1394static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1395  const Type *T = AI->getAllocatedType();
1396  // Do not promote any struct into more than 32 separate vars.
1397  if (const StructType *ST = dyn_cast<StructType>(T))
1398    return ST->getNumElements() <= 32;
1399  // Arrays are much less likely to be safe for SROA; only consider
1400  // them if they are very small.
1401  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1402    return AT->getNumElements() <= 8;
1403  return false;
1404}
1405
1406
1407// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1408// which runs on all of the malloc/alloca instructions in the function, removing
1409// them if they are only used by getelementptr instructions.
1410//
1411bool SROA::performScalarRepl(Function &F) {
1412  std::vector<AllocaInst*> WorkList;
1413
1414  // Scan the entry basic block, adding allocas to the worklist.
1415  BasicBlock &BB = F.getEntryBlock();
1416  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1417    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1418      WorkList.push_back(A);
1419
1420  // Process the worklist
1421  bool Changed = false;
1422  while (!WorkList.empty()) {
1423    AllocaInst *AI = WorkList.back();
1424    WorkList.pop_back();
1425
1426    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1427    // with unused elements.
1428    if (AI->use_empty()) {
1429      AI->eraseFromParent();
1430      Changed = true;
1431      continue;
1432    }
1433
1434    // If this alloca is impossible for us to promote, reject it early.
1435    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1436      continue;
1437
1438    // Check to see if this allocation is only modified by a memcpy/memmove from
1439    // a constant global.  If this is the case, we can change all users to use
1440    // the constant global instead.  This is commonly produced by the CFE by
1441    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1442    // is only subsequently read.
1443    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1444      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1445      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1446      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1447      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1448      TheCopy->eraseFromParent();  // Don't mutate the global.
1449      AI->eraseFromParent();
1450      ++NumGlobals;
1451      Changed = true;
1452      continue;
1453    }
1454
1455    // Check to see if we can perform the core SROA transformation.  We cannot
1456    // transform the allocation instruction if it is an array allocation
1457    // (allocations OF arrays are ok though), and an allocation of a scalar
1458    // value cannot be decomposed at all.
1459    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1460
1461    // Do not promote [0 x %struct].
1462    if (AllocaSize == 0) continue;
1463
1464    // Do not promote any struct whose size is too big.
1465    if (AllocaSize > SRThreshold) continue;
1466
1467    // If the alloca looks like a good candidate for scalar replacement, and if
1468    // all its users can be transformed, then split up the aggregate into its
1469    // separate elements.
1470    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1471      DoScalarReplacement(AI, WorkList);
1472      Changed = true;
1473      continue;
1474    }
1475
1476    // If we can turn this aggregate value (potentially with casts) into a
1477    // simple scalar value that can be mem2reg'd into a register value.
1478    // IsNotTrivial tracks whether this is something that mem2reg could have
1479    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1480    // that we can't just check based on the type: the alloca may be of an i32
1481    // but that has pointer arithmetic to set byte 3 of it or something.
1482    if (AllocaInst *NewAI =
1483          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1484      NewAI->takeName(AI);
1485      AI->eraseFromParent();
1486      ++NumConverted;
1487      Changed = true;
1488      continue;
1489    }
1490
1491    // Otherwise, couldn't process this alloca.
1492  }
1493
1494  return Changed;
1495}
1496
1497/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1498/// predicate, do SROA now.
1499void SROA::DoScalarReplacement(AllocaInst *AI,
1500                               std::vector<AllocaInst*> &WorkList) {
1501  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1502  SmallVector<AllocaInst*, 32> ElementAllocas;
1503  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1504    ElementAllocas.reserve(ST->getNumContainedTypes());
1505    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1506      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1507                                      AI->getAlignment(),
1508                                      AI->getName() + "." + Twine(i), AI);
1509      ElementAllocas.push_back(NA);
1510      WorkList.push_back(NA);  // Add to worklist for recursive processing
1511    }
1512  } else {
1513    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1514    ElementAllocas.reserve(AT->getNumElements());
1515    const Type *ElTy = AT->getElementType();
1516    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1517      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1518                                      AI->getName() + "." + Twine(i), AI);
1519      ElementAllocas.push_back(NA);
1520      WorkList.push_back(NA);  // Add to worklist for recursive processing
1521    }
1522  }
1523
1524  // Now that we have created the new alloca instructions, rewrite all the
1525  // uses of the old alloca.
1526  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1527
1528  // Now erase any instructions that were made dead while rewriting the alloca.
1529  DeleteDeadInstructions();
1530  AI->eraseFromParent();
1531
1532  ++NumReplaced;
1533}
1534
1535/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1536/// recursively including all their operands that become trivially dead.
1537void SROA::DeleteDeadInstructions() {
1538  while (!DeadInsts.empty()) {
1539    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1540
1541    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1542      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1543        // Zero out the operand and see if it becomes trivially dead.
1544        // (But, don't add allocas to the dead instruction list -- they are
1545        // already on the worklist and will be deleted separately.)
1546        *OI = 0;
1547        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1548          DeadInsts.push_back(U);
1549      }
1550
1551    I->eraseFromParent();
1552  }
1553}
1554
1555/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1556/// performing scalar replacement of alloca AI.  The results are flagged in
1557/// the Info parameter.  Offset indicates the position within AI that is
1558/// referenced by this instruction.
1559void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1560                               AllocaInfo &Info) {
1561  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1562    Instruction *User = cast<Instruction>(*UI);
1563
1564    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1565      isSafeForScalarRepl(BC, Offset, Info);
1566    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1567      uint64_t GEPOffset = Offset;
1568      isSafeGEP(GEPI, GEPOffset, Info);
1569      if (!Info.isUnsafe)
1570        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1571    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1572      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1573      if (Length == 0)
1574        return MarkUnsafe(Info, User);
1575      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1576                      UI.getOperandNo() == 0, Info, MI,
1577                      true /*AllowWholeAccess*/);
1578    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1579      if (LI->isVolatile())
1580        return MarkUnsafe(Info, User);
1581      const Type *LIType = LI->getType();
1582      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1583                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1584      Info.hasALoadOrStore = true;
1585
1586    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1587      // Store is ok if storing INTO the pointer, not storing the pointer
1588      if (SI->isVolatile() || SI->getOperand(0) == I)
1589        return MarkUnsafe(Info, User);
1590
1591      const Type *SIType = SI->getOperand(0)->getType();
1592      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1593                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1594      Info.hasALoadOrStore = true;
1595    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1596      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1597    } else {
1598      return MarkUnsafe(Info, User);
1599    }
1600    if (Info.isUnsafe) return;
1601  }
1602}
1603
1604
1605/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1606/// derived from the alloca, we can often still split the alloca into elements.
1607/// This is useful if we have a large alloca where one element is phi'd
1608/// together somewhere: we can SRoA and promote all the other elements even if
1609/// we end up not being able to promote this one.
1610///
1611/// All we require is that the uses of the PHI do not index into other parts of
1612/// the alloca.  The most important use case for this is single load and stores
1613/// that are PHI'd together, which can happen due to code sinking.
1614void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1615                                           AllocaInfo &Info) {
1616  // If we've already checked this PHI, don't do it again.
1617  if (PHINode *PN = dyn_cast<PHINode>(I))
1618    if (!Info.CheckedPHIs.insert(PN))
1619      return;
1620
1621  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1622    Instruction *User = cast<Instruction>(*UI);
1623
1624    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1625      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1626    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1627      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1628      // but would have to prove that we're staying inside of an element being
1629      // promoted.
1630      if (!GEPI->hasAllZeroIndices())
1631        return MarkUnsafe(Info, User);
1632      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1633    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1634      if (LI->isVolatile())
1635        return MarkUnsafe(Info, User);
1636      const Type *LIType = LI->getType();
1637      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1638                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1639      Info.hasALoadOrStore = true;
1640
1641    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1642      // Store is ok if storing INTO the pointer, not storing the pointer
1643      if (SI->isVolatile() || SI->getOperand(0) == I)
1644        return MarkUnsafe(Info, User);
1645
1646      const Type *SIType = SI->getOperand(0)->getType();
1647      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1648                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1649      Info.hasALoadOrStore = true;
1650    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1651      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1652    } else {
1653      return MarkUnsafe(Info, User);
1654    }
1655    if (Info.isUnsafe) return;
1656  }
1657}
1658
1659/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1660/// replacement.  It is safe when all the indices are constant, in-bounds
1661/// references, and when the resulting offset corresponds to an element within
1662/// the alloca type.  The results are flagged in the Info parameter.  Upon
1663/// return, Offset is adjusted as specified by the GEP indices.
1664void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1665                     uint64_t &Offset, AllocaInfo &Info) {
1666  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1667  if (GEPIt == E)
1668    return;
1669
1670  // Walk through the GEP type indices, checking the types that this indexes
1671  // into.
1672  for (; GEPIt != E; ++GEPIt) {
1673    // Ignore struct elements, no extra checking needed for these.
1674    if ((*GEPIt)->isStructTy())
1675      continue;
1676
1677    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1678    if (!IdxVal)
1679      return MarkUnsafe(Info, GEPI);
1680  }
1681
1682  // Compute the offset due to this GEP and check if the alloca has a
1683  // component element at that offset.
1684  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1685  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1686                                 &Indices[0], Indices.size());
1687  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1688    MarkUnsafe(Info, GEPI);
1689}
1690
1691/// isHomogeneousAggregate - Check if type T is a struct or array containing
1692/// elements of the same type (which is always true for arrays).  If so,
1693/// return true with NumElts and EltTy set to the number of elements and the
1694/// element type, respectively.
1695static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1696                                   const Type *&EltTy) {
1697  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1698    NumElts = AT->getNumElements();
1699    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1700    return true;
1701  }
1702  if (const StructType *ST = dyn_cast<StructType>(T)) {
1703    NumElts = ST->getNumContainedTypes();
1704    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1705    for (unsigned n = 1; n < NumElts; ++n) {
1706      if (ST->getContainedType(n) != EltTy)
1707        return false;
1708    }
1709    return true;
1710  }
1711  return false;
1712}
1713
1714/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1715/// "homogeneous" aggregates with the same element type and number of elements.
1716static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1717  if (T1 == T2)
1718    return true;
1719
1720  unsigned NumElts1, NumElts2;
1721  const Type *EltTy1, *EltTy2;
1722  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1723      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1724      NumElts1 == NumElts2 &&
1725      EltTy1 == EltTy2)
1726    return true;
1727
1728  return false;
1729}
1730
1731/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1732/// alloca or has an offset and size that corresponds to a component element
1733/// within it.  The offset checked here may have been formed from a GEP with a
1734/// pointer bitcasted to a different type.
1735///
1736/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1737/// unit.  If false, it only allows accesses known to be in a single element.
1738void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1739                           const Type *MemOpType, bool isStore,
1740                           AllocaInfo &Info, Instruction *TheAccess,
1741                           bool AllowWholeAccess) {
1742  // Check if this is a load/store of the entire alloca.
1743  if (Offset == 0 && AllowWholeAccess &&
1744      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1745    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1746    // loads/stores (which are essentially the same as the MemIntrinsics with
1747    // regard to copying padding between elements).  But, if an alloca is
1748    // flagged as both a source and destination of such operations, we'll need
1749    // to check later for padding between elements.
1750    if (!MemOpType || MemOpType->isIntegerTy()) {
1751      if (isStore)
1752        Info.isMemCpyDst = true;
1753      else
1754        Info.isMemCpySrc = true;
1755      return;
1756    }
1757    // This is also safe for references using a type that is compatible with
1758    // the type of the alloca, so that loads/stores can be rewritten using
1759    // insertvalue/extractvalue.
1760    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1761      Info.hasSubelementAccess = true;
1762      return;
1763    }
1764  }
1765  // Check if the offset/size correspond to a component within the alloca type.
1766  const Type *T = Info.AI->getAllocatedType();
1767  if (TypeHasComponent(T, Offset, MemSize)) {
1768    Info.hasSubelementAccess = true;
1769    return;
1770  }
1771
1772  return MarkUnsafe(Info, TheAccess);
1773}
1774
1775/// TypeHasComponent - Return true if T has a component type with the
1776/// specified offset and size.  If Size is zero, do not check the size.
1777bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1778  const Type *EltTy;
1779  uint64_t EltSize;
1780  if (const StructType *ST = dyn_cast<StructType>(T)) {
1781    const StructLayout *Layout = TD->getStructLayout(ST);
1782    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1783    EltTy = ST->getContainedType(EltIdx);
1784    EltSize = TD->getTypeAllocSize(EltTy);
1785    Offset -= Layout->getElementOffset(EltIdx);
1786  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1787    EltTy = AT->getElementType();
1788    EltSize = TD->getTypeAllocSize(EltTy);
1789    if (Offset >= AT->getNumElements() * EltSize)
1790      return false;
1791    Offset %= EltSize;
1792  } else {
1793    return false;
1794  }
1795  if (Offset == 0 && (Size == 0 || EltSize == Size))
1796    return true;
1797  // Check if the component spans multiple elements.
1798  if (Offset + Size > EltSize)
1799    return false;
1800  return TypeHasComponent(EltTy, Offset, Size);
1801}
1802
1803/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1804/// the instruction I, which references it, to use the separate elements.
1805/// Offset indicates the position within AI that is referenced by this
1806/// instruction.
1807void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1808                                SmallVector<AllocaInst*, 32> &NewElts) {
1809  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1810    Use &TheUse = UI.getUse();
1811    Instruction *User = cast<Instruction>(*UI++);
1812
1813    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1814      RewriteBitCast(BC, AI, Offset, NewElts);
1815      continue;
1816    }
1817
1818    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1819      RewriteGEP(GEPI, AI, Offset, NewElts);
1820      continue;
1821    }
1822
1823    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1824      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1825      uint64_t MemSize = Length->getZExtValue();
1826      if (Offset == 0 &&
1827          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1828        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1829      // Otherwise the intrinsic can only touch a single element and the
1830      // address operand will be updated, so nothing else needs to be done.
1831      continue;
1832    }
1833
1834    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1835      const Type *LIType = LI->getType();
1836
1837      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1838        // Replace:
1839        //   %res = load { i32, i32 }* %alloc
1840        // with:
1841        //   %load.0 = load i32* %alloc.0
1842        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1843        //   %load.1 = load i32* %alloc.1
1844        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1845        // (Also works for arrays instead of structs)
1846        Value *Insert = UndefValue::get(LIType);
1847        IRBuilder<> Builder(LI);
1848        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1849          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1850          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1851        }
1852        LI->replaceAllUsesWith(Insert);
1853        DeadInsts.push_back(LI);
1854      } else if (LIType->isIntegerTy() &&
1855                 TD->getTypeAllocSize(LIType) ==
1856                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1857        // If this is a load of the entire alloca to an integer, rewrite it.
1858        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1859      }
1860      continue;
1861    }
1862
1863    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1864      Value *Val = SI->getOperand(0);
1865      const Type *SIType = Val->getType();
1866      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1867        // Replace:
1868        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1869        // with:
1870        //   %val.0 = extractvalue { i32, i32 } %val, 0
1871        //   store i32 %val.0, i32* %alloc.0
1872        //   %val.1 = extractvalue { i32, i32 } %val, 1
1873        //   store i32 %val.1, i32* %alloc.1
1874        // (Also works for arrays instead of structs)
1875        IRBuilder<> Builder(SI);
1876        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1877          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1878          Builder.CreateStore(Extract, NewElts[i]);
1879        }
1880        DeadInsts.push_back(SI);
1881      } else if (SIType->isIntegerTy() &&
1882                 TD->getTypeAllocSize(SIType) ==
1883                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1884        // If this is a store of the entire alloca from an integer, rewrite it.
1885        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1886      }
1887      continue;
1888    }
1889
1890    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1891      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1892      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1893      // the new pointer.
1894      if (!isa<AllocaInst>(I)) continue;
1895
1896      assert(Offset == 0 && NewElts[0] &&
1897             "Direct alloca use should have a zero offset");
1898
1899      // If we have a use of the alloca, we know the derived uses will be
1900      // utilizing just the first element of the scalarized result.  Insert a
1901      // bitcast of the first alloca before the user as required.
1902      AllocaInst *NewAI = NewElts[0];
1903      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1904      NewAI->moveBefore(BCI);
1905      TheUse = BCI;
1906      continue;
1907    }
1908  }
1909}
1910
1911/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1912/// and recursively continue updating all of its uses.
1913void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1914                          SmallVector<AllocaInst*, 32> &NewElts) {
1915  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1916  if (BC->getOperand(0) != AI)
1917    return;
1918
1919  // The bitcast references the original alloca.  Replace its uses with
1920  // references to the first new element alloca.
1921  Instruction *Val = NewElts[0];
1922  if (Val->getType() != BC->getDestTy()) {
1923    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1924    Val->takeName(BC);
1925  }
1926  BC->replaceAllUsesWith(Val);
1927  DeadInsts.push_back(BC);
1928}
1929
1930/// FindElementAndOffset - Return the index of the element containing Offset
1931/// within the specified type, which must be either a struct or an array.
1932/// Sets T to the type of the element and Offset to the offset within that
1933/// element.  IdxTy is set to the type of the index result to be used in a
1934/// GEP instruction.
1935uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1936                                    const Type *&IdxTy) {
1937  uint64_t Idx = 0;
1938  if (const StructType *ST = dyn_cast<StructType>(T)) {
1939    const StructLayout *Layout = TD->getStructLayout(ST);
1940    Idx = Layout->getElementContainingOffset(Offset);
1941    T = ST->getContainedType(Idx);
1942    Offset -= Layout->getElementOffset(Idx);
1943    IdxTy = Type::getInt32Ty(T->getContext());
1944    return Idx;
1945  }
1946  const ArrayType *AT = cast<ArrayType>(T);
1947  T = AT->getElementType();
1948  uint64_t EltSize = TD->getTypeAllocSize(T);
1949  Idx = Offset / EltSize;
1950  Offset -= Idx * EltSize;
1951  IdxTy = Type::getInt64Ty(T->getContext());
1952  return Idx;
1953}
1954
1955/// RewriteGEP - Check if this GEP instruction moves the pointer across
1956/// elements of the alloca that are being split apart, and if so, rewrite
1957/// the GEP to be relative to the new element.
1958void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1959                      SmallVector<AllocaInst*, 32> &NewElts) {
1960  uint64_t OldOffset = Offset;
1961  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1962  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1963                                 &Indices[0], Indices.size());
1964
1965  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1966
1967  const Type *T = AI->getAllocatedType();
1968  const Type *IdxTy;
1969  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1970  if (GEPI->getOperand(0) == AI)
1971    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1972
1973  T = AI->getAllocatedType();
1974  uint64_t EltOffset = Offset;
1975  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1976
1977  // If this GEP does not move the pointer across elements of the alloca
1978  // being split, then it does not needs to be rewritten.
1979  if (Idx == OldIdx)
1980    return;
1981
1982  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1983  SmallVector<Value*, 8> NewArgs;
1984  NewArgs.push_back(Constant::getNullValue(i32Ty));
1985  while (EltOffset != 0) {
1986    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1987    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1988  }
1989  Instruction *Val = NewElts[Idx];
1990  if (NewArgs.size() > 1) {
1991    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1992                                            NewArgs.end(), "", GEPI);
1993    Val->takeName(GEPI);
1994  }
1995  if (Val->getType() != GEPI->getType())
1996    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1997  GEPI->replaceAllUsesWith(Val);
1998  DeadInsts.push_back(GEPI);
1999}
2000
2001/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2002/// Rewrite it to copy or set the elements of the scalarized memory.
2003void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2004                                        AllocaInst *AI,
2005                                        SmallVector<AllocaInst*, 32> &NewElts) {
2006  // If this is a memcpy/memmove, construct the other pointer as the
2007  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2008  // that doesn't have anything to do with the alloca that we are promoting. For
2009  // memset, this Value* stays null.
2010  Value *OtherPtr = 0;
2011  unsigned MemAlignment = MI->getAlignment();
2012  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2013    if (Inst == MTI->getRawDest())
2014      OtherPtr = MTI->getRawSource();
2015    else {
2016      assert(Inst == MTI->getRawSource());
2017      OtherPtr = MTI->getRawDest();
2018    }
2019  }
2020
2021  // If there is an other pointer, we want to convert it to the same pointer
2022  // type as AI has, so we can GEP through it safely.
2023  if (OtherPtr) {
2024    unsigned AddrSpace =
2025      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2026
2027    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2028    // optimization, but it's also required to detect the corner case where
2029    // both pointer operands are referencing the same memory, and where
2030    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2031    // function is only called for mem intrinsics that access the whole
2032    // aggregate, so non-zero GEPs are not an issue here.)
2033    OtherPtr = OtherPtr->stripPointerCasts();
2034
2035    // Copying the alloca to itself is a no-op: just delete it.
2036    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2037      // This code will run twice for a no-op memcpy -- once for each operand.
2038      // Put only one reference to MI on the DeadInsts list.
2039      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2040             E = DeadInsts.end(); I != E; ++I)
2041        if (*I == MI) return;
2042      DeadInsts.push_back(MI);
2043      return;
2044    }
2045
2046    // If the pointer is not the right type, insert a bitcast to the right
2047    // type.
2048    const Type *NewTy =
2049      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2050
2051    if (OtherPtr->getType() != NewTy)
2052      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2053  }
2054
2055  // Process each element of the aggregate.
2056  bool SROADest = MI->getRawDest() == Inst;
2057
2058  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2059
2060  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2061    // If this is a memcpy/memmove, emit a GEP of the other element address.
2062    Value *OtherElt = 0;
2063    unsigned OtherEltAlign = MemAlignment;
2064
2065    if (OtherPtr) {
2066      Value *Idx[2] = { Zero,
2067                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2068      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
2069                                              OtherPtr->getName()+"."+Twine(i),
2070                                                   MI);
2071      uint64_t EltOffset;
2072      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2073      const Type *OtherTy = OtherPtrTy->getElementType();
2074      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
2075        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2076      } else {
2077        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2078        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2079      }
2080
2081      // The alignment of the other pointer is the guaranteed alignment of the
2082      // element, which is affected by both the known alignment of the whole
2083      // mem intrinsic and the alignment of the element.  If the alignment of
2084      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2085      // known alignment is just 4 bytes.
2086      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2087    }
2088
2089    Value *EltPtr = NewElts[i];
2090    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2091
2092    // If we got down to a scalar, insert a load or store as appropriate.
2093    if (EltTy->isSingleValueType()) {
2094      if (isa<MemTransferInst>(MI)) {
2095        if (SROADest) {
2096          // From Other to Alloca.
2097          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2098          new StoreInst(Elt, EltPtr, MI);
2099        } else {
2100          // From Alloca to Other.
2101          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2102          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2103        }
2104        continue;
2105      }
2106      assert(isa<MemSetInst>(MI));
2107
2108      // If the stored element is zero (common case), just store a null
2109      // constant.
2110      Constant *StoreVal;
2111      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2112        if (CI->isZero()) {
2113          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2114        } else {
2115          // If EltTy is a vector type, get the element type.
2116          const Type *ValTy = EltTy->getScalarType();
2117
2118          // Construct an integer with the right value.
2119          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2120          APInt OneVal(EltSize, CI->getZExtValue());
2121          APInt TotalVal(OneVal);
2122          // Set each byte.
2123          for (unsigned i = 0; 8*i < EltSize; ++i) {
2124            TotalVal = TotalVal.shl(8);
2125            TotalVal |= OneVal;
2126          }
2127
2128          // Convert the integer value to the appropriate type.
2129          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2130          if (ValTy->isPointerTy())
2131            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2132          else if (ValTy->isFloatingPointTy())
2133            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2134          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2135
2136          // If the requested value was a vector constant, create it.
2137          if (EltTy != ValTy) {
2138            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2139            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2140            StoreVal = ConstantVector::get(Elts);
2141          }
2142        }
2143        new StoreInst(StoreVal, EltPtr, MI);
2144        continue;
2145      }
2146      // Otherwise, if we're storing a byte variable, use a memset call for
2147      // this element.
2148    }
2149
2150    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2151
2152    IRBuilder<> Builder(MI);
2153
2154    // Finally, insert the meminst for this element.
2155    if (isa<MemSetInst>(MI)) {
2156      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2157                           MI->isVolatile());
2158    } else {
2159      assert(isa<MemTransferInst>(MI));
2160      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2161      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2162
2163      if (isa<MemCpyInst>(MI))
2164        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2165      else
2166        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2167    }
2168  }
2169  DeadInsts.push_back(MI);
2170}
2171
2172/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2173/// overwrites the entire allocation.  Extract out the pieces of the stored
2174/// integer and store them individually.
2175void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2176                                         SmallVector<AllocaInst*, 32> &NewElts){
2177  // Extract each element out of the integer according to its structure offset
2178  // and store the element value to the individual alloca.
2179  Value *SrcVal = SI->getOperand(0);
2180  const Type *AllocaEltTy = AI->getAllocatedType();
2181  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2182
2183  IRBuilder<> Builder(SI);
2184
2185  // Handle tail padding by extending the operand
2186  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2187    SrcVal = Builder.CreateZExt(SrcVal,
2188                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2189
2190  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2191               << '\n');
2192
2193  // There are two forms here: AI could be an array or struct.  Both cases
2194  // have different ways to compute the element offset.
2195  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2196    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2197
2198    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2199      // Get the number of bits to shift SrcVal to get the value.
2200      const Type *FieldTy = EltSTy->getElementType(i);
2201      uint64_t Shift = Layout->getElementOffsetInBits(i);
2202
2203      if (TD->isBigEndian())
2204        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2205
2206      Value *EltVal = SrcVal;
2207      if (Shift) {
2208        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2209        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2210      }
2211
2212      // Truncate down to an integer of the right size.
2213      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2214
2215      // Ignore zero sized fields like {}, they obviously contain no data.
2216      if (FieldSizeBits == 0) continue;
2217
2218      if (FieldSizeBits != AllocaSizeBits)
2219        EltVal = Builder.CreateTrunc(EltVal,
2220                             IntegerType::get(SI->getContext(), FieldSizeBits));
2221      Value *DestField = NewElts[i];
2222      if (EltVal->getType() == FieldTy) {
2223        // Storing to an integer field of this size, just do it.
2224      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2225        // Bitcast to the right element type (for fp/vector values).
2226        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2227      } else {
2228        // Otherwise, bitcast the dest pointer (for aggregates).
2229        DestField = Builder.CreateBitCast(DestField,
2230                                     PointerType::getUnqual(EltVal->getType()));
2231      }
2232      new StoreInst(EltVal, DestField, SI);
2233    }
2234
2235  } else {
2236    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2237    const Type *ArrayEltTy = ATy->getElementType();
2238    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2239    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2240
2241    uint64_t Shift;
2242
2243    if (TD->isBigEndian())
2244      Shift = AllocaSizeBits-ElementOffset;
2245    else
2246      Shift = 0;
2247
2248    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2249      // Ignore zero sized fields like {}, they obviously contain no data.
2250      if (ElementSizeBits == 0) continue;
2251
2252      Value *EltVal = SrcVal;
2253      if (Shift) {
2254        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2255        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2256      }
2257
2258      // Truncate down to an integer of the right size.
2259      if (ElementSizeBits != AllocaSizeBits)
2260        EltVal = Builder.CreateTrunc(EltVal,
2261                                     IntegerType::get(SI->getContext(),
2262                                                      ElementSizeBits));
2263      Value *DestField = NewElts[i];
2264      if (EltVal->getType() == ArrayEltTy) {
2265        // Storing to an integer field of this size, just do it.
2266      } else if (ArrayEltTy->isFloatingPointTy() ||
2267                 ArrayEltTy->isVectorTy()) {
2268        // Bitcast to the right element type (for fp/vector values).
2269        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2270      } else {
2271        // Otherwise, bitcast the dest pointer (for aggregates).
2272        DestField = Builder.CreateBitCast(DestField,
2273                                     PointerType::getUnqual(EltVal->getType()));
2274      }
2275      new StoreInst(EltVal, DestField, SI);
2276
2277      if (TD->isBigEndian())
2278        Shift -= ElementOffset;
2279      else
2280        Shift += ElementOffset;
2281    }
2282  }
2283
2284  DeadInsts.push_back(SI);
2285}
2286
2287/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2288/// an integer.  Load the individual pieces to form the aggregate value.
2289void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2290                                        SmallVector<AllocaInst*, 32> &NewElts) {
2291  // Extract each element out of the NewElts according to its structure offset
2292  // and form the result value.
2293  const Type *AllocaEltTy = AI->getAllocatedType();
2294  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2295
2296  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2297               << '\n');
2298
2299  // There are two forms here: AI could be an array or struct.  Both cases
2300  // have different ways to compute the element offset.
2301  const StructLayout *Layout = 0;
2302  uint64_t ArrayEltBitOffset = 0;
2303  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2304    Layout = TD->getStructLayout(EltSTy);
2305  } else {
2306    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2307    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2308  }
2309
2310  Value *ResultVal =
2311    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2312
2313  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2314    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2315    // the pointer to an integer of the same size before doing the load.
2316    Value *SrcField = NewElts[i];
2317    const Type *FieldTy =
2318      cast<PointerType>(SrcField->getType())->getElementType();
2319    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2320
2321    // Ignore zero sized fields like {}, they obviously contain no data.
2322    if (FieldSizeBits == 0) continue;
2323
2324    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2325                                                     FieldSizeBits);
2326    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2327        !FieldTy->isVectorTy())
2328      SrcField = new BitCastInst(SrcField,
2329                                 PointerType::getUnqual(FieldIntTy),
2330                                 "", LI);
2331    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2332
2333    // If SrcField is a fp or vector of the right size but that isn't an
2334    // integer type, bitcast to an integer so we can shift it.
2335    if (SrcField->getType() != FieldIntTy)
2336      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2337
2338    // Zero extend the field to be the same size as the final alloca so that
2339    // we can shift and insert it.
2340    if (SrcField->getType() != ResultVal->getType())
2341      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2342
2343    // Determine the number of bits to shift SrcField.
2344    uint64_t Shift;
2345    if (Layout) // Struct case.
2346      Shift = Layout->getElementOffsetInBits(i);
2347    else  // Array case.
2348      Shift = i*ArrayEltBitOffset;
2349
2350    if (TD->isBigEndian())
2351      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2352
2353    if (Shift) {
2354      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2355      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2356    }
2357
2358    // Don't create an 'or x, 0' on the first iteration.
2359    if (!isa<Constant>(ResultVal) ||
2360        !cast<Constant>(ResultVal)->isNullValue())
2361      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2362    else
2363      ResultVal = SrcField;
2364  }
2365
2366  // Handle tail padding by truncating the result
2367  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2368    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2369
2370  LI->replaceAllUsesWith(ResultVal);
2371  DeadInsts.push_back(LI);
2372}
2373
2374/// HasPadding - Return true if the specified type has any structure or
2375/// alignment padding in between the elements that would be split apart
2376/// by SROA; return false otherwise.
2377static bool HasPadding(const Type *Ty, const TargetData &TD) {
2378  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2379    Ty = ATy->getElementType();
2380    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2381  }
2382
2383  // SROA currently handles only Arrays and Structs.
2384  const StructType *STy = cast<StructType>(Ty);
2385  const StructLayout *SL = TD.getStructLayout(STy);
2386  unsigned PrevFieldBitOffset = 0;
2387  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2388    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2389
2390    // Check to see if there is any padding between this element and the
2391    // previous one.
2392    if (i) {
2393      unsigned PrevFieldEnd =
2394        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2395      if (PrevFieldEnd < FieldBitOffset)
2396        return true;
2397    }
2398    PrevFieldBitOffset = FieldBitOffset;
2399  }
2400  // Check for tail padding.
2401  if (unsigned EltCount = STy->getNumElements()) {
2402    unsigned PrevFieldEnd = PrevFieldBitOffset +
2403      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2404    if (PrevFieldEnd < SL->getSizeInBits())
2405      return true;
2406  }
2407  return false;
2408}
2409
2410/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2411/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2412/// or 1 if safe after canonicalization has been performed.
2413bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2414  // Loop over the use list of the alloca.  We can only transform it if all of
2415  // the users are safe to transform.
2416  AllocaInfo Info(AI);
2417
2418  isSafeForScalarRepl(AI, 0, Info);
2419  if (Info.isUnsafe) {
2420    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2421    return false;
2422  }
2423
2424  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2425  // source and destination, we have to be careful.  In particular, the memcpy
2426  // could be moving around elements that live in structure padding of the LLVM
2427  // types, but may actually be used.  In these cases, we refuse to promote the
2428  // struct.
2429  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2430      HasPadding(AI->getAllocatedType(), *TD))
2431    return false;
2432
2433  // If the alloca never has an access to just *part* of it, but is accessed
2434  // via loads and stores, then we should use ConvertToScalarInfo to promote
2435  // the alloca instead of promoting each piece at a time and inserting fission
2436  // and fusion code.
2437  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2438    // If the struct/array just has one element, use basic SRoA.
2439    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2440      if (ST->getNumElements() > 1) return false;
2441    } else {
2442      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2443        return false;
2444    }
2445  }
2446
2447  return true;
2448}
2449
2450
2451
2452/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2453/// some part of a constant global variable.  This intentionally only accepts
2454/// constant expressions because we don't can't rewrite arbitrary instructions.
2455static bool PointsToConstantGlobal(Value *V) {
2456  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2457    return GV->isConstant();
2458  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2459    if (CE->getOpcode() == Instruction::BitCast ||
2460        CE->getOpcode() == Instruction::GetElementPtr)
2461      return PointsToConstantGlobal(CE->getOperand(0));
2462  return false;
2463}
2464
2465/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2466/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2467/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2468/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2469/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2470/// the alloca, and if the source pointer is a pointer to a constant global, we
2471/// can optimize this.
2472static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2473                                           bool isOffset) {
2474  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2475    User *U = cast<Instruction>(*UI);
2476
2477    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2478      // Ignore non-volatile loads, they are always ok.
2479      if (LI->isVolatile()) return false;
2480      continue;
2481    }
2482
2483    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2484      // If uses of the bitcast are ok, we are ok.
2485      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2486        return false;
2487      continue;
2488    }
2489    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2490      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2491      // doesn't, it does.
2492      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2493                                         isOffset || !GEP->hasAllZeroIndices()))
2494        return false;
2495      continue;
2496    }
2497
2498    if (CallSite CS = U) {
2499      // If this is the function being called then we treat it like a load and
2500      // ignore it.
2501      if (CS.isCallee(UI))
2502        continue;
2503
2504      // If this is a readonly/readnone call site, then we know it is just a
2505      // load (but one that potentially returns the value itself), so we can
2506      // ignore it if we know that the value isn't captured.
2507      unsigned ArgNo = CS.getArgumentNo(UI);
2508      if (CS.onlyReadsMemory() &&
2509          (CS.getInstruction()->use_empty() ||
2510           CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2511        continue;
2512
2513      // If this is being passed as a byval argument, the caller is making a
2514      // copy, so it is only a read of the alloca.
2515      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2516        continue;
2517    }
2518
2519    // If this is isn't our memcpy/memmove, reject it as something we can't
2520    // handle.
2521    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2522    if (MI == 0)
2523      return false;
2524
2525    // If the transfer is using the alloca as a source of the transfer, then
2526    // ignore it since it is a load (unless the transfer is volatile).
2527    if (UI.getOperandNo() == 1) {
2528      if (MI->isVolatile()) return false;
2529      continue;
2530    }
2531
2532    // If we already have seen a copy, reject the second one.
2533    if (TheCopy) return false;
2534
2535    // If the pointer has been offset from the start of the alloca, we can't
2536    // safely handle this.
2537    if (isOffset) return false;
2538
2539    // If the memintrinsic isn't using the alloca as the dest, reject it.
2540    if (UI.getOperandNo() != 0) return false;
2541
2542    // If the source of the memcpy/move is not a constant global, reject it.
2543    if (!PointsToConstantGlobal(MI->getSource()))
2544      return false;
2545
2546    // Otherwise, the transform is safe.  Remember the copy instruction.
2547    TheCopy = MI;
2548  }
2549  return true;
2550}
2551
2552/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2553/// modified by a copy from a constant global.  If we can prove this, we can
2554/// replace any uses of the alloca with uses of the global directly.
2555MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2556  MemTransferInst *TheCopy = 0;
2557  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2558    return TheCopy;
2559  return 0;
2560}
2561