ScalarReplAggregates.cpp revision 97f9df1cd12bcea2a952304853193bf833214318
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/Instructions.h"
28#include "llvm/IntrinsicInst.h"
29#include "llvm/Pass.h"
30#include "llvm/Analysis/Dominators.h"
31#include "llvm/Target/TargetData.h"
32#include "llvm/Transforms/Utils/PromoteMemToReg.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/Support/GetElementPtrTypeIterator.h"
35#include "llvm/Support/MathExtras.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/StringExtras.h"
40using namespace llvm;
41
42STATISTIC(NumReplaced,  "Number of allocas broken up");
43STATISTIC(NumPromoted,  "Number of allocas promoted");
44STATISTIC(NumConverted, "Number of aggregates converted to scalar");
45
46namespace {
47  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
48    bool runOnFunction(Function &F);
49
50    bool performScalarRepl(Function &F);
51    bool performPromotion(Function &F);
52
53    // getAnalysisUsage - This pass does not require any passes, but we know it
54    // will not alter the CFG, so say so.
55    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
56      AU.addRequired<DominatorTree>();
57      AU.addRequired<DominanceFrontier>();
58      AU.addRequired<TargetData>();
59      AU.setPreservesCFG();
60    }
61
62  private:
63    int isSafeElementUse(Value *Ptr);
64    int isSafeUseOfAllocation(Instruction *User, AllocationInst *AI);
65    bool isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI);
66    int isSafeAllocaToScalarRepl(AllocationInst *AI);
67    void CanonicalizeAllocaUsers(AllocationInst *AI);
68    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
69
70    void RewriteBitCastUserOfAlloca(BitCastInst *BCInst, AllocationInst *AI,
71                                    SmallVector<AllocaInst*, 32> &NewElts);
72
73    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
74    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
75    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
76  };
77
78  RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
79}
80
81// Public interface to the ScalarReplAggregates pass
82FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }
83
84
85bool SROA::runOnFunction(Function &F) {
86  bool Changed = performPromotion(F);
87  while (1) {
88    bool LocalChange = performScalarRepl(F);
89    if (!LocalChange) break;   // No need to repromote if no scalarrepl
90    Changed = true;
91    LocalChange = performPromotion(F);
92    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
93  }
94
95  return Changed;
96}
97
98
99bool SROA::performPromotion(Function &F) {
100  std::vector<AllocaInst*> Allocas;
101  const TargetData &TD = getAnalysis<TargetData>();
102  DominatorTree     &DT = getAnalysis<DominatorTree>();
103  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
104
105  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
106
107  bool Changed = false;
108
109  while (1) {
110    Allocas.clear();
111
112    // Find allocas that are safe to promote, by looking at all instructions in
113    // the entry node
114    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
115      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
116        if (isAllocaPromotable(AI, TD))
117          Allocas.push_back(AI);
118
119    if (Allocas.empty()) break;
120
121    PromoteMemToReg(Allocas, DT, DF, TD);
122    NumPromoted += Allocas.size();
123    Changed = true;
124  }
125
126  return Changed;
127}
128
129// performScalarRepl - This algorithm is a simple worklist driven algorithm,
130// which runs on all of the malloc/alloca instructions in the function, removing
131// them if they are only used by getelementptr instructions.
132//
133bool SROA::performScalarRepl(Function &F) {
134  std::vector<AllocationInst*> WorkList;
135
136  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
137  BasicBlock &BB = F.getEntryBlock();
138  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
139    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
140      WorkList.push_back(A);
141
142  // Process the worklist
143  bool Changed = false;
144  while (!WorkList.empty()) {
145    AllocationInst *AI = WorkList.back();
146    WorkList.pop_back();
147
148    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
149    // with unused elements.
150    if (AI->use_empty()) {
151      AI->eraseFromParent();
152      continue;
153    }
154
155    // If we can turn this aggregate value (potentially with casts) into a
156    // simple scalar value that can be mem2reg'd into a register value.
157    bool IsNotTrivial = false;
158    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
159      if (IsNotTrivial && ActualType != Type::VoidTy) {
160        ConvertToScalar(AI, ActualType);
161        Changed = true;
162        continue;
163      }
164
165    // We cannot transform the allocation instruction if it is an array
166    // allocation (allocations OF arrays are ok though), and an allocation of a
167    // scalar value cannot be decomposed at all.
168    //
169    if (AI->isArrayAllocation() ||
170        (!isa<StructType>(AI->getAllocatedType()) &&
171         !isa<ArrayType>(AI->getAllocatedType()))) continue;
172
173    // Check that all of the users of the allocation are capable of being
174    // transformed.
175    switch (isSafeAllocaToScalarRepl(AI)) {
176    default: assert(0 && "Unexpected value!");
177    case 0:  // Not safe to scalar replace.
178      continue;
179    case 1:  // Safe, but requires cleanup/canonicalizations first
180      CanonicalizeAllocaUsers(AI);
181    case 3:  // Safe to scalar replace.
182      break;
183    }
184
185    DOUT << "Found inst to xform: " << *AI;
186    Changed = true;
187
188    SmallVector<AllocaInst*, 32> ElementAllocas;
189    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
190      ElementAllocas.reserve(ST->getNumContainedTypes());
191      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
192        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
193                                        AI->getAlignment(),
194                                        AI->getName() + "." + utostr(i), AI);
195        ElementAllocas.push_back(NA);
196        WorkList.push_back(NA);  // Add to worklist for recursive processing
197      }
198    } else {
199      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
200      ElementAllocas.reserve(AT->getNumElements());
201      const Type *ElTy = AT->getElementType();
202      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
203        AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
204                                        AI->getName() + "." + utostr(i), AI);
205        ElementAllocas.push_back(NA);
206        WorkList.push_back(NA);  // Add to worklist for recursive processing
207      }
208    }
209
210    // Now that we have created the alloca instructions that we want to use,
211    // expand the getelementptr instructions to use them.
212    //
213    while (!AI->use_empty()) {
214      Instruction *User = cast<Instruction>(AI->use_back());
215      if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
216        RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
217        continue;
218      }
219
220      GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
221      // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
222      unsigned Idx =
223         (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
224
225      assert(Idx < ElementAllocas.size() && "Index out of range?");
226      AllocaInst *AllocaToUse = ElementAllocas[Idx];
227
228      Value *RepValue;
229      if (GEPI->getNumOperands() == 3) {
230        // Do not insert a new getelementptr instruction with zero indices, only
231        // to have it optimized out later.
232        RepValue = AllocaToUse;
233      } else {
234        // We are indexing deeply into the structure, so we still need a
235        // getelement ptr instruction to finish the indexing.  This may be
236        // expanded itself once the worklist is rerun.
237        //
238        SmallVector<Value*, 8> NewArgs;
239        NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
240        NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
241        RepValue = new GetElementPtrInst(AllocaToUse, &NewArgs[0],
242                                         NewArgs.size(), "", GEPI);
243        RepValue->takeName(GEPI);
244      }
245
246      // Move all of the users over to the new GEP.
247      GEPI->replaceAllUsesWith(RepValue);
248      // Delete the old GEP
249      GEPI->eraseFromParent();
250    }
251
252    // Finally, delete the Alloca instruction
253    AI->eraseFromParent();
254    NumReplaced++;
255  }
256
257  return Changed;
258}
259
260
261/// isSafeElementUse - Check to see if this use is an allowed use for a
262/// getelementptr instruction of an array aggregate allocation.
263///
264int SROA::isSafeElementUse(Value *Ptr) {
265  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
266       I != E; ++I) {
267    Instruction *User = cast<Instruction>(*I);
268    switch (User->getOpcode()) {
269    case Instruction::Load:  break;
270    case Instruction::Store:
271      // Store is ok if storing INTO the pointer, not storing the pointer
272      if (User->getOperand(0) == Ptr) return 0;
273      break;
274    case Instruction::GetElementPtr: {
275      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
276      if (GEP->getNumOperands() > 1) {
277        if (!isa<Constant>(GEP->getOperand(1)) ||
278            !cast<Constant>(GEP->getOperand(1))->isNullValue())
279          return 0;  // Using pointer arithmetic to navigate the array...
280      }
281      if (!isSafeElementUse(GEP)) return 0;
282      break;
283    }
284    default:
285      DOUT << "  Transformation preventing inst: " << *User;
286      return 0;
287    }
288  }
289  return 3;  // All users look ok :)
290}
291
292/// AllUsersAreLoads - Return true if all users of this value are loads.
293static bool AllUsersAreLoads(Value *Ptr) {
294  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
295       I != E; ++I)
296    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
297      return false;
298  return true;
299}
300
301/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
302/// aggregate allocation.
303///
304int SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI) {
305  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
306    return isSafeUseOfBitCastedAllocation(C, AI) ? 3 : 0;
307  if (!isa<GetElementPtrInst>(User)) return 0;
308
309  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
310  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
311
312  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
313  if (I == E ||
314      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
315    return 0;
316
317  ++I;
318  if (I == E) return 0;  // ran out of GEP indices??
319
320  // If this is a use of an array allocation, do a bit more checking for sanity.
321  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
322    uint64_t NumElements = AT->getNumElements();
323
324    if (isa<ConstantInt>(I.getOperand())) {
325      // Check to make sure that index falls within the array.  If not,
326      // something funny is going on, so we won't do the optimization.
327      //
328      if (cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue() >= NumElements)
329        return 0;
330
331      // We cannot scalar repl this level of the array unless any array
332      // sub-indices are in-range constants.  In particular, consider:
333      // A[0][i].  We cannot know that the user isn't doing invalid things like
334      // allowing i to index an out-of-range subscript that accesses A[1].
335      //
336      // Scalar replacing *just* the outer index of the array is probably not
337      // going to be a win anyway, so just give up.
338      for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
339        uint64_t NumElements;
340        if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
341          NumElements = SubArrayTy->getNumElements();
342        else
343          NumElements = cast<VectorType>(*I)->getNumElements();
344
345        if (!isa<ConstantInt>(I.getOperand())) return 0;
346        if (cast<ConstantInt>(I.getOperand())->getZExtValue() >= NumElements)
347          return 0;
348      }
349
350    } else {
351      // If this is an array index and the index is not constant, we cannot
352      // promote... that is unless the array has exactly one or two elements in
353      // it, in which case we CAN promote it, but we have to canonicalize this
354      // out if this is the only problem.
355      if ((NumElements == 1 || NumElements == 2) &&
356          AllUsersAreLoads(GEPI))
357        return 1;  // Canonicalization required!
358      return 0;
359    }
360  }
361
362  // If there are any non-simple uses of this getelementptr, make sure to reject
363  // them.
364  return isSafeElementUse(GEPI);
365}
366
367/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
368/// are
369bool SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI) {
370  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
371       UI != E; ++UI) {
372    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
373      if (!isSafeUseOfBitCastedAllocation(BCU, AI))
374        return false;
375    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
376      // If not constant length, give up.
377      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
378      if (!Length) return false;
379
380      // If not the whole aggregate, give up.
381      const TargetData &TD = getAnalysis<TargetData>();
382      if (Length->getZExtValue() !=
383          TD.getTypeSize(AI->getType()->getElementType()))
384        return false;
385
386      // We only know about memcpy/memset/memmove.
387      if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) &&
388          !isa<MemMoveInst>(MI))
389        return false;
390      // Otherwise, we can transform it.
391    } else {
392      return false;
393    }
394  }
395  return true;
396}
397
398/// RewriteBitCastUserOfAlloca - BCInst (transitively) casts AI.  Transform
399/// users of the cast to use the new values instead.
400void SROA::RewriteBitCastUserOfAlloca(BitCastInst *BCInst, AllocationInst *AI,
401                                      SmallVector<AllocaInst*, 32> &NewElts) {
402  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
403  const TargetData &TD = getAnalysis<TargetData>();
404  while (!BCInst->use_empty()) {
405    if (BitCastInst *BCU = dyn_cast<BitCastInst>(BCInst->use_back())) {
406      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
407      continue;
408    }
409
410    // Otherwise, must be memcpy/memmove/memset of the entire aggregate.  Split
411    // into one per element.
412    MemIntrinsic *MI = cast<MemIntrinsic>(BCInst->use_back());
413
414    // If this is a memcpy/memmove, construct the other pointer as the
415    // appropriate type.
416    Value *OtherPtr = 0;
417    if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
418      if (BCInst == MCI->getRawDest())
419        OtherPtr = MCI->getRawSource();
420      else {
421        assert(BCInst == MCI->getRawSource());
422        OtherPtr = MCI->getRawDest();
423      }
424    } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
425      if (BCInst == MMI->getRawDest())
426        OtherPtr = MMI->getRawSource();
427      else {
428        assert(BCInst == MMI->getRawSource());
429        OtherPtr = MMI->getRawDest();
430      }
431    }
432
433    // If there is an other pointer, we want to convert it to the same pointer
434    // type as AI has, so we can GEP through it.
435    if (OtherPtr) {
436      // It is likely that OtherPtr is a bitcast, if so, remove it.
437      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
438        OtherPtr = BC->getOperand(0);
439      if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
440        if (BCE->getOpcode() == Instruction::BitCast)
441          OtherPtr = BCE->getOperand(0);
442
443      // If the pointer is not the right type, insert a bitcast to the right
444      // type.
445      if (OtherPtr->getType() != AI->getType())
446        OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
447                                   MI);
448    }
449
450    // Process each element of the aggregate.
451    Value *TheFn = MI->getOperand(0);
452    const Type *BytePtrTy = MI->getRawDest()->getType();
453    bool SROADest = MI->getRawDest() == BCInst;
454
455    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
456      // If this is a memcpy/memmove, emit a GEP of the other element address.
457      Value *OtherElt = 0;
458      if (OtherPtr) {
459        OtherElt = new GetElementPtrInst(OtherPtr, Zero,
460                                         ConstantInt::get(Type::Int32Ty, i),
461                                         OtherPtr->getNameStr()+"."+utostr(i),
462                                         MI);
463      }
464
465      Value *EltPtr = NewElts[i];
466      const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
467
468      // If we got down to a scalar, insert a load or store as appropriate.
469      if (EltTy->isFirstClassType()) {
470        if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
471          Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
472                                    MI);
473          new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
474          continue;
475        } else {
476          assert(isa<MemSetInst>(MI));
477
478          // If the stored element is zero (common case), just store a null
479          // constant.
480          Constant *StoreVal;
481          if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
482            if (CI->isZero()) {
483              StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
484            } else {
485              // If EltTy is a packed type, get the element type.
486              const Type *ValTy = EltTy;
487              if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
488                ValTy = VTy->getElementType();
489
490              // Construct an integer with the right value.
491              unsigned EltSize = TD.getTypeSize(ValTy);
492              APInt OneVal(EltSize*8, CI->getZExtValue());
493              APInt TotalVal(OneVal);
494              // Set each byte.
495              for (unsigned i = 0; i != EltSize-1; ++i) {
496                TotalVal = TotalVal.shl(8);
497                TotalVal |= OneVal;
498              }
499
500              // Convert the integer value to the appropriate type.
501              StoreVal = ConstantInt::get(TotalVal);
502              if (isa<PointerType>(ValTy))
503                StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
504              else if (ValTy->isFloatingPoint())
505                StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
506              assert(StoreVal->getType() == ValTy && "Type mismatch!");
507
508              // If the requested value was a vector constant, create it.
509              if (EltTy != ValTy) {
510                unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
511                SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
512                StoreVal = ConstantVector::get(&Elts[0], NumElts);
513              }
514            }
515            new StoreInst(StoreVal, EltPtr, MI);
516            continue;
517          }
518          // Otherwise, if we're storing a byte variable, use a memset call for
519          // this element.
520        }
521      }
522
523      // Cast the element pointer to BytePtrTy.
524      if (EltPtr->getType() != BytePtrTy)
525        EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
526
527      // Cast the other pointer (if we have one) to BytePtrTy.
528      if (OtherElt && OtherElt->getType() != BytePtrTy)
529        OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
530                                   MI);
531
532      unsigned EltSize = TD.getTypeSize(EltTy);
533
534      // Finally, insert the meminst for this element.
535      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
536        Value *Ops[] = {
537          SROADest ? EltPtr : OtherElt,  // Dest ptr
538          SROADest ? OtherElt : EltPtr,  // Src ptr
539          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
540          Zero  // Align
541        };
542        new CallInst(TheFn, Ops, 4, "", MI);
543      } else {
544        assert(isa<MemSetInst>(MI));
545        Value *Ops[] = {
546          EltPtr, MI->getOperand(2),  // Dest, Value,
547          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
548          Zero  // Align
549        };
550        new CallInst(TheFn, Ops, 4, "", MI);
551      }
552    }
553
554    // Finally, MI is now dead, as we've modified its actions to occur on all of
555    // the elements of the aggregate.
556    MI->eraseFromParent();
557  }
558
559  // The cast is dead, remove it.
560  BCInst->eraseFromParent();
561}
562
563
564/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
565/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
566/// or 1 if safe after canonicalization has been performed.
567///
568int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
569  // Loop over the use list of the alloca.  We can only transform it if all of
570  // the users are safe to transform.
571  //
572  int isSafe = 3;
573  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
574       I != E; ++I) {
575    isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I), AI);
576    if (isSafe == 0) {
577      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
578      return 0;
579    }
580  }
581  // If we require cleanup, isSafe is now 1, otherwise it is 3.
582  return isSafe;
583}
584
585/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
586/// allocation, but only if cleaned up, perform the cleanups required.
587void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
588  // At this point, we know that the end result will be SROA'd and promoted, so
589  // we can insert ugly code if required so long as sroa+mem2reg will clean it
590  // up.
591  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
592       UI != E; ) {
593    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(*UI++);
594    gep_type_iterator I = gep_type_begin(GEPI);
595    ++I;
596
597    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
598      uint64_t NumElements = AT->getNumElements();
599
600      if (!isa<ConstantInt>(I.getOperand())) {
601        if (NumElements == 1) {
602          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
603        } else {
604          assert(NumElements == 2 && "Unhandled case!");
605          // All users of the GEP must be loads.  At each use of the GEP, insert
606          // two loads of the appropriate indexed GEP and select between them.
607          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
608                              Constant::getNullValue(I.getOperand()->getType()),
609             "isone", GEPI);
610          // Insert the new GEP instructions, which are properly indexed.
611          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
612          Indices[1] = Constant::getNullValue(Type::Int32Ty);
613          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0),
614                                                 &Indices[0], Indices.size(),
615                                                 GEPI->getName()+".0", GEPI);
616          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
617          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0),
618                                                &Indices[0], Indices.size(),
619                                                GEPI->getName()+".1", GEPI);
620          // Replace all loads of the variable index GEP with loads from both
621          // indexes and a select.
622          while (!GEPI->use_empty()) {
623            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
624            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
625            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
626            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
627            LI->replaceAllUsesWith(R);
628            LI->eraseFromParent();
629          }
630          GEPI->eraseFromParent();
631        }
632      }
633    }
634  }
635}
636
637/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
638/// types are incompatible, return true, otherwise update Accum and return
639/// false.
640///
641/// There are three cases we handle here:
642///   1) An effectively-integer union, where the pieces are stored into as
643///      smaller integers (common with byte swap and other idioms).
644///   2) A union of vector types of the same size and potentially its elements.
645///      Here we turn element accesses into insert/extract element operations.
646///   3) A union of scalar types, such as int/float or int/pointer.  Here we
647///      merge together into integers, allowing the xform to work with #1 as
648///      well.
649static bool MergeInType(const Type *In, const Type *&Accum,
650                        const TargetData &TD) {
651  // If this is our first type, just use it.
652  const VectorType *PTy;
653  if (Accum == Type::VoidTy || In == Accum) {
654    Accum = In;
655  } else if (In == Type::VoidTy) {
656    // Noop.
657  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
658    // Otherwise pick whichever type is larger.
659    if (cast<IntegerType>(In)->getBitWidth() >
660        cast<IntegerType>(Accum)->getBitWidth())
661      Accum = In;
662  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
663    // Pointer unions just stay as one of the pointers.
664  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
665    if ((PTy = dyn_cast<VectorType>(Accum)) &&
666        PTy->getElementType() == In) {
667      // Accum is a vector, and we are accessing an element: ok.
668    } else if ((PTy = dyn_cast<VectorType>(In)) &&
669               PTy->getElementType() == Accum) {
670      // In is a vector, and accum is an element: ok, remember In.
671      Accum = In;
672    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
673               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
674      // Two vectors of the same size: keep Accum.
675    } else {
676      // Cannot insert an short into a <4 x int> or handle
677      // <2 x int> -> <4 x int>
678      return true;
679    }
680  } else {
681    // Pointer/FP/Integer unions merge together as integers.
682    switch (Accum->getTypeID()) {
683    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
684    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
685    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
686    default:
687      assert(Accum->isInteger() && "Unknown FP type!");
688      break;
689    }
690
691    switch (In->getTypeID()) {
692    case Type::PointerTyID: In = TD.getIntPtrType(); break;
693    case Type::FloatTyID:   In = Type::Int32Ty; break;
694    case Type::DoubleTyID:  In = Type::Int64Ty; break;
695    default:
696      assert(In->isInteger() && "Unknown FP type!");
697      break;
698    }
699    return MergeInType(In, Accum, TD);
700  }
701  return false;
702}
703
704/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
705/// as big as the specified type.  If there is no suitable type, this returns
706/// null.
707const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
708  if (NumBits > 64) return 0;
709  if (NumBits > 32) return Type::Int64Ty;
710  if (NumBits > 16) return Type::Int32Ty;
711  if (NumBits > 8) return Type::Int16Ty;
712  return Type::Int8Ty;
713}
714
715/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
716/// single scalar integer type, return that type.  Further, if the use is not
717/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
718/// there are no uses of this pointer, return Type::VoidTy to differentiate from
719/// failure.
720///
721const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
722  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
723  const TargetData &TD = getAnalysis<TargetData>();
724  const PointerType *PTy = cast<PointerType>(V->getType());
725
726  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
727    Instruction *User = cast<Instruction>(*UI);
728
729    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
730      if (MergeInType(LI->getType(), UsedType, TD))
731        return 0;
732
733    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
734      // Storing the pointer, not into the value?
735      if (SI->getOperand(0) == V) return 0;
736
737      // NOTE: We could handle storing of FP imms into integers here!
738
739      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
740        return 0;
741    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
742      IsNotTrivial = true;
743      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
744      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
745    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
746      // Check to see if this is stepping over an element: GEP Ptr, int C
747      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
748        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
749        unsigned ElSize = TD.getTypeSize(PTy->getElementType());
750        unsigned BitOffset = Idx*ElSize*8;
751        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
752
753        IsNotTrivial = true;
754        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
755        if (SubElt == 0) return 0;
756        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
757          const Type *NewTy =
758            getUIntAtLeastAsBitAs(TD.getTypeSize(SubElt)*8+BitOffset);
759          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
760          continue;
761        }
762      } else if (GEP->getNumOperands() == 3 &&
763                 isa<ConstantInt>(GEP->getOperand(1)) &&
764                 isa<ConstantInt>(GEP->getOperand(2)) &&
765                 cast<Constant>(GEP->getOperand(1))->isNullValue()) {
766        // We are stepping into an element, e.g. a structure or an array:
767        // GEP Ptr, int 0, uint C
768        const Type *AggTy = PTy->getElementType();
769        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
770
771        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
772          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
773        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
774          // Getting an element of the packed vector.
775          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
776
777          // Merge in the vector type.
778          if (MergeInType(VectorTy, UsedType, TD)) return 0;
779
780          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
781          if (SubTy == 0) return 0;
782
783          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
784            return 0;
785
786          // We'll need to change this to an insert/extract element operation.
787          IsNotTrivial = true;
788          continue;    // Everything looks ok
789
790        } else if (isa<StructType>(AggTy)) {
791          // Structs are always ok.
792        } else {
793          return 0;
794        }
795        const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
796        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
797        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
798        if (SubTy == 0) return 0;
799        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
800          return 0;
801        continue;    // Everything looks ok
802      }
803      return 0;
804    } else {
805      // Cannot handle this!
806      return 0;
807    }
808  }
809
810  return UsedType;
811}
812
813/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
814/// predicate and is non-trivial.  Convert it to something that can be trivially
815/// promoted into a register by mem2reg.
816void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
817  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
818       << *ActualTy << "\n";
819  ++NumConverted;
820
821  BasicBlock *EntryBlock = AI->getParent();
822  assert(EntryBlock == &EntryBlock->getParent()->front() &&
823         "Not in the entry block!");
824  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
825
826  // Create and insert the alloca.
827  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
828                                     EntryBlock->begin());
829  ConvertUsesToScalar(AI, NewAI, 0);
830  delete AI;
831}
832
833
834/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
835/// directly.  This happens when we are converting an "integer union" to a
836/// single integer scalar, or when we are converting a "vector union" to a
837/// vector with insert/extractelement instructions.
838///
839/// Offset is an offset from the original alloca, in bits that need to be
840/// shifted to the right.  By the end of this, there should be no uses of Ptr.
841void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
842  bool isVectorInsert = isa<VectorType>(NewAI->getType()->getElementType());
843  const TargetData &TD = getAnalysis<TargetData>();
844  while (!Ptr->use_empty()) {
845    Instruction *User = cast<Instruction>(Ptr->use_back());
846
847    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
848      // The load is a bit extract from NewAI shifted right by Offset bits.
849      Value *NV = new LoadInst(NewAI, LI->getName(), LI);
850      if (NV->getType() != LI->getType()) {
851        if (const VectorType *PTy = dyn_cast<VectorType>(NV->getType())) {
852          // If the result alloca is a vector type, this is either an element
853          // access or a bitcast to another vector type.
854          if (isa<VectorType>(LI->getType())) {
855            NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
856          } else {
857            // Must be an element access.
858            unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
859            NV = new ExtractElementInst(
860                           NV, ConstantInt::get(Type::Int32Ty, Elt), "tmp", LI);
861          }
862        } else if (isa<PointerType>(NV->getType())) {
863          assert(isa<PointerType>(LI->getType()));
864          // Must be ptr->ptr cast.  Anything else would result in NV being
865          // an integer.
866          NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
867        } else {
868          assert(NV->getType()->isInteger() && "Unknown promotion!");
869          if (Offset && Offset < TD.getTypeSize(NV->getType())*8) {
870            NV = BinaryOperator::createLShr(NV,
871                                        ConstantInt::get(NV->getType(), Offset),
872                                        LI->getName(), LI);
873          }
874
875          // If the result is an integer, this is a trunc or bitcast.
876          if (LI->getType()->isInteger()) {
877            NV = CastInst::createTruncOrBitCast(NV, LI->getType(),
878                                                LI->getName(), LI);
879          } else if (LI->getType()->isFloatingPoint()) {
880            // If needed, truncate the integer to the appropriate size.
881            if (NV->getType()->getPrimitiveSizeInBits() >
882                LI->getType()->getPrimitiveSizeInBits()) {
883              switch (LI->getType()->getTypeID()) {
884              default: assert(0 && "Unknown FP type!");
885              case Type::FloatTyID:
886                NV = new TruncInst(NV, Type::Int32Ty, LI->getName(), LI);
887                break;
888              case Type::DoubleTyID:
889                NV = new TruncInst(NV, Type::Int64Ty, LI->getName(), LI);
890                break;
891              }
892            }
893
894            // Then do a bitcast.
895            NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
896          } else {
897            // Otherwise must be a pointer.
898            NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
899          }
900        }
901      }
902      LI->replaceAllUsesWith(NV);
903      LI->eraseFromParent();
904    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
905      assert(SI->getOperand(0) != Ptr && "Consistency error!");
906
907      // Convert the stored type to the actual type, shift it left to insert
908      // then 'or' into place.
909      Value *SV = SI->getOperand(0);
910      const Type *AllocaType = NewAI->getType()->getElementType();
911      if (SV->getType() != AllocaType) {
912        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
913
914        if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
915          // If the result alloca is a vector type, this is either an element
916          // access or a bitcast to another vector type.
917          if (isa<VectorType>(SV->getType())) {
918            SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
919          } else {
920            // Must be an element insertion.
921            unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
922            SV = new InsertElementInst(Old, SV,
923                                       ConstantInt::get(Type::Int32Ty, Elt),
924                                       "tmp", SI);
925          }
926        } else {
927          // If SV is a float, convert it to the appropriate integer type.
928          // If it is a pointer, do the same, and also handle ptr->ptr casts
929          // here.
930          switch (SV->getType()->getTypeID()) {
931          default:
932            assert(!SV->getType()->isFloatingPoint() && "Unknown FP type!");
933            break;
934          case Type::FloatTyID:
935            SV = new BitCastInst(SV, Type::Int32Ty, SV->getName(), SI);
936            break;
937          case Type::DoubleTyID:
938            SV = new BitCastInst(SV, Type::Int64Ty, SV->getName(), SI);
939            break;
940          case Type::PointerTyID:
941            if (isa<PointerType>(AllocaType))
942              SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
943            else
944              SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
945            break;
946          }
947
948          unsigned SrcSize = TD.getTypeSize(SV->getType())*8;
949
950          // Always zero extend the value if needed.
951          if (SV->getType() != AllocaType)
952            SV = CastInst::createZExtOrBitCast(SV, AllocaType,
953                                               SV->getName(), SI);
954          if (Offset && Offset < AllocaType->getPrimitiveSizeInBits())
955            SV = BinaryOperator::createShl(SV,
956                                        ConstantInt::get(SV->getType(), Offset),
957                                        SV->getName()+".adj", SI);
958          // Mask out the bits we are about to insert from the old value.
959          unsigned TotalBits = TD.getTypeSize(SV->getType())*8;
960          if (TotalBits != SrcSize) {
961            assert(TotalBits > SrcSize);
962            uint64_t Mask = ~(((1ULL << SrcSize)-1) << Offset);
963            Mask = Mask & cast<IntegerType>(SV->getType())->getBitMask();
964            Old = BinaryOperator::createAnd(Old,
965                                        ConstantInt::get(Old->getType(), Mask),
966                                            Old->getName()+".mask", SI);
967            SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
968          }
969        }
970      }
971      new StoreInst(SV, NewAI, SI);
972      SI->eraseFromParent();
973
974    } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
975      unsigned NewOff = Offset;
976      const TargetData &TD = getAnalysis<TargetData>();
977      if (TD.isBigEndian() && !isVectorInsert) {
978        // Adjust the pointer.  For example, storing 16-bits into a 32-bit
979        // alloca with just a cast makes it modify the top 16-bits.
980        const Type *SrcTy = cast<PointerType>(Ptr->getType())->getElementType();
981        const Type *DstTy = cast<PointerType>(CI->getType())->getElementType();
982        int PtrDiffBits = TD.getTypeSize(SrcTy)*8-TD.getTypeSize(DstTy)*8;
983        NewOff += PtrDiffBits;
984      }
985      ConvertUsesToScalar(CI, NewAI, NewOff);
986      CI->eraseFromParent();
987    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
988      const PointerType *AggPtrTy =
989        cast<PointerType>(GEP->getOperand(0)->getType());
990      const TargetData &TD = getAnalysis<TargetData>();
991      unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
992
993      // Check to see if this is stepping over an element: GEP Ptr, int C
994      unsigned NewOffset = Offset;
995      if (GEP->getNumOperands() == 2) {
996        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
997        unsigned BitOffset = Idx*AggSizeInBits;
998
999        if (TD.isLittleEndian() || isVectorInsert)
1000          NewOffset += BitOffset;
1001        else
1002          NewOffset -= BitOffset;
1003
1004      } else if (GEP->getNumOperands() == 3) {
1005        // We know that operand #2 is zero.
1006        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1007        const Type *AggTy = AggPtrTy->getElementType();
1008        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1009          unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;
1010
1011          if (TD.isLittleEndian() || isVectorInsert)
1012            NewOffset += ElSizeBits*Idx;
1013          else
1014            NewOffset += AggSizeInBits-ElSizeBits*(Idx+1);
1015        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
1016          unsigned EltBitOffset =
1017            TD.getStructLayout(STy)->getElementOffset(Idx)*8;
1018
1019          if (TD.isLittleEndian() || isVectorInsert)
1020            NewOffset += EltBitOffset;
1021          else {
1022            const PointerType *ElPtrTy = cast<PointerType>(GEP->getType());
1023            unsigned ElSizeBits = TD.getTypeSize(ElPtrTy->getElementType())*8;
1024            NewOffset += AggSizeInBits-(EltBitOffset+ElSizeBits);
1025          }
1026
1027        } else {
1028          assert(0 && "Unsupported operation!");
1029          abort();
1030        }
1031      } else {
1032        assert(0 && "Unsupported operation!");
1033        abort();
1034      }
1035      ConvertUsesToScalar(GEP, NewAI, NewOffset);
1036      GEP->eraseFromParent();
1037    } else {
1038      assert(0 && "Unsupported operation!");
1039      abort();
1040    }
1041  }
1042}
1043