ScalarReplAggregates.cpp revision 9827b78b51f285e90c2b1e5add9b28d10c88595c
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Analysis/Loads.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Transforms/Utils/PromoteMemToReg.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include "llvm/Transforms/Utils/SSAUpdater.h"
40#include "llvm/Support/CallSite.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GetElementPtrTypeIterator.h"
44#include "llvm/Support/IRBuilder.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50using namespace llvm;
51
52STATISTIC(NumReplaced,  "Number of allocas broken up");
53STATISTIC(NumPromoted,  "Number of allocas promoted");
54STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
55STATISTIC(NumConverted, "Number of aggregates converted to scalar");
56STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
57
58namespace {
59  struct SROA : public FunctionPass {
60    SROA(int T, bool hasDT, char &ID)
61      : FunctionPass(ID), HasDomTree(hasDT) {
62      if (T == -1)
63        SRThreshold = 128;
64      else
65        SRThreshold = T;
66    }
67
68    bool runOnFunction(Function &F);
69
70    bool performScalarRepl(Function &F);
71    bool performPromotion(Function &F);
72
73  private:
74    bool HasDomTree;
75    TargetData *TD;
76
77    /// DeadInsts - Keep track of instructions we have made dead, so that
78    /// we can remove them after we are done working.
79    SmallVector<Value*, 32> DeadInsts;
80
81    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82    /// information about the uses.  All these fields are initialized to false
83    /// and set to true when something is learned.
84    struct AllocaInfo {
85      /// The alloca to promote.
86      AllocaInst *AI;
87
88      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
89      /// looping and avoid redundant work.
90      SmallPtrSet<PHINode*, 8> CheckedPHIs;
91
92      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
93      bool isUnsafe : 1;
94
95      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
96      bool isMemCpySrc : 1;
97
98      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
99      bool isMemCpyDst : 1;
100
101      /// hasSubelementAccess - This is true if a subelement of the alloca is
102      /// ever accessed, or false if the alloca is only accessed with mem
103      /// intrinsics or load/store that only access the entire alloca at once.
104      bool hasSubelementAccess : 1;
105
106      /// hasALoadOrStore - This is true if there are any loads or stores to it.
107      /// The alloca may just be accessed with memcpy, for example, which would
108      /// not set this.
109      bool hasALoadOrStore : 1;
110
111      explicit AllocaInfo(AllocaInst *ai)
112        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
113          hasSubelementAccess(false), hasALoadOrStore(false) {}
114    };
115
116    unsigned SRThreshold;
117
118    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
119      I.isUnsafe = true;
120      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
121    }
122
123    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
124
125    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
126    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
127                                         AllocaInfo &Info);
128    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
129    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
130                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
131                         Instruction *TheAccess, bool AllowWholeAccess);
132    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
133    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
134                                  const Type *&IdxTy);
135
136    void DoScalarReplacement(AllocaInst *AI,
137                             std::vector<AllocaInst*> &WorkList);
138    void DeleteDeadInstructions();
139
140    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
141                              SmallVector<AllocaInst*, 32> &NewElts);
142    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
143                        SmallVector<AllocaInst*, 32> &NewElts);
144    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
145                    SmallVector<AllocaInst*, 32> &NewElts);
146    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
147                                      AllocaInst *AI,
148                                      SmallVector<AllocaInst*, 32> &NewElts);
149    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
150                                       SmallVector<AllocaInst*, 32> &NewElts);
151    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
152                                      SmallVector<AllocaInst*, 32> &NewElts);
153
154    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
155  };
156
157  // SROA_DT - SROA that uses DominatorTree.
158  struct SROA_DT : public SROA {
159    static char ID;
160  public:
161    SROA_DT(int T = -1) : SROA(T, true, ID) {
162      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
163    }
164
165    // getAnalysisUsage - This pass does not require any passes, but we know it
166    // will not alter the CFG, so say so.
167    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
168      AU.addRequired<DominatorTree>();
169      AU.setPreservesCFG();
170    }
171  };
172
173  // SROA_SSAUp - SROA that uses SSAUpdater.
174  struct SROA_SSAUp : public SROA {
175    static char ID;
176  public:
177    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
178      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
179    }
180
181    // getAnalysisUsage - This pass does not require any passes, but we know it
182    // will not alter the CFG, so say so.
183    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
184      AU.setPreservesCFG();
185    }
186  };
187
188}
189
190char SROA_DT::ID = 0;
191char SROA_SSAUp::ID = 0;
192
193INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
194                "Scalar Replacement of Aggregates (DT)", false, false)
195INITIALIZE_PASS_DEPENDENCY(DominatorTree)
196INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
197                "Scalar Replacement of Aggregates (DT)", false, false)
198
199INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
200                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
201INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
202                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
203
204// Public interface to the ScalarReplAggregates pass
205FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
206                                                   bool UseDomTree) {
207  if (UseDomTree)
208    return new SROA_DT(Threshold);
209  return new SROA_SSAUp(Threshold);
210}
211
212
213//===----------------------------------------------------------------------===//
214// Convert To Scalar Optimization.
215//===----------------------------------------------------------------------===//
216
217namespace {
218/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
219/// optimization, which scans the uses of an alloca and determines if it can
220/// rewrite it in terms of a single new alloca that can be mem2reg'd.
221class ConvertToScalarInfo {
222  /// AllocaSize - The size of the alloca being considered in bytes.
223  unsigned AllocaSize;
224  const TargetData &TD;
225
226  /// IsNotTrivial - This is set to true if there is some access to the object
227  /// which means that mem2reg can't promote it.
228  bool IsNotTrivial;
229
230  /// VectorTy - This tracks the type that we should promote the vector to if
231  /// it is possible to turn it into a vector.  This starts out null, and if it
232  /// isn't possible to turn into a vector type, it gets set to VoidTy.
233  const Type *VectorTy;
234
235  /// HadAVector - True if there is at least one vector access to the alloca.
236  /// We don't want to turn random arrays into vectors and use vector element
237  /// insert/extract, but if there are element accesses to something that is
238  /// also declared as a vector, we do want to promote to a vector.
239  bool HadAVector;
240
241  /// HadNonMemTransferAccess - True if there is at least one access to the
242  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
243  /// large integers unless there is some potential for optimization.
244  bool HadNonMemTransferAccess;
245
246public:
247  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
248    : AllocaSize(Size), TD(td), IsNotTrivial(false), VectorTy(0),
249      HadAVector(false), HadNonMemTransferAccess(false) { }
250
251  AllocaInst *TryConvert(AllocaInst *AI);
252
253private:
254  bool CanConvertToScalar(Value *V, uint64_t Offset);
255  void MergeInType(const Type *In, uint64_t Offset, bool IsLoadOrStore);
256  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
257  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
258
259  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
260                                    uint64_t Offset, IRBuilder<> &Builder);
261  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
262                                   uint64_t Offset, IRBuilder<> &Builder);
263};
264} // end anonymous namespace.
265
266
267/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
268/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
269/// alloca if possible or null if not.
270AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
271  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
272  // out.
273  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
274    return 0;
275
276  // If we were able to find a vector type that can handle this with
277  // insert/extract elements, and if there was at least one use that had
278  // a vector type, promote this to a vector.  We don't want to promote
279  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
280  // we just get a lot of insert/extracts.  If at least one vector is
281  // involved, then we probably really do have a union of vector/array.
282  const Type *NewTy;
283  if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
284    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
285          << *VectorTy << '\n');
286    NewTy = VectorTy;  // Use the vector type.
287  } else {
288    unsigned BitWidth = AllocaSize * 8;
289    if (!HadAVector && !HadNonMemTransferAccess &&
290        !TD.fitsInLegalInteger(BitWidth))
291      return 0;
292
293    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
294    // Create and insert the integer alloca.
295    NewTy = IntegerType::get(AI->getContext(), BitWidth);
296  }
297  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
298  ConvertUsesToScalar(AI, NewAI, 0);
299  return NewAI;
300}
301
302/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
303/// so far at the offset specified by Offset (which is specified in bytes).
304///
305/// There are three cases we handle here:
306///   1) A union of vector types of the same size and potentially its elements.
307///      Here we turn element accesses into insert/extract element operations.
308///      This promotes a <4 x float> with a store of float to the third element
309///      into a <4 x float> that uses insert element.
310///   2) A union of vector types with power-of-2 size differences, e.g. a float,
311///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
312///      and extract element operations, and <2 x float> accesses into a cast to
313///      <2 x double>, an extract, and a cast back to <2 x float>.
314///   3) A fully general blob of memory, which we turn into some (potentially
315///      large) integer type with extract and insert operations where the loads
316///      and stores would mutate the memory.  We mark this by setting VectorTy
317///      to VoidTy.
318void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset,
319                                      bool IsLoadOrStore) {
320  // If we already decided to turn this into a blob of integer memory, there is
321  // nothing to be done.
322  if (VectorTy && VectorTy->isVoidTy())
323    return;
324
325  // If this could be contributing to a vector, analyze it.
326
327  // If the In type is a vector that is the same size as the alloca, see if it
328  // matches the existing VecTy.
329  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
330    if (MergeInVectorType(VInTy, Offset))
331      return;
332  } else if (In->isFloatTy() || In->isDoubleTy() ||
333             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
334              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
335    // Full width accesses can be ignored, because they can always be turned
336    // into bitcasts.
337    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
338    if (IsLoadOrStore && EltSize == AllocaSize)
339      return;
340    // If we're accessing something that could be an element of a vector, see
341    // if the implied vector agrees with what we already have and if Offset is
342    // compatible with it.
343    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
344        (VectorTy == 0 ||
345         cast<VectorType>(VectorTy)->getElementType()
346               ->getPrimitiveSizeInBits()/8 == EltSize)) {
347      if (VectorTy == 0)
348        VectorTy = VectorType::get(In, AllocaSize/EltSize);
349      return;
350    }
351  }
352
353  // Otherwise, we have a case that we can't handle with an optimized vector
354  // form.  We can still turn this into a large integer.
355  VectorTy = Type::getVoidTy(In->getContext());
356}
357
358/// MergeInVectorType - Handles the vector case of MergeInType, returning true
359/// if the type was successfully merged and false otherwise.
360bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
361                                            uint64_t Offset) {
362  // Remember if we saw a vector type.
363  HadAVector = true;
364
365  // TODO: Support nonzero offsets?
366  if (Offset != 0)
367    return false;
368
369  // Only allow vectors that are a power-of-2 away from the size of the alloca.
370  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
371    return false;
372
373  // If this the first vector we see, remember the type so that we know the
374  // element size.
375  if (!VectorTy) {
376    VectorTy = VInTy;
377    return true;
378  }
379
380  unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
381  unsigned InBitWidth = VInTy->getBitWidth();
382
383  // Vectors of the same size can be converted using a simple bitcast.
384  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
385    return true;
386
387  const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
388  const Type *InElementTy = cast<VectorType>(VInTy)->getElementType();
389
390  // Do not allow mixed integer and floating-point accesses from vectors of
391  // different sizes.
392  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
393    return false;
394
395  if (ElementTy->isFloatingPointTy()) {
396    // Only allow floating-point vectors of different sizes if they have the
397    // same element type.
398    // TODO: This could be loosened a bit, but would anything benefit?
399    if (ElementTy != InElementTy)
400      return false;
401
402    // There are no arbitrary-precision floating-point types, which limits the
403    // number of legal vector types with larger element types that we can form
404    // to bitcast and extract a subvector.
405    // TODO: We could support some more cases with mixed fp128 and double here.
406    if (!(BitWidth == 64 || BitWidth == 128) ||
407        !(InBitWidth == 64 || InBitWidth == 128))
408      return false;
409  } else {
410    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
411                                       "or floating-point.");
412    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
413    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
414
415    // Do not allow integer types smaller than a byte or types whose widths are
416    // not a multiple of a byte.
417    if (BitWidth < 8 || InBitWidth < 8 ||
418        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
419      return false;
420  }
421
422  // Pick the largest of the two vector types.
423  if (InBitWidth > BitWidth)
424    VectorTy = VInTy;
425
426  return true;
427}
428
429/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
430/// its accesses to a single vector type, return true and set VecTy to
431/// the new type.  If we could convert the alloca into a single promotable
432/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
433/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
434/// is the current offset from the base of the alloca being analyzed.
435///
436/// If we see at least one access to the value that is as a vector type, set the
437/// SawVec flag.
438bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
439  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
440    Instruction *User = cast<Instruction>(*UI);
441
442    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
443      // Don't break volatile loads.
444      if (LI->isVolatile())
445        return false;
446      // Don't touch MMX operations.
447      if (LI->getType()->isX86_MMXTy())
448        return false;
449      HadNonMemTransferAccess = true;
450      MergeInType(LI->getType(), Offset, true);
451      continue;
452    }
453
454    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
455      // Storing the pointer, not into the value?
456      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
457      // Don't touch MMX operations.
458      if (SI->getOperand(0)->getType()->isX86_MMXTy())
459        return false;
460      HadNonMemTransferAccess = true;
461      MergeInType(SI->getOperand(0)->getType(), Offset, true);
462      continue;
463    }
464
465    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
466      IsNotTrivial = true;  // Can't be mem2reg'd.
467      if (!CanConvertToScalar(BCI, Offset))
468        return false;
469      continue;
470    }
471
472    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
473      // If this is a GEP with a variable indices, we can't handle it.
474      if (!GEP->hasAllConstantIndices())
475        return false;
476
477      // Compute the offset that this GEP adds to the pointer.
478      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
479      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
480                                               &Indices[0], Indices.size());
481      // See if all uses can be converted.
482      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
483        return false;
484      IsNotTrivial = true;  // Can't be mem2reg'd.
485      HadNonMemTransferAccess = true;
486      continue;
487    }
488
489    // If this is a constant sized memset of a constant value (e.g. 0) we can
490    // handle it.
491    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
492      // Store of constant value and constant size.
493      if (!isa<ConstantInt>(MSI->getValue()) ||
494          !isa<ConstantInt>(MSI->getLength()))
495        return false;
496      IsNotTrivial = true;  // Can't be mem2reg'd.
497      HadNonMemTransferAccess = true;
498      continue;
499    }
500
501    // If this is a memcpy or memmove into or out of the whole allocation, we
502    // can handle it like a load or store of the scalar type.
503    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
504      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
505      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
506        return false;
507
508      IsNotTrivial = true;  // Can't be mem2reg'd.
509      continue;
510    }
511
512    // Otherwise, we cannot handle this!
513    return false;
514  }
515
516  return true;
517}
518
519/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
520/// directly.  This happens when we are converting an "integer union" to a
521/// single integer scalar, or when we are converting a "vector union" to a
522/// vector with insert/extractelement instructions.
523///
524/// Offset is an offset from the original alloca, in bits that need to be
525/// shifted to the right.  By the end of this, there should be no uses of Ptr.
526void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
527                                              uint64_t Offset) {
528  while (!Ptr->use_empty()) {
529    Instruction *User = cast<Instruction>(Ptr->use_back());
530
531    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
532      ConvertUsesToScalar(CI, NewAI, Offset);
533      CI->eraseFromParent();
534      continue;
535    }
536
537    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
538      // Compute the offset that this GEP adds to the pointer.
539      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
540      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
541                                               &Indices[0], Indices.size());
542      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
543      GEP->eraseFromParent();
544      continue;
545    }
546
547    IRBuilder<> Builder(User);
548
549    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
550      // The load is a bit extract from NewAI shifted right by Offset bits.
551      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
552      Value *NewLoadVal
553        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
554      LI->replaceAllUsesWith(NewLoadVal);
555      LI->eraseFromParent();
556      continue;
557    }
558
559    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
560      assert(SI->getOperand(0) != Ptr && "Consistency error!");
561      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
562      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
563                                             Builder);
564      Builder.CreateStore(New, NewAI);
565      SI->eraseFromParent();
566
567      // If the load we just inserted is now dead, then the inserted store
568      // overwrote the entire thing.
569      if (Old->use_empty())
570        Old->eraseFromParent();
571      continue;
572    }
573
574    // If this is a constant sized memset of a constant value (e.g. 0) we can
575    // transform it into a store of the expanded constant value.
576    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
577      assert(MSI->getRawDest() == Ptr && "Consistency error!");
578      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
579      if (NumBytes != 0) {
580        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
581
582        // Compute the value replicated the right number of times.
583        APInt APVal(NumBytes*8, Val);
584
585        // Splat the value if non-zero.
586        if (Val)
587          for (unsigned i = 1; i != NumBytes; ++i)
588            APVal |= APVal << 8;
589
590        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
591        Value *New = ConvertScalar_InsertValue(
592                                    ConstantInt::get(User->getContext(), APVal),
593                                               Old, Offset, Builder);
594        Builder.CreateStore(New, NewAI);
595
596        // If the load we just inserted is now dead, then the memset overwrote
597        // the entire thing.
598        if (Old->use_empty())
599          Old->eraseFromParent();
600      }
601      MSI->eraseFromParent();
602      continue;
603    }
604
605    // If this is a memcpy or memmove into or out of the whole allocation, we
606    // can handle it like a load or store of the scalar type.
607    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
608      assert(Offset == 0 && "must be store to start of alloca");
609
610      // If the source and destination are both to the same alloca, then this is
611      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
612      // as appropriate.
613      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
614
615      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
616        // Dest must be OrigAI, change this to be a load from the original
617        // pointer (bitcasted), then a store to our new alloca.
618        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
619        Value *SrcPtr = MTI->getSource();
620        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
621        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
622        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
623          AIPTy = PointerType::get(AIPTy->getElementType(),
624                                   SPTy->getAddressSpace());
625        }
626        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
627
628        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
629        SrcVal->setAlignment(MTI->getAlignment());
630        Builder.CreateStore(SrcVal, NewAI);
631      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
632        // Src must be OrigAI, change this to be a load from NewAI then a store
633        // through the original dest pointer (bitcasted).
634        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
635        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
636
637        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
638        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
639        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
640          AIPTy = PointerType::get(AIPTy->getElementType(),
641                                   DPTy->getAddressSpace());
642        }
643        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
644
645        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
646        NewStore->setAlignment(MTI->getAlignment());
647      } else {
648        // Noop transfer. Src == Dst
649      }
650
651      MTI->eraseFromParent();
652      continue;
653    }
654
655    llvm_unreachable("Unsupported operation!");
656  }
657}
658
659/// getScaledElementType - Gets a scaled element type for a partial vector
660/// access of an alloca. The input type must be an integer or float, and
661/// the resulting type must be an integer, float or double.
662static const Type *getScaledElementType(const Type *OldTy,
663                                        unsigned NewBitWidth) {
664  assert((OldTy->isIntegerTy() || OldTy->isFloatTy()) && "Partial vector "
665         "accesses must be scaled from integer or float elements.");
666
667  LLVMContext &Context = OldTy->getContext();
668
669  if (OldTy->isIntegerTy())
670    return Type::getIntNTy(Context, NewBitWidth);
671  if (NewBitWidth == 32)
672    return Type::getFloatTy(Context);
673  if (NewBitWidth == 64)
674    return Type::getDoubleTy(Context);
675
676  llvm_unreachable("Invalid type for a partial vector access of an alloca!");
677}
678
679/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
680/// or vector value FromVal, extracting the bits from the offset specified by
681/// Offset.  This returns the value, which is of type ToType.
682///
683/// This happens when we are converting an "integer union" to a single
684/// integer scalar, or when we are converting a "vector union" to a vector with
685/// insert/extractelement instructions.
686///
687/// Offset is an offset from the original alloca, in bits that need to be
688/// shifted to the right.
689Value *ConvertToScalarInfo::
690ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
691                           uint64_t Offset, IRBuilder<> &Builder) {
692  // If the load is of the whole new alloca, no conversion is needed.
693  if (FromVal->getType() == ToType && Offset == 0)
694    return FromVal;
695
696  // If the result alloca is a vector type, this is either an element
697  // access or a bitcast to another vector type of the same size.
698  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
699    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
700    if (ToTypeSize == AllocaSize)
701      return Builder.CreateBitCast(FromVal, ToType, "tmp");
702
703    if (ToType->isVectorTy()) {
704      assert(isPowerOf2_64(AllocaSize / ToTypeSize) &&
705             "Partial vector access of an alloca must have a power-of-2 size "
706             "ratio.");
707      assert(Offset == 0 && "Can't extract a value of a smaller vector type "
708                            "from a nonzero offset.");
709
710      const Type *ToElementTy = cast<VectorType>(ToType)->getElementType();
711      const Type *CastElementTy = getScaledElementType(ToElementTy,
712                                                       ToTypeSize * 8);
713      unsigned NumCastVectorElements = AllocaSize / ToTypeSize;
714
715      LLVMContext &Context = FromVal->getContext();
716      const Type *CastTy = VectorType::get(CastElementTy,
717                                           NumCastVectorElements);
718      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
719      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
720                                        Type::getInt32Ty(Context), 0), "tmp");
721      return Builder.CreateBitCast(Extract, ToType, "tmp");
722    }
723
724    // Otherwise it must be an element access.
725    unsigned Elt = 0;
726    if (Offset) {
727      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
728      Elt = Offset/EltSize;
729      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
730    }
731    // Return the element extracted out of it.
732    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
733                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
734    if (V->getType() != ToType)
735      V = Builder.CreateBitCast(V, ToType, "tmp");
736    return V;
737  }
738
739  // If ToType is a first class aggregate, extract out each of the pieces and
740  // use insertvalue's to form the FCA.
741  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
742    const StructLayout &Layout = *TD.getStructLayout(ST);
743    Value *Res = UndefValue::get(ST);
744    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
745      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
746                                        Offset+Layout.getElementOffsetInBits(i),
747                                              Builder);
748      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
749    }
750    return Res;
751  }
752
753  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
754    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
755    Value *Res = UndefValue::get(AT);
756    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
757      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
758                                              Offset+i*EltSize, Builder);
759      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
760    }
761    return Res;
762  }
763
764  // Otherwise, this must be a union that was converted to an integer value.
765  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
766
767  // If this is a big-endian system and the load is narrower than the
768  // full alloca type, we need to do a shift to get the right bits.
769  int ShAmt = 0;
770  if (TD.isBigEndian()) {
771    // On big-endian machines, the lowest bit is stored at the bit offset
772    // from the pointer given by getTypeStoreSizeInBits.  This matters for
773    // integers with a bitwidth that is not a multiple of 8.
774    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
775            TD.getTypeStoreSizeInBits(ToType) - Offset;
776  } else {
777    ShAmt = Offset;
778  }
779
780  // Note: we support negative bitwidths (with shl) which are not defined.
781  // We do this to support (f.e.) loads off the end of a structure where
782  // only some bits are used.
783  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
784    FromVal = Builder.CreateLShr(FromVal,
785                                 ConstantInt::get(FromVal->getType(),
786                                                           ShAmt), "tmp");
787  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
788    FromVal = Builder.CreateShl(FromVal,
789                                ConstantInt::get(FromVal->getType(),
790                                                          -ShAmt), "tmp");
791
792  // Finally, unconditionally truncate the integer to the right width.
793  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
794  if (LIBitWidth < NTy->getBitWidth())
795    FromVal =
796      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
797                                                    LIBitWidth), "tmp");
798  else if (LIBitWidth > NTy->getBitWidth())
799    FromVal =
800       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
801                                                    LIBitWidth), "tmp");
802
803  // If the result is an integer, this is a trunc or bitcast.
804  if (ToType->isIntegerTy()) {
805    // Should be done.
806  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
807    // Just do a bitcast, we know the sizes match up.
808    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
809  } else {
810    // Otherwise must be a pointer.
811    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
812  }
813  assert(FromVal->getType() == ToType && "Didn't convert right?");
814  return FromVal;
815}
816
817/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
818/// or vector value "Old" at the offset specified by Offset.
819///
820/// This happens when we are converting an "integer union" to a
821/// single integer scalar, or when we are converting a "vector union" to a
822/// vector with insert/extractelement instructions.
823///
824/// Offset is an offset from the original alloca, in bits that need to be
825/// shifted to the right.
826Value *ConvertToScalarInfo::
827ConvertScalar_InsertValue(Value *SV, Value *Old,
828                          uint64_t Offset, IRBuilder<> &Builder) {
829  // Convert the stored type to the actual type, shift it left to insert
830  // then 'or' into place.
831  const Type *AllocaType = Old->getType();
832  LLVMContext &Context = Old->getContext();
833
834  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
835    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
836    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
837
838    // Changing the whole vector with memset or with an access of a different
839    // vector type?
840    if (ValSize == VecSize)
841      return Builder.CreateBitCast(SV, AllocaType, "tmp");
842
843    if (SV->getType()->isVectorTy() && isPowerOf2_64(VecSize / ValSize)) {
844      assert(Offset == 0 && "Can't insert a value of a smaller vector type at "
845                            "a nonzero offset.");
846
847      const Type *ToElementTy =
848        cast<VectorType>(SV->getType())->getElementType();
849      const Type *CastElementTy = getScaledElementType(ToElementTy, ValSize);
850      unsigned NumCastVectorElements = VecSize / ValSize;
851
852      LLVMContext &Context = SV->getContext();
853      const Type *OldCastTy = VectorType::get(CastElementTy,
854                                              NumCastVectorElements);
855      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
856
857      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
858      Value *Insert =
859        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
860                                    Type::getInt32Ty(Context), 0), "tmp");
861      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
862    }
863
864    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
865
866    // Must be an element insertion.
867    unsigned Elt = Offset/EltSize;
868
869    if (SV->getType() != VTy->getElementType())
870      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
871
872    SV = Builder.CreateInsertElement(Old, SV,
873                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
874                                     "tmp");
875    return SV;
876  }
877
878  // If SV is a first-class aggregate value, insert each value recursively.
879  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
880    const StructLayout &Layout = *TD.getStructLayout(ST);
881    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
882      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
883      Old = ConvertScalar_InsertValue(Elt, Old,
884                                      Offset+Layout.getElementOffsetInBits(i),
885                                      Builder);
886    }
887    return Old;
888  }
889
890  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
891    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
892    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
893      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
894      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
895    }
896    return Old;
897  }
898
899  // If SV is a float, convert it to the appropriate integer type.
900  // If it is a pointer, do the same.
901  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
902  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
903  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
904  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
905  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
906    SV = Builder.CreateBitCast(SV,
907                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
908  else if (SV->getType()->isPointerTy())
909    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
910
911  // Zero extend or truncate the value if needed.
912  if (SV->getType() != AllocaType) {
913    if (SV->getType()->getPrimitiveSizeInBits() <
914             AllocaType->getPrimitiveSizeInBits())
915      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
916    else {
917      // Truncation may be needed if storing more than the alloca can hold
918      // (undefined behavior).
919      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
920      SrcWidth = DestWidth;
921      SrcStoreWidth = DestStoreWidth;
922    }
923  }
924
925  // If this is a big-endian system and the store is narrower than the
926  // full alloca type, we need to do a shift to get the right bits.
927  int ShAmt = 0;
928  if (TD.isBigEndian()) {
929    // On big-endian machines, the lowest bit is stored at the bit offset
930    // from the pointer given by getTypeStoreSizeInBits.  This matters for
931    // integers with a bitwidth that is not a multiple of 8.
932    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
933  } else {
934    ShAmt = Offset;
935  }
936
937  // Note: we support negative bitwidths (with shr) which are not defined.
938  // We do this to support (f.e.) stores off the end of a structure where
939  // only some bits in the structure are set.
940  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
941  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
942    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
943                           ShAmt), "tmp");
944    Mask <<= ShAmt;
945  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
946    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
947                            -ShAmt), "tmp");
948    Mask = Mask.lshr(-ShAmt);
949  }
950
951  // Mask out the bits we are about to insert from the old value, and or
952  // in the new bits.
953  if (SrcWidth != DestWidth) {
954    assert(DestWidth > SrcWidth);
955    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
956    SV = Builder.CreateOr(Old, SV, "ins");
957  }
958  return SV;
959}
960
961
962//===----------------------------------------------------------------------===//
963// SRoA Driver
964//===----------------------------------------------------------------------===//
965
966
967bool SROA::runOnFunction(Function &F) {
968  TD = getAnalysisIfAvailable<TargetData>();
969
970  bool Changed = performPromotion(F);
971
972  // FIXME: ScalarRepl currently depends on TargetData more than it
973  // theoretically needs to. It should be refactored in order to support
974  // target-independent IR. Until this is done, just skip the actual
975  // scalar-replacement portion of this pass.
976  if (!TD) return Changed;
977
978  while (1) {
979    bool LocalChange = performScalarRepl(F);
980    if (!LocalChange) break;   // No need to repromote if no scalarrepl
981    Changed = true;
982    LocalChange = performPromotion(F);
983    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
984  }
985
986  return Changed;
987}
988
989namespace {
990class AllocaPromoter : public LoadAndStorePromoter {
991  AllocaInst *AI;
992public:
993  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
994    : LoadAndStorePromoter(Insts, S), AI(0) {}
995
996  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
997    // Remember which alloca we're promoting (for isInstInList).
998    this->AI = AI;
999    LoadAndStorePromoter::run(Insts);
1000    AI->eraseFromParent();
1001  }
1002
1003  virtual bool isInstInList(Instruction *I,
1004                            const SmallVectorImpl<Instruction*> &Insts) const {
1005    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1006      return LI->getOperand(0) == AI;
1007    return cast<StoreInst>(I)->getPointerOperand() == AI;
1008  }
1009};
1010} // end anon namespace
1011
1012/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1013/// subsequently loaded can be rewritten to load both input pointers and then
1014/// select between the result, allowing the load of the alloca to be promoted.
1015/// From this:
1016///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1017///   %V = load i32* %P2
1018/// to:
1019///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1020///   %V2 = load i32* %Other
1021///   %V = select i1 %cond, i32 %V1, i32 %V2
1022///
1023/// We can do this to a select if its only uses are loads and if the operand to
1024/// the select can be loaded unconditionally.
1025static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1026  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1027  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1028
1029  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1030       UI != UE; ++UI) {
1031    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1032    if (LI == 0 || LI->isVolatile()) return false;
1033
1034    // Both operands to the select need to be dereferencable, either absolutely
1035    // (e.g. allocas) or at this point because we can see other accesses to it.
1036    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1037                                                    LI->getAlignment(), TD))
1038      return false;
1039    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1040                                                    LI->getAlignment(), TD))
1041      return false;
1042  }
1043
1044  return true;
1045}
1046
1047/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1048/// subsequently loaded can be rewritten to load both input pointers in the pred
1049/// blocks and then PHI the results, allowing the load of the alloca to be
1050/// promoted.
1051/// From this:
1052///   %P2 = phi [i32* %Alloca, i32* %Other]
1053///   %V = load i32* %P2
1054/// to:
1055///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1056///   ...
1057///   %V2 = load i32* %Other
1058///   ...
1059///   %V = phi [i32 %V1, i32 %V2]
1060///
1061/// We can do this to a select if its only uses are loads and if the operand to
1062/// the select can be loaded unconditionally.
1063static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1064  // For now, we can only do this promotion if the load is in the same block as
1065  // the PHI, and if there are no stores between the phi and load.
1066  // TODO: Allow recursive phi users.
1067  // TODO: Allow stores.
1068  BasicBlock *BB = PN->getParent();
1069  unsigned MaxAlign = 0;
1070  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1071       UI != UE; ++UI) {
1072    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1073    if (LI == 0 || LI->isVolatile()) return false;
1074
1075    // For now we only allow loads in the same block as the PHI.  This is a
1076    // common case that happens when instcombine merges two loads through a PHI.
1077    if (LI->getParent() != BB) return false;
1078
1079    // Ensure that there are no instructions between the PHI and the load that
1080    // could store.
1081    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1082      if (BBI->mayWriteToMemory())
1083        return false;
1084
1085    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1086  }
1087
1088  // Okay, we know that we have one or more loads in the same block as the PHI.
1089  // We can transform this if it is safe to push the loads into the predecessor
1090  // blocks.  The only thing to watch out for is that we can't put a possibly
1091  // trapping load in the predecessor if it is a critical edge.
1092  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1093    BasicBlock *Pred = PN->getIncomingBlock(i);
1094
1095    // If the predecessor has a single successor, then the edge isn't critical.
1096    if (Pred->getTerminator()->getNumSuccessors() == 1)
1097      continue;
1098
1099    Value *InVal = PN->getIncomingValue(i);
1100
1101    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1102    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1103      if (II->getParent() == Pred)
1104        return false;
1105
1106    // If this pointer is always safe to load, or if we can prove that there is
1107    // already a load in the block, then we can move the load to the pred block.
1108    if (InVal->isDereferenceablePointer() ||
1109        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1110      continue;
1111
1112    return false;
1113  }
1114
1115  return true;
1116}
1117
1118
1119/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1120/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1121/// not quite there, this will transform the code to allow promotion.  As such,
1122/// it is a non-pure predicate.
1123static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1124  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1125            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1126
1127  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1128       UI != UE; ++UI) {
1129    User *U = *UI;
1130    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1131      if (LI->isVolatile())
1132        return false;
1133      continue;
1134    }
1135
1136    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1137      if (SI->getOperand(0) == AI || SI->isVolatile())
1138        return false;   // Don't allow a store OF the AI, only INTO the AI.
1139      continue;
1140    }
1141
1142    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1143      // If the condition being selected on is a constant, fold the select, yes
1144      // this does (rarely) happen early on.
1145      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1146        Value *Result = SI->getOperand(1+CI->isZero());
1147        SI->replaceAllUsesWith(Result);
1148        SI->eraseFromParent();
1149
1150        // This is very rare and we just scrambled the use list of AI, start
1151        // over completely.
1152        return tryToMakeAllocaBePromotable(AI, TD);
1153      }
1154
1155      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1156      // loads, then we can transform this by rewriting the select.
1157      if (!isSafeSelectToSpeculate(SI, TD))
1158        return false;
1159
1160      InstsToRewrite.insert(SI);
1161      continue;
1162    }
1163
1164    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1165      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1166        InstsToRewrite.insert(PN);
1167        continue;
1168      }
1169
1170      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1171      // in the pred blocks, then we can transform this by rewriting the PHI.
1172      if (!isSafePHIToSpeculate(PN, TD))
1173        return false;
1174
1175      InstsToRewrite.insert(PN);
1176      continue;
1177    }
1178
1179    return false;
1180  }
1181
1182  // If there are no instructions to rewrite, then all uses are load/stores and
1183  // we're done!
1184  if (InstsToRewrite.empty())
1185    return true;
1186
1187  // If we have instructions that need to be rewritten for this to be promotable
1188  // take care of it now.
1189  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1190    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1191      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1192      // loads with a new select.
1193      while (!SI->use_empty()) {
1194        LoadInst *LI = cast<LoadInst>(SI->use_back());
1195
1196        IRBuilder<> Builder(LI);
1197        LoadInst *TrueLoad =
1198          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1199        LoadInst *FalseLoad =
1200          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1201
1202        // Transfer alignment and TBAA info if present.
1203        TrueLoad->setAlignment(LI->getAlignment());
1204        FalseLoad->setAlignment(LI->getAlignment());
1205        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1206          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1207          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1208        }
1209
1210        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1211        V->takeName(LI);
1212        LI->replaceAllUsesWith(V);
1213        LI->eraseFromParent();
1214      }
1215
1216      // Now that all the loads are gone, the select is gone too.
1217      SI->eraseFromParent();
1218      continue;
1219    }
1220
1221    // Otherwise, we have a PHI node which allows us to push the loads into the
1222    // predecessors.
1223    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1224    if (PN->use_empty()) {
1225      PN->eraseFromParent();
1226      continue;
1227    }
1228
1229    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1230    PHINode *NewPN = PHINode::Create(LoadTy, PN->getName()+".ld", PN);
1231
1232    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1233    // matter which one we get and if any differ, it doesn't matter.
1234    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1235    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1236    unsigned Align = SomeLoad->getAlignment();
1237
1238    // Rewrite all loads of the PN to use the new PHI.
1239    while (!PN->use_empty()) {
1240      LoadInst *LI = cast<LoadInst>(PN->use_back());
1241      LI->replaceAllUsesWith(NewPN);
1242      LI->eraseFromParent();
1243    }
1244
1245    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1246    // insert them into in case we have multiple edges from the same block.
1247    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1248
1249    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1250      BasicBlock *Pred = PN->getIncomingBlock(i);
1251      LoadInst *&Load = InsertedLoads[Pred];
1252      if (Load == 0) {
1253        Load = new LoadInst(PN->getIncomingValue(i),
1254                            PN->getName() + "." + Pred->getName(),
1255                            Pred->getTerminator());
1256        Load->setAlignment(Align);
1257        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1258      }
1259
1260      NewPN->addIncoming(Load, Pred);
1261    }
1262
1263    PN->eraseFromParent();
1264  }
1265
1266  ++NumAdjusted;
1267  return true;
1268}
1269
1270
1271bool SROA::performPromotion(Function &F) {
1272  std::vector<AllocaInst*> Allocas;
1273  DominatorTree *DT = 0;
1274  if (HasDomTree)
1275    DT = &getAnalysis<DominatorTree>();
1276
1277  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1278
1279  bool Changed = false;
1280  SmallVector<Instruction*, 64> Insts;
1281  while (1) {
1282    Allocas.clear();
1283
1284    // Find allocas that are safe to promote, by looking at all instructions in
1285    // the entry node
1286    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1287      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1288        if (tryToMakeAllocaBePromotable(AI, TD))
1289          Allocas.push_back(AI);
1290
1291    if (Allocas.empty()) break;
1292
1293    if (HasDomTree)
1294      PromoteMemToReg(Allocas, *DT);
1295    else {
1296      SSAUpdater SSA;
1297      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1298        AllocaInst *AI = Allocas[i];
1299
1300        // Build list of instructions to promote.
1301        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1302             UI != E; ++UI)
1303          Insts.push_back(cast<Instruction>(*UI));
1304
1305        AllocaPromoter(Insts, SSA).run(AI, Insts);
1306        Insts.clear();
1307      }
1308    }
1309    NumPromoted += Allocas.size();
1310    Changed = true;
1311  }
1312
1313  return Changed;
1314}
1315
1316
1317/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1318/// SROA.  It must be a struct or array type with a small number of elements.
1319static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1320  const Type *T = AI->getAllocatedType();
1321  // Do not promote any struct into more than 32 separate vars.
1322  if (const StructType *ST = dyn_cast<StructType>(T))
1323    return ST->getNumElements() <= 32;
1324  // Arrays are much less likely to be safe for SROA; only consider
1325  // them if they are very small.
1326  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1327    return AT->getNumElements() <= 8;
1328  return false;
1329}
1330
1331
1332// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1333// which runs on all of the malloc/alloca instructions in the function, removing
1334// them if they are only used by getelementptr instructions.
1335//
1336bool SROA::performScalarRepl(Function &F) {
1337  std::vector<AllocaInst*> WorkList;
1338
1339  // Scan the entry basic block, adding allocas to the worklist.
1340  BasicBlock &BB = F.getEntryBlock();
1341  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1342    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1343      WorkList.push_back(A);
1344
1345  // Process the worklist
1346  bool Changed = false;
1347  while (!WorkList.empty()) {
1348    AllocaInst *AI = WorkList.back();
1349    WorkList.pop_back();
1350
1351    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1352    // with unused elements.
1353    if (AI->use_empty()) {
1354      AI->eraseFromParent();
1355      Changed = true;
1356      continue;
1357    }
1358
1359    // If this alloca is impossible for us to promote, reject it early.
1360    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1361      continue;
1362
1363    // Check to see if this allocation is only modified by a memcpy/memmove from
1364    // a constant global.  If this is the case, we can change all users to use
1365    // the constant global instead.  This is commonly produced by the CFE by
1366    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1367    // is only subsequently read.
1368    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1369      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1370      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1371      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1372      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1373      TheCopy->eraseFromParent();  // Don't mutate the global.
1374      AI->eraseFromParent();
1375      ++NumGlobals;
1376      Changed = true;
1377      continue;
1378    }
1379
1380    // Check to see if we can perform the core SROA transformation.  We cannot
1381    // transform the allocation instruction if it is an array allocation
1382    // (allocations OF arrays are ok though), and an allocation of a scalar
1383    // value cannot be decomposed at all.
1384    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1385
1386    // Do not promote [0 x %struct].
1387    if (AllocaSize == 0) continue;
1388
1389    // Do not promote any struct whose size is too big.
1390    if (AllocaSize > SRThreshold) continue;
1391
1392    // If the alloca looks like a good candidate for scalar replacement, and if
1393    // all its users can be transformed, then split up the aggregate into its
1394    // separate elements.
1395    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1396      DoScalarReplacement(AI, WorkList);
1397      Changed = true;
1398      continue;
1399    }
1400
1401    // If we can turn this aggregate value (potentially with casts) into a
1402    // simple scalar value that can be mem2reg'd into a register value.
1403    // IsNotTrivial tracks whether this is something that mem2reg could have
1404    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1405    // that we can't just check based on the type: the alloca may be of an i32
1406    // but that has pointer arithmetic to set byte 3 of it or something.
1407    if (AllocaInst *NewAI =
1408          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1409      NewAI->takeName(AI);
1410      AI->eraseFromParent();
1411      ++NumConverted;
1412      Changed = true;
1413      continue;
1414    }
1415
1416    // Otherwise, couldn't process this alloca.
1417  }
1418
1419  return Changed;
1420}
1421
1422/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1423/// predicate, do SROA now.
1424void SROA::DoScalarReplacement(AllocaInst *AI,
1425                               std::vector<AllocaInst*> &WorkList) {
1426  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1427  SmallVector<AllocaInst*, 32> ElementAllocas;
1428  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1429    ElementAllocas.reserve(ST->getNumContainedTypes());
1430    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1431      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1432                                      AI->getAlignment(),
1433                                      AI->getName() + "." + Twine(i), AI);
1434      ElementAllocas.push_back(NA);
1435      WorkList.push_back(NA);  // Add to worklist for recursive processing
1436    }
1437  } else {
1438    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1439    ElementAllocas.reserve(AT->getNumElements());
1440    const Type *ElTy = AT->getElementType();
1441    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1442      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1443                                      AI->getName() + "." + Twine(i), AI);
1444      ElementAllocas.push_back(NA);
1445      WorkList.push_back(NA);  // Add to worklist for recursive processing
1446    }
1447  }
1448
1449  // Now that we have created the new alloca instructions, rewrite all the
1450  // uses of the old alloca.
1451  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1452
1453  // Now erase any instructions that were made dead while rewriting the alloca.
1454  DeleteDeadInstructions();
1455  AI->eraseFromParent();
1456
1457  ++NumReplaced;
1458}
1459
1460/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1461/// recursively including all their operands that become trivially dead.
1462void SROA::DeleteDeadInstructions() {
1463  while (!DeadInsts.empty()) {
1464    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1465
1466    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1467      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1468        // Zero out the operand and see if it becomes trivially dead.
1469        // (But, don't add allocas to the dead instruction list -- they are
1470        // already on the worklist and will be deleted separately.)
1471        *OI = 0;
1472        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1473          DeadInsts.push_back(U);
1474      }
1475
1476    I->eraseFromParent();
1477  }
1478}
1479
1480/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1481/// performing scalar replacement of alloca AI.  The results are flagged in
1482/// the Info parameter.  Offset indicates the position within AI that is
1483/// referenced by this instruction.
1484void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1485                               AllocaInfo &Info) {
1486  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1487    Instruction *User = cast<Instruction>(*UI);
1488
1489    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1490      isSafeForScalarRepl(BC, Offset, Info);
1491    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1492      uint64_t GEPOffset = Offset;
1493      isSafeGEP(GEPI, GEPOffset, Info);
1494      if (!Info.isUnsafe)
1495        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1496    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1497      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1498      if (Length == 0)
1499        return MarkUnsafe(Info, User);
1500      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1501                      UI.getOperandNo() == 0, Info, MI,
1502                      true /*AllowWholeAccess*/);
1503    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1504      if (LI->isVolatile())
1505        return MarkUnsafe(Info, User);
1506      const Type *LIType = LI->getType();
1507      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1508                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1509      Info.hasALoadOrStore = true;
1510
1511    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1512      // Store is ok if storing INTO the pointer, not storing the pointer
1513      if (SI->isVolatile() || SI->getOperand(0) == I)
1514        return MarkUnsafe(Info, User);
1515
1516      const Type *SIType = SI->getOperand(0)->getType();
1517      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1518                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1519      Info.hasALoadOrStore = true;
1520    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1521      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1522    } else {
1523      return MarkUnsafe(Info, User);
1524    }
1525    if (Info.isUnsafe) return;
1526  }
1527}
1528
1529
1530/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1531/// derived from the alloca, we can often still split the alloca into elements.
1532/// This is useful if we have a large alloca where one element is phi'd
1533/// together somewhere: we can SRoA and promote all the other elements even if
1534/// we end up not being able to promote this one.
1535///
1536/// All we require is that the uses of the PHI do not index into other parts of
1537/// the alloca.  The most important use case for this is single load and stores
1538/// that are PHI'd together, which can happen due to code sinking.
1539void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1540                                           AllocaInfo &Info) {
1541  // If we've already checked this PHI, don't do it again.
1542  if (PHINode *PN = dyn_cast<PHINode>(I))
1543    if (!Info.CheckedPHIs.insert(PN))
1544      return;
1545
1546  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1547    Instruction *User = cast<Instruction>(*UI);
1548
1549    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1550      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1551    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1552      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1553      // but would have to prove that we're staying inside of an element being
1554      // promoted.
1555      if (!GEPI->hasAllZeroIndices())
1556        return MarkUnsafe(Info, User);
1557      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1558    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1559      if (LI->isVolatile())
1560        return MarkUnsafe(Info, User);
1561      const Type *LIType = LI->getType();
1562      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1563                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1564      Info.hasALoadOrStore = true;
1565
1566    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1567      // Store is ok if storing INTO the pointer, not storing the pointer
1568      if (SI->isVolatile() || SI->getOperand(0) == I)
1569        return MarkUnsafe(Info, User);
1570
1571      const Type *SIType = SI->getOperand(0)->getType();
1572      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1573                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1574      Info.hasALoadOrStore = true;
1575    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1576      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1577    } else {
1578      return MarkUnsafe(Info, User);
1579    }
1580    if (Info.isUnsafe) return;
1581  }
1582}
1583
1584/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1585/// replacement.  It is safe when all the indices are constant, in-bounds
1586/// references, and when the resulting offset corresponds to an element within
1587/// the alloca type.  The results are flagged in the Info parameter.  Upon
1588/// return, Offset is adjusted as specified by the GEP indices.
1589void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1590                     uint64_t &Offset, AllocaInfo &Info) {
1591  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1592  if (GEPIt == E)
1593    return;
1594
1595  // Walk through the GEP type indices, checking the types that this indexes
1596  // into.
1597  for (; GEPIt != E; ++GEPIt) {
1598    // Ignore struct elements, no extra checking needed for these.
1599    if ((*GEPIt)->isStructTy())
1600      continue;
1601
1602    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1603    if (!IdxVal)
1604      return MarkUnsafe(Info, GEPI);
1605  }
1606
1607  // Compute the offset due to this GEP and check if the alloca has a
1608  // component element at that offset.
1609  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1610  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1611                                 &Indices[0], Indices.size());
1612  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1613    MarkUnsafe(Info, GEPI);
1614}
1615
1616/// isHomogeneousAggregate - Check if type T is a struct or array containing
1617/// elements of the same type (which is always true for arrays).  If so,
1618/// return true with NumElts and EltTy set to the number of elements and the
1619/// element type, respectively.
1620static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1621                                   const Type *&EltTy) {
1622  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1623    NumElts = AT->getNumElements();
1624    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1625    return true;
1626  }
1627  if (const StructType *ST = dyn_cast<StructType>(T)) {
1628    NumElts = ST->getNumContainedTypes();
1629    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1630    for (unsigned n = 1; n < NumElts; ++n) {
1631      if (ST->getContainedType(n) != EltTy)
1632        return false;
1633    }
1634    return true;
1635  }
1636  return false;
1637}
1638
1639/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1640/// "homogeneous" aggregates with the same element type and number of elements.
1641static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1642  if (T1 == T2)
1643    return true;
1644
1645  unsigned NumElts1, NumElts2;
1646  const Type *EltTy1, *EltTy2;
1647  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1648      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1649      NumElts1 == NumElts2 &&
1650      EltTy1 == EltTy2)
1651    return true;
1652
1653  return false;
1654}
1655
1656/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1657/// alloca or has an offset and size that corresponds to a component element
1658/// within it.  The offset checked here may have been formed from a GEP with a
1659/// pointer bitcasted to a different type.
1660///
1661/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1662/// unit.  If false, it only allows accesses known to be in a single element.
1663void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1664                           const Type *MemOpType, bool isStore,
1665                           AllocaInfo &Info, Instruction *TheAccess,
1666                           bool AllowWholeAccess) {
1667  // Check if this is a load/store of the entire alloca.
1668  if (Offset == 0 && AllowWholeAccess &&
1669      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1670    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1671    // loads/stores (which are essentially the same as the MemIntrinsics with
1672    // regard to copying padding between elements).  But, if an alloca is
1673    // flagged as both a source and destination of such operations, we'll need
1674    // to check later for padding between elements.
1675    if (!MemOpType || MemOpType->isIntegerTy()) {
1676      if (isStore)
1677        Info.isMemCpyDst = true;
1678      else
1679        Info.isMemCpySrc = true;
1680      return;
1681    }
1682    // This is also safe for references using a type that is compatible with
1683    // the type of the alloca, so that loads/stores can be rewritten using
1684    // insertvalue/extractvalue.
1685    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1686      Info.hasSubelementAccess = true;
1687      return;
1688    }
1689  }
1690  // Check if the offset/size correspond to a component within the alloca type.
1691  const Type *T = Info.AI->getAllocatedType();
1692  if (TypeHasComponent(T, Offset, MemSize)) {
1693    Info.hasSubelementAccess = true;
1694    return;
1695  }
1696
1697  return MarkUnsafe(Info, TheAccess);
1698}
1699
1700/// TypeHasComponent - Return true if T has a component type with the
1701/// specified offset and size.  If Size is zero, do not check the size.
1702bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1703  const Type *EltTy;
1704  uint64_t EltSize;
1705  if (const StructType *ST = dyn_cast<StructType>(T)) {
1706    const StructLayout *Layout = TD->getStructLayout(ST);
1707    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1708    EltTy = ST->getContainedType(EltIdx);
1709    EltSize = TD->getTypeAllocSize(EltTy);
1710    Offset -= Layout->getElementOffset(EltIdx);
1711  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1712    EltTy = AT->getElementType();
1713    EltSize = TD->getTypeAllocSize(EltTy);
1714    if (Offset >= AT->getNumElements() * EltSize)
1715      return false;
1716    Offset %= EltSize;
1717  } else {
1718    return false;
1719  }
1720  if (Offset == 0 && (Size == 0 || EltSize == Size))
1721    return true;
1722  // Check if the component spans multiple elements.
1723  if (Offset + Size > EltSize)
1724    return false;
1725  return TypeHasComponent(EltTy, Offset, Size);
1726}
1727
1728/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1729/// the instruction I, which references it, to use the separate elements.
1730/// Offset indicates the position within AI that is referenced by this
1731/// instruction.
1732void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1733                                SmallVector<AllocaInst*, 32> &NewElts) {
1734  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1735    Use &TheUse = UI.getUse();
1736    Instruction *User = cast<Instruction>(*UI++);
1737
1738    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1739      RewriteBitCast(BC, AI, Offset, NewElts);
1740      continue;
1741    }
1742
1743    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1744      RewriteGEP(GEPI, AI, Offset, NewElts);
1745      continue;
1746    }
1747
1748    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1749      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1750      uint64_t MemSize = Length->getZExtValue();
1751      if (Offset == 0 &&
1752          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1753        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1754      // Otherwise the intrinsic can only touch a single element and the
1755      // address operand will be updated, so nothing else needs to be done.
1756      continue;
1757    }
1758
1759    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1760      const Type *LIType = LI->getType();
1761
1762      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1763        // Replace:
1764        //   %res = load { i32, i32 }* %alloc
1765        // with:
1766        //   %load.0 = load i32* %alloc.0
1767        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1768        //   %load.1 = load i32* %alloc.1
1769        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1770        // (Also works for arrays instead of structs)
1771        Value *Insert = UndefValue::get(LIType);
1772        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1773          Value *Load = new LoadInst(NewElts[i], "load", LI);
1774          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1775        }
1776        LI->replaceAllUsesWith(Insert);
1777        DeadInsts.push_back(LI);
1778      } else if (LIType->isIntegerTy() &&
1779                 TD->getTypeAllocSize(LIType) ==
1780                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1781        // If this is a load of the entire alloca to an integer, rewrite it.
1782        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1783      }
1784      continue;
1785    }
1786
1787    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1788      Value *Val = SI->getOperand(0);
1789      const Type *SIType = Val->getType();
1790      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1791        // Replace:
1792        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1793        // with:
1794        //   %val.0 = extractvalue { i32, i32 } %val, 0
1795        //   store i32 %val.0, i32* %alloc.0
1796        //   %val.1 = extractvalue { i32, i32 } %val, 1
1797        //   store i32 %val.1, i32* %alloc.1
1798        // (Also works for arrays instead of structs)
1799        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1800          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1801          new StoreInst(Extract, NewElts[i], SI);
1802        }
1803        DeadInsts.push_back(SI);
1804      } else if (SIType->isIntegerTy() &&
1805                 TD->getTypeAllocSize(SIType) ==
1806                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1807        // If this is a store of the entire alloca from an integer, rewrite it.
1808        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1809      }
1810      continue;
1811    }
1812
1813    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1814      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1815      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1816      // the new pointer.
1817      if (!isa<AllocaInst>(I)) continue;
1818
1819      assert(Offset == 0 && NewElts[0] &&
1820             "Direct alloca use should have a zero offset");
1821
1822      // If we have a use of the alloca, we know the derived uses will be
1823      // utilizing just the first element of the scalarized result.  Insert a
1824      // bitcast of the first alloca before the user as required.
1825      AllocaInst *NewAI = NewElts[0];
1826      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1827      NewAI->moveBefore(BCI);
1828      TheUse = BCI;
1829      continue;
1830    }
1831  }
1832}
1833
1834/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1835/// and recursively continue updating all of its uses.
1836void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1837                          SmallVector<AllocaInst*, 32> &NewElts) {
1838  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1839  if (BC->getOperand(0) != AI)
1840    return;
1841
1842  // The bitcast references the original alloca.  Replace its uses with
1843  // references to the first new element alloca.
1844  Instruction *Val = NewElts[0];
1845  if (Val->getType() != BC->getDestTy()) {
1846    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1847    Val->takeName(BC);
1848  }
1849  BC->replaceAllUsesWith(Val);
1850  DeadInsts.push_back(BC);
1851}
1852
1853/// FindElementAndOffset - Return the index of the element containing Offset
1854/// within the specified type, which must be either a struct or an array.
1855/// Sets T to the type of the element and Offset to the offset within that
1856/// element.  IdxTy is set to the type of the index result to be used in a
1857/// GEP instruction.
1858uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1859                                    const Type *&IdxTy) {
1860  uint64_t Idx = 0;
1861  if (const StructType *ST = dyn_cast<StructType>(T)) {
1862    const StructLayout *Layout = TD->getStructLayout(ST);
1863    Idx = Layout->getElementContainingOffset(Offset);
1864    T = ST->getContainedType(Idx);
1865    Offset -= Layout->getElementOffset(Idx);
1866    IdxTy = Type::getInt32Ty(T->getContext());
1867    return Idx;
1868  }
1869  const ArrayType *AT = cast<ArrayType>(T);
1870  T = AT->getElementType();
1871  uint64_t EltSize = TD->getTypeAllocSize(T);
1872  Idx = Offset / EltSize;
1873  Offset -= Idx * EltSize;
1874  IdxTy = Type::getInt64Ty(T->getContext());
1875  return Idx;
1876}
1877
1878/// RewriteGEP - Check if this GEP instruction moves the pointer across
1879/// elements of the alloca that are being split apart, and if so, rewrite
1880/// the GEP to be relative to the new element.
1881void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1882                      SmallVector<AllocaInst*, 32> &NewElts) {
1883  uint64_t OldOffset = Offset;
1884  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1885  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1886                                 &Indices[0], Indices.size());
1887
1888  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1889
1890  const Type *T = AI->getAllocatedType();
1891  const Type *IdxTy;
1892  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1893  if (GEPI->getOperand(0) == AI)
1894    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1895
1896  T = AI->getAllocatedType();
1897  uint64_t EltOffset = Offset;
1898  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1899
1900  // If this GEP does not move the pointer across elements of the alloca
1901  // being split, then it does not needs to be rewritten.
1902  if (Idx == OldIdx)
1903    return;
1904
1905  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1906  SmallVector<Value*, 8> NewArgs;
1907  NewArgs.push_back(Constant::getNullValue(i32Ty));
1908  while (EltOffset != 0) {
1909    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1910    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1911  }
1912  Instruction *Val = NewElts[Idx];
1913  if (NewArgs.size() > 1) {
1914    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1915                                            NewArgs.end(), "", GEPI);
1916    Val->takeName(GEPI);
1917  }
1918  if (Val->getType() != GEPI->getType())
1919    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1920  GEPI->replaceAllUsesWith(Val);
1921  DeadInsts.push_back(GEPI);
1922}
1923
1924/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1925/// Rewrite it to copy or set the elements of the scalarized memory.
1926void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1927                                        AllocaInst *AI,
1928                                        SmallVector<AllocaInst*, 32> &NewElts) {
1929  // If this is a memcpy/memmove, construct the other pointer as the
1930  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1931  // that doesn't have anything to do with the alloca that we are promoting. For
1932  // memset, this Value* stays null.
1933  Value *OtherPtr = 0;
1934  unsigned MemAlignment = MI->getAlignment();
1935  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1936    if (Inst == MTI->getRawDest())
1937      OtherPtr = MTI->getRawSource();
1938    else {
1939      assert(Inst == MTI->getRawSource());
1940      OtherPtr = MTI->getRawDest();
1941    }
1942  }
1943
1944  // If there is an other pointer, we want to convert it to the same pointer
1945  // type as AI has, so we can GEP through it safely.
1946  if (OtherPtr) {
1947    unsigned AddrSpace =
1948      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1949
1950    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
1951    // optimization, but it's also required to detect the corner case where
1952    // both pointer operands are referencing the same memory, and where
1953    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
1954    // function is only called for mem intrinsics that access the whole
1955    // aggregate, so non-zero GEPs are not an issue here.)
1956    OtherPtr = OtherPtr->stripPointerCasts();
1957
1958    // Copying the alloca to itself is a no-op: just delete it.
1959    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1960      // This code will run twice for a no-op memcpy -- once for each operand.
1961      // Put only one reference to MI on the DeadInsts list.
1962      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1963             E = DeadInsts.end(); I != E; ++I)
1964        if (*I == MI) return;
1965      DeadInsts.push_back(MI);
1966      return;
1967    }
1968
1969    // If the pointer is not the right type, insert a bitcast to the right
1970    // type.
1971    const Type *NewTy =
1972      PointerType::get(AI->getType()->getElementType(), AddrSpace);
1973
1974    if (OtherPtr->getType() != NewTy)
1975      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1976  }
1977
1978  // Process each element of the aggregate.
1979  bool SROADest = MI->getRawDest() == Inst;
1980
1981  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1982
1983  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1984    // If this is a memcpy/memmove, emit a GEP of the other element address.
1985    Value *OtherElt = 0;
1986    unsigned OtherEltAlign = MemAlignment;
1987
1988    if (OtherPtr) {
1989      Value *Idx[2] = { Zero,
1990                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1991      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1992                                              OtherPtr->getName()+"."+Twine(i),
1993                                                   MI);
1994      uint64_t EltOffset;
1995      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1996      const Type *OtherTy = OtherPtrTy->getElementType();
1997      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1998        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1999      } else {
2000        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2001        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2002      }
2003
2004      // The alignment of the other pointer is the guaranteed alignment of the
2005      // element, which is affected by both the known alignment of the whole
2006      // mem intrinsic and the alignment of the element.  If the alignment of
2007      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2008      // known alignment is just 4 bytes.
2009      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2010    }
2011
2012    Value *EltPtr = NewElts[i];
2013    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2014
2015    // If we got down to a scalar, insert a load or store as appropriate.
2016    if (EltTy->isSingleValueType()) {
2017      if (isa<MemTransferInst>(MI)) {
2018        if (SROADest) {
2019          // From Other to Alloca.
2020          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2021          new StoreInst(Elt, EltPtr, MI);
2022        } else {
2023          // From Alloca to Other.
2024          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2025          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2026        }
2027        continue;
2028      }
2029      assert(isa<MemSetInst>(MI));
2030
2031      // If the stored element is zero (common case), just store a null
2032      // constant.
2033      Constant *StoreVal;
2034      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2035        if (CI->isZero()) {
2036          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2037        } else {
2038          // If EltTy is a vector type, get the element type.
2039          const Type *ValTy = EltTy->getScalarType();
2040
2041          // Construct an integer with the right value.
2042          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2043          APInt OneVal(EltSize, CI->getZExtValue());
2044          APInt TotalVal(OneVal);
2045          // Set each byte.
2046          for (unsigned i = 0; 8*i < EltSize; ++i) {
2047            TotalVal = TotalVal.shl(8);
2048            TotalVal |= OneVal;
2049          }
2050
2051          // Convert the integer value to the appropriate type.
2052          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2053          if (ValTy->isPointerTy())
2054            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2055          else if (ValTy->isFloatingPointTy())
2056            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2057          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2058
2059          // If the requested value was a vector constant, create it.
2060          if (EltTy != ValTy) {
2061            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2062            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2063            StoreVal = ConstantVector::get(Elts);
2064          }
2065        }
2066        new StoreInst(StoreVal, EltPtr, MI);
2067        continue;
2068      }
2069      // Otherwise, if we're storing a byte variable, use a memset call for
2070      // this element.
2071    }
2072
2073    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2074
2075    IRBuilder<> Builder(MI);
2076
2077    // Finally, insert the meminst for this element.
2078    if (isa<MemSetInst>(MI)) {
2079      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2080                           MI->isVolatile());
2081    } else {
2082      assert(isa<MemTransferInst>(MI));
2083      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2084      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2085
2086      if (isa<MemCpyInst>(MI))
2087        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2088      else
2089        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2090    }
2091  }
2092  DeadInsts.push_back(MI);
2093}
2094
2095/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2096/// overwrites the entire allocation.  Extract out the pieces of the stored
2097/// integer and store them individually.
2098void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2099                                         SmallVector<AllocaInst*, 32> &NewElts){
2100  // Extract each element out of the integer according to its structure offset
2101  // and store the element value to the individual alloca.
2102  Value *SrcVal = SI->getOperand(0);
2103  const Type *AllocaEltTy = AI->getAllocatedType();
2104  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2105
2106  IRBuilder<> Builder(SI);
2107
2108  // Handle tail padding by extending the operand
2109  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2110    SrcVal = Builder.CreateZExt(SrcVal,
2111                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2112
2113  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2114               << '\n');
2115
2116  // There are two forms here: AI could be an array or struct.  Both cases
2117  // have different ways to compute the element offset.
2118  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2119    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2120
2121    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2122      // Get the number of bits to shift SrcVal to get the value.
2123      const Type *FieldTy = EltSTy->getElementType(i);
2124      uint64_t Shift = Layout->getElementOffsetInBits(i);
2125
2126      if (TD->isBigEndian())
2127        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2128
2129      Value *EltVal = SrcVal;
2130      if (Shift) {
2131        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2132        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2133      }
2134
2135      // Truncate down to an integer of the right size.
2136      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2137
2138      // Ignore zero sized fields like {}, they obviously contain no data.
2139      if (FieldSizeBits == 0) continue;
2140
2141      if (FieldSizeBits != AllocaSizeBits)
2142        EltVal = Builder.CreateTrunc(EltVal,
2143                             IntegerType::get(SI->getContext(), FieldSizeBits));
2144      Value *DestField = NewElts[i];
2145      if (EltVal->getType() == FieldTy) {
2146        // Storing to an integer field of this size, just do it.
2147      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2148        // Bitcast to the right element type (for fp/vector values).
2149        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2150      } else {
2151        // Otherwise, bitcast the dest pointer (for aggregates).
2152        DestField = Builder.CreateBitCast(DestField,
2153                                     PointerType::getUnqual(EltVal->getType()));
2154      }
2155      new StoreInst(EltVal, DestField, SI);
2156    }
2157
2158  } else {
2159    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2160    const Type *ArrayEltTy = ATy->getElementType();
2161    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2162    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2163
2164    uint64_t Shift;
2165
2166    if (TD->isBigEndian())
2167      Shift = AllocaSizeBits-ElementOffset;
2168    else
2169      Shift = 0;
2170
2171    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2172      // Ignore zero sized fields like {}, they obviously contain no data.
2173      if (ElementSizeBits == 0) continue;
2174
2175      Value *EltVal = SrcVal;
2176      if (Shift) {
2177        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2178        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2179      }
2180
2181      // Truncate down to an integer of the right size.
2182      if (ElementSizeBits != AllocaSizeBits)
2183        EltVal = Builder.CreateTrunc(EltVal,
2184                                     IntegerType::get(SI->getContext(),
2185                                                      ElementSizeBits));
2186      Value *DestField = NewElts[i];
2187      if (EltVal->getType() == ArrayEltTy) {
2188        // Storing to an integer field of this size, just do it.
2189      } else if (ArrayEltTy->isFloatingPointTy() ||
2190                 ArrayEltTy->isVectorTy()) {
2191        // Bitcast to the right element type (for fp/vector values).
2192        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2193      } else {
2194        // Otherwise, bitcast the dest pointer (for aggregates).
2195        DestField = Builder.CreateBitCast(DestField,
2196                                     PointerType::getUnqual(EltVal->getType()));
2197      }
2198      new StoreInst(EltVal, DestField, SI);
2199
2200      if (TD->isBigEndian())
2201        Shift -= ElementOffset;
2202      else
2203        Shift += ElementOffset;
2204    }
2205  }
2206
2207  DeadInsts.push_back(SI);
2208}
2209
2210/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2211/// an integer.  Load the individual pieces to form the aggregate value.
2212void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2213                                        SmallVector<AllocaInst*, 32> &NewElts) {
2214  // Extract each element out of the NewElts according to its structure offset
2215  // and form the result value.
2216  const Type *AllocaEltTy = AI->getAllocatedType();
2217  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2218
2219  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2220               << '\n');
2221
2222  // There are two forms here: AI could be an array or struct.  Both cases
2223  // have different ways to compute the element offset.
2224  const StructLayout *Layout = 0;
2225  uint64_t ArrayEltBitOffset = 0;
2226  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2227    Layout = TD->getStructLayout(EltSTy);
2228  } else {
2229    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2230    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2231  }
2232
2233  Value *ResultVal =
2234    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2235
2236  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2237    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2238    // the pointer to an integer of the same size before doing the load.
2239    Value *SrcField = NewElts[i];
2240    const Type *FieldTy =
2241      cast<PointerType>(SrcField->getType())->getElementType();
2242    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2243
2244    // Ignore zero sized fields like {}, they obviously contain no data.
2245    if (FieldSizeBits == 0) continue;
2246
2247    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2248                                                     FieldSizeBits);
2249    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2250        !FieldTy->isVectorTy())
2251      SrcField = new BitCastInst(SrcField,
2252                                 PointerType::getUnqual(FieldIntTy),
2253                                 "", LI);
2254    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2255
2256    // If SrcField is a fp or vector of the right size but that isn't an
2257    // integer type, bitcast to an integer so we can shift it.
2258    if (SrcField->getType() != FieldIntTy)
2259      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2260
2261    // Zero extend the field to be the same size as the final alloca so that
2262    // we can shift and insert it.
2263    if (SrcField->getType() != ResultVal->getType())
2264      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2265
2266    // Determine the number of bits to shift SrcField.
2267    uint64_t Shift;
2268    if (Layout) // Struct case.
2269      Shift = Layout->getElementOffsetInBits(i);
2270    else  // Array case.
2271      Shift = i*ArrayEltBitOffset;
2272
2273    if (TD->isBigEndian())
2274      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2275
2276    if (Shift) {
2277      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2278      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2279    }
2280
2281    // Don't create an 'or x, 0' on the first iteration.
2282    if (!isa<Constant>(ResultVal) ||
2283        !cast<Constant>(ResultVal)->isNullValue())
2284      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2285    else
2286      ResultVal = SrcField;
2287  }
2288
2289  // Handle tail padding by truncating the result
2290  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2291    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2292
2293  LI->replaceAllUsesWith(ResultVal);
2294  DeadInsts.push_back(LI);
2295}
2296
2297/// HasPadding - Return true if the specified type has any structure or
2298/// alignment padding in between the elements that would be split apart
2299/// by SROA; return false otherwise.
2300static bool HasPadding(const Type *Ty, const TargetData &TD) {
2301  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2302    Ty = ATy->getElementType();
2303    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2304  }
2305
2306  // SROA currently handles only Arrays and Structs.
2307  const StructType *STy = cast<StructType>(Ty);
2308  const StructLayout *SL = TD.getStructLayout(STy);
2309  unsigned PrevFieldBitOffset = 0;
2310  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2311    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2312
2313    // Check to see if there is any padding between this element and the
2314    // previous one.
2315    if (i) {
2316      unsigned PrevFieldEnd =
2317        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2318      if (PrevFieldEnd < FieldBitOffset)
2319        return true;
2320    }
2321    PrevFieldBitOffset = FieldBitOffset;
2322  }
2323  // Check for tail padding.
2324  if (unsigned EltCount = STy->getNumElements()) {
2325    unsigned PrevFieldEnd = PrevFieldBitOffset +
2326      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2327    if (PrevFieldEnd < SL->getSizeInBits())
2328      return true;
2329  }
2330  return false;
2331}
2332
2333/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2334/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2335/// or 1 if safe after canonicalization has been performed.
2336bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2337  // Loop over the use list of the alloca.  We can only transform it if all of
2338  // the users are safe to transform.
2339  AllocaInfo Info(AI);
2340
2341  isSafeForScalarRepl(AI, 0, Info);
2342  if (Info.isUnsafe) {
2343    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2344    return false;
2345  }
2346
2347  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2348  // source and destination, we have to be careful.  In particular, the memcpy
2349  // could be moving around elements that live in structure padding of the LLVM
2350  // types, but may actually be used.  In these cases, we refuse to promote the
2351  // struct.
2352  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2353      HasPadding(AI->getAllocatedType(), *TD))
2354    return false;
2355
2356  // If the alloca never has an access to just *part* of it, but is accessed
2357  // via loads and stores, then we should use ConvertToScalarInfo to promote
2358  // the alloca instead of promoting each piece at a time and inserting fission
2359  // and fusion code.
2360  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2361    // If the struct/array just has one element, use basic SRoA.
2362    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2363      if (ST->getNumElements() > 1) return false;
2364    } else {
2365      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2366        return false;
2367    }
2368  }
2369
2370  return true;
2371}
2372
2373
2374
2375/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2376/// some part of a constant global variable.  This intentionally only accepts
2377/// constant expressions because we don't can't rewrite arbitrary instructions.
2378static bool PointsToConstantGlobal(Value *V) {
2379  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2380    return GV->isConstant();
2381  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2382    if (CE->getOpcode() == Instruction::BitCast ||
2383        CE->getOpcode() == Instruction::GetElementPtr)
2384      return PointsToConstantGlobal(CE->getOperand(0));
2385  return false;
2386}
2387
2388/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2389/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2390/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2391/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2392/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2393/// the alloca, and if the source pointer is a pointer to a constant global, we
2394/// can optimize this.
2395static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2396                                           bool isOffset) {
2397  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2398    User *U = cast<Instruction>(*UI);
2399
2400    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2401      // Ignore non-volatile loads, they are always ok.
2402      if (LI->isVolatile()) return false;
2403      continue;
2404    }
2405
2406    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2407      // If uses of the bitcast are ok, we are ok.
2408      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2409        return false;
2410      continue;
2411    }
2412    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2413      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2414      // doesn't, it does.
2415      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2416                                         isOffset || !GEP->hasAllZeroIndices()))
2417        return false;
2418      continue;
2419    }
2420
2421    if (CallSite CS = U) {
2422      // If this is a readonly/readnone call site, then we know it is just a
2423      // load and we can ignore it.
2424      if (CS.onlyReadsMemory())
2425        continue;
2426
2427      // If this is the function being called then we treat it like a load and
2428      // ignore it.
2429      if (CS.isCallee(UI))
2430        continue;
2431
2432      // If this is being passed as a byval argument, the caller is making a
2433      // copy, so it is only a read of the alloca.
2434      unsigned ArgNo = CS.getArgumentNo(UI);
2435      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2436        continue;
2437    }
2438
2439    // If this is isn't our memcpy/memmove, reject it as something we can't
2440    // handle.
2441    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2442    if (MI == 0)
2443      return false;
2444
2445    // If the transfer is using the alloca as a source of the transfer, then
2446    // ignore it since it is a load (unless the transfer is volatile).
2447    if (UI.getOperandNo() == 1) {
2448      if (MI->isVolatile()) return false;
2449      continue;
2450    }
2451
2452    // If we already have seen a copy, reject the second one.
2453    if (TheCopy) return false;
2454
2455    // If the pointer has been offset from the start of the alloca, we can't
2456    // safely handle this.
2457    if (isOffset) return false;
2458
2459    // If the memintrinsic isn't using the alloca as the dest, reject it.
2460    if (UI.getOperandNo() != 0) return false;
2461
2462    // If the source of the memcpy/move is not a constant global, reject it.
2463    if (!PointsToConstantGlobal(MI->getSource()))
2464      return false;
2465
2466    // Otherwise, the transform is safe.  Remember the copy instruction.
2467    TheCopy = MI;
2468  }
2469  return true;
2470}
2471
2472/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2473/// modified by a copy from a constant global.  If we can prove this, we can
2474/// replace any uses of the alloca with uses of the global directly.
2475MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2476  MemTransferInst *TheCopy = 0;
2477  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2478    return TheCopy;
2479  return 0;
2480}
2481