ScalarReplAggregates.cpp revision 9fc5cdf77c812aaa80419036de27576d45894d0d
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DominanceFrontier.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Transforms/Utils/PromoteMemToReg.h"
37#include "llvm/Transforms/Utils/Local.h"
38#include "llvm/Support/CallSite.h"
39#include "llvm/Support/Debug.h"
40#include "llvm/Support/ErrorHandling.h"
41#include "llvm/Support/GetElementPtrTypeIterator.h"
42#include "llvm/Support/IRBuilder.h"
43#include "llvm/Support/MathExtras.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/ADT/SmallVector.h"
46#include "llvm/ADT/Statistic.h"
47using namespace llvm;
48
49STATISTIC(NumReplaced,  "Number of allocas broken up");
50STATISTIC(NumPromoted,  "Number of allocas promoted");
51STATISTIC(NumConverted, "Number of aggregates converted to scalar");
52STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
53
54namespace {
55  struct SROA : public FunctionPass {
56    static char ID; // Pass identification, replacement for typeid
57    explicit SROA(signed T = -1) : FunctionPass(ID) {
58      initializeSROAPass(*PassRegistry::getPassRegistry());
59      if (T == -1)
60        SRThreshold = 128;
61      else
62        SRThreshold = T;
63    }
64
65    bool runOnFunction(Function &F);
66
67    bool performScalarRepl(Function &F);
68    bool performPromotion(Function &F);
69
70    // getAnalysisUsage - This pass does not require any passes, but we know it
71    // will not alter the CFG, so say so.
72    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
73      AU.addRequired<DominatorTree>();
74      AU.addRequired<DominanceFrontier>();
75      AU.setPreservesCFG();
76    }
77
78  private:
79    TargetData *TD;
80
81    /// DeadInsts - Keep track of instructions we have made dead, so that
82    /// we can remove them after we are done working.
83    SmallVector<Value*, 32> DeadInsts;
84
85    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
86    /// information about the uses.  All these fields are initialized to false
87    /// and set to true when something is learned.
88    struct AllocaInfo {
89      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
90      bool isUnsafe : 1;
91
92      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
93      bool isMemCpySrc : 1;
94
95      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
96      bool isMemCpyDst : 1;
97
98      AllocaInfo()
99        : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false) {}
100    };
101
102    unsigned SRThreshold;
103
104    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
105
106    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
107
108    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
109                             AllocaInfo &Info);
110    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
111                   AllocaInfo &Info);
112    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
113                         const Type *MemOpType, bool isStore, AllocaInfo &Info);
114    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
115    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
116                                  const Type *&IdxTy);
117
118    void DoScalarReplacement(AllocaInst *AI,
119                             std::vector<AllocaInst*> &WorkList);
120    void DeleteDeadInstructions();
121
122    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
123                              SmallVector<AllocaInst*, 32> &NewElts);
124    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
125                        SmallVector<AllocaInst*, 32> &NewElts);
126    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
127                    SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
129                                      AllocaInst *AI,
130                                      SmallVector<AllocaInst*, 32> &NewElts);
131    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
132                                       SmallVector<AllocaInst*, 32> &NewElts);
133    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
134                                      SmallVector<AllocaInst*, 32> &NewElts);
135
136    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
137  };
138}
139
140char SROA::ID = 0;
141INITIALIZE_PASS_BEGIN(SROA, "scalarrepl",
142                "Scalar Replacement of Aggregates", false, false)
143INITIALIZE_PASS_DEPENDENCY(DominatorTree)
144INITIALIZE_PASS_DEPENDENCY(DominanceFrontier)
145INITIALIZE_PASS_END(SROA, "scalarrepl",
146                "Scalar Replacement of Aggregates", false, false)
147
148// Public interface to the ScalarReplAggregates pass
149FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
150  return new SROA(Threshold);
151}
152
153
154//===----------------------------------------------------------------------===//
155// Convert To Scalar Optimization.
156//===----------------------------------------------------------------------===//
157
158namespace {
159/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
160/// optimization, which scans the uses of an alloca and determines if it can
161/// rewrite it in terms of a single new alloca that can be mem2reg'd.
162class ConvertToScalarInfo {
163  /// AllocaSize - The size of the alloca being considered.
164  unsigned AllocaSize;
165  const TargetData &TD;
166
167  /// IsNotTrivial - This is set to true if there is some access to the object
168  /// which means that mem2reg can't promote it.
169  bool IsNotTrivial;
170
171  /// VectorTy - This tracks the type that we should promote the vector to if
172  /// it is possible to turn it into a vector.  This starts out null, and if it
173  /// isn't possible to turn into a vector type, it gets set to VoidTy.
174  const Type *VectorTy;
175
176  /// HadAVector - True if there is at least one vector access to the alloca.
177  /// We don't want to turn random arrays into vectors and use vector element
178  /// insert/extract, but if there are element accesses to something that is
179  /// also declared as a vector, we do want to promote to a vector.
180  bool HadAVector;
181
182public:
183  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
184    : AllocaSize(Size), TD(td) {
185    IsNotTrivial = false;
186    VectorTy = 0;
187    HadAVector = false;
188  }
189
190  AllocaInst *TryConvert(AllocaInst *AI);
191
192private:
193  bool CanConvertToScalar(Value *V, uint64_t Offset);
194  void MergeInType(const Type *In, uint64_t Offset);
195  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
196
197  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
198                                    uint64_t Offset, IRBuilder<> &Builder);
199  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
200                                   uint64_t Offset, IRBuilder<> &Builder);
201};
202} // end anonymous namespace.
203
204
205/// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
206/// allowed to form.  We do this to avoid MMX types, which is a complete hack,
207/// but is required until the backend is fixed.
208static bool IsVerbotenVectorType(const VectorType *VTy, const Instruction *I) {
209  StringRef Triple(I->getParent()->getParent()->getParent()->getTargetTriple());
210  if (!Triple.startswith("i386") &&
211      !Triple.startswith("x86_64"))
212    return false;
213
214  // Reject all the MMX vector types.
215  switch (VTy->getNumElements()) {
216  default: return false;
217  case 1: return VTy->getElementType()->isIntegerTy(64);
218  case 2: return VTy->getElementType()->isIntegerTy(32);
219  case 4: return VTy->getElementType()->isIntegerTy(16);
220  case 8: return VTy->getElementType()->isIntegerTy(8);
221  }
222}
223
224
225/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
226/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
227/// alloca if possible or null if not.
228AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
229  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
230  // out.
231  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
232    return 0;
233
234  // If we were able to find a vector type that can handle this with
235  // insert/extract elements, and if there was at least one use that had
236  // a vector type, promote this to a vector.  We don't want to promote
237  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
238  // we just get a lot of insert/extracts.  If at least one vector is
239  // involved, then we probably really do have a union of vector/array.
240  const Type *NewTy;
241  if (VectorTy && VectorTy->isVectorTy() && HadAVector &&
242      !IsVerbotenVectorType(cast<VectorType>(VectorTy), AI)) {
243    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
244          << *VectorTy << '\n');
245    NewTy = VectorTy;  // Use the vector type.
246  } else {
247    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
248    // Create and insert the integer alloca.
249    NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
250  }
251  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
252  ConvertUsesToScalar(AI, NewAI, 0);
253  return NewAI;
254}
255
256/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
257/// so far at the offset specified by Offset (which is specified in bytes).
258///
259/// There are two cases we handle here:
260///   1) A union of vector types of the same size and potentially its elements.
261///      Here we turn element accesses into insert/extract element operations.
262///      This promotes a <4 x float> with a store of float to the third element
263///      into a <4 x float> that uses insert element.
264///   2) A fully general blob of memory, which we turn into some (potentially
265///      large) integer type with extract and insert operations where the loads
266///      and stores would mutate the memory.  We mark this by setting VectorTy
267///      to VoidTy.
268void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
269  // If we already decided to turn this into a blob of integer memory, there is
270  // nothing to be done.
271  if (VectorTy && VectorTy->isVoidTy())
272    return;
273
274  // If this could be contributing to a vector, analyze it.
275
276  // If the In type is a vector that is the same size as the alloca, see if it
277  // matches the existing VecTy.
278  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
279    // Remember if we saw a vector type.
280    HadAVector = true;
281
282    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
283      // If we're storing/loading a vector of the right size, allow it as a
284      // vector.  If this the first vector we see, remember the type so that
285      // we know the element size.  If this is a subsequent access, ignore it
286      // even if it is a differing type but the same size.  Worst case we can
287      // bitcast the resultant vectors.
288      if (VectorTy == 0)
289        VectorTy = VInTy;
290      return;
291    }
292  } else if (In->isFloatTy() || In->isDoubleTy() ||
293             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
294              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
295    // If we're accessing something that could be an element of a vector, see
296    // if the implied vector agrees with what we already have and if Offset is
297    // compatible with it.
298    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
299    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
300        (VectorTy == 0 ||
301         cast<VectorType>(VectorTy)->getElementType()
302               ->getPrimitiveSizeInBits()/8 == EltSize)) {
303      if (VectorTy == 0)
304        VectorTy = VectorType::get(In, AllocaSize/EltSize);
305      return;
306    }
307  }
308
309  // Otherwise, we have a case that we can't handle with an optimized vector
310  // form.  We can still turn this into a large integer.
311  VectorTy = Type::getVoidTy(In->getContext());
312}
313
314/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
315/// its accesses to a single vector type, return true and set VecTy to
316/// the new type.  If we could convert the alloca into a single promotable
317/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
318/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
319/// is the current offset from the base of the alloca being analyzed.
320///
321/// If we see at least one access to the value that is as a vector type, set the
322/// SawVec flag.
323bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
324  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
325    Instruction *User = cast<Instruction>(*UI);
326
327    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
328      // Don't break volatile loads.
329      if (LI->isVolatile())
330        return false;
331      // Don't touch MMX operations.
332      if (LI->getType()->isX86_MMXTy())
333        return false;
334      MergeInType(LI->getType(), Offset);
335      continue;
336    }
337
338    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
339      // Storing the pointer, not into the value?
340      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
341      // Don't touch MMX operations.
342      if (SI->getOperand(0)->getType()->isX86_MMXTy())
343        return false;
344      MergeInType(SI->getOperand(0)->getType(), Offset);
345      continue;
346    }
347
348    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
349      IsNotTrivial = true;  // Can't be mem2reg'd.
350      if (!CanConvertToScalar(BCI, Offset))
351        return false;
352      continue;
353    }
354
355    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
356      // If this is a GEP with a variable indices, we can't handle it.
357      if (!GEP->hasAllConstantIndices())
358        return false;
359
360      // Compute the offset that this GEP adds to the pointer.
361      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
362      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
363                                               &Indices[0], Indices.size());
364      // See if all uses can be converted.
365      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
366        return false;
367      IsNotTrivial = true;  // Can't be mem2reg'd.
368      continue;
369    }
370
371    // If this is a constant sized memset of a constant value (e.g. 0) we can
372    // handle it.
373    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
374      // Store of constant value and constant size.
375      if (!isa<ConstantInt>(MSI->getValue()) ||
376          !isa<ConstantInt>(MSI->getLength()))
377        return false;
378      IsNotTrivial = true;  // Can't be mem2reg'd.
379      continue;
380    }
381
382    // If this is a memcpy or memmove into or out of the whole allocation, we
383    // can handle it like a load or store of the scalar type.
384    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
385      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
386      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
387        return false;
388
389      IsNotTrivial = true;  // Can't be mem2reg'd.
390      continue;
391    }
392
393    // Otherwise, we cannot handle this!
394    return false;
395  }
396
397  return true;
398}
399
400/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
401/// directly.  This happens when we are converting an "integer union" to a
402/// single integer scalar, or when we are converting a "vector union" to a
403/// vector with insert/extractelement instructions.
404///
405/// Offset is an offset from the original alloca, in bits that need to be
406/// shifted to the right.  By the end of this, there should be no uses of Ptr.
407void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
408                                              uint64_t Offset) {
409  while (!Ptr->use_empty()) {
410    Instruction *User = cast<Instruction>(Ptr->use_back());
411
412    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
413      ConvertUsesToScalar(CI, NewAI, Offset);
414      CI->eraseFromParent();
415      continue;
416    }
417
418    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
419      // Compute the offset that this GEP adds to the pointer.
420      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
421      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
422                                               &Indices[0], Indices.size());
423      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
424      GEP->eraseFromParent();
425      continue;
426    }
427
428    IRBuilder<> Builder(User);
429
430    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
431      // The load is a bit extract from NewAI shifted right by Offset bits.
432      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
433      Value *NewLoadVal
434        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
435      LI->replaceAllUsesWith(NewLoadVal);
436      LI->eraseFromParent();
437      continue;
438    }
439
440    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
441      assert(SI->getOperand(0) != Ptr && "Consistency error!");
442      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
443      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
444                                             Builder);
445      Builder.CreateStore(New, NewAI);
446      SI->eraseFromParent();
447
448      // If the load we just inserted is now dead, then the inserted store
449      // overwrote the entire thing.
450      if (Old->use_empty())
451        Old->eraseFromParent();
452      continue;
453    }
454
455    // If this is a constant sized memset of a constant value (e.g. 0) we can
456    // transform it into a store of the expanded constant value.
457    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
458      assert(MSI->getRawDest() == Ptr && "Consistency error!");
459      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
460      if (NumBytes != 0) {
461        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
462
463        // Compute the value replicated the right number of times.
464        APInt APVal(NumBytes*8, Val);
465
466        // Splat the value if non-zero.
467        if (Val)
468          for (unsigned i = 1; i != NumBytes; ++i)
469            APVal |= APVal << 8;
470
471        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
472        Value *New = ConvertScalar_InsertValue(
473                                    ConstantInt::get(User->getContext(), APVal),
474                                               Old, Offset, Builder);
475        Builder.CreateStore(New, NewAI);
476
477        // If the load we just inserted is now dead, then the memset overwrote
478        // the entire thing.
479        if (Old->use_empty())
480          Old->eraseFromParent();
481      }
482      MSI->eraseFromParent();
483      continue;
484    }
485
486    // If this is a memcpy or memmove into or out of the whole allocation, we
487    // can handle it like a load or store of the scalar type.
488    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
489      assert(Offset == 0 && "must be store to start of alloca");
490
491      // If the source and destination are both to the same alloca, then this is
492      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
493      // as appropriate.
494      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, 0));
495
496      if (GetUnderlyingObject(MTI->getSource(), 0) != OrigAI) {
497        // Dest must be OrigAI, change this to be a load from the original
498        // pointer (bitcasted), then a store to our new alloca.
499        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
500        Value *SrcPtr = MTI->getSource();
501        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
502        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
503        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
504          AIPTy = PointerType::get(AIPTy->getElementType(),
505                                   SPTy->getAddressSpace());
506        }
507        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
508
509        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
510        SrcVal->setAlignment(MTI->getAlignment());
511        Builder.CreateStore(SrcVal, NewAI);
512      } else if (GetUnderlyingObject(MTI->getDest(), 0) != OrigAI) {
513        // Src must be OrigAI, change this to be a load from NewAI then a store
514        // through the original dest pointer (bitcasted).
515        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
516        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
517
518        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
519        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
520        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
521          AIPTy = PointerType::get(AIPTy->getElementType(),
522                                   DPTy->getAddressSpace());
523        }
524        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
525
526        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
527        NewStore->setAlignment(MTI->getAlignment());
528      } else {
529        // Noop transfer. Src == Dst
530      }
531
532      MTI->eraseFromParent();
533      continue;
534    }
535
536    llvm_unreachable("Unsupported operation!");
537  }
538}
539
540/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
541/// or vector value FromVal, extracting the bits from the offset specified by
542/// Offset.  This returns the value, which is of type ToType.
543///
544/// This happens when we are converting an "integer union" to a single
545/// integer scalar, or when we are converting a "vector union" to a vector with
546/// insert/extractelement instructions.
547///
548/// Offset is an offset from the original alloca, in bits that need to be
549/// shifted to the right.
550Value *ConvertToScalarInfo::
551ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
552                           uint64_t Offset, IRBuilder<> &Builder) {
553  // If the load is of the whole new alloca, no conversion is needed.
554  if (FromVal->getType() == ToType && Offset == 0)
555    return FromVal;
556
557  // If the result alloca is a vector type, this is either an element
558  // access or a bitcast to another vector type of the same size.
559  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
560    if (ToType->isVectorTy())
561      return Builder.CreateBitCast(FromVal, ToType, "tmp");
562
563    // Otherwise it must be an element access.
564    unsigned Elt = 0;
565    if (Offset) {
566      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
567      Elt = Offset/EltSize;
568      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
569    }
570    // Return the element extracted out of it.
571    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
572                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
573    if (V->getType() != ToType)
574      V = Builder.CreateBitCast(V, ToType, "tmp");
575    return V;
576  }
577
578  // If ToType is a first class aggregate, extract out each of the pieces and
579  // use insertvalue's to form the FCA.
580  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
581    const StructLayout &Layout = *TD.getStructLayout(ST);
582    Value *Res = UndefValue::get(ST);
583    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
584      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
585                                        Offset+Layout.getElementOffsetInBits(i),
586                                              Builder);
587      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
588    }
589    return Res;
590  }
591
592  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
593    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
594    Value *Res = UndefValue::get(AT);
595    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
596      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
597                                              Offset+i*EltSize, Builder);
598      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
599    }
600    return Res;
601  }
602
603  // Otherwise, this must be a union that was converted to an integer value.
604  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
605
606  // If this is a big-endian system and the load is narrower than the
607  // full alloca type, we need to do a shift to get the right bits.
608  int ShAmt = 0;
609  if (TD.isBigEndian()) {
610    // On big-endian machines, the lowest bit is stored at the bit offset
611    // from the pointer given by getTypeStoreSizeInBits.  This matters for
612    // integers with a bitwidth that is not a multiple of 8.
613    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
614            TD.getTypeStoreSizeInBits(ToType) - Offset;
615  } else {
616    ShAmt = Offset;
617  }
618
619  // Note: we support negative bitwidths (with shl) which are not defined.
620  // We do this to support (f.e.) loads off the end of a structure where
621  // only some bits are used.
622  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
623    FromVal = Builder.CreateLShr(FromVal,
624                                 ConstantInt::get(FromVal->getType(),
625                                                           ShAmt), "tmp");
626  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
627    FromVal = Builder.CreateShl(FromVal,
628                                ConstantInt::get(FromVal->getType(),
629                                                          -ShAmt), "tmp");
630
631  // Finally, unconditionally truncate the integer to the right width.
632  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
633  if (LIBitWidth < NTy->getBitWidth())
634    FromVal =
635      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
636                                                    LIBitWidth), "tmp");
637  else if (LIBitWidth > NTy->getBitWidth())
638    FromVal =
639       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
640                                                    LIBitWidth), "tmp");
641
642  // If the result is an integer, this is a trunc or bitcast.
643  if (ToType->isIntegerTy()) {
644    // Should be done.
645  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
646    // Just do a bitcast, we know the sizes match up.
647    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
648  } else {
649    // Otherwise must be a pointer.
650    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
651  }
652  assert(FromVal->getType() == ToType && "Didn't convert right?");
653  return FromVal;
654}
655
656/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
657/// or vector value "Old" at the offset specified by Offset.
658///
659/// This happens when we are converting an "integer union" to a
660/// single integer scalar, or when we are converting a "vector union" to a
661/// vector with insert/extractelement instructions.
662///
663/// Offset is an offset from the original alloca, in bits that need to be
664/// shifted to the right.
665Value *ConvertToScalarInfo::
666ConvertScalar_InsertValue(Value *SV, Value *Old,
667                          uint64_t Offset, IRBuilder<> &Builder) {
668  // Convert the stored type to the actual type, shift it left to insert
669  // then 'or' into place.
670  const Type *AllocaType = Old->getType();
671  LLVMContext &Context = Old->getContext();
672
673  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
674    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
675    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
676
677    // Changing the whole vector with memset or with an access of a different
678    // vector type?
679    if (ValSize == VecSize)
680      return Builder.CreateBitCast(SV, AllocaType, "tmp");
681
682    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
683
684    // Must be an element insertion.
685    unsigned Elt = Offset/EltSize;
686
687    if (SV->getType() != VTy->getElementType())
688      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
689
690    SV = Builder.CreateInsertElement(Old, SV,
691                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
692                                     "tmp");
693    return SV;
694  }
695
696  // If SV is a first-class aggregate value, insert each value recursively.
697  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
698    const StructLayout &Layout = *TD.getStructLayout(ST);
699    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
700      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
701      Old = ConvertScalar_InsertValue(Elt, Old,
702                                      Offset+Layout.getElementOffsetInBits(i),
703                                      Builder);
704    }
705    return Old;
706  }
707
708  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
709    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
710    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
711      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
712      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
713    }
714    return Old;
715  }
716
717  // If SV is a float, convert it to the appropriate integer type.
718  // If it is a pointer, do the same.
719  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
720  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
721  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
722  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
723  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
724    SV = Builder.CreateBitCast(SV,
725                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
726  else if (SV->getType()->isPointerTy())
727    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
728
729  // Zero extend or truncate the value if needed.
730  if (SV->getType() != AllocaType) {
731    if (SV->getType()->getPrimitiveSizeInBits() <
732             AllocaType->getPrimitiveSizeInBits())
733      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
734    else {
735      // Truncation may be needed if storing more than the alloca can hold
736      // (undefined behavior).
737      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
738      SrcWidth = DestWidth;
739      SrcStoreWidth = DestStoreWidth;
740    }
741  }
742
743  // If this is a big-endian system and the store is narrower than the
744  // full alloca type, we need to do a shift to get the right bits.
745  int ShAmt = 0;
746  if (TD.isBigEndian()) {
747    // On big-endian machines, the lowest bit is stored at the bit offset
748    // from the pointer given by getTypeStoreSizeInBits.  This matters for
749    // integers with a bitwidth that is not a multiple of 8.
750    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
751  } else {
752    ShAmt = Offset;
753  }
754
755  // Note: we support negative bitwidths (with shr) which are not defined.
756  // We do this to support (f.e.) stores off the end of a structure where
757  // only some bits in the structure are set.
758  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
759  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
760    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
761                           ShAmt), "tmp");
762    Mask <<= ShAmt;
763  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
764    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
765                            -ShAmt), "tmp");
766    Mask = Mask.lshr(-ShAmt);
767  }
768
769  // Mask out the bits we are about to insert from the old value, and or
770  // in the new bits.
771  if (SrcWidth != DestWidth) {
772    assert(DestWidth > SrcWidth);
773    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
774    SV = Builder.CreateOr(Old, SV, "ins");
775  }
776  return SV;
777}
778
779
780//===----------------------------------------------------------------------===//
781// SRoA Driver
782//===----------------------------------------------------------------------===//
783
784
785bool SROA::runOnFunction(Function &F) {
786  TD = getAnalysisIfAvailable<TargetData>();
787
788  bool Changed = performPromotion(F);
789
790  // FIXME: ScalarRepl currently depends on TargetData more than it
791  // theoretically needs to. It should be refactored in order to support
792  // target-independent IR. Until this is done, just skip the actual
793  // scalar-replacement portion of this pass.
794  if (!TD) return Changed;
795
796  while (1) {
797    bool LocalChange = performScalarRepl(F);
798    if (!LocalChange) break;   // No need to repromote if no scalarrepl
799    Changed = true;
800    LocalChange = performPromotion(F);
801    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
802  }
803
804  return Changed;
805}
806
807
808bool SROA::performPromotion(Function &F) {
809  std::vector<AllocaInst*> Allocas;
810  DominatorTree         &DT = getAnalysis<DominatorTree>();
811  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
812
813  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
814
815  bool Changed = false;
816
817  while (1) {
818    Allocas.clear();
819
820    // Find allocas that are safe to promote, by looking at all instructions in
821    // the entry node
822    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
823      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
824        if (isAllocaPromotable(AI))
825          Allocas.push_back(AI);
826
827    if (Allocas.empty()) break;
828
829    PromoteMemToReg(Allocas, DT, DF);
830    NumPromoted += Allocas.size();
831    Changed = true;
832  }
833
834  return Changed;
835}
836
837
838/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
839/// SROA.  It must be a struct or array type with a small number of elements.
840static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
841  const Type *T = AI->getAllocatedType();
842  // Do not promote any struct into more than 32 separate vars.
843  if (const StructType *ST = dyn_cast<StructType>(T))
844    return ST->getNumElements() <= 32;
845  // Arrays are much less likely to be safe for SROA; only consider
846  // them if they are very small.
847  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
848    return AT->getNumElements() <= 8;
849  return false;
850}
851
852
853// performScalarRepl - This algorithm is a simple worklist driven algorithm,
854// which runs on all of the malloc/alloca instructions in the function, removing
855// them if they are only used by getelementptr instructions.
856//
857bool SROA::performScalarRepl(Function &F) {
858  std::vector<AllocaInst*> WorkList;
859
860  // Scan the entry basic block, adding allocas to the worklist.
861  BasicBlock &BB = F.getEntryBlock();
862  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
863    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
864      WorkList.push_back(A);
865
866  // Process the worklist
867  bool Changed = false;
868  while (!WorkList.empty()) {
869    AllocaInst *AI = WorkList.back();
870    WorkList.pop_back();
871
872    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
873    // with unused elements.
874    if (AI->use_empty()) {
875      AI->eraseFromParent();
876      Changed = true;
877      continue;
878    }
879
880    // If this alloca is impossible for us to promote, reject it early.
881    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
882      continue;
883
884    // Check to see if this allocation is only modified by a memcpy/memmove from
885    // a constant global.  If this is the case, we can change all users to use
886    // the constant global instead.  This is commonly produced by the CFE by
887    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
888    // is only subsequently read.
889    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
890      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
891      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
892      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
893      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
894      TheCopy->eraseFromParent();  // Don't mutate the global.
895      AI->eraseFromParent();
896      ++NumGlobals;
897      Changed = true;
898      continue;
899    }
900
901    // Check to see if we can perform the core SROA transformation.  We cannot
902    // transform the allocation instruction if it is an array allocation
903    // (allocations OF arrays are ok though), and an allocation of a scalar
904    // value cannot be decomposed at all.
905    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
906
907    // Do not promote [0 x %struct].
908    if (AllocaSize == 0) continue;
909
910    // Do not promote any struct whose size is too big.
911    if (AllocaSize > SRThreshold) continue;
912
913    // If the alloca looks like a good candidate for scalar replacement, and if
914    // all its users can be transformed, then split up the aggregate into its
915    // separate elements.
916    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
917      DoScalarReplacement(AI, WorkList);
918      Changed = true;
919      continue;
920    }
921
922    // If we can turn this aggregate value (potentially with casts) into a
923    // simple scalar value that can be mem2reg'd into a register value.
924    // IsNotTrivial tracks whether this is something that mem2reg could have
925    // promoted itself.  If so, we don't want to transform it needlessly.  Note
926    // that we can't just check based on the type: the alloca may be of an i32
927    // but that has pointer arithmetic to set byte 3 of it or something.
928    if (AllocaInst *NewAI =
929          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
930      NewAI->takeName(AI);
931      AI->eraseFromParent();
932      ++NumConverted;
933      Changed = true;
934      continue;
935    }
936
937    // Otherwise, couldn't process this alloca.
938  }
939
940  return Changed;
941}
942
943/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
944/// predicate, do SROA now.
945void SROA::DoScalarReplacement(AllocaInst *AI,
946                               std::vector<AllocaInst*> &WorkList) {
947  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
948  SmallVector<AllocaInst*, 32> ElementAllocas;
949  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
950    ElementAllocas.reserve(ST->getNumContainedTypes());
951    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
952      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
953                                      AI->getAlignment(),
954                                      AI->getName() + "." + Twine(i), AI);
955      ElementAllocas.push_back(NA);
956      WorkList.push_back(NA);  // Add to worklist for recursive processing
957    }
958  } else {
959    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
960    ElementAllocas.reserve(AT->getNumElements());
961    const Type *ElTy = AT->getElementType();
962    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
963      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
964                                      AI->getName() + "." + Twine(i), AI);
965      ElementAllocas.push_back(NA);
966      WorkList.push_back(NA);  // Add to worklist for recursive processing
967    }
968  }
969
970  // Now that we have created the new alloca instructions, rewrite all the
971  // uses of the old alloca.
972  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
973
974  // Now erase any instructions that were made dead while rewriting the alloca.
975  DeleteDeadInstructions();
976  AI->eraseFromParent();
977
978  ++NumReplaced;
979}
980
981/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
982/// recursively including all their operands that become trivially dead.
983void SROA::DeleteDeadInstructions() {
984  while (!DeadInsts.empty()) {
985    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
986
987    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
988      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
989        // Zero out the operand and see if it becomes trivially dead.
990        // (But, don't add allocas to the dead instruction list -- they are
991        // already on the worklist and will be deleted separately.)
992        *OI = 0;
993        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
994          DeadInsts.push_back(U);
995      }
996
997    I->eraseFromParent();
998  }
999}
1000
1001/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1002/// performing scalar replacement of alloca AI.  The results are flagged in
1003/// the Info parameter.  Offset indicates the position within AI that is
1004/// referenced by this instruction.
1005void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1006                               AllocaInfo &Info) {
1007  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1008    Instruction *User = cast<Instruction>(*UI);
1009
1010    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1011      isSafeForScalarRepl(BC, AI, Offset, Info);
1012    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1013      uint64_t GEPOffset = Offset;
1014      isSafeGEP(GEPI, AI, GEPOffset, Info);
1015      if (!Info.isUnsafe)
1016        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
1017    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1018      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1019      if (Length)
1020        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
1021                        UI.getOperandNo() == 0, Info);
1022      else
1023        MarkUnsafe(Info);
1024    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1025      if (!LI->isVolatile()) {
1026        const Type *LIType = LI->getType();
1027        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
1028                        LIType, false, Info);
1029      } else
1030        MarkUnsafe(Info);
1031    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1032      // Store is ok if storing INTO the pointer, not storing the pointer
1033      if (!SI->isVolatile() && SI->getOperand(0) != I) {
1034        const Type *SIType = SI->getOperand(0)->getType();
1035        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
1036                        SIType, true, Info);
1037      } else
1038        MarkUnsafe(Info);
1039    } else {
1040      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
1041      MarkUnsafe(Info);
1042    }
1043    if (Info.isUnsafe) return;
1044  }
1045}
1046
1047/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1048/// replacement.  It is safe when all the indices are constant, in-bounds
1049/// references, and when the resulting offset corresponds to an element within
1050/// the alloca type.  The results are flagged in the Info parameter.  Upon
1051/// return, Offset is adjusted as specified by the GEP indices.
1052void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
1053                     uint64_t &Offset, AllocaInfo &Info) {
1054  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1055  if (GEPIt == E)
1056    return;
1057
1058  // Walk through the GEP type indices, checking the types that this indexes
1059  // into.
1060  for (; GEPIt != E; ++GEPIt) {
1061    // Ignore struct elements, no extra checking needed for these.
1062    if ((*GEPIt)->isStructTy())
1063      continue;
1064
1065    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1066    if (!IdxVal)
1067      return MarkUnsafe(Info);
1068  }
1069
1070  // Compute the offset due to this GEP and check if the alloca has a
1071  // component element at that offset.
1072  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1073  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1074                                 &Indices[0], Indices.size());
1075  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
1076    MarkUnsafe(Info);
1077}
1078
1079/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1080/// alloca or has an offset and size that corresponds to a component element
1081/// within it.  The offset checked here may have been formed from a GEP with a
1082/// pointer bitcasted to a different type.
1083void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
1084                           const Type *MemOpType, bool isStore,
1085                           AllocaInfo &Info) {
1086  // Check if this is a load/store of the entire alloca.
1087  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
1088    bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
1089    // This is safe for MemIntrinsics (where MemOpType is 0), integer types
1090    // (which are essentially the same as the MemIntrinsics, especially with
1091    // regard to copying padding between elements), or references using the
1092    // aggregate type of the alloca.
1093    if (!MemOpType || MemOpType->isIntegerTy() || UsesAggregateType) {
1094      if (!UsesAggregateType) {
1095        if (isStore)
1096          Info.isMemCpyDst = true;
1097        else
1098          Info.isMemCpySrc = true;
1099      }
1100      return;
1101    }
1102  }
1103  // Check if the offset/size correspond to a component within the alloca type.
1104  const Type *T = AI->getAllocatedType();
1105  if (TypeHasComponent(T, Offset, MemSize))
1106    return;
1107
1108  return MarkUnsafe(Info);
1109}
1110
1111/// TypeHasComponent - Return true if T has a component type with the
1112/// specified offset and size.  If Size is zero, do not check the size.
1113bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1114  const Type *EltTy;
1115  uint64_t EltSize;
1116  if (const StructType *ST = dyn_cast<StructType>(T)) {
1117    const StructLayout *Layout = TD->getStructLayout(ST);
1118    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1119    EltTy = ST->getContainedType(EltIdx);
1120    EltSize = TD->getTypeAllocSize(EltTy);
1121    Offset -= Layout->getElementOffset(EltIdx);
1122  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1123    EltTy = AT->getElementType();
1124    EltSize = TD->getTypeAllocSize(EltTy);
1125    if (Offset >= AT->getNumElements() * EltSize)
1126      return false;
1127    Offset %= EltSize;
1128  } else {
1129    return false;
1130  }
1131  if (Offset == 0 && (Size == 0 || EltSize == Size))
1132    return true;
1133  // Check if the component spans multiple elements.
1134  if (Offset + Size > EltSize)
1135    return false;
1136  return TypeHasComponent(EltTy, Offset, Size);
1137}
1138
1139/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1140/// the instruction I, which references it, to use the separate elements.
1141/// Offset indicates the position within AI that is referenced by this
1142/// instruction.
1143void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1144                                SmallVector<AllocaInst*, 32> &NewElts) {
1145  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1146    Instruction *User = cast<Instruction>(*UI);
1147
1148    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1149      RewriteBitCast(BC, AI, Offset, NewElts);
1150    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1151      RewriteGEP(GEPI, AI, Offset, NewElts);
1152    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1153      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1154      uint64_t MemSize = Length->getZExtValue();
1155      if (Offset == 0 &&
1156          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1157        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1158      // Otherwise the intrinsic can only touch a single element and the
1159      // address operand will be updated, so nothing else needs to be done.
1160    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1161      const Type *LIType = LI->getType();
1162      if (LIType == AI->getAllocatedType()) {
1163        // Replace:
1164        //   %res = load { i32, i32 }* %alloc
1165        // with:
1166        //   %load.0 = load i32* %alloc.0
1167        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1168        //   %load.1 = load i32* %alloc.1
1169        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1170        // (Also works for arrays instead of structs)
1171        Value *Insert = UndefValue::get(LIType);
1172        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1173          Value *Load = new LoadInst(NewElts[i], "load", LI);
1174          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1175        }
1176        LI->replaceAllUsesWith(Insert);
1177        DeadInsts.push_back(LI);
1178      } else if (LIType->isIntegerTy() &&
1179                 TD->getTypeAllocSize(LIType) ==
1180                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1181        // If this is a load of the entire alloca to an integer, rewrite it.
1182        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1183      }
1184    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1185      Value *Val = SI->getOperand(0);
1186      const Type *SIType = Val->getType();
1187      if (SIType == AI->getAllocatedType()) {
1188        // Replace:
1189        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1190        // with:
1191        //   %val.0 = extractvalue { i32, i32 } %val, 0
1192        //   store i32 %val.0, i32* %alloc.0
1193        //   %val.1 = extractvalue { i32, i32 } %val, 1
1194        //   store i32 %val.1, i32* %alloc.1
1195        // (Also works for arrays instead of structs)
1196        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1197          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1198          new StoreInst(Extract, NewElts[i], SI);
1199        }
1200        DeadInsts.push_back(SI);
1201      } else if (SIType->isIntegerTy() &&
1202                 TD->getTypeAllocSize(SIType) ==
1203                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1204        // If this is a store of the entire alloca from an integer, rewrite it.
1205        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1206      }
1207    }
1208  }
1209}
1210
1211/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1212/// and recursively continue updating all of its uses.
1213void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1214                          SmallVector<AllocaInst*, 32> &NewElts) {
1215  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1216  if (BC->getOperand(0) != AI)
1217    return;
1218
1219  // The bitcast references the original alloca.  Replace its uses with
1220  // references to the first new element alloca.
1221  Instruction *Val = NewElts[0];
1222  if (Val->getType() != BC->getDestTy()) {
1223    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1224    Val->takeName(BC);
1225  }
1226  BC->replaceAllUsesWith(Val);
1227  DeadInsts.push_back(BC);
1228}
1229
1230/// FindElementAndOffset - Return the index of the element containing Offset
1231/// within the specified type, which must be either a struct or an array.
1232/// Sets T to the type of the element and Offset to the offset within that
1233/// element.  IdxTy is set to the type of the index result to be used in a
1234/// GEP instruction.
1235uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1236                                    const Type *&IdxTy) {
1237  uint64_t Idx = 0;
1238  if (const StructType *ST = dyn_cast<StructType>(T)) {
1239    const StructLayout *Layout = TD->getStructLayout(ST);
1240    Idx = Layout->getElementContainingOffset(Offset);
1241    T = ST->getContainedType(Idx);
1242    Offset -= Layout->getElementOffset(Idx);
1243    IdxTy = Type::getInt32Ty(T->getContext());
1244    return Idx;
1245  }
1246  const ArrayType *AT = cast<ArrayType>(T);
1247  T = AT->getElementType();
1248  uint64_t EltSize = TD->getTypeAllocSize(T);
1249  Idx = Offset / EltSize;
1250  Offset -= Idx * EltSize;
1251  IdxTy = Type::getInt64Ty(T->getContext());
1252  return Idx;
1253}
1254
1255/// RewriteGEP - Check if this GEP instruction moves the pointer across
1256/// elements of the alloca that are being split apart, and if so, rewrite
1257/// the GEP to be relative to the new element.
1258void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1259                      SmallVector<AllocaInst*, 32> &NewElts) {
1260  uint64_t OldOffset = Offset;
1261  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1262  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1263                                 &Indices[0], Indices.size());
1264
1265  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1266
1267  const Type *T = AI->getAllocatedType();
1268  const Type *IdxTy;
1269  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1270  if (GEPI->getOperand(0) == AI)
1271    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1272
1273  T = AI->getAllocatedType();
1274  uint64_t EltOffset = Offset;
1275  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1276
1277  // If this GEP does not move the pointer across elements of the alloca
1278  // being split, then it does not needs to be rewritten.
1279  if (Idx == OldIdx)
1280    return;
1281
1282  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1283  SmallVector<Value*, 8> NewArgs;
1284  NewArgs.push_back(Constant::getNullValue(i32Ty));
1285  while (EltOffset != 0) {
1286    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1287    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1288  }
1289  Instruction *Val = NewElts[Idx];
1290  if (NewArgs.size() > 1) {
1291    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1292                                            NewArgs.end(), "", GEPI);
1293    Val->takeName(GEPI);
1294  }
1295  if (Val->getType() != GEPI->getType())
1296    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1297  GEPI->replaceAllUsesWith(Val);
1298  DeadInsts.push_back(GEPI);
1299}
1300
1301/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1302/// Rewrite it to copy or set the elements of the scalarized memory.
1303void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1304                                        AllocaInst *AI,
1305                                        SmallVector<AllocaInst*, 32> &NewElts) {
1306  // If this is a memcpy/memmove, construct the other pointer as the
1307  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1308  // that doesn't have anything to do with the alloca that we are promoting. For
1309  // memset, this Value* stays null.
1310  Value *OtherPtr = 0;
1311  unsigned MemAlignment = MI->getAlignment();
1312  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1313    if (Inst == MTI->getRawDest())
1314      OtherPtr = MTI->getRawSource();
1315    else {
1316      assert(Inst == MTI->getRawSource());
1317      OtherPtr = MTI->getRawDest();
1318    }
1319  }
1320
1321  // If there is an other pointer, we want to convert it to the same pointer
1322  // type as AI has, so we can GEP through it safely.
1323  if (OtherPtr) {
1324    unsigned AddrSpace =
1325      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1326
1327    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
1328    // optimization, but it's also required to detect the corner case where
1329    // both pointer operands are referencing the same memory, and where
1330    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
1331    // function is only called for mem intrinsics that access the whole
1332    // aggregate, so non-zero GEPs are not an issue here.)
1333    OtherPtr = OtherPtr->stripPointerCasts();
1334
1335    // Copying the alloca to itself is a no-op: just delete it.
1336    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1337      // This code will run twice for a no-op memcpy -- once for each operand.
1338      // Put only one reference to MI on the DeadInsts list.
1339      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1340             E = DeadInsts.end(); I != E; ++I)
1341        if (*I == MI) return;
1342      DeadInsts.push_back(MI);
1343      return;
1344    }
1345
1346    // If the pointer is not the right type, insert a bitcast to the right
1347    // type.
1348    const Type *NewTy =
1349      PointerType::get(AI->getType()->getElementType(), AddrSpace);
1350
1351    if (OtherPtr->getType() != NewTy)
1352      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1353  }
1354
1355  // Process each element of the aggregate.
1356  bool SROADest = MI->getRawDest() == Inst;
1357
1358  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1359
1360  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1361    // If this is a memcpy/memmove, emit a GEP of the other element address.
1362    Value *OtherElt = 0;
1363    unsigned OtherEltAlign = MemAlignment;
1364
1365    if (OtherPtr) {
1366      Value *Idx[2] = { Zero,
1367                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1368      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1369                                              OtherPtr->getName()+"."+Twine(i),
1370                                                   MI);
1371      uint64_t EltOffset;
1372      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1373      const Type *OtherTy = OtherPtrTy->getElementType();
1374      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1375        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1376      } else {
1377        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
1378        EltOffset = TD->getTypeAllocSize(EltTy)*i;
1379      }
1380
1381      // The alignment of the other pointer is the guaranteed alignment of the
1382      // element, which is affected by both the known alignment of the whole
1383      // mem intrinsic and the alignment of the element.  If the alignment of
1384      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1385      // known alignment is just 4 bytes.
1386      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
1387    }
1388
1389    Value *EltPtr = NewElts[i];
1390    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
1391
1392    // If we got down to a scalar, insert a load or store as appropriate.
1393    if (EltTy->isSingleValueType()) {
1394      if (isa<MemTransferInst>(MI)) {
1395        if (SROADest) {
1396          // From Other to Alloca.
1397          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
1398          new StoreInst(Elt, EltPtr, MI);
1399        } else {
1400          // From Alloca to Other.
1401          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
1402          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
1403        }
1404        continue;
1405      }
1406      assert(isa<MemSetInst>(MI));
1407
1408      // If the stored element is zero (common case), just store a null
1409      // constant.
1410      Constant *StoreVal;
1411      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
1412        if (CI->isZero()) {
1413          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
1414        } else {
1415          // If EltTy is a vector type, get the element type.
1416          const Type *ValTy = EltTy->getScalarType();
1417
1418          // Construct an integer with the right value.
1419          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
1420          APInt OneVal(EltSize, CI->getZExtValue());
1421          APInt TotalVal(OneVal);
1422          // Set each byte.
1423          for (unsigned i = 0; 8*i < EltSize; ++i) {
1424            TotalVal = TotalVal.shl(8);
1425            TotalVal |= OneVal;
1426          }
1427
1428          // Convert the integer value to the appropriate type.
1429          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
1430          if (ValTy->isPointerTy())
1431            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
1432          else if (ValTy->isFloatingPointTy())
1433            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
1434          assert(StoreVal->getType() == ValTy && "Type mismatch!");
1435
1436          // If the requested value was a vector constant, create it.
1437          if (EltTy != ValTy) {
1438            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
1439            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
1440            StoreVal = ConstantVector::get(&Elts[0], NumElts);
1441          }
1442        }
1443        new StoreInst(StoreVal, EltPtr, MI);
1444        continue;
1445      }
1446      // Otherwise, if we're storing a byte variable, use a memset call for
1447      // this element.
1448    }
1449
1450    unsigned EltSize = TD->getTypeAllocSize(EltTy);
1451
1452    IRBuilder<> Builder(MI);
1453
1454    // Finally, insert the meminst for this element.
1455    if (isa<MemSetInst>(MI)) {
1456      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
1457                           MI->isVolatile());
1458    } else {
1459      assert(isa<MemTransferInst>(MI));
1460      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
1461      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
1462
1463      if (isa<MemCpyInst>(MI))
1464        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
1465      else
1466        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
1467    }
1468  }
1469  DeadInsts.push_back(MI);
1470}
1471
1472/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
1473/// overwrites the entire allocation.  Extract out the pieces of the stored
1474/// integer and store them individually.
1475void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
1476                                         SmallVector<AllocaInst*, 32> &NewElts){
1477  // Extract each element out of the integer according to its structure offset
1478  // and store the element value to the individual alloca.
1479  Value *SrcVal = SI->getOperand(0);
1480  const Type *AllocaEltTy = AI->getAllocatedType();
1481  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1482
1483  // Handle tail padding by extending the operand
1484  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
1485    SrcVal = new ZExtInst(SrcVal,
1486                          IntegerType::get(SI->getContext(), AllocaSizeBits),
1487                          "", SI);
1488
1489  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
1490               << '\n');
1491
1492  // There are two forms here: AI could be an array or struct.  Both cases
1493  // have different ways to compute the element offset.
1494  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1495    const StructLayout *Layout = TD->getStructLayout(EltSTy);
1496
1497    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1498      // Get the number of bits to shift SrcVal to get the value.
1499      const Type *FieldTy = EltSTy->getElementType(i);
1500      uint64_t Shift = Layout->getElementOffsetInBits(i);
1501
1502      if (TD->isBigEndian())
1503        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
1504
1505      Value *EltVal = SrcVal;
1506      if (Shift) {
1507        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1508        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1509                                            "sroa.store.elt", SI);
1510      }
1511
1512      // Truncate down to an integer of the right size.
1513      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1514
1515      // Ignore zero sized fields like {}, they obviously contain no data.
1516      if (FieldSizeBits == 0) continue;
1517
1518      if (FieldSizeBits != AllocaSizeBits)
1519        EltVal = new TruncInst(EltVal,
1520                             IntegerType::get(SI->getContext(), FieldSizeBits),
1521                              "", SI);
1522      Value *DestField = NewElts[i];
1523      if (EltVal->getType() == FieldTy) {
1524        // Storing to an integer field of this size, just do it.
1525      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
1526        // Bitcast to the right element type (for fp/vector values).
1527        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
1528      } else {
1529        // Otherwise, bitcast the dest pointer (for aggregates).
1530        DestField = new BitCastInst(DestField,
1531                              PointerType::getUnqual(EltVal->getType()),
1532                                    "", SI);
1533      }
1534      new StoreInst(EltVal, DestField, SI);
1535    }
1536
1537  } else {
1538    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1539    const Type *ArrayEltTy = ATy->getElementType();
1540    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1541    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1542
1543    uint64_t Shift;
1544
1545    if (TD->isBigEndian())
1546      Shift = AllocaSizeBits-ElementOffset;
1547    else
1548      Shift = 0;
1549
1550    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1551      // Ignore zero sized fields like {}, they obviously contain no data.
1552      if (ElementSizeBits == 0) continue;
1553
1554      Value *EltVal = SrcVal;
1555      if (Shift) {
1556        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1557        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1558                                            "sroa.store.elt", SI);
1559      }
1560
1561      // Truncate down to an integer of the right size.
1562      if (ElementSizeBits != AllocaSizeBits)
1563        EltVal = new TruncInst(EltVal,
1564                               IntegerType::get(SI->getContext(),
1565                                                ElementSizeBits),"",SI);
1566      Value *DestField = NewElts[i];
1567      if (EltVal->getType() == ArrayEltTy) {
1568        // Storing to an integer field of this size, just do it.
1569      } else if (ArrayEltTy->isFloatingPointTy() ||
1570                 ArrayEltTy->isVectorTy()) {
1571        // Bitcast to the right element type (for fp/vector values).
1572        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1573      } else {
1574        // Otherwise, bitcast the dest pointer (for aggregates).
1575        DestField = new BitCastInst(DestField,
1576                              PointerType::getUnqual(EltVal->getType()),
1577                                    "", SI);
1578      }
1579      new StoreInst(EltVal, DestField, SI);
1580
1581      if (TD->isBigEndian())
1582        Shift -= ElementOffset;
1583      else
1584        Shift += ElementOffset;
1585    }
1586  }
1587
1588  DeadInsts.push_back(SI);
1589}
1590
1591/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1592/// an integer.  Load the individual pieces to form the aggregate value.
1593void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1594                                        SmallVector<AllocaInst*, 32> &NewElts) {
1595  // Extract each element out of the NewElts according to its structure offset
1596  // and form the result value.
1597  const Type *AllocaEltTy = AI->getAllocatedType();
1598  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1599
1600  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1601               << '\n');
1602
1603  // There are two forms here: AI could be an array or struct.  Both cases
1604  // have different ways to compute the element offset.
1605  const StructLayout *Layout = 0;
1606  uint64_t ArrayEltBitOffset = 0;
1607  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1608    Layout = TD->getStructLayout(EltSTy);
1609  } else {
1610    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1611    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1612  }
1613
1614  Value *ResultVal =
1615    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1616
1617  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1618    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1619    // the pointer to an integer of the same size before doing the load.
1620    Value *SrcField = NewElts[i];
1621    const Type *FieldTy =
1622      cast<PointerType>(SrcField->getType())->getElementType();
1623    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1624
1625    // Ignore zero sized fields like {}, they obviously contain no data.
1626    if (FieldSizeBits == 0) continue;
1627
1628    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1629                                                     FieldSizeBits);
1630    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
1631        !FieldTy->isVectorTy())
1632      SrcField = new BitCastInst(SrcField,
1633                                 PointerType::getUnqual(FieldIntTy),
1634                                 "", LI);
1635    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1636
1637    // If SrcField is a fp or vector of the right size but that isn't an
1638    // integer type, bitcast to an integer so we can shift it.
1639    if (SrcField->getType() != FieldIntTy)
1640      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1641
1642    // Zero extend the field to be the same size as the final alloca so that
1643    // we can shift and insert it.
1644    if (SrcField->getType() != ResultVal->getType())
1645      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1646
1647    // Determine the number of bits to shift SrcField.
1648    uint64_t Shift;
1649    if (Layout) // Struct case.
1650      Shift = Layout->getElementOffsetInBits(i);
1651    else  // Array case.
1652      Shift = i*ArrayEltBitOffset;
1653
1654    if (TD->isBigEndian())
1655      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1656
1657    if (Shift) {
1658      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1659      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1660    }
1661
1662    // Don't create an 'or x, 0' on the first iteration.
1663    if (!isa<Constant>(ResultVal) ||
1664        !cast<Constant>(ResultVal)->isNullValue())
1665      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1666    else
1667      ResultVal = SrcField;
1668  }
1669
1670  // Handle tail padding by truncating the result
1671  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1672    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1673
1674  LI->replaceAllUsesWith(ResultVal);
1675  DeadInsts.push_back(LI);
1676}
1677
1678/// HasPadding - Return true if the specified type has any structure or
1679/// alignment padding, false otherwise.
1680static bool HasPadding(const Type *Ty, const TargetData &TD) {
1681  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty))
1682    return HasPadding(ATy->getElementType(), TD);
1683
1684  if (const VectorType *VTy = dyn_cast<VectorType>(Ty))
1685    return HasPadding(VTy->getElementType(), TD);
1686
1687  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1688    const StructLayout *SL = TD.getStructLayout(STy);
1689    unsigned PrevFieldBitOffset = 0;
1690    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1691      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1692
1693      // Padding in sub-elements?
1694      if (HasPadding(STy->getElementType(i), TD))
1695        return true;
1696
1697      // Check to see if there is any padding between this element and the
1698      // previous one.
1699      if (i) {
1700        unsigned PrevFieldEnd =
1701        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1702        if (PrevFieldEnd < FieldBitOffset)
1703          return true;
1704      }
1705
1706      PrevFieldBitOffset = FieldBitOffset;
1707    }
1708
1709    //  Check for tail padding.
1710    if (unsigned EltCount = STy->getNumElements()) {
1711      unsigned PrevFieldEnd = PrevFieldBitOffset +
1712                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1713      if (PrevFieldEnd < SL->getSizeInBits())
1714        return true;
1715    }
1716  }
1717
1718  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1719}
1720
1721/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1722/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1723/// or 1 if safe after canonicalization has been performed.
1724bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1725  // Loop over the use list of the alloca.  We can only transform it if all of
1726  // the users are safe to transform.
1727  AllocaInfo Info;
1728
1729  isSafeForScalarRepl(AI, AI, 0, Info);
1730  if (Info.isUnsafe) {
1731    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
1732    return false;
1733  }
1734
1735  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1736  // source and destination, we have to be careful.  In particular, the memcpy
1737  // could be moving around elements that live in structure padding of the LLVM
1738  // types, but may actually be used.  In these cases, we refuse to promote the
1739  // struct.
1740  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1741      HasPadding(AI->getAllocatedType(), *TD))
1742    return false;
1743
1744  return true;
1745}
1746
1747
1748
1749/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1750/// some part of a constant global variable.  This intentionally only accepts
1751/// constant expressions because we don't can't rewrite arbitrary instructions.
1752static bool PointsToConstantGlobal(Value *V) {
1753  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1754    return GV->isConstant();
1755  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1756    if (CE->getOpcode() == Instruction::BitCast ||
1757        CE->getOpcode() == Instruction::GetElementPtr)
1758      return PointsToConstantGlobal(CE->getOperand(0));
1759  return false;
1760}
1761
1762/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1763/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1764/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1765/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1766/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1767/// the alloca, and if the source pointer is a pointer to a constant global, we
1768/// can optimize this.
1769static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
1770                                           bool isOffset) {
1771  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1772    User *U = cast<Instruction>(*UI);
1773
1774    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1775      // Ignore non-volatile loads, they are always ok.
1776      if (LI->isVolatile()) return false;
1777      continue;
1778    }
1779
1780    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1781      // If uses of the bitcast are ok, we are ok.
1782      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1783        return false;
1784      continue;
1785    }
1786    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
1787      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1788      // doesn't, it does.
1789      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1790                                         isOffset || !GEP->hasAllZeroIndices()))
1791        return false;
1792      continue;
1793    }
1794
1795    if (CallSite CS = U) {
1796      // If this is a readonly/readnone call site, then we know it is just a
1797      // load and we can ignore it.
1798      if (CS.onlyReadsMemory())
1799        continue;
1800
1801      // If this is the function being called then we treat it like a load and
1802      // ignore it.
1803      if (CS.isCallee(UI))
1804        continue;
1805
1806      // If this is being passed as a byval argument, the caller is making a
1807      // copy, so it is only a read of the alloca.
1808      unsigned ArgNo = CS.getArgumentNo(UI);
1809      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
1810        continue;
1811    }
1812
1813    // If this is isn't our memcpy/memmove, reject it as something we can't
1814    // handle.
1815    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
1816    if (MI == 0)
1817      return false;
1818
1819    // If the transfer is using the alloca as a source of the transfer, then
1820    // ignore it since it is a load (unless the transfer is volatile).
1821    if (UI.getOperandNo() == 1) {
1822      if (MI->isVolatile()) return false;
1823      continue;
1824    }
1825
1826    // If we already have seen a copy, reject the second one.
1827    if (TheCopy) return false;
1828
1829    // If the pointer has been offset from the start of the alloca, we can't
1830    // safely handle this.
1831    if (isOffset) return false;
1832
1833    // If the memintrinsic isn't using the alloca as the dest, reject it.
1834    if (UI.getOperandNo() != 0) return false;
1835
1836    // If the source of the memcpy/move is not a constant global, reject it.
1837    if (!PointsToConstantGlobal(MI->getSource()))
1838      return false;
1839
1840    // Otherwise, the transform is safe.  Remember the copy instruction.
1841    TheCopy = MI;
1842  }
1843  return true;
1844}
1845
1846/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1847/// modified by a copy from a constant global.  If we can prove this, we can
1848/// replace any uses of the alloca with uses of the global directly.
1849MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
1850  MemTransferInst *TheCopy = 0;
1851  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1852    return TheCopy;
1853  return 0;
1854}
1855