ScalarReplAggregates.cpp revision a4acb008cb2a9953d9cb4c90ecf6424bd32ebc0c
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DebugInfo.h"
34#include "llvm/Analysis/DIBuilder.h"
35#include "llvm/Analysis/Dominators.h"
36#include "llvm/Analysis/Loads.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/Target/TargetData.h"
39#include "llvm/Transforms/Utils/PromoteMemToReg.h"
40#include "llvm/Transforms/Utils/Local.h"
41#include "llvm/Transforms/Utils/SSAUpdater.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/ErrorHandling.h"
45#include "llvm/Support/GetElementPtrTypeIterator.h"
46#include "llvm/Support/IRBuilder.h"
47#include "llvm/Support/MathExtras.h"
48#include "llvm/Support/raw_ostream.h"
49#include "llvm/ADT/SetVector.h"
50#include "llvm/ADT/SmallVector.h"
51#include "llvm/ADT/Statistic.h"
52using namespace llvm;
53
54STATISTIC(NumReplaced,  "Number of allocas broken up");
55STATISTIC(NumPromoted,  "Number of allocas promoted");
56STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
57STATISTIC(NumConverted, "Number of aggregates converted to scalar");
58STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
59
60namespace {
61  struct SROA : public FunctionPass {
62    SROA(int T, bool hasDT, char &ID)
63      : FunctionPass(ID), HasDomTree(hasDT) {
64      if (T == -1)
65        SRThreshold = 128;
66      else
67        SRThreshold = T;
68    }
69
70    bool runOnFunction(Function &F);
71
72    bool performScalarRepl(Function &F);
73    bool performPromotion(Function &F);
74
75  private:
76    bool HasDomTree;
77    TargetData *TD;
78
79    /// DeadInsts - Keep track of instructions we have made dead, so that
80    /// we can remove them after we are done working.
81    SmallVector<Value*, 32> DeadInsts;
82
83    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
84    /// information about the uses.  All these fields are initialized to false
85    /// and set to true when something is learned.
86    struct AllocaInfo {
87      /// The alloca to promote.
88      AllocaInst *AI;
89
90      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
91      /// looping and avoid redundant work.
92      SmallPtrSet<PHINode*, 8> CheckedPHIs;
93
94      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
95      bool isUnsafe : 1;
96
97      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
98      bool isMemCpySrc : 1;
99
100      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
101      bool isMemCpyDst : 1;
102
103      /// hasSubelementAccess - This is true if a subelement of the alloca is
104      /// ever accessed, or false if the alloca is only accessed with mem
105      /// intrinsics or load/store that only access the entire alloca at once.
106      bool hasSubelementAccess : 1;
107
108      /// hasALoadOrStore - This is true if there are any loads or stores to it.
109      /// The alloca may just be accessed with memcpy, for example, which would
110      /// not set this.
111      bool hasALoadOrStore : 1;
112
113      explicit AllocaInfo(AllocaInst *ai)
114        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
115          hasSubelementAccess(false), hasALoadOrStore(false) {}
116    };
117
118    unsigned SRThreshold;
119
120    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
121      I.isUnsafe = true;
122      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
123    }
124
125    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
126
127    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
128    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
129                                         AllocaInfo &Info);
130    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
131    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
132                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
133                         Instruction *TheAccess, bool AllowWholeAccess);
134    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
135    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
136                                  const Type *&IdxTy);
137
138    void DoScalarReplacement(AllocaInst *AI,
139                             std::vector<AllocaInst*> &WorkList);
140    void DeleteDeadInstructions();
141
142    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
143                              SmallVector<AllocaInst*, 32> &NewElts);
144    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
145                        SmallVector<AllocaInst*, 32> &NewElts);
146    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
147                    SmallVector<AllocaInst*, 32> &NewElts);
148    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
149                                      AllocaInst *AI,
150                                      SmallVector<AllocaInst*, 32> &NewElts);
151    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
152                                       SmallVector<AllocaInst*, 32> &NewElts);
153    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
154                                      SmallVector<AllocaInst*, 32> &NewElts);
155
156    static MemTransferInst *isOnlyCopiedFromConstantGlobal(
157        AllocaInst *AI, SmallVector<Instruction*, 4> &ToDelete);
158  };
159
160  // SROA_DT - SROA that uses DominatorTree.
161  struct SROA_DT : public SROA {
162    static char ID;
163  public:
164    SROA_DT(int T = -1) : SROA(T, true, ID) {
165      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
166    }
167
168    // getAnalysisUsage - This pass does not require any passes, but we know it
169    // will not alter the CFG, so say so.
170    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
171      AU.addRequired<DominatorTree>();
172      AU.setPreservesCFG();
173    }
174  };
175
176  // SROA_SSAUp - SROA that uses SSAUpdater.
177  struct SROA_SSAUp : public SROA {
178    static char ID;
179  public:
180    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
181      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
182    }
183
184    // getAnalysisUsage - This pass does not require any passes, but we know it
185    // will not alter the CFG, so say so.
186    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
187      AU.setPreservesCFG();
188    }
189  };
190
191}
192
193char SROA_DT::ID = 0;
194char SROA_SSAUp::ID = 0;
195
196INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
197                "Scalar Replacement of Aggregates (DT)", false, false)
198INITIALIZE_PASS_DEPENDENCY(DominatorTree)
199INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
200                "Scalar Replacement of Aggregates (DT)", false, false)
201
202INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
203                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
204INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
205                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
206
207// Public interface to the ScalarReplAggregates pass
208FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
209                                                   bool UseDomTree) {
210  if (UseDomTree)
211    return new SROA_DT(Threshold);
212  return new SROA_SSAUp(Threshold);
213}
214
215
216//===----------------------------------------------------------------------===//
217// Convert To Scalar Optimization.
218//===----------------------------------------------------------------------===//
219
220namespace {
221/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
222/// optimization, which scans the uses of an alloca and determines if it can
223/// rewrite it in terms of a single new alloca that can be mem2reg'd.
224class ConvertToScalarInfo {
225  /// AllocaSize - The size of the alloca being considered in bytes.
226  unsigned AllocaSize;
227  const TargetData &TD;
228
229  /// IsNotTrivial - This is set to true if there is some access to the object
230  /// which means that mem2reg can't promote it.
231  bool IsNotTrivial;
232
233  /// ScalarKind - Tracks the kind of alloca being considered for promotion,
234  /// computed based on the uses of the alloca rather than the LLVM type system.
235  enum {
236    Unknown,
237
238    // Accesses via GEPs that are consistent with element access of a vector
239    // type. This will not be converted into a vector unless there is a later
240    // access using an actual vector type.
241    ImplicitVector,
242
243    // Accesses via vector operations and GEPs that are consistent with the
244    // layout of a vector type.
245    Vector,
246
247    // An integer bag-of-bits with bitwise operations for insertion and
248    // extraction. Any combination of types can be converted into this kind
249    // of scalar.
250    Integer
251  } ScalarKind;
252
253  /// VectorTy - This tracks the type that we should promote the vector to if
254  /// it is possible to turn it into a vector.  This starts out null, and if it
255  /// isn't possible to turn into a vector type, it gets set to VoidTy.
256  const VectorType *VectorTy;
257
258  /// HadNonMemTransferAccess - True if there is at least one access to the
259  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
260  /// large integers unless there is some potential for optimization.
261  bool HadNonMemTransferAccess;
262
263public:
264  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
265    : AllocaSize(Size), TD(td), IsNotTrivial(false), ScalarKind(Unknown),
266      VectorTy(0), HadNonMemTransferAccess(false) { }
267
268  AllocaInst *TryConvert(AllocaInst *AI);
269
270private:
271  bool CanConvertToScalar(Value *V, uint64_t Offset);
272  void MergeInTypeForLoadOrStore(const Type *In, uint64_t Offset);
273  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
274  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
275
276  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
277                                    uint64_t Offset, IRBuilder<> &Builder);
278  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
279                                   uint64_t Offset, IRBuilder<> &Builder);
280};
281} // end anonymous namespace.
282
283
284/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
285/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
286/// alloca if possible or null if not.
287AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
288  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
289  // out.
290  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
291    return 0;
292
293  // If an alloca has only memset / memcpy uses, it may still have an Unknown
294  // ScalarKind. Treat it as an Integer below.
295  if (ScalarKind == Unknown)
296    ScalarKind = Integer;
297
298  // FIXME: It should be possible to promote the vector type up to the alloca's
299  // size.
300  if (ScalarKind == Vector && VectorTy->getBitWidth() != AllocaSize * 8)
301    ScalarKind = Integer;
302
303  // If we were able to find a vector type that can handle this with
304  // insert/extract elements, and if there was at least one use that had
305  // a vector type, promote this to a vector.  We don't want to promote
306  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
307  // we just get a lot of insert/extracts.  If at least one vector is
308  // involved, then we probably really do have a union of vector/array.
309  const Type *NewTy;
310  if (ScalarKind == Vector) {
311    assert(VectorTy && "Missing type for vector scalar.");
312    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
313          << *VectorTy << '\n');
314    NewTy = VectorTy;  // Use the vector type.
315  } else {
316    unsigned BitWidth = AllocaSize * 8;
317    if ((ScalarKind == ImplicitVector || ScalarKind == Integer) &&
318        !HadNonMemTransferAccess && !TD.fitsInLegalInteger(BitWidth))
319      return 0;
320
321    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
322    // Create and insert the integer alloca.
323    NewTy = IntegerType::get(AI->getContext(), BitWidth);
324  }
325  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
326  ConvertUsesToScalar(AI, NewAI, 0);
327  return NewAI;
328}
329
330/// MergeInTypeForLoadOrStore - Add the 'In' type to the accumulated vector type
331/// (VectorTy) so far at the offset specified by Offset (which is specified in
332/// bytes).
333///
334/// There are three cases we handle here:
335///   1) A union of vector types of the same size and potentially its elements.
336///      Here we turn element accesses into insert/extract element operations.
337///      This promotes a <4 x float> with a store of float to the third element
338///      into a <4 x float> that uses insert element.
339///   2) A union of vector types with power-of-2 size differences, e.g. a float,
340///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
341///      and extract element operations, and <2 x float> accesses into a cast to
342///      <2 x double>, an extract, and a cast back to <2 x float>.
343///   3) A fully general blob of memory, which we turn into some (potentially
344///      large) integer type with extract and insert operations where the loads
345///      and stores would mutate the memory.  We mark this by setting VectorTy
346///      to VoidTy.
347void ConvertToScalarInfo::MergeInTypeForLoadOrStore(const Type *In,
348                                                    uint64_t Offset) {
349  // If we already decided to turn this into a blob of integer memory, there is
350  // nothing to be done.
351  if (ScalarKind == Integer)
352    return;
353
354  // If this could be contributing to a vector, analyze it.
355
356  // If the In type is a vector that is the same size as the alloca, see if it
357  // matches the existing VecTy.
358  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
359    if (MergeInVectorType(VInTy, Offset))
360      return;
361  } else if (In->isFloatTy() || In->isDoubleTy() ||
362             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
363              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
364    // Full width accesses can be ignored, because they can always be turned
365    // into bitcasts.
366    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
367    if (EltSize == AllocaSize)
368      return;
369
370    // If we're accessing something that could be an element of a vector, see
371    // if the implied vector agrees with what we already have and if Offset is
372    // compatible with it.
373    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
374        (!VectorTy || Offset * 8 < VectorTy->getPrimitiveSizeInBits())) {
375      if (!VectorTy) {
376        ScalarKind = ImplicitVector;
377        VectorTy = VectorType::get(In, AllocaSize/EltSize);
378        return;
379      }
380
381      unsigned CurrentEltSize = VectorTy->getElementType()
382                                ->getPrimitiveSizeInBits()/8;
383      if (EltSize == CurrentEltSize)
384        return;
385
386      if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
387        return;
388    }
389  }
390
391  // Otherwise, we have a case that we can't handle with an optimized vector
392  // form.  We can still turn this into a large integer.
393  ScalarKind = Integer;
394}
395
396/// MergeInVectorType - Handles the vector case of MergeInTypeForLoadOrStore,
397/// returning true if the type was successfully merged and false otherwise.
398bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
399                                            uint64_t Offset) {
400  // TODO: Support nonzero offsets?
401  if (Offset != 0)
402    return false;
403
404  // Only allow vectors that are a power-of-2 away from the size of the alloca.
405  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
406    return false;
407
408  // If this the first vector we see, remember the type so that we know the
409  // element size.
410  if (!VectorTy) {
411    ScalarKind = Vector;
412    VectorTy = VInTy;
413    return true;
414  }
415
416  unsigned BitWidth = VectorTy->getBitWidth();
417  unsigned InBitWidth = VInTy->getBitWidth();
418
419  // Vectors of the same size can be converted using a simple bitcast.
420  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8)) {
421    ScalarKind = Vector;
422    return true;
423  }
424
425  const Type *ElementTy = VectorTy->getElementType();
426  const Type *InElementTy = VInTy->getElementType();
427
428  // Do not allow mixed integer and floating-point accesses from vectors of
429  // different sizes.
430  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
431    return false;
432
433  if (ElementTy->isFloatingPointTy()) {
434    // Only allow floating-point vectors of different sizes if they have the
435    // same element type.
436    // TODO: This could be loosened a bit, but would anything benefit?
437    if (ElementTy != InElementTy)
438      return false;
439
440    // There are no arbitrary-precision floating-point types, which limits the
441    // number of legal vector types with larger element types that we can form
442    // to bitcast and extract a subvector.
443    // TODO: We could support some more cases with mixed fp128 and double here.
444    if (!(BitWidth == 64 || BitWidth == 128) ||
445        !(InBitWidth == 64 || InBitWidth == 128))
446      return false;
447  } else {
448    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
449                                       "or floating-point.");
450    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
451    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
452
453    // Do not allow integer types smaller than a byte or types whose widths are
454    // not a multiple of a byte.
455    if (BitWidth < 8 || InBitWidth < 8 ||
456        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
457      return false;
458  }
459
460  // Pick the largest of the two vector types.
461  ScalarKind = Vector;
462  if (InBitWidth > BitWidth)
463    VectorTy = VInTy;
464
465  return true;
466}
467
468/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
469/// its accesses to a single vector type, return true and set VecTy to
470/// the new type.  If we could convert the alloca into a single promotable
471/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
472/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
473/// is the current offset from the base of the alloca being analyzed.
474///
475/// If we see at least one access to the value that is as a vector type, set the
476/// SawVec flag.
477bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
478  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
479    Instruction *User = cast<Instruction>(*UI);
480
481    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
482      // Don't break volatile loads.
483      if (LI->isVolatile())
484        return false;
485      // Don't touch MMX operations.
486      if (LI->getType()->isX86_MMXTy())
487        return false;
488      HadNonMemTransferAccess = true;
489      MergeInTypeForLoadOrStore(LI->getType(), Offset);
490      continue;
491    }
492
493    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
494      // Storing the pointer, not into the value?
495      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
496      // Don't touch MMX operations.
497      if (SI->getOperand(0)->getType()->isX86_MMXTy())
498        return false;
499      HadNonMemTransferAccess = true;
500      MergeInTypeForLoadOrStore(SI->getOperand(0)->getType(), Offset);
501      continue;
502    }
503
504    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
505      IsNotTrivial = true;  // Can't be mem2reg'd.
506      if (!CanConvertToScalar(BCI, Offset))
507        return false;
508      continue;
509    }
510
511    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
512      // If this is a GEP with a variable indices, we can't handle it.
513      if (!GEP->hasAllConstantIndices())
514        return false;
515
516      // Compute the offset that this GEP adds to the pointer.
517      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
518      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
519                                               &Indices[0], Indices.size());
520      // See if all uses can be converted.
521      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
522        return false;
523      IsNotTrivial = true;  // Can't be mem2reg'd.
524      HadNonMemTransferAccess = true;
525      continue;
526    }
527
528    // If this is a constant sized memset of a constant value (e.g. 0) we can
529    // handle it.
530    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
531      // Store of constant value.
532      if (!isa<ConstantInt>(MSI->getValue()))
533        return false;
534
535      // Store of constant size.
536      ConstantInt *Len = dyn_cast<ConstantInt>(MSI->getLength());
537      if (!Len)
538        return false;
539
540      // If the size differs from the alloca, we can only convert the alloca to
541      // an integer bag-of-bits.
542      // FIXME: This should handle all of the cases that are currently accepted
543      // as vector element insertions.
544      if (Len->getZExtValue() != AllocaSize || Offset != 0)
545        ScalarKind = Integer;
546
547      IsNotTrivial = true;  // Can't be mem2reg'd.
548      HadNonMemTransferAccess = true;
549      continue;
550    }
551
552    // If this is a memcpy or memmove into or out of the whole allocation, we
553    // can handle it like a load or store of the scalar type.
554    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
555      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
556      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
557        return false;
558
559      IsNotTrivial = true;  // Can't be mem2reg'd.
560      continue;
561    }
562
563    // Otherwise, we cannot handle this!
564    return false;
565  }
566
567  return true;
568}
569
570/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
571/// directly.  This happens when we are converting an "integer union" to a
572/// single integer scalar, or when we are converting a "vector union" to a
573/// vector with insert/extractelement instructions.
574///
575/// Offset is an offset from the original alloca, in bits that need to be
576/// shifted to the right.  By the end of this, there should be no uses of Ptr.
577void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
578                                              uint64_t Offset) {
579  while (!Ptr->use_empty()) {
580    Instruction *User = cast<Instruction>(Ptr->use_back());
581
582    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
583      ConvertUsesToScalar(CI, NewAI, Offset);
584      CI->eraseFromParent();
585      continue;
586    }
587
588    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
589      // Compute the offset that this GEP adds to the pointer.
590      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
591      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
592                                               &Indices[0], Indices.size());
593      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
594      GEP->eraseFromParent();
595      continue;
596    }
597
598    IRBuilder<> Builder(User);
599
600    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
601      // The load is a bit extract from NewAI shifted right by Offset bits.
602      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
603      Value *NewLoadVal
604        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
605      LI->replaceAllUsesWith(NewLoadVal);
606      LI->eraseFromParent();
607      continue;
608    }
609
610    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
611      assert(SI->getOperand(0) != Ptr && "Consistency error!");
612      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
613      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
614                                             Builder);
615      Builder.CreateStore(New, NewAI);
616      SI->eraseFromParent();
617
618      // If the load we just inserted is now dead, then the inserted store
619      // overwrote the entire thing.
620      if (Old->use_empty())
621        Old->eraseFromParent();
622      continue;
623    }
624
625    // If this is a constant sized memset of a constant value (e.g. 0) we can
626    // transform it into a store of the expanded constant value.
627    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
628      assert(MSI->getRawDest() == Ptr && "Consistency error!");
629      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
630      if (NumBytes != 0) {
631        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
632
633        // Compute the value replicated the right number of times.
634        APInt APVal(NumBytes*8, Val);
635
636        // Splat the value if non-zero.
637        if (Val)
638          for (unsigned i = 1; i != NumBytes; ++i)
639            APVal |= APVal << 8;
640
641        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
642        Value *New = ConvertScalar_InsertValue(
643                                    ConstantInt::get(User->getContext(), APVal),
644                                               Old, Offset, Builder);
645        Builder.CreateStore(New, NewAI);
646
647        // If the load we just inserted is now dead, then the memset overwrote
648        // the entire thing.
649        if (Old->use_empty())
650          Old->eraseFromParent();
651      }
652      MSI->eraseFromParent();
653      continue;
654    }
655
656    // If this is a memcpy or memmove into or out of the whole allocation, we
657    // can handle it like a load or store of the scalar type.
658    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
659      assert(Offset == 0 && "must be store to start of alloca");
660
661      // If the source and destination are both to the same alloca, then this is
662      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
663      // as appropriate.
664      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
665
666      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
667        // Dest must be OrigAI, change this to be a load from the original
668        // pointer (bitcasted), then a store to our new alloca.
669        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
670        Value *SrcPtr = MTI->getSource();
671        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
672        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
673        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
674          AIPTy = PointerType::get(AIPTy->getElementType(),
675                                   SPTy->getAddressSpace());
676        }
677        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
678
679        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
680        SrcVal->setAlignment(MTI->getAlignment());
681        Builder.CreateStore(SrcVal, NewAI);
682      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
683        // Src must be OrigAI, change this to be a load from NewAI then a store
684        // through the original dest pointer (bitcasted).
685        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
686        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
687
688        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
689        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
690        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
691          AIPTy = PointerType::get(AIPTy->getElementType(),
692                                   DPTy->getAddressSpace());
693        }
694        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
695
696        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
697        NewStore->setAlignment(MTI->getAlignment());
698      } else {
699        // Noop transfer. Src == Dst
700      }
701
702      MTI->eraseFromParent();
703      continue;
704    }
705
706    llvm_unreachable("Unsupported operation!");
707  }
708}
709
710/// getScaledElementType - Gets a scaled element type for a partial vector
711/// access of an alloca. The input types must be integer or floating-point
712/// scalar or vector types, and the resulting type is an integer, float or
713/// double.
714static const Type *getScaledElementType(const Type *Ty1, const Type *Ty2,
715                                        unsigned NewBitWidth) {
716  bool IsFP1 = Ty1->isFloatingPointTy() ||
717               (Ty1->isVectorTy() &&
718                cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
719  bool IsFP2 = Ty2->isFloatingPointTy() ||
720               (Ty2->isVectorTy() &&
721                cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
722
723  LLVMContext &Context = Ty1->getContext();
724
725  // Prefer floating-point types over integer types, as integer types may have
726  // been created by earlier scalar replacement.
727  if (IsFP1 || IsFP2) {
728    if (NewBitWidth == 32)
729      return Type::getFloatTy(Context);
730    if (NewBitWidth == 64)
731      return Type::getDoubleTy(Context);
732  }
733
734  return Type::getIntNTy(Context, NewBitWidth);
735}
736
737/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
738/// to another vector of the same element type which has the same allocation
739/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
740static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
741                                      IRBuilder<> &Builder) {
742  const Type *FromType = FromVal->getType();
743  const VectorType *FromVTy = cast<VectorType>(FromType);
744  const VectorType *ToVTy = cast<VectorType>(ToType);
745  assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
746         "Vectors must have the same element type");
747   Value *UnV = UndefValue::get(FromType);
748   unsigned numEltsFrom = FromVTy->getNumElements();
749   unsigned numEltsTo = ToVTy->getNumElements();
750
751   SmallVector<Constant*, 3> Args;
752   const Type* Int32Ty = Builder.getInt32Ty();
753   unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
754   unsigned i;
755   for (i=0; i != minNumElts; ++i)
756     Args.push_back(ConstantInt::get(Int32Ty, i));
757
758   if (i < numEltsTo) {
759     Constant* UnC = UndefValue::get(Int32Ty);
760     for (; i != numEltsTo; ++i)
761       Args.push_back(UnC);
762   }
763   Constant *Mask = ConstantVector::get(Args);
764   return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
765}
766
767/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
768/// or vector value FromVal, extracting the bits from the offset specified by
769/// Offset.  This returns the value, which is of type ToType.
770///
771/// This happens when we are converting an "integer union" to a single
772/// integer scalar, or when we are converting a "vector union" to a vector with
773/// insert/extractelement instructions.
774///
775/// Offset is an offset from the original alloca, in bits that need to be
776/// shifted to the right.
777Value *ConvertToScalarInfo::
778ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
779                           uint64_t Offset, IRBuilder<> &Builder) {
780  // If the load is of the whole new alloca, no conversion is needed.
781  const Type *FromType = FromVal->getType();
782  if (FromType == ToType && Offset == 0)
783    return FromVal;
784
785  // If the result alloca is a vector type, this is either an element
786  // access or a bitcast to another vector type of the same size.
787  if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
788    unsigned FromTypeSize = TD.getTypeAllocSize(FromType);
789    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
790    if (FromTypeSize == ToTypeSize) {
791      // If the two types have the same primitive size, use a bit cast.
792      // Otherwise, it is two vectors with the same element type that has
793      // the same allocation size but different number of elements so use
794      // a shuffle vector.
795      if (FromType->getPrimitiveSizeInBits() ==
796          ToType->getPrimitiveSizeInBits())
797        return Builder.CreateBitCast(FromVal, ToType, "tmp");
798      else
799        return CreateShuffleVectorCast(FromVal, ToType, Builder);
800    }
801
802    if (isPowerOf2_64(FromTypeSize / ToTypeSize)) {
803      assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
804             "of a smaller vector type at a nonzero offset.");
805
806      const Type *CastElementTy = getScaledElementType(FromType, ToType,
807                                                       ToTypeSize * 8);
808      unsigned NumCastVectorElements = FromTypeSize / ToTypeSize;
809
810      LLVMContext &Context = FromVal->getContext();
811      const Type *CastTy = VectorType::get(CastElementTy,
812                                           NumCastVectorElements);
813      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
814
815      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
816      unsigned Elt = Offset/EltSize;
817      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
818      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
819                                        Type::getInt32Ty(Context), Elt), "tmp");
820      return Builder.CreateBitCast(Extract, ToType, "tmp");
821    }
822
823    // Otherwise it must be an element access.
824    unsigned Elt = 0;
825    if (Offset) {
826      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
827      Elt = Offset/EltSize;
828      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
829    }
830    // Return the element extracted out of it.
831    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
832                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
833    if (V->getType() != ToType)
834      V = Builder.CreateBitCast(V, ToType, "tmp");
835    return V;
836  }
837
838  // If ToType is a first class aggregate, extract out each of the pieces and
839  // use insertvalue's to form the FCA.
840  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
841    const StructLayout &Layout = *TD.getStructLayout(ST);
842    Value *Res = UndefValue::get(ST);
843    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
844      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
845                                        Offset+Layout.getElementOffsetInBits(i),
846                                              Builder);
847      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
848    }
849    return Res;
850  }
851
852  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
853    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
854    Value *Res = UndefValue::get(AT);
855    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
856      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
857                                              Offset+i*EltSize, Builder);
858      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
859    }
860    return Res;
861  }
862
863  // Otherwise, this must be a union that was converted to an integer value.
864  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
865
866  // If this is a big-endian system and the load is narrower than the
867  // full alloca type, we need to do a shift to get the right bits.
868  int ShAmt = 0;
869  if (TD.isBigEndian()) {
870    // On big-endian machines, the lowest bit is stored at the bit offset
871    // from the pointer given by getTypeStoreSizeInBits.  This matters for
872    // integers with a bitwidth that is not a multiple of 8.
873    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
874            TD.getTypeStoreSizeInBits(ToType) - Offset;
875  } else {
876    ShAmt = Offset;
877  }
878
879  // Note: we support negative bitwidths (with shl) which are not defined.
880  // We do this to support (f.e.) loads off the end of a structure where
881  // only some bits are used.
882  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
883    FromVal = Builder.CreateLShr(FromVal,
884                                 ConstantInt::get(FromVal->getType(),
885                                                           ShAmt), "tmp");
886  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
887    FromVal = Builder.CreateShl(FromVal,
888                                ConstantInt::get(FromVal->getType(),
889                                                          -ShAmt), "tmp");
890
891  // Finally, unconditionally truncate the integer to the right width.
892  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
893  if (LIBitWidth < NTy->getBitWidth())
894    FromVal =
895      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
896                                                    LIBitWidth), "tmp");
897  else if (LIBitWidth > NTy->getBitWidth())
898    FromVal =
899       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
900                                                    LIBitWidth), "tmp");
901
902  // If the result is an integer, this is a trunc or bitcast.
903  if (ToType->isIntegerTy()) {
904    // Should be done.
905  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
906    // Just do a bitcast, we know the sizes match up.
907    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
908  } else {
909    // Otherwise must be a pointer.
910    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
911  }
912  assert(FromVal->getType() == ToType && "Didn't convert right?");
913  return FromVal;
914}
915
916/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
917/// or vector value "Old" at the offset specified by Offset.
918///
919/// This happens when we are converting an "integer union" to a
920/// single integer scalar, or when we are converting a "vector union" to a
921/// vector with insert/extractelement instructions.
922///
923/// Offset is an offset from the original alloca, in bits that need to be
924/// shifted to the right.
925Value *ConvertToScalarInfo::
926ConvertScalar_InsertValue(Value *SV, Value *Old,
927                          uint64_t Offset, IRBuilder<> &Builder) {
928  // Convert the stored type to the actual type, shift it left to insert
929  // then 'or' into place.
930  const Type *AllocaType = Old->getType();
931  LLVMContext &Context = Old->getContext();
932
933  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
934    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
935    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
936
937    // Changing the whole vector with memset or with an access of a different
938    // vector type?
939    if (ValSize == VecSize) {
940      // If the two types have the same primitive size, use a bit cast.
941      // Otherwise, it is two vectors with the same element type that has
942      // the same allocation size but different number of elements so use
943      // a shuffle vector.
944      if (VTy->getPrimitiveSizeInBits() ==
945          SV->getType()->getPrimitiveSizeInBits())
946        return Builder.CreateBitCast(SV, AllocaType, "tmp");
947      else
948        return CreateShuffleVectorCast(SV, VTy, Builder);
949    }
950
951    if (isPowerOf2_64(VecSize / ValSize)) {
952      assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
953             "value of a smaller vector type at a nonzero offset.");
954
955      const Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
956                                                       ValSize);
957      unsigned NumCastVectorElements = VecSize / ValSize;
958
959      LLVMContext &Context = SV->getContext();
960      const Type *OldCastTy = VectorType::get(CastElementTy,
961                                              NumCastVectorElements);
962      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
963
964      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
965
966      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
967      unsigned Elt = Offset/EltSize;
968      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
969      Value *Insert =
970        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
971                                        Type::getInt32Ty(Context), Elt), "tmp");
972      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
973    }
974
975    // Must be an element insertion.
976    assert(SV->getType() == VTy->getElementType());
977    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
978    unsigned Elt = Offset/EltSize;
979    return Builder.CreateInsertElement(Old, SV,
980                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
981                                     "tmp");
982  }
983
984  // If SV is a first-class aggregate value, insert each value recursively.
985  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
986    const StructLayout &Layout = *TD.getStructLayout(ST);
987    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
988      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
989      Old = ConvertScalar_InsertValue(Elt, Old,
990                                      Offset+Layout.getElementOffsetInBits(i),
991                                      Builder);
992    }
993    return Old;
994  }
995
996  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
997    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
998    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
999      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1000      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1001    }
1002    return Old;
1003  }
1004
1005  // If SV is a float, convert it to the appropriate integer type.
1006  // If it is a pointer, do the same.
1007  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1008  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
1009  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
1010  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
1011  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
1012    SV = Builder.CreateBitCast(SV,
1013                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
1014  else if (SV->getType()->isPointerTy())
1015    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
1016
1017  // Zero extend or truncate the value if needed.
1018  if (SV->getType() != AllocaType) {
1019    if (SV->getType()->getPrimitiveSizeInBits() <
1020             AllocaType->getPrimitiveSizeInBits())
1021      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1022    else {
1023      // Truncation may be needed if storing more than the alloca can hold
1024      // (undefined behavior).
1025      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1026      SrcWidth = DestWidth;
1027      SrcStoreWidth = DestStoreWidth;
1028    }
1029  }
1030
1031  // If this is a big-endian system and the store is narrower than the
1032  // full alloca type, we need to do a shift to get the right bits.
1033  int ShAmt = 0;
1034  if (TD.isBigEndian()) {
1035    // On big-endian machines, the lowest bit is stored at the bit offset
1036    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1037    // integers with a bitwidth that is not a multiple of 8.
1038    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1039  } else {
1040    ShAmt = Offset;
1041  }
1042
1043  // Note: we support negative bitwidths (with shr) which are not defined.
1044  // We do this to support (f.e.) stores off the end of a structure where
1045  // only some bits in the structure are set.
1046  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1047  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1048    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1049                           ShAmt), "tmp");
1050    Mask <<= ShAmt;
1051  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1052    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1053                            -ShAmt), "tmp");
1054    Mask = Mask.lshr(-ShAmt);
1055  }
1056
1057  // Mask out the bits we are about to insert from the old value, and or
1058  // in the new bits.
1059  if (SrcWidth != DestWidth) {
1060    assert(DestWidth > SrcWidth);
1061    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1062    SV = Builder.CreateOr(Old, SV, "ins");
1063  }
1064  return SV;
1065}
1066
1067
1068//===----------------------------------------------------------------------===//
1069// SRoA Driver
1070//===----------------------------------------------------------------------===//
1071
1072
1073bool SROA::runOnFunction(Function &F) {
1074  TD = getAnalysisIfAvailable<TargetData>();
1075
1076  bool Changed = performPromotion(F);
1077
1078  // FIXME: ScalarRepl currently depends on TargetData more than it
1079  // theoretically needs to. It should be refactored in order to support
1080  // target-independent IR. Until this is done, just skip the actual
1081  // scalar-replacement portion of this pass.
1082  if (!TD) return Changed;
1083
1084  while (1) {
1085    bool LocalChange = performScalarRepl(F);
1086    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1087    Changed = true;
1088    LocalChange = performPromotion(F);
1089    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1090  }
1091
1092  return Changed;
1093}
1094
1095namespace {
1096class AllocaPromoter : public LoadAndStorePromoter {
1097  AllocaInst *AI;
1098  DIBuilder *DIB;
1099  SmallVector<DbgDeclareInst *, 4> DDIs;
1100  SmallVector<DbgValueInst *, 4> DVIs;
1101public:
1102  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1103                 DIBuilder *DB)
1104    : LoadAndStorePromoter(Insts, S), AI(0), DIB(DB) {}
1105
1106  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1107    // Remember which alloca we're promoting (for isInstInList).
1108    this->AI = AI;
1109    if (MDNode *DebugNode = MDNode::getIfExists(AI->getContext(), AI))
1110      for (Value::use_iterator UI = DebugNode->use_begin(),
1111             E = DebugNode->use_end(); UI != E; ++UI)
1112        if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI))
1113          DDIs.push_back(DDI);
1114        else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI))
1115          DVIs.push_back(DVI);
1116
1117    LoadAndStorePromoter::run(Insts);
1118    AI->eraseFromParent();
1119    for (SmallVector<DbgDeclareInst *, 4>::iterator I = DDIs.begin(),
1120           E = DDIs.end(); I != E; ++I) {
1121      DbgDeclareInst *DDI = *I;
1122      DDI->eraseFromParent();
1123    }
1124    for (SmallVector<DbgValueInst *, 4>::iterator I = DVIs.begin(),
1125           E = DVIs.end(); I != E; ++I) {
1126      DbgValueInst *DVI = *I;
1127      DVI->eraseFromParent();
1128    }
1129  }
1130
1131  virtual bool isInstInList(Instruction *I,
1132                            const SmallVectorImpl<Instruction*> &Insts) const {
1133    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1134      return LI->getOperand(0) == AI;
1135    return cast<StoreInst>(I)->getPointerOperand() == AI;
1136  }
1137
1138  virtual void updateDebugInfo(Instruction *Inst) const {
1139    for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(),
1140           E = DDIs.end(); I != E; ++I) {
1141      DbgDeclareInst *DDI = *I;
1142      if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
1143        ConvertDebugDeclareToDebugValue(DDI, SI, *DIB);
1144      else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
1145        ConvertDebugDeclareToDebugValue(DDI, LI, *DIB);
1146    }
1147    for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(),
1148           E = DVIs.end(); I != E; ++I) {
1149      DbgValueInst *DVI = *I;
1150      if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
1151        Instruction *DbgVal = NULL;
1152        // If an argument is zero extended then use argument directly. The ZExt
1153        // may be zapped by an optimization pass in future.
1154        Argument *ExtendedArg = NULL;
1155        if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1156          ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1157        if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1158          ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1159        if (ExtendedArg)
1160          DbgVal = DIB->insertDbgValueIntrinsic(ExtendedArg, 0,
1161                                                DIVariable(DVI->getVariable()),
1162                                                SI);
1163        else
1164          DbgVal = DIB->insertDbgValueIntrinsic(SI->getOperand(0), 0,
1165                                                DIVariable(DVI->getVariable()),
1166                                                SI);
1167        DbgVal->setDebugLoc(DVI->getDebugLoc());
1168      } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
1169        Instruction *DbgVal =
1170          DIB->insertDbgValueIntrinsic(LI->getOperand(0), 0,
1171                                       DIVariable(DVI->getVariable()), LI);
1172        DbgVal->setDebugLoc(DVI->getDebugLoc());
1173      }
1174    }
1175  }
1176};
1177} // end anon namespace
1178
1179/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1180/// subsequently loaded can be rewritten to load both input pointers and then
1181/// select between the result, allowing the load of the alloca to be promoted.
1182/// From this:
1183///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1184///   %V = load i32* %P2
1185/// to:
1186///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1187///   %V2 = load i32* %Other
1188///   %V = select i1 %cond, i32 %V1, i32 %V2
1189///
1190/// We can do this to a select if its only uses are loads and if the operand to
1191/// the select can be loaded unconditionally.
1192static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1193  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1194  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1195
1196  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1197       UI != UE; ++UI) {
1198    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1199    if (LI == 0 || LI->isVolatile()) return false;
1200
1201    // Both operands to the select need to be dereferencable, either absolutely
1202    // (e.g. allocas) or at this point because we can see other accesses to it.
1203    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1204                                                    LI->getAlignment(), TD))
1205      return false;
1206    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1207                                                    LI->getAlignment(), TD))
1208      return false;
1209  }
1210
1211  return true;
1212}
1213
1214/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1215/// subsequently loaded can be rewritten to load both input pointers in the pred
1216/// blocks and then PHI the results, allowing the load of the alloca to be
1217/// promoted.
1218/// From this:
1219///   %P2 = phi [i32* %Alloca, i32* %Other]
1220///   %V = load i32* %P2
1221/// to:
1222///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1223///   ...
1224///   %V2 = load i32* %Other
1225///   ...
1226///   %V = phi [i32 %V1, i32 %V2]
1227///
1228/// We can do this to a select if its only uses are loads and if the operand to
1229/// the select can be loaded unconditionally.
1230static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1231  // For now, we can only do this promotion if the load is in the same block as
1232  // the PHI, and if there are no stores between the phi and load.
1233  // TODO: Allow recursive phi users.
1234  // TODO: Allow stores.
1235  BasicBlock *BB = PN->getParent();
1236  unsigned MaxAlign = 0;
1237  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1238       UI != UE; ++UI) {
1239    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1240    if (LI == 0 || LI->isVolatile()) return false;
1241
1242    // For now we only allow loads in the same block as the PHI.  This is a
1243    // common case that happens when instcombine merges two loads through a PHI.
1244    if (LI->getParent() != BB) return false;
1245
1246    // Ensure that there are no instructions between the PHI and the load that
1247    // could store.
1248    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1249      if (BBI->mayWriteToMemory())
1250        return false;
1251
1252    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1253  }
1254
1255  // Okay, we know that we have one or more loads in the same block as the PHI.
1256  // We can transform this if it is safe to push the loads into the predecessor
1257  // blocks.  The only thing to watch out for is that we can't put a possibly
1258  // trapping load in the predecessor if it is a critical edge.
1259  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1260    BasicBlock *Pred = PN->getIncomingBlock(i);
1261
1262    // If the predecessor has a single successor, then the edge isn't critical.
1263    if (Pred->getTerminator()->getNumSuccessors() == 1)
1264      continue;
1265
1266    Value *InVal = PN->getIncomingValue(i);
1267
1268    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1269    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1270      if (II->getParent() == Pred)
1271        return false;
1272
1273    // If this pointer is always safe to load, or if we can prove that there is
1274    // already a load in the block, then we can move the load to the pred block.
1275    if (InVal->isDereferenceablePointer() ||
1276        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1277      continue;
1278
1279    return false;
1280  }
1281
1282  return true;
1283}
1284
1285
1286/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1287/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1288/// not quite there, this will transform the code to allow promotion.  As such,
1289/// it is a non-pure predicate.
1290static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1291  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1292            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1293
1294  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1295       UI != UE; ++UI) {
1296    User *U = *UI;
1297    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1298      if (LI->isVolatile())
1299        return false;
1300      continue;
1301    }
1302
1303    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1304      if (SI->getOperand(0) == AI || SI->isVolatile())
1305        return false;   // Don't allow a store OF the AI, only INTO the AI.
1306      continue;
1307    }
1308
1309    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1310      // If the condition being selected on is a constant, fold the select, yes
1311      // this does (rarely) happen early on.
1312      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1313        Value *Result = SI->getOperand(1+CI->isZero());
1314        SI->replaceAllUsesWith(Result);
1315        SI->eraseFromParent();
1316
1317        // This is very rare and we just scrambled the use list of AI, start
1318        // over completely.
1319        return tryToMakeAllocaBePromotable(AI, TD);
1320      }
1321
1322      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1323      // loads, then we can transform this by rewriting the select.
1324      if (!isSafeSelectToSpeculate(SI, TD))
1325        return false;
1326
1327      InstsToRewrite.insert(SI);
1328      continue;
1329    }
1330
1331    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1332      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1333        InstsToRewrite.insert(PN);
1334        continue;
1335      }
1336
1337      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1338      // in the pred blocks, then we can transform this by rewriting the PHI.
1339      if (!isSafePHIToSpeculate(PN, TD))
1340        return false;
1341
1342      InstsToRewrite.insert(PN);
1343      continue;
1344    }
1345
1346    return false;
1347  }
1348
1349  // If there are no instructions to rewrite, then all uses are load/stores and
1350  // we're done!
1351  if (InstsToRewrite.empty())
1352    return true;
1353
1354  // If we have instructions that need to be rewritten for this to be promotable
1355  // take care of it now.
1356  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1357    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1358      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1359      // loads with a new select.
1360      while (!SI->use_empty()) {
1361        LoadInst *LI = cast<LoadInst>(SI->use_back());
1362
1363        IRBuilder<> Builder(LI);
1364        LoadInst *TrueLoad =
1365          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1366        LoadInst *FalseLoad =
1367          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".f");
1368
1369        // Transfer alignment and TBAA info if present.
1370        TrueLoad->setAlignment(LI->getAlignment());
1371        FalseLoad->setAlignment(LI->getAlignment());
1372        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1373          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1374          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1375        }
1376
1377        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1378        V->takeName(LI);
1379        LI->replaceAllUsesWith(V);
1380        LI->eraseFromParent();
1381      }
1382
1383      // Now that all the loads are gone, the select is gone too.
1384      SI->eraseFromParent();
1385      continue;
1386    }
1387
1388    // Otherwise, we have a PHI node which allows us to push the loads into the
1389    // predecessors.
1390    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1391    if (PN->use_empty()) {
1392      PN->eraseFromParent();
1393      continue;
1394    }
1395
1396    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1397    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1398                                     PN->getName()+".ld", PN);
1399
1400    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1401    // matter which one we get and if any differ, it doesn't matter.
1402    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1403    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1404    unsigned Align = SomeLoad->getAlignment();
1405
1406    // Rewrite all loads of the PN to use the new PHI.
1407    while (!PN->use_empty()) {
1408      LoadInst *LI = cast<LoadInst>(PN->use_back());
1409      LI->replaceAllUsesWith(NewPN);
1410      LI->eraseFromParent();
1411    }
1412
1413    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1414    // insert them into in case we have multiple edges from the same block.
1415    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1416
1417    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1418      BasicBlock *Pred = PN->getIncomingBlock(i);
1419      LoadInst *&Load = InsertedLoads[Pred];
1420      if (Load == 0) {
1421        Load = new LoadInst(PN->getIncomingValue(i),
1422                            PN->getName() + "." + Pred->getName(),
1423                            Pred->getTerminator());
1424        Load->setAlignment(Align);
1425        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1426      }
1427
1428      NewPN->addIncoming(Load, Pred);
1429    }
1430
1431    PN->eraseFromParent();
1432  }
1433
1434  ++NumAdjusted;
1435  return true;
1436}
1437
1438bool SROA::performPromotion(Function &F) {
1439  std::vector<AllocaInst*> Allocas;
1440  DominatorTree *DT = 0;
1441  if (HasDomTree)
1442    DT = &getAnalysis<DominatorTree>();
1443
1444  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1445  DIBuilder DIB(*F.getParent());
1446  bool Changed = false;
1447  SmallVector<Instruction*, 64> Insts;
1448  while (1) {
1449    Allocas.clear();
1450
1451    // Find allocas that are safe to promote, by looking at all instructions in
1452    // the entry node
1453    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1454      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1455        if (tryToMakeAllocaBePromotable(AI, TD))
1456          Allocas.push_back(AI);
1457
1458    if (Allocas.empty()) break;
1459
1460    if (HasDomTree)
1461      PromoteMemToReg(Allocas, *DT);
1462    else {
1463      SSAUpdater SSA;
1464      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1465        AllocaInst *AI = Allocas[i];
1466
1467        // Build list of instructions to promote.
1468        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1469             UI != E; ++UI)
1470          Insts.push_back(cast<Instruction>(*UI));
1471        AllocaPromoter(Insts, SSA, &DIB).run(AI, Insts);
1472        Insts.clear();
1473      }
1474    }
1475    NumPromoted += Allocas.size();
1476    Changed = true;
1477  }
1478
1479  return Changed;
1480}
1481
1482
1483/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1484/// SROA.  It must be a struct or array type with a small number of elements.
1485static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1486  const Type *T = AI->getAllocatedType();
1487  // Do not promote any struct into more than 32 separate vars.
1488  if (const StructType *ST = dyn_cast<StructType>(T))
1489    return ST->getNumElements() <= 32;
1490  // Arrays are much less likely to be safe for SROA; only consider
1491  // them if they are very small.
1492  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1493    return AT->getNumElements() <= 8;
1494  return false;
1495}
1496
1497
1498// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1499// which runs on all of the alloca instructions in the function, removing them
1500// if they are only used by getelementptr instructions.
1501//
1502bool SROA::performScalarRepl(Function &F) {
1503  std::vector<AllocaInst*> WorkList;
1504
1505  // Scan the entry basic block, adding allocas to the worklist.
1506  BasicBlock &BB = F.getEntryBlock();
1507  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1508    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1509      WorkList.push_back(A);
1510
1511  // Process the worklist
1512  bool Changed = false;
1513  while (!WorkList.empty()) {
1514    AllocaInst *AI = WorkList.back();
1515    WorkList.pop_back();
1516
1517    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1518    // with unused elements.
1519    if (AI->use_empty()) {
1520      AI->eraseFromParent();
1521      Changed = true;
1522      continue;
1523    }
1524
1525    // If this alloca is impossible for us to promote, reject it early.
1526    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1527      continue;
1528
1529    // Check to see if this allocation is only modified by a memcpy/memmove from
1530    // a constant global.  If this is the case, we can change all users to use
1531    // the constant global instead.  This is commonly produced by the CFE by
1532    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1533    // is only subsequently read.
1534    SmallVector<Instruction *, 4> ToDelete;
1535    if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(AI, ToDelete)) {
1536      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1537      DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
1538      for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
1539        ToDelete[i]->eraseFromParent();
1540      Constant *TheSrc = cast<Constant>(Copy->getSource());
1541      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1542      Copy->eraseFromParent();  // Don't mutate the global.
1543      AI->eraseFromParent();
1544      ++NumGlobals;
1545      Changed = true;
1546      continue;
1547    }
1548
1549    // Check to see if we can perform the core SROA transformation.  We cannot
1550    // transform the allocation instruction if it is an array allocation
1551    // (allocations OF arrays are ok though), and an allocation of a scalar
1552    // value cannot be decomposed at all.
1553    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1554
1555    // Do not promote [0 x %struct].
1556    if (AllocaSize == 0) continue;
1557
1558    // Do not promote any struct whose size is too big.
1559    if (AllocaSize > SRThreshold) continue;
1560
1561    // If the alloca looks like a good candidate for scalar replacement, and if
1562    // all its users can be transformed, then split up the aggregate into its
1563    // separate elements.
1564    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1565      DoScalarReplacement(AI, WorkList);
1566      Changed = true;
1567      continue;
1568    }
1569
1570    // If we can turn this aggregate value (potentially with casts) into a
1571    // simple scalar value that can be mem2reg'd into a register value.
1572    // IsNotTrivial tracks whether this is something that mem2reg could have
1573    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1574    // that we can't just check based on the type: the alloca may be of an i32
1575    // but that has pointer arithmetic to set byte 3 of it or something.
1576    if (AllocaInst *NewAI =
1577          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1578      NewAI->takeName(AI);
1579      AI->eraseFromParent();
1580      ++NumConverted;
1581      Changed = true;
1582      continue;
1583    }
1584
1585    // Otherwise, couldn't process this alloca.
1586  }
1587
1588  return Changed;
1589}
1590
1591/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1592/// predicate, do SROA now.
1593void SROA::DoScalarReplacement(AllocaInst *AI,
1594                               std::vector<AllocaInst*> &WorkList) {
1595  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1596  SmallVector<AllocaInst*, 32> ElementAllocas;
1597  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1598    ElementAllocas.reserve(ST->getNumContainedTypes());
1599    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1600      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1601                                      AI->getAlignment(),
1602                                      AI->getName() + "." + Twine(i), AI);
1603      ElementAllocas.push_back(NA);
1604      WorkList.push_back(NA);  // Add to worklist for recursive processing
1605    }
1606  } else {
1607    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1608    ElementAllocas.reserve(AT->getNumElements());
1609    const Type *ElTy = AT->getElementType();
1610    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1611      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1612                                      AI->getName() + "." + Twine(i), AI);
1613      ElementAllocas.push_back(NA);
1614      WorkList.push_back(NA);  // Add to worklist for recursive processing
1615    }
1616  }
1617
1618  // Now that we have created the new alloca instructions, rewrite all the
1619  // uses of the old alloca.
1620  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1621
1622  // Now erase any instructions that were made dead while rewriting the alloca.
1623  DeleteDeadInstructions();
1624  AI->eraseFromParent();
1625
1626  ++NumReplaced;
1627}
1628
1629/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1630/// recursively including all their operands that become trivially dead.
1631void SROA::DeleteDeadInstructions() {
1632  while (!DeadInsts.empty()) {
1633    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1634
1635    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1636      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1637        // Zero out the operand and see if it becomes trivially dead.
1638        // (But, don't add allocas to the dead instruction list -- they are
1639        // already on the worklist and will be deleted separately.)
1640        *OI = 0;
1641        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1642          DeadInsts.push_back(U);
1643      }
1644
1645    I->eraseFromParent();
1646  }
1647}
1648
1649/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1650/// performing scalar replacement of alloca AI.  The results are flagged in
1651/// the Info parameter.  Offset indicates the position within AI that is
1652/// referenced by this instruction.
1653void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1654                               AllocaInfo &Info) {
1655  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1656    Instruction *User = cast<Instruction>(*UI);
1657
1658    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1659      isSafeForScalarRepl(BC, Offset, Info);
1660    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1661      uint64_t GEPOffset = Offset;
1662      isSafeGEP(GEPI, GEPOffset, Info);
1663      if (!Info.isUnsafe)
1664        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1665    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1666      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1667      if (Length == 0)
1668        return MarkUnsafe(Info, User);
1669      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1670                      UI.getOperandNo() == 0, Info, MI,
1671                      true /*AllowWholeAccess*/);
1672    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1673      if (LI->isVolatile())
1674        return MarkUnsafe(Info, User);
1675      const Type *LIType = LI->getType();
1676      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1677                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1678      Info.hasALoadOrStore = true;
1679
1680    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1681      // Store is ok if storing INTO the pointer, not storing the pointer
1682      if (SI->isVolatile() || SI->getOperand(0) == I)
1683        return MarkUnsafe(Info, User);
1684
1685      const Type *SIType = SI->getOperand(0)->getType();
1686      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1687                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1688      Info.hasALoadOrStore = true;
1689    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1690      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1691    } else {
1692      return MarkUnsafe(Info, User);
1693    }
1694    if (Info.isUnsafe) return;
1695  }
1696}
1697
1698
1699/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1700/// derived from the alloca, we can often still split the alloca into elements.
1701/// This is useful if we have a large alloca where one element is phi'd
1702/// together somewhere: we can SRoA and promote all the other elements even if
1703/// we end up not being able to promote this one.
1704///
1705/// All we require is that the uses of the PHI do not index into other parts of
1706/// the alloca.  The most important use case for this is single load and stores
1707/// that are PHI'd together, which can happen due to code sinking.
1708void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1709                                           AllocaInfo &Info) {
1710  // If we've already checked this PHI, don't do it again.
1711  if (PHINode *PN = dyn_cast<PHINode>(I))
1712    if (!Info.CheckedPHIs.insert(PN))
1713      return;
1714
1715  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1716    Instruction *User = cast<Instruction>(*UI);
1717
1718    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1719      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1720    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1721      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1722      // but would have to prove that we're staying inside of an element being
1723      // promoted.
1724      if (!GEPI->hasAllZeroIndices())
1725        return MarkUnsafe(Info, User);
1726      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1727    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1728      if (LI->isVolatile())
1729        return MarkUnsafe(Info, User);
1730      const Type *LIType = LI->getType();
1731      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1732                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1733      Info.hasALoadOrStore = true;
1734
1735    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1736      // Store is ok if storing INTO the pointer, not storing the pointer
1737      if (SI->isVolatile() || SI->getOperand(0) == I)
1738        return MarkUnsafe(Info, User);
1739
1740      const Type *SIType = SI->getOperand(0)->getType();
1741      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1742                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1743      Info.hasALoadOrStore = true;
1744    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1745      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1746    } else {
1747      return MarkUnsafe(Info, User);
1748    }
1749    if (Info.isUnsafe) return;
1750  }
1751}
1752
1753/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1754/// replacement.  It is safe when all the indices are constant, in-bounds
1755/// references, and when the resulting offset corresponds to an element within
1756/// the alloca type.  The results are flagged in the Info parameter.  Upon
1757/// return, Offset is adjusted as specified by the GEP indices.
1758void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1759                     uint64_t &Offset, AllocaInfo &Info) {
1760  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1761  if (GEPIt == E)
1762    return;
1763
1764  // Walk through the GEP type indices, checking the types that this indexes
1765  // into.
1766  for (; GEPIt != E; ++GEPIt) {
1767    // Ignore struct elements, no extra checking needed for these.
1768    if ((*GEPIt)->isStructTy())
1769      continue;
1770
1771    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1772    if (!IdxVal)
1773      return MarkUnsafe(Info, GEPI);
1774  }
1775
1776  // Compute the offset due to this GEP and check if the alloca has a
1777  // component element at that offset.
1778  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1779  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1780                                 &Indices[0], Indices.size());
1781  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1782    MarkUnsafe(Info, GEPI);
1783}
1784
1785/// isHomogeneousAggregate - Check if type T is a struct or array containing
1786/// elements of the same type (which is always true for arrays).  If so,
1787/// return true with NumElts and EltTy set to the number of elements and the
1788/// element type, respectively.
1789static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1790                                   const Type *&EltTy) {
1791  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1792    NumElts = AT->getNumElements();
1793    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1794    return true;
1795  }
1796  if (const StructType *ST = dyn_cast<StructType>(T)) {
1797    NumElts = ST->getNumContainedTypes();
1798    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1799    for (unsigned n = 1; n < NumElts; ++n) {
1800      if (ST->getContainedType(n) != EltTy)
1801        return false;
1802    }
1803    return true;
1804  }
1805  return false;
1806}
1807
1808/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1809/// "homogeneous" aggregates with the same element type and number of elements.
1810static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1811  if (T1 == T2)
1812    return true;
1813
1814  unsigned NumElts1, NumElts2;
1815  const Type *EltTy1, *EltTy2;
1816  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1817      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1818      NumElts1 == NumElts2 &&
1819      EltTy1 == EltTy2)
1820    return true;
1821
1822  return false;
1823}
1824
1825/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1826/// alloca or has an offset and size that corresponds to a component element
1827/// within it.  The offset checked here may have been formed from a GEP with a
1828/// pointer bitcasted to a different type.
1829///
1830/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1831/// unit.  If false, it only allows accesses known to be in a single element.
1832void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1833                           const Type *MemOpType, bool isStore,
1834                           AllocaInfo &Info, Instruction *TheAccess,
1835                           bool AllowWholeAccess) {
1836  // Check if this is a load/store of the entire alloca.
1837  if (Offset == 0 && AllowWholeAccess &&
1838      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1839    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1840    // loads/stores (which are essentially the same as the MemIntrinsics with
1841    // regard to copying padding between elements).  But, if an alloca is
1842    // flagged as both a source and destination of such operations, we'll need
1843    // to check later for padding between elements.
1844    if (!MemOpType || MemOpType->isIntegerTy()) {
1845      if (isStore)
1846        Info.isMemCpyDst = true;
1847      else
1848        Info.isMemCpySrc = true;
1849      return;
1850    }
1851    // This is also safe for references using a type that is compatible with
1852    // the type of the alloca, so that loads/stores can be rewritten using
1853    // insertvalue/extractvalue.
1854    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1855      Info.hasSubelementAccess = true;
1856      return;
1857    }
1858  }
1859  // Check if the offset/size correspond to a component within the alloca type.
1860  const Type *T = Info.AI->getAllocatedType();
1861  if (TypeHasComponent(T, Offset, MemSize)) {
1862    Info.hasSubelementAccess = true;
1863    return;
1864  }
1865
1866  return MarkUnsafe(Info, TheAccess);
1867}
1868
1869/// TypeHasComponent - Return true if T has a component type with the
1870/// specified offset and size.  If Size is zero, do not check the size.
1871bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1872  const Type *EltTy;
1873  uint64_t EltSize;
1874  if (const StructType *ST = dyn_cast<StructType>(T)) {
1875    const StructLayout *Layout = TD->getStructLayout(ST);
1876    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1877    EltTy = ST->getContainedType(EltIdx);
1878    EltSize = TD->getTypeAllocSize(EltTy);
1879    Offset -= Layout->getElementOffset(EltIdx);
1880  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1881    EltTy = AT->getElementType();
1882    EltSize = TD->getTypeAllocSize(EltTy);
1883    if (Offset >= AT->getNumElements() * EltSize)
1884      return false;
1885    Offset %= EltSize;
1886  } else {
1887    return false;
1888  }
1889  if (Offset == 0 && (Size == 0 || EltSize == Size))
1890    return true;
1891  // Check if the component spans multiple elements.
1892  if (Offset + Size > EltSize)
1893    return false;
1894  return TypeHasComponent(EltTy, Offset, Size);
1895}
1896
1897/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1898/// the instruction I, which references it, to use the separate elements.
1899/// Offset indicates the position within AI that is referenced by this
1900/// instruction.
1901void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1902                                SmallVector<AllocaInst*, 32> &NewElts) {
1903  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1904    Use &TheUse = UI.getUse();
1905    Instruction *User = cast<Instruction>(*UI++);
1906
1907    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1908      RewriteBitCast(BC, AI, Offset, NewElts);
1909      continue;
1910    }
1911
1912    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1913      RewriteGEP(GEPI, AI, Offset, NewElts);
1914      continue;
1915    }
1916
1917    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1918      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1919      uint64_t MemSize = Length->getZExtValue();
1920      if (Offset == 0 &&
1921          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1922        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1923      // Otherwise the intrinsic can only touch a single element and the
1924      // address operand will be updated, so nothing else needs to be done.
1925      continue;
1926    }
1927
1928    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1929      const Type *LIType = LI->getType();
1930
1931      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1932        // Replace:
1933        //   %res = load { i32, i32 }* %alloc
1934        // with:
1935        //   %load.0 = load i32* %alloc.0
1936        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1937        //   %load.1 = load i32* %alloc.1
1938        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1939        // (Also works for arrays instead of structs)
1940        Value *Insert = UndefValue::get(LIType);
1941        IRBuilder<> Builder(LI);
1942        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1943          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1944          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1945        }
1946        LI->replaceAllUsesWith(Insert);
1947        DeadInsts.push_back(LI);
1948      } else if (LIType->isIntegerTy() &&
1949                 TD->getTypeAllocSize(LIType) ==
1950                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1951        // If this is a load of the entire alloca to an integer, rewrite it.
1952        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1953      }
1954      continue;
1955    }
1956
1957    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1958      Value *Val = SI->getOperand(0);
1959      const Type *SIType = Val->getType();
1960      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1961        // Replace:
1962        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1963        // with:
1964        //   %val.0 = extractvalue { i32, i32 } %val, 0
1965        //   store i32 %val.0, i32* %alloc.0
1966        //   %val.1 = extractvalue { i32, i32 } %val, 1
1967        //   store i32 %val.1, i32* %alloc.1
1968        // (Also works for arrays instead of structs)
1969        IRBuilder<> Builder(SI);
1970        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1971          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1972          Builder.CreateStore(Extract, NewElts[i]);
1973        }
1974        DeadInsts.push_back(SI);
1975      } else if (SIType->isIntegerTy() &&
1976                 TD->getTypeAllocSize(SIType) ==
1977                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1978        // If this is a store of the entire alloca from an integer, rewrite it.
1979        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1980      }
1981      continue;
1982    }
1983
1984    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1985      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1986      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1987      // the new pointer.
1988      if (!isa<AllocaInst>(I)) continue;
1989
1990      assert(Offset == 0 && NewElts[0] &&
1991             "Direct alloca use should have a zero offset");
1992
1993      // If we have a use of the alloca, we know the derived uses will be
1994      // utilizing just the first element of the scalarized result.  Insert a
1995      // bitcast of the first alloca before the user as required.
1996      AllocaInst *NewAI = NewElts[0];
1997      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1998      NewAI->moveBefore(BCI);
1999      TheUse = BCI;
2000      continue;
2001    }
2002  }
2003}
2004
2005/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
2006/// and recursively continue updating all of its uses.
2007void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
2008                          SmallVector<AllocaInst*, 32> &NewElts) {
2009  RewriteForScalarRepl(BC, AI, Offset, NewElts);
2010  if (BC->getOperand(0) != AI)
2011    return;
2012
2013  // The bitcast references the original alloca.  Replace its uses with
2014  // references to the first new element alloca.
2015  Instruction *Val = NewElts[0];
2016  if (Val->getType() != BC->getDestTy()) {
2017    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
2018    Val->takeName(BC);
2019  }
2020  BC->replaceAllUsesWith(Val);
2021  DeadInsts.push_back(BC);
2022}
2023
2024/// FindElementAndOffset - Return the index of the element containing Offset
2025/// within the specified type, which must be either a struct or an array.
2026/// Sets T to the type of the element and Offset to the offset within that
2027/// element.  IdxTy is set to the type of the index result to be used in a
2028/// GEP instruction.
2029uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
2030                                    const Type *&IdxTy) {
2031  uint64_t Idx = 0;
2032  if (const StructType *ST = dyn_cast<StructType>(T)) {
2033    const StructLayout *Layout = TD->getStructLayout(ST);
2034    Idx = Layout->getElementContainingOffset(Offset);
2035    T = ST->getContainedType(Idx);
2036    Offset -= Layout->getElementOffset(Idx);
2037    IdxTy = Type::getInt32Ty(T->getContext());
2038    return Idx;
2039  }
2040  const ArrayType *AT = cast<ArrayType>(T);
2041  T = AT->getElementType();
2042  uint64_t EltSize = TD->getTypeAllocSize(T);
2043  Idx = Offset / EltSize;
2044  Offset -= Idx * EltSize;
2045  IdxTy = Type::getInt64Ty(T->getContext());
2046  return Idx;
2047}
2048
2049/// RewriteGEP - Check if this GEP instruction moves the pointer across
2050/// elements of the alloca that are being split apart, and if so, rewrite
2051/// the GEP to be relative to the new element.
2052void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
2053                      SmallVector<AllocaInst*, 32> &NewElts) {
2054  uint64_t OldOffset = Offset;
2055  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
2056  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
2057                                 &Indices[0], Indices.size());
2058
2059  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
2060
2061  const Type *T = AI->getAllocatedType();
2062  const Type *IdxTy;
2063  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
2064  if (GEPI->getOperand(0) == AI)
2065    OldIdx = ~0ULL; // Force the GEP to be rewritten.
2066
2067  T = AI->getAllocatedType();
2068  uint64_t EltOffset = Offset;
2069  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
2070
2071  // If this GEP does not move the pointer across elements of the alloca
2072  // being split, then it does not needs to be rewritten.
2073  if (Idx == OldIdx)
2074    return;
2075
2076  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
2077  SmallVector<Value*, 8> NewArgs;
2078  NewArgs.push_back(Constant::getNullValue(i32Ty));
2079  while (EltOffset != 0) {
2080    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
2081    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
2082  }
2083  Instruction *Val = NewElts[Idx];
2084  if (NewArgs.size() > 1) {
2085    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
2086                                            NewArgs.end(), "", GEPI);
2087    Val->takeName(GEPI);
2088  }
2089  if (Val->getType() != GEPI->getType())
2090    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
2091  GEPI->replaceAllUsesWith(Val);
2092  DeadInsts.push_back(GEPI);
2093}
2094
2095/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
2096/// Rewrite it to copy or set the elements of the scalarized memory.
2097void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2098                                        AllocaInst *AI,
2099                                        SmallVector<AllocaInst*, 32> &NewElts) {
2100  // If this is a memcpy/memmove, construct the other pointer as the
2101  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2102  // that doesn't have anything to do with the alloca that we are promoting. For
2103  // memset, this Value* stays null.
2104  Value *OtherPtr = 0;
2105  unsigned MemAlignment = MI->getAlignment();
2106  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2107    if (Inst == MTI->getRawDest())
2108      OtherPtr = MTI->getRawSource();
2109    else {
2110      assert(Inst == MTI->getRawSource());
2111      OtherPtr = MTI->getRawDest();
2112    }
2113  }
2114
2115  // If there is an other pointer, we want to convert it to the same pointer
2116  // type as AI has, so we can GEP through it safely.
2117  if (OtherPtr) {
2118    unsigned AddrSpace =
2119      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2120
2121    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2122    // optimization, but it's also required to detect the corner case where
2123    // both pointer operands are referencing the same memory, and where
2124    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2125    // function is only called for mem intrinsics that access the whole
2126    // aggregate, so non-zero GEPs are not an issue here.)
2127    OtherPtr = OtherPtr->stripPointerCasts();
2128
2129    // Copying the alloca to itself is a no-op: just delete it.
2130    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2131      // This code will run twice for a no-op memcpy -- once for each operand.
2132      // Put only one reference to MI on the DeadInsts list.
2133      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2134             E = DeadInsts.end(); I != E; ++I)
2135        if (*I == MI) return;
2136      DeadInsts.push_back(MI);
2137      return;
2138    }
2139
2140    // If the pointer is not the right type, insert a bitcast to the right
2141    // type.
2142    const Type *NewTy =
2143      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2144
2145    if (OtherPtr->getType() != NewTy)
2146      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2147  }
2148
2149  // Process each element of the aggregate.
2150  bool SROADest = MI->getRawDest() == Inst;
2151
2152  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2153
2154  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2155    // If this is a memcpy/memmove, emit a GEP of the other element address.
2156    Value *OtherElt = 0;
2157    unsigned OtherEltAlign = MemAlignment;
2158
2159    if (OtherPtr) {
2160      Value *Idx[2] = { Zero,
2161                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2162      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
2163                                              OtherPtr->getName()+"."+Twine(i),
2164                                                   MI);
2165      uint64_t EltOffset;
2166      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2167      const Type *OtherTy = OtherPtrTy->getElementType();
2168      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
2169        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2170      } else {
2171        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2172        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2173      }
2174
2175      // The alignment of the other pointer is the guaranteed alignment of the
2176      // element, which is affected by both the known alignment of the whole
2177      // mem intrinsic and the alignment of the element.  If the alignment of
2178      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2179      // known alignment is just 4 bytes.
2180      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2181    }
2182
2183    Value *EltPtr = NewElts[i];
2184    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2185
2186    // If we got down to a scalar, insert a load or store as appropriate.
2187    if (EltTy->isSingleValueType()) {
2188      if (isa<MemTransferInst>(MI)) {
2189        if (SROADest) {
2190          // From Other to Alloca.
2191          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2192          new StoreInst(Elt, EltPtr, MI);
2193        } else {
2194          // From Alloca to Other.
2195          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2196          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2197        }
2198        continue;
2199      }
2200      assert(isa<MemSetInst>(MI));
2201
2202      // If the stored element is zero (common case), just store a null
2203      // constant.
2204      Constant *StoreVal;
2205      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2206        if (CI->isZero()) {
2207          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2208        } else {
2209          // If EltTy is a vector type, get the element type.
2210          const Type *ValTy = EltTy->getScalarType();
2211
2212          // Construct an integer with the right value.
2213          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2214          APInt OneVal(EltSize, CI->getZExtValue());
2215          APInt TotalVal(OneVal);
2216          // Set each byte.
2217          for (unsigned i = 0; 8*i < EltSize; ++i) {
2218            TotalVal = TotalVal.shl(8);
2219            TotalVal |= OneVal;
2220          }
2221
2222          // Convert the integer value to the appropriate type.
2223          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2224          if (ValTy->isPointerTy())
2225            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2226          else if (ValTy->isFloatingPointTy())
2227            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2228          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2229
2230          // If the requested value was a vector constant, create it.
2231          if (EltTy != ValTy) {
2232            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2233            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2234            StoreVal = ConstantVector::get(Elts);
2235          }
2236        }
2237        new StoreInst(StoreVal, EltPtr, MI);
2238        continue;
2239      }
2240      // Otherwise, if we're storing a byte variable, use a memset call for
2241      // this element.
2242    }
2243
2244    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2245
2246    IRBuilder<> Builder(MI);
2247
2248    // Finally, insert the meminst for this element.
2249    if (isa<MemSetInst>(MI)) {
2250      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2251                           MI->isVolatile());
2252    } else {
2253      assert(isa<MemTransferInst>(MI));
2254      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2255      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2256
2257      if (isa<MemCpyInst>(MI))
2258        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2259      else
2260        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2261    }
2262  }
2263  DeadInsts.push_back(MI);
2264}
2265
2266/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2267/// overwrites the entire allocation.  Extract out the pieces of the stored
2268/// integer and store them individually.
2269void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2270                                         SmallVector<AllocaInst*, 32> &NewElts){
2271  // Extract each element out of the integer according to its structure offset
2272  // and store the element value to the individual alloca.
2273  Value *SrcVal = SI->getOperand(0);
2274  const Type *AllocaEltTy = AI->getAllocatedType();
2275  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2276
2277  IRBuilder<> Builder(SI);
2278
2279  // Handle tail padding by extending the operand
2280  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2281    SrcVal = Builder.CreateZExt(SrcVal,
2282                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2283
2284  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2285               << '\n');
2286
2287  // There are two forms here: AI could be an array or struct.  Both cases
2288  // have different ways to compute the element offset.
2289  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2290    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2291
2292    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2293      // Get the number of bits to shift SrcVal to get the value.
2294      const Type *FieldTy = EltSTy->getElementType(i);
2295      uint64_t Shift = Layout->getElementOffsetInBits(i);
2296
2297      if (TD->isBigEndian())
2298        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2299
2300      Value *EltVal = SrcVal;
2301      if (Shift) {
2302        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2303        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2304      }
2305
2306      // Truncate down to an integer of the right size.
2307      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2308
2309      // Ignore zero sized fields like {}, they obviously contain no data.
2310      if (FieldSizeBits == 0) continue;
2311
2312      if (FieldSizeBits != AllocaSizeBits)
2313        EltVal = Builder.CreateTrunc(EltVal,
2314                             IntegerType::get(SI->getContext(), FieldSizeBits));
2315      Value *DestField = NewElts[i];
2316      if (EltVal->getType() == FieldTy) {
2317        // Storing to an integer field of this size, just do it.
2318      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2319        // Bitcast to the right element type (for fp/vector values).
2320        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2321      } else {
2322        // Otherwise, bitcast the dest pointer (for aggregates).
2323        DestField = Builder.CreateBitCast(DestField,
2324                                     PointerType::getUnqual(EltVal->getType()));
2325      }
2326      new StoreInst(EltVal, DestField, SI);
2327    }
2328
2329  } else {
2330    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2331    const Type *ArrayEltTy = ATy->getElementType();
2332    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2333    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2334
2335    uint64_t Shift;
2336
2337    if (TD->isBigEndian())
2338      Shift = AllocaSizeBits-ElementOffset;
2339    else
2340      Shift = 0;
2341
2342    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2343      // Ignore zero sized fields like {}, they obviously contain no data.
2344      if (ElementSizeBits == 0) continue;
2345
2346      Value *EltVal = SrcVal;
2347      if (Shift) {
2348        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2349        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2350      }
2351
2352      // Truncate down to an integer of the right size.
2353      if (ElementSizeBits != AllocaSizeBits)
2354        EltVal = Builder.CreateTrunc(EltVal,
2355                                     IntegerType::get(SI->getContext(),
2356                                                      ElementSizeBits));
2357      Value *DestField = NewElts[i];
2358      if (EltVal->getType() == ArrayEltTy) {
2359        // Storing to an integer field of this size, just do it.
2360      } else if (ArrayEltTy->isFloatingPointTy() ||
2361                 ArrayEltTy->isVectorTy()) {
2362        // Bitcast to the right element type (for fp/vector values).
2363        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2364      } else {
2365        // Otherwise, bitcast the dest pointer (for aggregates).
2366        DestField = Builder.CreateBitCast(DestField,
2367                                     PointerType::getUnqual(EltVal->getType()));
2368      }
2369      new StoreInst(EltVal, DestField, SI);
2370
2371      if (TD->isBigEndian())
2372        Shift -= ElementOffset;
2373      else
2374        Shift += ElementOffset;
2375    }
2376  }
2377
2378  DeadInsts.push_back(SI);
2379}
2380
2381/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2382/// an integer.  Load the individual pieces to form the aggregate value.
2383void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2384                                        SmallVector<AllocaInst*, 32> &NewElts) {
2385  // Extract each element out of the NewElts according to its structure offset
2386  // and form the result value.
2387  const Type *AllocaEltTy = AI->getAllocatedType();
2388  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2389
2390  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2391               << '\n');
2392
2393  // There are two forms here: AI could be an array or struct.  Both cases
2394  // have different ways to compute the element offset.
2395  const StructLayout *Layout = 0;
2396  uint64_t ArrayEltBitOffset = 0;
2397  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2398    Layout = TD->getStructLayout(EltSTy);
2399  } else {
2400    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2401    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2402  }
2403
2404  Value *ResultVal =
2405    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2406
2407  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2408    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2409    // the pointer to an integer of the same size before doing the load.
2410    Value *SrcField = NewElts[i];
2411    const Type *FieldTy =
2412      cast<PointerType>(SrcField->getType())->getElementType();
2413    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2414
2415    // Ignore zero sized fields like {}, they obviously contain no data.
2416    if (FieldSizeBits == 0) continue;
2417
2418    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2419                                                     FieldSizeBits);
2420    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2421        !FieldTy->isVectorTy())
2422      SrcField = new BitCastInst(SrcField,
2423                                 PointerType::getUnqual(FieldIntTy),
2424                                 "", LI);
2425    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2426
2427    // If SrcField is a fp or vector of the right size but that isn't an
2428    // integer type, bitcast to an integer so we can shift it.
2429    if (SrcField->getType() != FieldIntTy)
2430      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2431
2432    // Zero extend the field to be the same size as the final alloca so that
2433    // we can shift and insert it.
2434    if (SrcField->getType() != ResultVal->getType())
2435      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2436
2437    // Determine the number of bits to shift SrcField.
2438    uint64_t Shift;
2439    if (Layout) // Struct case.
2440      Shift = Layout->getElementOffsetInBits(i);
2441    else  // Array case.
2442      Shift = i*ArrayEltBitOffset;
2443
2444    if (TD->isBigEndian())
2445      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2446
2447    if (Shift) {
2448      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2449      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2450    }
2451
2452    // Don't create an 'or x, 0' on the first iteration.
2453    if (!isa<Constant>(ResultVal) ||
2454        !cast<Constant>(ResultVal)->isNullValue())
2455      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2456    else
2457      ResultVal = SrcField;
2458  }
2459
2460  // Handle tail padding by truncating the result
2461  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2462    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2463
2464  LI->replaceAllUsesWith(ResultVal);
2465  DeadInsts.push_back(LI);
2466}
2467
2468/// HasPadding - Return true if the specified type has any structure or
2469/// alignment padding in between the elements that would be split apart
2470/// by SROA; return false otherwise.
2471static bool HasPadding(const Type *Ty, const TargetData &TD) {
2472  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2473    Ty = ATy->getElementType();
2474    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2475  }
2476
2477  // SROA currently handles only Arrays and Structs.
2478  const StructType *STy = cast<StructType>(Ty);
2479  const StructLayout *SL = TD.getStructLayout(STy);
2480  unsigned PrevFieldBitOffset = 0;
2481  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2482    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2483
2484    // Check to see if there is any padding between this element and the
2485    // previous one.
2486    if (i) {
2487      unsigned PrevFieldEnd =
2488        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2489      if (PrevFieldEnd < FieldBitOffset)
2490        return true;
2491    }
2492    PrevFieldBitOffset = FieldBitOffset;
2493  }
2494  // Check for tail padding.
2495  if (unsigned EltCount = STy->getNumElements()) {
2496    unsigned PrevFieldEnd = PrevFieldBitOffset +
2497      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2498    if (PrevFieldEnd < SL->getSizeInBits())
2499      return true;
2500  }
2501  return false;
2502}
2503
2504/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2505/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2506/// or 1 if safe after canonicalization has been performed.
2507bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2508  // Loop over the use list of the alloca.  We can only transform it if all of
2509  // the users are safe to transform.
2510  AllocaInfo Info(AI);
2511
2512  isSafeForScalarRepl(AI, 0, Info);
2513  if (Info.isUnsafe) {
2514    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2515    return false;
2516  }
2517
2518  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2519  // source and destination, we have to be careful.  In particular, the memcpy
2520  // could be moving around elements that live in structure padding of the LLVM
2521  // types, but may actually be used.  In these cases, we refuse to promote the
2522  // struct.
2523  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2524      HasPadding(AI->getAllocatedType(), *TD))
2525    return false;
2526
2527  // If the alloca never has an access to just *part* of it, but is accessed
2528  // via loads and stores, then we should use ConvertToScalarInfo to promote
2529  // the alloca instead of promoting each piece at a time and inserting fission
2530  // and fusion code.
2531  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2532    // If the struct/array just has one element, use basic SRoA.
2533    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2534      if (ST->getNumElements() > 1) return false;
2535    } else {
2536      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2537        return false;
2538    }
2539  }
2540
2541  return true;
2542}
2543
2544
2545
2546/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2547/// some part of a constant global variable.  This intentionally only accepts
2548/// constant expressions because we don't can't rewrite arbitrary instructions.
2549static bool PointsToConstantGlobal(Value *V) {
2550  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2551    return GV->isConstant();
2552  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2553    if (CE->getOpcode() == Instruction::BitCast ||
2554        CE->getOpcode() == Instruction::GetElementPtr)
2555      return PointsToConstantGlobal(CE->getOperand(0));
2556  return false;
2557}
2558
2559/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2560/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2561/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2562/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2563/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2564/// the alloca, and if the source pointer is a pointer to a constant global, we
2565/// can optimize this.
2566static bool
2567isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2568                               bool isOffset,
2569                               SmallVector<Instruction *, 4> &LifetimeMarkers) {
2570  // We track lifetime intrinsics as we encounter them.  If we decide to go
2571  // ahead and replace the value with the global, this lets the caller quickly
2572  // eliminate the markers.
2573
2574  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2575    User *U = cast<Instruction>(*UI);
2576
2577    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2578      // Ignore non-volatile loads, they are always ok.
2579      if (LI->isVolatile()) return false;
2580      continue;
2581    }
2582
2583    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2584      // If uses of the bitcast are ok, we are ok.
2585      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset,
2586                                          LifetimeMarkers))
2587        return false;
2588      continue;
2589    }
2590    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2591      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2592      // doesn't, it does.
2593      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2594                                          isOffset || !GEP->hasAllZeroIndices(),
2595                                          LifetimeMarkers))
2596        return false;
2597      continue;
2598    }
2599
2600    if (CallSite CS = U) {
2601      // If this is the function being called then we treat it like a load and
2602      // ignore it.
2603      if (CS.isCallee(UI))
2604        continue;
2605
2606      // If this is a readonly/readnone call site, then we know it is just a
2607      // load (but one that potentially returns the value itself), so we can
2608      // ignore it if we know that the value isn't captured.
2609      unsigned ArgNo = CS.getArgumentNo(UI);
2610      if (CS.onlyReadsMemory() &&
2611          (CS.getInstruction()->use_empty() ||
2612           CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2613        continue;
2614
2615      // If this is being passed as a byval argument, the caller is making a
2616      // copy, so it is only a read of the alloca.
2617      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2618        continue;
2619    }
2620
2621    // Lifetime intrinsics can be handled by the caller.
2622    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
2623      if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
2624          II->getIntrinsicID() == Intrinsic::lifetime_end) {
2625        assert(II->use_empty() && "Lifetime markers have no result to use!");
2626        LifetimeMarkers.push_back(II);
2627        continue;
2628      }
2629    }
2630
2631    // If this is isn't our memcpy/memmove, reject it as something we can't
2632    // handle.
2633    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2634    if (MI == 0)
2635      return false;
2636
2637    // If the transfer is using the alloca as a source of the transfer, then
2638    // ignore it since it is a load (unless the transfer is volatile).
2639    if (UI.getOperandNo() == 1) {
2640      if (MI->isVolatile()) return false;
2641      continue;
2642    }
2643
2644    // If we already have seen a copy, reject the second one.
2645    if (TheCopy) return false;
2646
2647    // If the pointer has been offset from the start of the alloca, we can't
2648    // safely handle this.
2649    if (isOffset) return false;
2650
2651    // If the memintrinsic isn't using the alloca as the dest, reject it.
2652    if (UI.getOperandNo() != 0) return false;
2653
2654    // If the source of the memcpy/move is not a constant global, reject it.
2655    if (!PointsToConstantGlobal(MI->getSource()))
2656      return false;
2657
2658    // Otherwise, the transform is safe.  Remember the copy instruction.
2659    TheCopy = MI;
2660  }
2661  return true;
2662}
2663
2664/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2665/// modified by a copy from a constant global.  If we can prove this, we can
2666/// replace any uses of the alloca with uses of the global directly.
2667MemTransferInst *
2668SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
2669                                     SmallVector<Instruction*, 4> &ToDelete) {
2670  MemTransferInst *TheCopy = 0;
2671  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false, ToDelete))
2672    return TheCopy;
2673  return 0;
2674}
2675