ScalarReplAggregates.cpp revision abb25122050349ccf77f8afb198a985e7a4d95ee
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DIBuilder.h"
34#include "llvm/Analysis/Dominators.h"
35#include "llvm/Analysis/Loads.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/Target/TargetData.h"
38#include "llvm/Transforms/Utils/PromoteMemToReg.h"
39#include "llvm/Transforms/Utils/Local.h"
40#include "llvm/Transforms/Utils/SSAUpdater.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/GetElementPtrTypeIterator.h"
45#include "llvm/Support/IRBuilder.h"
46#include "llvm/Support/MathExtras.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/ADT/SetVector.h"
49#include "llvm/ADT/SmallVector.h"
50#include "llvm/ADT/Statistic.h"
51using namespace llvm;
52
53STATISTIC(NumReplaced,  "Number of allocas broken up");
54STATISTIC(NumPromoted,  "Number of allocas promoted");
55STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
56STATISTIC(NumConverted, "Number of aggregates converted to scalar");
57STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
58
59namespace {
60  struct SROA : public FunctionPass {
61    SROA(int T, bool hasDT, char &ID)
62      : FunctionPass(ID), HasDomTree(hasDT) {
63      if (T == -1)
64        SRThreshold = 128;
65      else
66        SRThreshold = T;
67    }
68
69    bool runOnFunction(Function &F);
70
71    bool performScalarRepl(Function &F);
72    bool performPromotion(Function &F);
73
74  private:
75    bool HasDomTree;
76    TargetData *TD;
77
78    /// DeadInsts - Keep track of instructions we have made dead, so that
79    /// we can remove them after we are done working.
80    SmallVector<Value*, 32> DeadInsts;
81
82    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
83    /// information about the uses.  All these fields are initialized to false
84    /// and set to true when something is learned.
85    struct AllocaInfo {
86      /// The alloca to promote.
87      AllocaInst *AI;
88
89      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
90      /// looping and avoid redundant work.
91      SmallPtrSet<PHINode*, 8> CheckedPHIs;
92
93      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
94      bool isUnsafe : 1;
95
96      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
97      bool isMemCpySrc : 1;
98
99      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
100      bool isMemCpyDst : 1;
101
102      /// hasSubelementAccess - This is true if a subelement of the alloca is
103      /// ever accessed, or false if the alloca is only accessed with mem
104      /// intrinsics or load/store that only access the entire alloca at once.
105      bool hasSubelementAccess : 1;
106
107      /// hasALoadOrStore - This is true if there are any loads or stores to it.
108      /// The alloca may just be accessed with memcpy, for example, which would
109      /// not set this.
110      bool hasALoadOrStore : 1;
111
112      explicit AllocaInfo(AllocaInst *ai)
113        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
114          hasSubelementAccess(false), hasALoadOrStore(false) {}
115    };
116
117    unsigned SRThreshold;
118
119    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
120      I.isUnsafe = true;
121      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
122    }
123
124    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
125
126    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
127    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
128                                         AllocaInfo &Info);
129    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
130    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
131                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
132                         Instruction *TheAccess, bool AllowWholeAccess);
133    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
134    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
135                                  const Type *&IdxTy);
136
137    void DoScalarReplacement(AllocaInst *AI,
138                             std::vector<AllocaInst*> &WorkList);
139    void DeleteDeadInstructions();
140
141    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
142                              SmallVector<AllocaInst*, 32> &NewElts);
143    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
144                        SmallVector<AllocaInst*, 32> &NewElts);
145    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
146                    SmallVector<AllocaInst*, 32> &NewElts);
147    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
148                                      AllocaInst *AI,
149                                      SmallVector<AllocaInst*, 32> &NewElts);
150    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
151                                       SmallVector<AllocaInst*, 32> &NewElts);
152    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
153                                      SmallVector<AllocaInst*, 32> &NewElts);
154
155    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
156  };
157
158  // SROA_DT - SROA that uses DominatorTree.
159  struct SROA_DT : public SROA {
160    static char ID;
161  public:
162    SROA_DT(int T = -1) : SROA(T, true, ID) {
163      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
164    }
165
166    // getAnalysisUsage - This pass does not require any passes, but we know it
167    // will not alter the CFG, so say so.
168    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
169      AU.addRequired<DominatorTree>();
170      AU.setPreservesCFG();
171    }
172  };
173
174  // SROA_SSAUp - SROA that uses SSAUpdater.
175  struct SROA_SSAUp : public SROA {
176    static char ID;
177  public:
178    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
179      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
180    }
181
182    // getAnalysisUsage - This pass does not require any passes, but we know it
183    // will not alter the CFG, so say so.
184    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
185      AU.setPreservesCFG();
186    }
187  };
188
189}
190
191char SROA_DT::ID = 0;
192char SROA_SSAUp::ID = 0;
193
194INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
195                "Scalar Replacement of Aggregates (DT)", false, false)
196INITIALIZE_PASS_DEPENDENCY(DominatorTree)
197INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
198                "Scalar Replacement of Aggregates (DT)", false, false)
199
200INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
201                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
202INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
203                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
204
205// Public interface to the ScalarReplAggregates pass
206FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
207                                                   bool UseDomTree) {
208  if (UseDomTree)
209    return new SROA_DT(Threshold);
210  return new SROA_SSAUp(Threshold);
211}
212
213
214//===----------------------------------------------------------------------===//
215// Convert To Scalar Optimization.
216//===----------------------------------------------------------------------===//
217
218namespace {
219/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
220/// optimization, which scans the uses of an alloca and determines if it can
221/// rewrite it in terms of a single new alloca that can be mem2reg'd.
222class ConvertToScalarInfo {
223  /// AllocaSize - The size of the alloca being considered in bytes.
224  unsigned AllocaSize;
225  const TargetData &TD;
226
227  /// IsNotTrivial - This is set to true if there is some access to the object
228  /// which means that mem2reg can't promote it.
229  bool IsNotTrivial;
230
231  /// VectorTy - This tracks the type that we should promote the vector to if
232  /// it is possible to turn it into a vector.  This starts out null, and if it
233  /// isn't possible to turn into a vector type, it gets set to VoidTy.
234  const Type *VectorTy;
235
236  /// HadAVector - True if there is at least one vector access to the alloca.
237  /// We don't want to turn random arrays into vectors and use vector element
238  /// insert/extract, but if there are element accesses to something that is
239  /// also declared as a vector, we do want to promote to a vector.
240  bool HadAVector;
241
242  /// HadNonMemTransferAccess - True if there is at least one access to the
243  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
244  /// large integers unless there is some potential for optimization.
245  bool HadNonMemTransferAccess;
246
247public:
248  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
249    : AllocaSize(Size), TD(td), IsNotTrivial(false), VectorTy(0),
250      HadAVector(false), HadNonMemTransferAccess(false) { }
251
252  AllocaInst *TryConvert(AllocaInst *AI);
253
254private:
255  bool CanConvertToScalar(Value *V, uint64_t Offset);
256  void MergeInType(const Type *In, uint64_t Offset, bool IsLoadOrStore);
257  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
258  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
259
260  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
261                                    uint64_t Offset, IRBuilder<> &Builder);
262  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
263                                   uint64_t Offset, IRBuilder<> &Builder);
264};
265} // end anonymous namespace.
266
267
268/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
269/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
270/// alloca if possible or null if not.
271AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
272  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
273  // out.
274  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
275    return 0;
276
277  // If we were able to find a vector type that can handle this with
278  // insert/extract elements, and if there was at least one use that had
279  // a vector type, promote this to a vector.  We don't want to promote
280  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
281  // we just get a lot of insert/extracts.  If at least one vector is
282  // involved, then we probably really do have a union of vector/array.
283  const Type *NewTy;
284  if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
285    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
286          << *VectorTy << '\n');
287    NewTy = VectorTy;  // Use the vector type.
288  } else {
289    unsigned BitWidth = AllocaSize * 8;
290    if (!HadAVector && !HadNonMemTransferAccess &&
291        !TD.fitsInLegalInteger(BitWidth))
292      return 0;
293
294    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
295    // Create and insert the integer alloca.
296    NewTy = IntegerType::get(AI->getContext(), BitWidth);
297  }
298  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
299  ConvertUsesToScalar(AI, NewAI, 0);
300  return NewAI;
301}
302
303/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
304/// so far at the offset specified by Offset (which is specified in bytes).
305///
306/// There are three cases we handle here:
307///   1) A union of vector types of the same size and potentially its elements.
308///      Here we turn element accesses into insert/extract element operations.
309///      This promotes a <4 x float> with a store of float to the third element
310///      into a <4 x float> that uses insert element.
311///   2) A union of vector types with power-of-2 size differences, e.g. a float,
312///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
313///      and extract element operations, and <2 x float> accesses into a cast to
314///      <2 x double>, an extract, and a cast back to <2 x float>.
315///   3) A fully general blob of memory, which we turn into some (potentially
316///      large) integer type with extract and insert operations where the loads
317///      and stores would mutate the memory.  We mark this by setting VectorTy
318///      to VoidTy.
319void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset,
320                                      bool IsLoadOrStore) {
321  // If we already decided to turn this into a blob of integer memory, there is
322  // nothing to be done.
323  if (VectorTy && VectorTy->isVoidTy())
324    return;
325
326  // If this could be contributing to a vector, analyze it.
327
328  // If the In type is a vector that is the same size as the alloca, see if it
329  // matches the existing VecTy.
330  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
331    if (MergeInVectorType(VInTy, Offset))
332      return;
333  } else if (In->isFloatTy() || In->isDoubleTy() ||
334             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
335              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
336    // Full width accesses can be ignored, because they can always be turned
337    // into bitcasts.
338    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
339    if (IsLoadOrStore && EltSize == AllocaSize)
340      return;
341
342    // If we're accessing something that could be an element of a vector, see
343    // if the implied vector agrees with what we already have and if Offset is
344    // compatible with it.
345    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0) {
346      if (!VectorTy) {
347        VectorTy = VectorType::get(In, AllocaSize/EltSize);
348        return;
349      }
350
351      unsigned CurrentEltSize = cast<VectorType>(VectorTy)->getElementType()
352                                ->getPrimitiveSizeInBits()/8;
353      if (EltSize == CurrentEltSize)
354        return;
355
356      if (In->isIntegerTy() && isPowerOf2_32(AllocaSize / EltSize))
357        return;
358    }
359  }
360
361  // Otherwise, we have a case that we can't handle with an optimized vector
362  // form.  We can still turn this into a large integer.
363  VectorTy = Type::getVoidTy(In->getContext());
364}
365
366/// MergeInVectorType - Handles the vector case of MergeInType, returning true
367/// if the type was successfully merged and false otherwise.
368bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
369                                            uint64_t Offset) {
370  // Remember if we saw a vector type.
371  HadAVector = true;
372
373  // TODO: Support nonzero offsets?
374  if (Offset != 0)
375    return false;
376
377  // Only allow vectors that are a power-of-2 away from the size of the alloca.
378  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
379    return false;
380
381  // If this the first vector we see, remember the type so that we know the
382  // element size.
383  if (!VectorTy) {
384    VectorTy = VInTy;
385    return true;
386  }
387
388  unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
389  unsigned InBitWidth = VInTy->getBitWidth();
390
391  // Vectors of the same size can be converted using a simple bitcast.
392  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
393    return true;
394
395  const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
396  const Type *InElementTy = cast<VectorType>(VInTy)->getElementType();
397
398  // Do not allow mixed integer and floating-point accesses from vectors of
399  // different sizes.
400  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
401    return false;
402
403  if (ElementTy->isFloatingPointTy()) {
404    // Only allow floating-point vectors of different sizes if they have the
405    // same element type.
406    // TODO: This could be loosened a bit, but would anything benefit?
407    if (ElementTy != InElementTy)
408      return false;
409
410    // There are no arbitrary-precision floating-point types, which limits the
411    // number of legal vector types with larger element types that we can form
412    // to bitcast and extract a subvector.
413    // TODO: We could support some more cases with mixed fp128 and double here.
414    if (!(BitWidth == 64 || BitWidth == 128) ||
415        !(InBitWidth == 64 || InBitWidth == 128))
416      return false;
417  } else {
418    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
419                                       "or floating-point.");
420    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
421    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
422
423    // Do not allow integer types smaller than a byte or types whose widths are
424    // not a multiple of a byte.
425    if (BitWidth < 8 || InBitWidth < 8 ||
426        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
427      return false;
428  }
429
430  // Pick the largest of the two vector types.
431  if (InBitWidth > BitWidth)
432    VectorTy = VInTy;
433
434  return true;
435}
436
437/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
438/// its accesses to a single vector type, return true and set VecTy to
439/// the new type.  If we could convert the alloca into a single promotable
440/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
441/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
442/// is the current offset from the base of the alloca being analyzed.
443///
444/// If we see at least one access to the value that is as a vector type, set the
445/// SawVec flag.
446bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
447  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
448    Instruction *User = cast<Instruction>(*UI);
449
450    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
451      // Don't break volatile loads.
452      if (LI->isVolatile())
453        return false;
454      // Don't touch MMX operations.
455      if (LI->getType()->isX86_MMXTy())
456        return false;
457      HadNonMemTransferAccess = true;
458      MergeInType(LI->getType(), Offset, true);
459      continue;
460    }
461
462    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
463      // Storing the pointer, not into the value?
464      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
465      // Don't touch MMX operations.
466      if (SI->getOperand(0)->getType()->isX86_MMXTy())
467        return false;
468      HadNonMemTransferAccess = true;
469      MergeInType(SI->getOperand(0)->getType(), Offset, true);
470      continue;
471    }
472
473    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
474      IsNotTrivial = true;  // Can't be mem2reg'd.
475      if (!CanConvertToScalar(BCI, Offset))
476        return false;
477      continue;
478    }
479
480    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
481      // If this is a GEP with a variable indices, we can't handle it.
482      if (!GEP->hasAllConstantIndices())
483        return false;
484
485      // Compute the offset that this GEP adds to the pointer.
486      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
487      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
488                                               &Indices[0], Indices.size());
489      // See if all uses can be converted.
490      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
491        return false;
492      IsNotTrivial = true;  // Can't be mem2reg'd.
493      HadNonMemTransferAccess = true;
494      continue;
495    }
496
497    // If this is a constant sized memset of a constant value (e.g. 0) we can
498    // handle it.
499    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
500      // Store of constant value and constant size.
501      if (!isa<ConstantInt>(MSI->getValue()) ||
502          !isa<ConstantInt>(MSI->getLength()))
503        return false;
504      IsNotTrivial = true;  // Can't be mem2reg'd.
505      HadNonMemTransferAccess = true;
506      continue;
507    }
508
509    // If this is a memcpy or memmove into or out of the whole allocation, we
510    // can handle it like a load or store of the scalar type.
511    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
512      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
513      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
514        return false;
515
516      IsNotTrivial = true;  // Can't be mem2reg'd.
517      continue;
518    }
519
520    // Otherwise, we cannot handle this!
521    return false;
522  }
523
524  return true;
525}
526
527/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
528/// directly.  This happens when we are converting an "integer union" to a
529/// single integer scalar, or when we are converting a "vector union" to a
530/// vector with insert/extractelement instructions.
531///
532/// Offset is an offset from the original alloca, in bits that need to be
533/// shifted to the right.  By the end of this, there should be no uses of Ptr.
534void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
535                                              uint64_t Offset) {
536  while (!Ptr->use_empty()) {
537    Instruction *User = cast<Instruction>(Ptr->use_back());
538
539    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
540      ConvertUsesToScalar(CI, NewAI, Offset);
541      CI->eraseFromParent();
542      continue;
543    }
544
545    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
546      // Compute the offset that this GEP adds to the pointer.
547      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
548      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
549                                               &Indices[0], Indices.size());
550      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
551      GEP->eraseFromParent();
552      continue;
553    }
554
555    IRBuilder<> Builder(User);
556
557    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
558      // The load is a bit extract from NewAI shifted right by Offset bits.
559      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
560      Value *NewLoadVal
561        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
562      LI->replaceAllUsesWith(NewLoadVal);
563      LI->eraseFromParent();
564      continue;
565    }
566
567    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
568      assert(SI->getOperand(0) != Ptr && "Consistency error!");
569      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
570      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
571                                             Builder);
572      Builder.CreateStore(New, NewAI);
573      SI->eraseFromParent();
574
575      // If the load we just inserted is now dead, then the inserted store
576      // overwrote the entire thing.
577      if (Old->use_empty())
578        Old->eraseFromParent();
579      continue;
580    }
581
582    // If this is a constant sized memset of a constant value (e.g. 0) we can
583    // transform it into a store of the expanded constant value.
584    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
585      assert(MSI->getRawDest() == Ptr && "Consistency error!");
586      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
587      if (NumBytes != 0) {
588        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
589
590        // Compute the value replicated the right number of times.
591        APInt APVal(NumBytes*8, Val);
592
593        // Splat the value if non-zero.
594        if (Val)
595          for (unsigned i = 1; i != NumBytes; ++i)
596            APVal |= APVal << 8;
597
598        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
599        Value *New = ConvertScalar_InsertValue(
600                                    ConstantInt::get(User->getContext(), APVal),
601                                               Old, Offset, Builder);
602        Builder.CreateStore(New, NewAI);
603
604        // If the load we just inserted is now dead, then the memset overwrote
605        // the entire thing.
606        if (Old->use_empty())
607          Old->eraseFromParent();
608      }
609      MSI->eraseFromParent();
610      continue;
611    }
612
613    // If this is a memcpy or memmove into or out of the whole allocation, we
614    // can handle it like a load or store of the scalar type.
615    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
616      assert(Offset == 0 && "must be store to start of alloca");
617
618      // If the source and destination are both to the same alloca, then this is
619      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
620      // as appropriate.
621      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
622
623      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
624        // Dest must be OrigAI, change this to be a load from the original
625        // pointer (bitcasted), then a store to our new alloca.
626        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
627        Value *SrcPtr = MTI->getSource();
628        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
629        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
630        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
631          AIPTy = PointerType::get(AIPTy->getElementType(),
632                                   SPTy->getAddressSpace());
633        }
634        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
635
636        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
637        SrcVal->setAlignment(MTI->getAlignment());
638        Builder.CreateStore(SrcVal, NewAI);
639      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
640        // Src must be OrigAI, change this to be a load from NewAI then a store
641        // through the original dest pointer (bitcasted).
642        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
643        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
644
645        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
646        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
647        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
648          AIPTy = PointerType::get(AIPTy->getElementType(),
649                                   DPTy->getAddressSpace());
650        }
651        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
652
653        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
654        NewStore->setAlignment(MTI->getAlignment());
655      } else {
656        // Noop transfer. Src == Dst
657      }
658
659      MTI->eraseFromParent();
660      continue;
661    }
662
663    llvm_unreachable("Unsupported operation!");
664  }
665}
666
667/// getScaledElementType - Gets a scaled element type for a partial vector
668/// access of an alloca. The input types must be integer or floating-point
669/// scalar or vector types, and the resulting type is an integer, float or
670/// double.
671static const Type *getScaledElementType(const Type *Ty1, const Type *Ty2,
672                                        unsigned NewBitWidth) {
673  bool IsFP1 = Ty1->isFloatingPointTy() ||
674               (Ty1->isVectorTy() &&
675                cast<VectorType>(Ty1)->getElementType()->isFloatingPointTy());
676  bool IsFP2 = Ty2->isFloatingPointTy() ||
677               (Ty2->isVectorTy() &&
678                cast<VectorType>(Ty2)->getElementType()->isFloatingPointTy());
679
680  LLVMContext &Context = Ty1->getContext();
681
682  // Prefer floating-point types over integer types, as integer types may have
683  // been created by earlier scalar replacement.
684  if (IsFP1 || IsFP2) {
685    if (NewBitWidth == 32)
686      return Type::getFloatTy(Context);
687    if (NewBitWidth == 64)
688      return Type::getDoubleTy(Context);
689  }
690
691  return Type::getIntNTy(Context, NewBitWidth);
692}
693
694/// CreateShuffleVectorCast - Creates a shuffle vector to convert one vector
695/// to another vector of the same element type which has the same allocation
696/// size but different primitive sizes (e.g. <3 x i32> and <4 x i32>).
697static Value *CreateShuffleVectorCast(Value *FromVal, const Type *ToType,
698                                      IRBuilder<> &Builder) {
699  const Type *FromType = FromVal->getType();
700  const VectorType *FromVTy = cast<VectorType>(FromType);
701  const VectorType *ToVTy = cast<VectorType>(ToType);
702  assert((ToVTy->getElementType() == FromVTy->getElementType()) &&
703         "Vectors must have the same element type");
704   Value *UnV = UndefValue::get(FromType);
705   unsigned numEltsFrom = FromVTy->getNumElements();
706   unsigned numEltsTo = ToVTy->getNumElements();
707
708   SmallVector<Constant*, 3> Args;
709   const Type* Int32Ty = Builder.getInt32Ty();
710   unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
711   unsigned i;
712   for (i=0; i != minNumElts; ++i)
713     Args.push_back(ConstantInt::get(Int32Ty, i));
714
715   if (i < numEltsTo) {
716     Constant* UnC = UndefValue::get(Int32Ty);
717     for (; i != numEltsTo; ++i)
718       Args.push_back(UnC);
719   }
720   Constant *Mask = ConstantVector::get(Args);
721   return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
722}
723
724/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
725/// or vector value FromVal, extracting the bits from the offset specified by
726/// Offset.  This returns the value, which is of type ToType.
727///
728/// This happens when we are converting an "integer union" to a single
729/// integer scalar, or when we are converting a "vector union" to a vector with
730/// insert/extractelement instructions.
731///
732/// Offset is an offset from the original alloca, in bits that need to be
733/// shifted to the right.
734Value *ConvertToScalarInfo::
735ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
736                           uint64_t Offset, IRBuilder<> &Builder) {
737  // If the load is of the whole new alloca, no conversion is needed.
738  const Type *FromType = FromVal->getType();
739  if (FromType == ToType && Offset == 0)
740    return FromVal;
741
742  // If the result alloca is a vector type, this is either an element
743  // access or a bitcast to another vector type of the same size.
744  if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
745    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
746    if (ToTypeSize == AllocaSize) {
747      // If the two types have the same primitive size, use a bit cast.
748      // Otherwise, it is two vectors with the same element type that has
749      // the same allocation size but different number of elements so use
750      // a shuffle vector.
751      if (FromType->getPrimitiveSizeInBits() ==
752          ToType->getPrimitiveSizeInBits())
753        return Builder.CreateBitCast(FromVal, ToType, "tmp");
754      else
755        return CreateShuffleVectorCast(FromVal, ToType, Builder);
756    }
757
758    if (isPowerOf2_64(AllocaSize / ToTypeSize)) {
759      assert(!(ToType->isVectorTy() && Offset != 0) && "Can't extract a value "
760             "of a smaller vector type at a nonzero offset.");
761
762      const Type *CastElementTy = getScaledElementType(FromType, ToType,
763                                                       ToTypeSize * 8);
764      unsigned NumCastVectorElements = AllocaSize / ToTypeSize;
765
766      LLVMContext &Context = FromVal->getContext();
767      const Type *CastTy = VectorType::get(CastElementTy,
768                                           NumCastVectorElements);
769      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
770
771      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
772      unsigned Elt = Offset/EltSize;
773      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
774      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
775                                        Type::getInt32Ty(Context), Elt), "tmp");
776      return Builder.CreateBitCast(Extract, ToType, "tmp");
777    }
778
779    // Otherwise it must be an element access.
780    unsigned Elt = 0;
781    if (Offset) {
782      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
783      Elt = Offset/EltSize;
784      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
785    }
786    // Return the element extracted out of it.
787    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
788                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
789    if (V->getType() != ToType)
790      V = Builder.CreateBitCast(V, ToType, "tmp");
791    return V;
792  }
793
794  // If ToType is a first class aggregate, extract out each of the pieces and
795  // use insertvalue's to form the FCA.
796  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
797    const StructLayout &Layout = *TD.getStructLayout(ST);
798    Value *Res = UndefValue::get(ST);
799    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
800      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
801                                        Offset+Layout.getElementOffsetInBits(i),
802                                              Builder);
803      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
804    }
805    return Res;
806  }
807
808  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
809    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
810    Value *Res = UndefValue::get(AT);
811    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
812      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
813                                              Offset+i*EltSize, Builder);
814      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
815    }
816    return Res;
817  }
818
819  // Otherwise, this must be a union that was converted to an integer value.
820  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
821
822  // If this is a big-endian system and the load is narrower than the
823  // full alloca type, we need to do a shift to get the right bits.
824  int ShAmt = 0;
825  if (TD.isBigEndian()) {
826    // On big-endian machines, the lowest bit is stored at the bit offset
827    // from the pointer given by getTypeStoreSizeInBits.  This matters for
828    // integers with a bitwidth that is not a multiple of 8.
829    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
830            TD.getTypeStoreSizeInBits(ToType) - Offset;
831  } else {
832    ShAmt = Offset;
833  }
834
835  // Note: we support negative bitwidths (with shl) which are not defined.
836  // We do this to support (f.e.) loads off the end of a structure where
837  // only some bits are used.
838  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
839    FromVal = Builder.CreateLShr(FromVal,
840                                 ConstantInt::get(FromVal->getType(),
841                                                           ShAmt), "tmp");
842  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
843    FromVal = Builder.CreateShl(FromVal,
844                                ConstantInt::get(FromVal->getType(),
845                                                          -ShAmt), "tmp");
846
847  // Finally, unconditionally truncate the integer to the right width.
848  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
849  if (LIBitWidth < NTy->getBitWidth())
850    FromVal =
851      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
852                                                    LIBitWidth), "tmp");
853  else if (LIBitWidth > NTy->getBitWidth())
854    FromVal =
855       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
856                                                    LIBitWidth), "tmp");
857
858  // If the result is an integer, this is a trunc or bitcast.
859  if (ToType->isIntegerTy()) {
860    // Should be done.
861  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
862    // Just do a bitcast, we know the sizes match up.
863    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
864  } else {
865    // Otherwise must be a pointer.
866    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
867  }
868  assert(FromVal->getType() == ToType && "Didn't convert right?");
869  return FromVal;
870}
871
872/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
873/// or vector value "Old" at the offset specified by Offset.
874///
875/// This happens when we are converting an "integer union" to a
876/// single integer scalar, or when we are converting a "vector union" to a
877/// vector with insert/extractelement instructions.
878///
879/// Offset is an offset from the original alloca, in bits that need to be
880/// shifted to the right.
881Value *ConvertToScalarInfo::
882ConvertScalar_InsertValue(Value *SV, Value *Old,
883                          uint64_t Offset, IRBuilder<> &Builder) {
884  // Convert the stored type to the actual type, shift it left to insert
885  // then 'or' into place.
886  const Type *AllocaType = Old->getType();
887  LLVMContext &Context = Old->getContext();
888
889  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
890    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
891    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
892
893    // Changing the whole vector with memset or with an access of a different
894    // vector type?
895    if (ValSize == VecSize) {
896      // If the two types have the same primitive size, use a bit cast.
897      // Otherwise, it is two vectors with the same element type that has
898      // the same allocation size but different number of elements so use
899      // a shuffle vector.
900      if (VTy->getPrimitiveSizeInBits() ==
901          SV->getType()->getPrimitiveSizeInBits())
902        return Builder.CreateBitCast(SV, AllocaType, "tmp");
903      else
904        return CreateShuffleVectorCast(SV, VTy, Builder);
905    }
906
907    if (isPowerOf2_64(VecSize / ValSize)) {
908      assert(!(SV->getType()->isVectorTy() && Offset != 0) && "Can't insert a "
909             "value of a smaller vector type at a nonzero offset.");
910
911      const Type *CastElementTy = getScaledElementType(VTy, SV->getType(),
912                                                       ValSize);
913      unsigned NumCastVectorElements = VecSize / ValSize;
914
915      LLVMContext &Context = SV->getContext();
916      const Type *OldCastTy = VectorType::get(CastElementTy,
917                                              NumCastVectorElements);
918      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
919
920      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
921
922      unsigned EltSize = TD.getTypeAllocSizeInBits(CastElementTy);
923      unsigned Elt = Offset/EltSize;
924      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
925      Value *Insert =
926        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
927                                        Type::getInt32Ty(Context), Elt), "tmp");
928      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
929    }
930
931    // Must be an element insertion.
932    assert(SV->getType() == VTy->getElementType());
933    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
934    unsigned Elt = Offset/EltSize;
935    return Builder.CreateInsertElement(Old, SV,
936                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
937                                     "tmp");
938  }
939
940  // If SV is a first-class aggregate value, insert each value recursively.
941  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
942    const StructLayout &Layout = *TD.getStructLayout(ST);
943    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
944      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
945      Old = ConvertScalar_InsertValue(Elt, Old,
946                                      Offset+Layout.getElementOffsetInBits(i),
947                                      Builder);
948    }
949    return Old;
950  }
951
952  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
953    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
954    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
955      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
956      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
957    }
958    return Old;
959  }
960
961  // If SV is a float, convert it to the appropriate integer type.
962  // If it is a pointer, do the same.
963  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
964  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
965  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
966  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
967  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
968    SV = Builder.CreateBitCast(SV,
969                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
970  else if (SV->getType()->isPointerTy())
971    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
972
973  // Zero extend or truncate the value if needed.
974  if (SV->getType() != AllocaType) {
975    if (SV->getType()->getPrimitiveSizeInBits() <
976             AllocaType->getPrimitiveSizeInBits())
977      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
978    else {
979      // Truncation may be needed if storing more than the alloca can hold
980      // (undefined behavior).
981      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
982      SrcWidth = DestWidth;
983      SrcStoreWidth = DestStoreWidth;
984    }
985  }
986
987  // If this is a big-endian system and the store is narrower than the
988  // full alloca type, we need to do a shift to get the right bits.
989  int ShAmt = 0;
990  if (TD.isBigEndian()) {
991    // On big-endian machines, the lowest bit is stored at the bit offset
992    // from the pointer given by getTypeStoreSizeInBits.  This matters for
993    // integers with a bitwidth that is not a multiple of 8.
994    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
995  } else {
996    ShAmt = Offset;
997  }
998
999  // Note: we support negative bitwidths (with shr) which are not defined.
1000  // We do this to support (f.e.) stores off the end of a structure where
1001  // only some bits in the structure are set.
1002  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1003  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1004    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1005                           ShAmt), "tmp");
1006    Mask <<= ShAmt;
1007  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1008    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1009                            -ShAmt), "tmp");
1010    Mask = Mask.lshr(-ShAmt);
1011  }
1012
1013  // Mask out the bits we are about to insert from the old value, and or
1014  // in the new bits.
1015  if (SrcWidth != DestWidth) {
1016    assert(DestWidth > SrcWidth);
1017    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1018    SV = Builder.CreateOr(Old, SV, "ins");
1019  }
1020  return SV;
1021}
1022
1023
1024//===----------------------------------------------------------------------===//
1025// SRoA Driver
1026//===----------------------------------------------------------------------===//
1027
1028
1029bool SROA::runOnFunction(Function &F) {
1030  TD = getAnalysisIfAvailable<TargetData>();
1031
1032  bool Changed = performPromotion(F);
1033
1034  // FIXME: ScalarRepl currently depends on TargetData more than it
1035  // theoretically needs to. It should be refactored in order to support
1036  // target-independent IR. Until this is done, just skip the actual
1037  // scalar-replacement portion of this pass.
1038  if (!TD) return Changed;
1039
1040  while (1) {
1041    bool LocalChange = performScalarRepl(F);
1042    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1043    Changed = true;
1044    LocalChange = performPromotion(F);
1045    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1046  }
1047
1048  return Changed;
1049}
1050
1051namespace {
1052class AllocaPromoter : public LoadAndStorePromoter {
1053  AllocaInst *AI;
1054public:
1055  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S,
1056                 DbgDeclareInst *DD, DIBuilder *&DB)
1057    : LoadAndStorePromoter(Insts, S, DD, DB), AI(0) {}
1058
1059  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1060    // Remember which alloca we're promoting (for isInstInList).
1061    this->AI = AI;
1062    LoadAndStorePromoter::run(Insts);
1063    AI->eraseFromParent();
1064  }
1065
1066  virtual bool isInstInList(Instruction *I,
1067                            const SmallVectorImpl<Instruction*> &Insts) const {
1068    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1069      return LI->getOperand(0) == AI;
1070    return cast<StoreInst>(I)->getPointerOperand() == AI;
1071  }
1072};
1073} // end anon namespace
1074
1075/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1076/// subsequently loaded can be rewritten to load both input pointers and then
1077/// select between the result, allowing the load of the alloca to be promoted.
1078/// From this:
1079///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1080///   %V = load i32* %P2
1081/// to:
1082///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1083///   %V2 = load i32* %Other
1084///   %V = select i1 %cond, i32 %V1, i32 %V2
1085///
1086/// We can do this to a select if its only uses are loads and if the operand to
1087/// the select can be loaded unconditionally.
1088static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1089  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1090  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1091
1092  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1093       UI != UE; ++UI) {
1094    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1095    if (LI == 0 || LI->isVolatile()) return false;
1096
1097    // Both operands to the select need to be dereferencable, either absolutely
1098    // (e.g. allocas) or at this point because we can see other accesses to it.
1099    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1100                                                    LI->getAlignment(), TD))
1101      return false;
1102    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1103                                                    LI->getAlignment(), TD))
1104      return false;
1105  }
1106
1107  return true;
1108}
1109
1110/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1111/// subsequently loaded can be rewritten to load both input pointers in the pred
1112/// blocks and then PHI the results, allowing the load of the alloca to be
1113/// promoted.
1114/// From this:
1115///   %P2 = phi [i32* %Alloca, i32* %Other]
1116///   %V = load i32* %P2
1117/// to:
1118///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1119///   ...
1120///   %V2 = load i32* %Other
1121///   ...
1122///   %V = phi [i32 %V1, i32 %V2]
1123///
1124/// We can do this to a select if its only uses are loads and if the operand to
1125/// the select can be loaded unconditionally.
1126static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1127  // For now, we can only do this promotion if the load is in the same block as
1128  // the PHI, and if there are no stores between the phi and load.
1129  // TODO: Allow recursive phi users.
1130  // TODO: Allow stores.
1131  BasicBlock *BB = PN->getParent();
1132  unsigned MaxAlign = 0;
1133  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1134       UI != UE; ++UI) {
1135    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1136    if (LI == 0 || LI->isVolatile()) return false;
1137
1138    // For now we only allow loads in the same block as the PHI.  This is a
1139    // common case that happens when instcombine merges two loads through a PHI.
1140    if (LI->getParent() != BB) return false;
1141
1142    // Ensure that there are no instructions between the PHI and the load that
1143    // could store.
1144    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1145      if (BBI->mayWriteToMemory())
1146        return false;
1147
1148    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1149  }
1150
1151  // Okay, we know that we have one or more loads in the same block as the PHI.
1152  // We can transform this if it is safe to push the loads into the predecessor
1153  // blocks.  The only thing to watch out for is that we can't put a possibly
1154  // trapping load in the predecessor if it is a critical edge.
1155  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1156    BasicBlock *Pred = PN->getIncomingBlock(i);
1157
1158    // If the predecessor has a single successor, then the edge isn't critical.
1159    if (Pred->getTerminator()->getNumSuccessors() == 1)
1160      continue;
1161
1162    Value *InVal = PN->getIncomingValue(i);
1163
1164    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1165    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1166      if (II->getParent() == Pred)
1167        return false;
1168
1169    // If this pointer is always safe to load, or if we can prove that there is
1170    // already a load in the block, then we can move the load to the pred block.
1171    if (InVal->isDereferenceablePointer() ||
1172        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1173      continue;
1174
1175    return false;
1176  }
1177
1178  return true;
1179}
1180
1181
1182/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1183/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1184/// not quite there, this will transform the code to allow promotion.  As such,
1185/// it is a non-pure predicate.
1186static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1187  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1188            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1189
1190  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1191       UI != UE; ++UI) {
1192    User *U = *UI;
1193    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1194      if (LI->isVolatile())
1195        return false;
1196      continue;
1197    }
1198
1199    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1200      if (SI->getOperand(0) == AI || SI->isVolatile())
1201        return false;   // Don't allow a store OF the AI, only INTO the AI.
1202      continue;
1203    }
1204
1205    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1206      // If the condition being selected on is a constant, fold the select, yes
1207      // this does (rarely) happen early on.
1208      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1209        Value *Result = SI->getOperand(1+CI->isZero());
1210        SI->replaceAllUsesWith(Result);
1211        SI->eraseFromParent();
1212
1213        // This is very rare and we just scrambled the use list of AI, start
1214        // over completely.
1215        return tryToMakeAllocaBePromotable(AI, TD);
1216      }
1217
1218      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1219      // loads, then we can transform this by rewriting the select.
1220      if (!isSafeSelectToSpeculate(SI, TD))
1221        return false;
1222
1223      InstsToRewrite.insert(SI);
1224      continue;
1225    }
1226
1227    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1228      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1229        InstsToRewrite.insert(PN);
1230        continue;
1231      }
1232
1233      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1234      // in the pred blocks, then we can transform this by rewriting the PHI.
1235      if (!isSafePHIToSpeculate(PN, TD))
1236        return false;
1237
1238      InstsToRewrite.insert(PN);
1239      continue;
1240    }
1241
1242    return false;
1243  }
1244
1245  // If there are no instructions to rewrite, then all uses are load/stores and
1246  // we're done!
1247  if (InstsToRewrite.empty())
1248    return true;
1249
1250  // If we have instructions that need to be rewritten for this to be promotable
1251  // take care of it now.
1252  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1253    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1254      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1255      // loads with a new select.
1256      while (!SI->use_empty()) {
1257        LoadInst *LI = cast<LoadInst>(SI->use_back());
1258
1259        IRBuilder<> Builder(LI);
1260        LoadInst *TrueLoad =
1261          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1262        LoadInst *FalseLoad =
1263          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1264
1265        // Transfer alignment and TBAA info if present.
1266        TrueLoad->setAlignment(LI->getAlignment());
1267        FalseLoad->setAlignment(LI->getAlignment());
1268        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1269          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1270          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1271        }
1272
1273        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1274        V->takeName(LI);
1275        LI->replaceAllUsesWith(V);
1276        LI->eraseFromParent();
1277      }
1278
1279      // Now that all the loads are gone, the select is gone too.
1280      SI->eraseFromParent();
1281      continue;
1282    }
1283
1284    // Otherwise, we have a PHI node which allows us to push the loads into the
1285    // predecessors.
1286    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1287    if (PN->use_empty()) {
1288      PN->eraseFromParent();
1289      continue;
1290    }
1291
1292    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1293    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1294                                     PN->getName()+".ld", PN);
1295
1296    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1297    // matter which one we get and if any differ, it doesn't matter.
1298    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1299    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1300    unsigned Align = SomeLoad->getAlignment();
1301
1302    // Rewrite all loads of the PN to use the new PHI.
1303    while (!PN->use_empty()) {
1304      LoadInst *LI = cast<LoadInst>(PN->use_back());
1305      LI->replaceAllUsesWith(NewPN);
1306      LI->eraseFromParent();
1307    }
1308
1309    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1310    // insert them into in case we have multiple edges from the same block.
1311    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1312
1313    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1314      BasicBlock *Pred = PN->getIncomingBlock(i);
1315      LoadInst *&Load = InsertedLoads[Pred];
1316      if (Load == 0) {
1317        Load = new LoadInst(PN->getIncomingValue(i),
1318                            PN->getName() + "." + Pred->getName(),
1319                            Pred->getTerminator());
1320        Load->setAlignment(Align);
1321        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1322      }
1323
1324      NewPN->addIncoming(Load, Pred);
1325    }
1326
1327    PN->eraseFromParent();
1328  }
1329
1330  ++NumAdjusted;
1331  return true;
1332}
1333
1334bool SROA::performPromotion(Function &F) {
1335  std::vector<AllocaInst*> Allocas;
1336  DominatorTree *DT = 0;
1337  if (HasDomTree)
1338    DT = &getAnalysis<DominatorTree>();
1339
1340  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1341
1342  bool Changed = false;
1343  SmallVector<Instruction*, 64> Insts;
1344  DIBuilder *DIB = 0;
1345  while (1) {
1346    Allocas.clear();
1347
1348    // Find allocas that are safe to promote, by looking at all instructions in
1349    // the entry node
1350    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1351      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1352        if (tryToMakeAllocaBePromotable(AI, TD))
1353          Allocas.push_back(AI);
1354
1355    if (Allocas.empty()) break;
1356
1357    if (HasDomTree)
1358      PromoteMemToReg(Allocas, *DT);
1359    else {
1360      SSAUpdater SSA;
1361      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1362        AllocaInst *AI = Allocas[i];
1363
1364        // Build list of instructions to promote.
1365        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1366             UI != E; ++UI)
1367          Insts.push_back(cast<Instruction>(*UI));
1368
1369        DbgDeclareInst *DDI = FindAllocaDbgDeclare(AI);
1370        if (DDI && !DIB)
1371          DIB = new DIBuilder(*AI->getParent()->getParent()->getParent());
1372        AllocaPromoter(Insts, SSA, DDI, DIB).run(AI, Insts);
1373        Insts.clear();
1374      }
1375    }
1376    NumPromoted += Allocas.size();
1377    Changed = true;
1378  }
1379
1380  // FIXME: Is there a better way to handle the lazy initialization of DIB
1381  // so that there doesn't need to be an explicit delete?
1382  delete DIB;
1383
1384  return Changed;
1385}
1386
1387
1388/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1389/// SROA.  It must be a struct or array type with a small number of elements.
1390static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1391  const Type *T = AI->getAllocatedType();
1392  // Do not promote any struct into more than 32 separate vars.
1393  if (const StructType *ST = dyn_cast<StructType>(T))
1394    return ST->getNumElements() <= 32;
1395  // Arrays are much less likely to be safe for SROA; only consider
1396  // them if they are very small.
1397  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1398    return AT->getNumElements() <= 8;
1399  return false;
1400}
1401
1402
1403// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1404// which runs on all of the malloc/alloca instructions in the function, removing
1405// them if they are only used by getelementptr instructions.
1406//
1407bool SROA::performScalarRepl(Function &F) {
1408  std::vector<AllocaInst*> WorkList;
1409
1410  // Scan the entry basic block, adding allocas to the worklist.
1411  BasicBlock &BB = F.getEntryBlock();
1412  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1413    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1414      WorkList.push_back(A);
1415
1416  // Process the worklist
1417  bool Changed = false;
1418  while (!WorkList.empty()) {
1419    AllocaInst *AI = WorkList.back();
1420    WorkList.pop_back();
1421
1422    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1423    // with unused elements.
1424    if (AI->use_empty()) {
1425      AI->eraseFromParent();
1426      Changed = true;
1427      continue;
1428    }
1429
1430    // If this alloca is impossible for us to promote, reject it early.
1431    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1432      continue;
1433
1434    // Check to see if this allocation is only modified by a memcpy/memmove from
1435    // a constant global.  If this is the case, we can change all users to use
1436    // the constant global instead.  This is commonly produced by the CFE by
1437    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1438    // is only subsequently read.
1439    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1440      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1441      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1442      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1443      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1444      TheCopy->eraseFromParent();  // Don't mutate the global.
1445      AI->eraseFromParent();
1446      ++NumGlobals;
1447      Changed = true;
1448      continue;
1449    }
1450
1451    // Check to see if we can perform the core SROA transformation.  We cannot
1452    // transform the allocation instruction if it is an array allocation
1453    // (allocations OF arrays are ok though), and an allocation of a scalar
1454    // value cannot be decomposed at all.
1455    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1456
1457    // Do not promote [0 x %struct].
1458    if (AllocaSize == 0) continue;
1459
1460    // Do not promote any struct whose size is too big.
1461    if (AllocaSize > SRThreshold) continue;
1462
1463    // If the alloca looks like a good candidate for scalar replacement, and if
1464    // all its users can be transformed, then split up the aggregate into its
1465    // separate elements.
1466    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1467      DoScalarReplacement(AI, WorkList);
1468      Changed = true;
1469      continue;
1470    }
1471
1472    // If we can turn this aggregate value (potentially with casts) into a
1473    // simple scalar value that can be mem2reg'd into a register value.
1474    // IsNotTrivial tracks whether this is something that mem2reg could have
1475    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1476    // that we can't just check based on the type: the alloca may be of an i32
1477    // but that has pointer arithmetic to set byte 3 of it or something.
1478    if (AllocaInst *NewAI =
1479          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1480      NewAI->takeName(AI);
1481      AI->eraseFromParent();
1482      ++NumConverted;
1483      Changed = true;
1484      continue;
1485    }
1486
1487    // Otherwise, couldn't process this alloca.
1488  }
1489
1490  return Changed;
1491}
1492
1493/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1494/// predicate, do SROA now.
1495void SROA::DoScalarReplacement(AllocaInst *AI,
1496                               std::vector<AllocaInst*> &WorkList) {
1497  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1498  SmallVector<AllocaInst*, 32> ElementAllocas;
1499  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1500    ElementAllocas.reserve(ST->getNumContainedTypes());
1501    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1502      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1503                                      AI->getAlignment(),
1504                                      AI->getName() + "." + Twine(i), AI);
1505      ElementAllocas.push_back(NA);
1506      WorkList.push_back(NA);  // Add to worklist for recursive processing
1507    }
1508  } else {
1509    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1510    ElementAllocas.reserve(AT->getNumElements());
1511    const Type *ElTy = AT->getElementType();
1512    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1513      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1514                                      AI->getName() + "." + Twine(i), AI);
1515      ElementAllocas.push_back(NA);
1516      WorkList.push_back(NA);  // Add to worklist for recursive processing
1517    }
1518  }
1519
1520  // Now that we have created the new alloca instructions, rewrite all the
1521  // uses of the old alloca.
1522  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1523
1524  // Now erase any instructions that were made dead while rewriting the alloca.
1525  DeleteDeadInstructions();
1526  AI->eraseFromParent();
1527
1528  ++NumReplaced;
1529}
1530
1531/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1532/// recursively including all their operands that become trivially dead.
1533void SROA::DeleteDeadInstructions() {
1534  while (!DeadInsts.empty()) {
1535    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1536
1537    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1538      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1539        // Zero out the operand and see if it becomes trivially dead.
1540        // (But, don't add allocas to the dead instruction list -- they are
1541        // already on the worklist and will be deleted separately.)
1542        *OI = 0;
1543        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1544          DeadInsts.push_back(U);
1545      }
1546
1547    I->eraseFromParent();
1548  }
1549}
1550
1551/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1552/// performing scalar replacement of alloca AI.  The results are flagged in
1553/// the Info parameter.  Offset indicates the position within AI that is
1554/// referenced by this instruction.
1555void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1556                               AllocaInfo &Info) {
1557  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1558    Instruction *User = cast<Instruction>(*UI);
1559
1560    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1561      isSafeForScalarRepl(BC, Offset, Info);
1562    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1563      uint64_t GEPOffset = Offset;
1564      isSafeGEP(GEPI, GEPOffset, Info);
1565      if (!Info.isUnsafe)
1566        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1567    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1568      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1569      if (Length == 0)
1570        return MarkUnsafe(Info, User);
1571      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1572                      UI.getOperandNo() == 0, Info, MI,
1573                      true /*AllowWholeAccess*/);
1574    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1575      if (LI->isVolatile())
1576        return MarkUnsafe(Info, User);
1577      const Type *LIType = LI->getType();
1578      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1579                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1580      Info.hasALoadOrStore = true;
1581
1582    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1583      // Store is ok if storing INTO the pointer, not storing the pointer
1584      if (SI->isVolatile() || SI->getOperand(0) == I)
1585        return MarkUnsafe(Info, User);
1586
1587      const Type *SIType = SI->getOperand(0)->getType();
1588      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1589                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1590      Info.hasALoadOrStore = true;
1591    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1592      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1593    } else {
1594      return MarkUnsafe(Info, User);
1595    }
1596    if (Info.isUnsafe) return;
1597  }
1598}
1599
1600
1601/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1602/// derived from the alloca, we can often still split the alloca into elements.
1603/// This is useful if we have a large alloca where one element is phi'd
1604/// together somewhere: we can SRoA and promote all the other elements even if
1605/// we end up not being able to promote this one.
1606///
1607/// All we require is that the uses of the PHI do not index into other parts of
1608/// the alloca.  The most important use case for this is single load and stores
1609/// that are PHI'd together, which can happen due to code sinking.
1610void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1611                                           AllocaInfo &Info) {
1612  // If we've already checked this PHI, don't do it again.
1613  if (PHINode *PN = dyn_cast<PHINode>(I))
1614    if (!Info.CheckedPHIs.insert(PN))
1615      return;
1616
1617  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1618    Instruction *User = cast<Instruction>(*UI);
1619
1620    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1621      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1622    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1623      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1624      // but would have to prove that we're staying inside of an element being
1625      // promoted.
1626      if (!GEPI->hasAllZeroIndices())
1627        return MarkUnsafe(Info, User);
1628      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1629    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1630      if (LI->isVolatile())
1631        return MarkUnsafe(Info, User);
1632      const Type *LIType = LI->getType();
1633      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1634                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1635      Info.hasALoadOrStore = true;
1636
1637    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1638      // Store is ok if storing INTO the pointer, not storing the pointer
1639      if (SI->isVolatile() || SI->getOperand(0) == I)
1640        return MarkUnsafe(Info, User);
1641
1642      const Type *SIType = SI->getOperand(0)->getType();
1643      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1644                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1645      Info.hasALoadOrStore = true;
1646    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1647      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1648    } else {
1649      return MarkUnsafe(Info, User);
1650    }
1651    if (Info.isUnsafe) return;
1652  }
1653}
1654
1655/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1656/// replacement.  It is safe when all the indices are constant, in-bounds
1657/// references, and when the resulting offset corresponds to an element within
1658/// the alloca type.  The results are flagged in the Info parameter.  Upon
1659/// return, Offset is adjusted as specified by the GEP indices.
1660void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1661                     uint64_t &Offset, AllocaInfo &Info) {
1662  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1663  if (GEPIt == E)
1664    return;
1665
1666  // Walk through the GEP type indices, checking the types that this indexes
1667  // into.
1668  for (; GEPIt != E; ++GEPIt) {
1669    // Ignore struct elements, no extra checking needed for these.
1670    if ((*GEPIt)->isStructTy())
1671      continue;
1672
1673    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1674    if (!IdxVal)
1675      return MarkUnsafe(Info, GEPI);
1676  }
1677
1678  // Compute the offset due to this GEP and check if the alloca has a
1679  // component element at that offset.
1680  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1681  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1682                                 &Indices[0], Indices.size());
1683  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1684    MarkUnsafe(Info, GEPI);
1685}
1686
1687/// isHomogeneousAggregate - Check if type T is a struct or array containing
1688/// elements of the same type (which is always true for arrays).  If so,
1689/// return true with NumElts and EltTy set to the number of elements and the
1690/// element type, respectively.
1691static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1692                                   const Type *&EltTy) {
1693  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1694    NumElts = AT->getNumElements();
1695    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1696    return true;
1697  }
1698  if (const StructType *ST = dyn_cast<StructType>(T)) {
1699    NumElts = ST->getNumContainedTypes();
1700    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1701    for (unsigned n = 1; n < NumElts; ++n) {
1702      if (ST->getContainedType(n) != EltTy)
1703        return false;
1704    }
1705    return true;
1706  }
1707  return false;
1708}
1709
1710/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1711/// "homogeneous" aggregates with the same element type and number of elements.
1712static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1713  if (T1 == T2)
1714    return true;
1715
1716  unsigned NumElts1, NumElts2;
1717  const Type *EltTy1, *EltTy2;
1718  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1719      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1720      NumElts1 == NumElts2 &&
1721      EltTy1 == EltTy2)
1722    return true;
1723
1724  return false;
1725}
1726
1727/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1728/// alloca or has an offset and size that corresponds to a component element
1729/// within it.  The offset checked here may have been formed from a GEP with a
1730/// pointer bitcasted to a different type.
1731///
1732/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1733/// unit.  If false, it only allows accesses known to be in a single element.
1734void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1735                           const Type *MemOpType, bool isStore,
1736                           AllocaInfo &Info, Instruction *TheAccess,
1737                           bool AllowWholeAccess) {
1738  // Check if this is a load/store of the entire alloca.
1739  if (Offset == 0 && AllowWholeAccess &&
1740      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1741    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1742    // loads/stores (which are essentially the same as the MemIntrinsics with
1743    // regard to copying padding between elements).  But, if an alloca is
1744    // flagged as both a source and destination of such operations, we'll need
1745    // to check later for padding between elements.
1746    if (!MemOpType || MemOpType->isIntegerTy()) {
1747      if (isStore)
1748        Info.isMemCpyDst = true;
1749      else
1750        Info.isMemCpySrc = true;
1751      return;
1752    }
1753    // This is also safe for references using a type that is compatible with
1754    // the type of the alloca, so that loads/stores can be rewritten using
1755    // insertvalue/extractvalue.
1756    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1757      Info.hasSubelementAccess = true;
1758      return;
1759    }
1760  }
1761  // Check if the offset/size correspond to a component within the alloca type.
1762  const Type *T = Info.AI->getAllocatedType();
1763  if (TypeHasComponent(T, Offset, MemSize)) {
1764    Info.hasSubelementAccess = true;
1765    return;
1766  }
1767
1768  return MarkUnsafe(Info, TheAccess);
1769}
1770
1771/// TypeHasComponent - Return true if T has a component type with the
1772/// specified offset and size.  If Size is zero, do not check the size.
1773bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1774  const Type *EltTy;
1775  uint64_t EltSize;
1776  if (const StructType *ST = dyn_cast<StructType>(T)) {
1777    const StructLayout *Layout = TD->getStructLayout(ST);
1778    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1779    EltTy = ST->getContainedType(EltIdx);
1780    EltSize = TD->getTypeAllocSize(EltTy);
1781    Offset -= Layout->getElementOffset(EltIdx);
1782  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1783    EltTy = AT->getElementType();
1784    EltSize = TD->getTypeAllocSize(EltTy);
1785    if (Offset >= AT->getNumElements() * EltSize)
1786      return false;
1787    Offset %= EltSize;
1788  } else {
1789    return false;
1790  }
1791  if (Offset == 0 && (Size == 0 || EltSize == Size))
1792    return true;
1793  // Check if the component spans multiple elements.
1794  if (Offset + Size > EltSize)
1795    return false;
1796  return TypeHasComponent(EltTy, Offset, Size);
1797}
1798
1799/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1800/// the instruction I, which references it, to use the separate elements.
1801/// Offset indicates the position within AI that is referenced by this
1802/// instruction.
1803void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1804                                SmallVector<AllocaInst*, 32> &NewElts) {
1805  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1806    Use &TheUse = UI.getUse();
1807    Instruction *User = cast<Instruction>(*UI++);
1808
1809    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1810      RewriteBitCast(BC, AI, Offset, NewElts);
1811      continue;
1812    }
1813
1814    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1815      RewriteGEP(GEPI, AI, Offset, NewElts);
1816      continue;
1817    }
1818
1819    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1820      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1821      uint64_t MemSize = Length->getZExtValue();
1822      if (Offset == 0 &&
1823          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1824        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1825      // Otherwise the intrinsic can only touch a single element and the
1826      // address operand will be updated, so nothing else needs to be done.
1827      continue;
1828    }
1829
1830    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1831      const Type *LIType = LI->getType();
1832
1833      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1834        // Replace:
1835        //   %res = load { i32, i32 }* %alloc
1836        // with:
1837        //   %load.0 = load i32* %alloc.0
1838        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1839        //   %load.1 = load i32* %alloc.1
1840        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1841        // (Also works for arrays instead of structs)
1842        Value *Insert = UndefValue::get(LIType);
1843        IRBuilder<> Builder(LI);
1844        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1845          Value *Load = Builder.CreateLoad(NewElts[i], "load");
1846          Insert = Builder.CreateInsertValue(Insert, Load, i, "insert");
1847        }
1848        LI->replaceAllUsesWith(Insert);
1849        DeadInsts.push_back(LI);
1850      } else if (LIType->isIntegerTy() &&
1851                 TD->getTypeAllocSize(LIType) ==
1852                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1853        // If this is a load of the entire alloca to an integer, rewrite it.
1854        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1855      }
1856      continue;
1857    }
1858
1859    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1860      Value *Val = SI->getOperand(0);
1861      const Type *SIType = Val->getType();
1862      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1863        // Replace:
1864        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1865        // with:
1866        //   %val.0 = extractvalue { i32, i32 } %val, 0
1867        //   store i32 %val.0, i32* %alloc.0
1868        //   %val.1 = extractvalue { i32, i32 } %val, 1
1869        //   store i32 %val.1, i32* %alloc.1
1870        // (Also works for arrays instead of structs)
1871        IRBuilder<> Builder(SI);
1872        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1873          Value *Extract = Builder.CreateExtractValue(Val, i, Val->getName());
1874          Builder.CreateStore(Extract, NewElts[i]);
1875        }
1876        DeadInsts.push_back(SI);
1877      } else if (SIType->isIntegerTy() &&
1878                 TD->getTypeAllocSize(SIType) ==
1879                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1880        // If this is a store of the entire alloca from an integer, rewrite it.
1881        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1882      }
1883      continue;
1884    }
1885
1886    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1887      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1888      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1889      // the new pointer.
1890      if (!isa<AllocaInst>(I)) continue;
1891
1892      assert(Offset == 0 && NewElts[0] &&
1893             "Direct alloca use should have a zero offset");
1894
1895      // If we have a use of the alloca, we know the derived uses will be
1896      // utilizing just the first element of the scalarized result.  Insert a
1897      // bitcast of the first alloca before the user as required.
1898      AllocaInst *NewAI = NewElts[0];
1899      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1900      NewAI->moveBefore(BCI);
1901      TheUse = BCI;
1902      continue;
1903    }
1904  }
1905}
1906
1907/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1908/// and recursively continue updating all of its uses.
1909void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1910                          SmallVector<AllocaInst*, 32> &NewElts) {
1911  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1912  if (BC->getOperand(0) != AI)
1913    return;
1914
1915  // The bitcast references the original alloca.  Replace its uses with
1916  // references to the first new element alloca.
1917  Instruction *Val = NewElts[0];
1918  if (Val->getType() != BC->getDestTy()) {
1919    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1920    Val->takeName(BC);
1921  }
1922  BC->replaceAllUsesWith(Val);
1923  DeadInsts.push_back(BC);
1924}
1925
1926/// FindElementAndOffset - Return the index of the element containing Offset
1927/// within the specified type, which must be either a struct or an array.
1928/// Sets T to the type of the element and Offset to the offset within that
1929/// element.  IdxTy is set to the type of the index result to be used in a
1930/// GEP instruction.
1931uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1932                                    const Type *&IdxTy) {
1933  uint64_t Idx = 0;
1934  if (const StructType *ST = dyn_cast<StructType>(T)) {
1935    const StructLayout *Layout = TD->getStructLayout(ST);
1936    Idx = Layout->getElementContainingOffset(Offset);
1937    T = ST->getContainedType(Idx);
1938    Offset -= Layout->getElementOffset(Idx);
1939    IdxTy = Type::getInt32Ty(T->getContext());
1940    return Idx;
1941  }
1942  const ArrayType *AT = cast<ArrayType>(T);
1943  T = AT->getElementType();
1944  uint64_t EltSize = TD->getTypeAllocSize(T);
1945  Idx = Offset / EltSize;
1946  Offset -= Idx * EltSize;
1947  IdxTy = Type::getInt64Ty(T->getContext());
1948  return Idx;
1949}
1950
1951/// RewriteGEP - Check if this GEP instruction moves the pointer across
1952/// elements of the alloca that are being split apart, and if so, rewrite
1953/// the GEP to be relative to the new element.
1954void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1955                      SmallVector<AllocaInst*, 32> &NewElts) {
1956  uint64_t OldOffset = Offset;
1957  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1958  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1959                                 &Indices[0], Indices.size());
1960
1961  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1962
1963  const Type *T = AI->getAllocatedType();
1964  const Type *IdxTy;
1965  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1966  if (GEPI->getOperand(0) == AI)
1967    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1968
1969  T = AI->getAllocatedType();
1970  uint64_t EltOffset = Offset;
1971  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1972
1973  // If this GEP does not move the pointer across elements of the alloca
1974  // being split, then it does not needs to be rewritten.
1975  if (Idx == OldIdx)
1976    return;
1977
1978  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1979  SmallVector<Value*, 8> NewArgs;
1980  NewArgs.push_back(Constant::getNullValue(i32Ty));
1981  while (EltOffset != 0) {
1982    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1983    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1984  }
1985  Instruction *Val = NewElts[Idx];
1986  if (NewArgs.size() > 1) {
1987    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1988                                            NewArgs.end(), "", GEPI);
1989    Val->takeName(GEPI);
1990  }
1991  if (Val->getType() != GEPI->getType())
1992    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1993  GEPI->replaceAllUsesWith(Val);
1994  DeadInsts.push_back(GEPI);
1995}
1996
1997/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1998/// Rewrite it to copy or set the elements of the scalarized memory.
1999void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
2000                                        AllocaInst *AI,
2001                                        SmallVector<AllocaInst*, 32> &NewElts) {
2002  // If this is a memcpy/memmove, construct the other pointer as the
2003  // appropriate type.  The "Other" pointer is the pointer that goes to memory
2004  // that doesn't have anything to do with the alloca that we are promoting. For
2005  // memset, this Value* stays null.
2006  Value *OtherPtr = 0;
2007  unsigned MemAlignment = MI->getAlignment();
2008  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
2009    if (Inst == MTI->getRawDest())
2010      OtherPtr = MTI->getRawSource();
2011    else {
2012      assert(Inst == MTI->getRawSource());
2013      OtherPtr = MTI->getRawDest();
2014    }
2015  }
2016
2017  // If there is an other pointer, we want to convert it to the same pointer
2018  // type as AI has, so we can GEP through it safely.
2019  if (OtherPtr) {
2020    unsigned AddrSpace =
2021      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2022
2023    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2024    // optimization, but it's also required to detect the corner case where
2025    // both pointer operands are referencing the same memory, and where
2026    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2027    // function is only called for mem intrinsics that access the whole
2028    // aggregate, so non-zero GEPs are not an issue here.)
2029    OtherPtr = OtherPtr->stripPointerCasts();
2030
2031    // Copying the alloca to itself is a no-op: just delete it.
2032    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2033      // This code will run twice for a no-op memcpy -- once for each operand.
2034      // Put only one reference to MI on the DeadInsts list.
2035      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2036             E = DeadInsts.end(); I != E; ++I)
2037        if (*I == MI) return;
2038      DeadInsts.push_back(MI);
2039      return;
2040    }
2041
2042    // If the pointer is not the right type, insert a bitcast to the right
2043    // type.
2044    const Type *NewTy =
2045      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2046
2047    if (OtherPtr->getType() != NewTy)
2048      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2049  }
2050
2051  // Process each element of the aggregate.
2052  bool SROADest = MI->getRawDest() == Inst;
2053
2054  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2055
2056  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2057    // If this is a memcpy/memmove, emit a GEP of the other element address.
2058    Value *OtherElt = 0;
2059    unsigned OtherEltAlign = MemAlignment;
2060
2061    if (OtherPtr) {
2062      Value *Idx[2] = { Zero,
2063                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2064      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
2065                                              OtherPtr->getName()+"."+Twine(i),
2066                                                   MI);
2067      uint64_t EltOffset;
2068      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2069      const Type *OtherTy = OtherPtrTy->getElementType();
2070      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
2071        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2072      } else {
2073        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2074        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2075      }
2076
2077      // The alignment of the other pointer is the guaranteed alignment of the
2078      // element, which is affected by both the known alignment of the whole
2079      // mem intrinsic and the alignment of the element.  If the alignment of
2080      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2081      // known alignment is just 4 bytes.
2082      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2083    }
2084
2085    Value *EltPtr = NewElts[i];
2086    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2087
2088    // If we got down to a scalar, insert a load or store as appropriate.
2089    if (EltTy->isSingleValueType()) {
2090      if (isa<MemTransferInst>(MI)) {
2091        if (SROADest) {
2092          // From Other to Alloca.
2093          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2094          new StoreInst(Elt, EltPtr, MI);
2095        } else {
2096          // From Alloca to Other.
2097          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2098          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2099        }
2100        continue;
2101      }
2102      assert(isa<MemSetInst>(MI));
2103
2104      // If the stored element is zero (common case), just store a null
2105      // constant.
2106      Constant *StoreVal;
2107      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2108        if (CI->isZero()) {
2109          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2110        } else {
2111          // If EltTy is a vector type, get the element type.
2112          const Type *ValTy = EltTy->getScalarType();
2113
2114          // Construct an integer with the right value.
2115          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2116          APInt OneVal(EltSize, CI->getZExtValue());
2117          APInt TotalVal(OneVal);
2118          // Set each byte.
2119          for (unsigned i = 0; 8*i < EltSize; ++i) {
2120            TotalVal = TotalVal.shl(8);
2121            TotalVal |= OneVal;
2122          }
2123
2124          // Convert the integer value to the appropriate type.
2125          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2126          if (ValTy->isPointerTy())
2127            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2128          else if (ValTy->isFloatingPointTy())
2129            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2130          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2131
2132          // If the requested value was a vector constant, create it.
2133          if (EltTy != ValTy) {
2134            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2135            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2136            StoreVal = ConstantVector::get(Elts);
2137          }
2138        }
2139        new StoreInst(StoreVal, EltPtr, MI);
2140        continue;
2141      }
2142      // Otherwise, if we're storing a byte variable, use a memset call for
2143      // this element.
2144    }
2145
2146    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2147
2148    IRBuilder<> Builder(MI);
2149
2150    // Finally, insert the meminst for this element.
2151    if (isa<MemSetInst>(MI)) {
2152      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2153                           MI->isVolatile());
2154    } else {
2155      assert(isa<MemTransferInst>(MI));
2156      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2157      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2158
2159      if (isa<MemCpyInst>(MI))
2160        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2161      else
2162        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2163    }
2164  }
2165  DeadInsts.push_back(MI);
2166}
2167
2168/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2169/// overwrites the entire allocation.  Extract out the pieces of the stored
2170/// integer and store them individually.
2171void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2172                                         SmallVector<AllocaInst*, 32> &NewElts){
2173  // Extract each element out of the integer according to its structure offset
2174  // and store the element value to the individual alloca.
2175  Value *SrcVal = SI->getOperand(0);
2176  const Type *AllocaEltTy = AI->getAllocatedType();
2177  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2178
2179  IRBuilder<> Builder(SI);
2180
2181  // Handle tail padding by extending the operand
2182  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2183    SrcVal = Builder.CreateZExt(SrcVal,
2184                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2185
2186  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2187               << '\n');
2188
2189  // There are two forms here: AI could be an array or struct.  Both cases
2190  // have different ways to compute the element offset.
2191  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2192    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2193
2194    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2195      // Get the number of bits to shift SrcVal to get the value.
2196      const Type *FieldTy = EltSTy->getElementType(i);
2197      uint64_t Shift = Layout->getElementOffsetInBits(i);
2198
2199      if (TD->isBigEndian())
2200        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2201
2202      Value *EltVal = SrcVal;
2203      if (Shift) {
2204        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2205        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2206      }
2207
2208      // Truncate down to an integer of the right size.
2209      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2210
2211      // Ignore zero sized fields like {}, they obviously contain no data.
2212      if (FieldSizeBits == 0) continue;
2213
2214      if (FieldSizeBits != AllocaSizeBits)
2215        EltVal = Builder.CreateTrunc(EltVal,
2216                             IntegerType::get(SI->getContext(), FieldSizeBits));
2217      Value *DestField = NewElts[i];
2218      if (EltVal->getType() == FieldTy) {
2219        // Storing to an integer field of this size, just do it.
2220      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2221        // Bitcast to the right element type (for fp/vector values).
2222        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2223      } else {
2224        // Otherwise, bitcast the dest pointer (for aggregates).
2225        DestField = Builder.CreateBitCast(DestField,
2226                                     PointerType::getUnqual(EltVal->getType()));
2227      }
2228      new StoreInst(EltVal, DestField, SI);
2229    }
2230
2231  } else {
2232    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2233    const Type *ArrayEltTy = ATy->getElementType();
2234    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2235    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2236
2237    uint64_t Shift;
2238
2239    if (TD->isBigEndian())
2240      Shift = AllocaSizeBits-ElementOffset;
2241    else
2242      Shift = 0;
2243
2244    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2245      // Ignore zero sized fields like {}, they obviously contain no data.
2246      if (ElementSizeBits == 0) continue;
2247
2248      Value *EltVal = SrcVal;
2249      if (Shift) {
2250        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2251        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2252      }
2253
2254      // Truncate down to an integer of the right size.
2255      if (ElementSizeBits != AllocaSizeBits)
2256        EltVal = Builder.CreateTrunc(EltVal,
2257                                     IntegerType::get(SI->getContext(),
2258                                                      ElementSizeBits));
2259      Value *DestField = NewElts[i];
2260      if (EltVal->getType() == ArrayEltTy) {
2261        // Storing to an integer field of this size, just do it.
2262      } else if (ArrayEltTy->isFloatingPointTy() ||
2263                 ArrayEltTy->isVectorTy()) {
2264        // Bitcast to the right element type (for fp/vector values).
2265        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2266      } else {
2267        // Otherwise, bitcast the dest pointer (for aggregates).
2268        DestField = Builder.CreateBitCast(DestField,
2269                                     PointerType::getUnqual(EltVal->getType()));
2270      }
2271      new StoreInst(EltVal, DestField, SI);
2272
2273      if (TD->isBigEndian())
2274        Shift -= ElementOffset;
2275      else
2276        Shift += ElementOffset;
2277    }
2278  }
2279
2280  DeadInsts.push_back(SI);
2281}
2282
2283/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2284/// an integer.  Load the individual pieces to form the aggregate value.
2285void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2286                                        SmallVector<AllocaInst*, 32> &NewElts) {
2287  // Extract each element out of the NewElts according to its structure offset
2288  // and form the result value.
2289  const Type *AllocaEltTy = AI->getAllocatedType();
2290  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2291
2292  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2293               << '\n');
2294
2295  // There are two forms here: AI could be an array or struct.  Both cases
2296  // have different ways to compute the element offset.
2297  const StructLayout *Layout = 0;
2298  uint64_t ArrayEltBitOffset = 0;
2299  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2300    Layout = TD->getStructLayout(EltSTy);
2301  } else {
2302    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2303    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2304  }
2305
2306  Value *ResultVal =
2307    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2308
2309  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2310    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2311    // the pointer to an integer of the same size before doing the load.
2312    Value *SrcField = NewElts[i];
2313    const Type *FieldTy =
2314      cast<PointerType>(SrcField->getType())->getElementType();
2315    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2316
2317    // Ignore zero sized fields like {}, they obviously contain no data.
2318    if (FieldSizeBits == 0) continue;
2319
2320    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2321                                                     FieldSizeBits);
2322    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2323        !FieldTy->isVectorTy())
2324      SrcField = new BitCastInst(SrcField,
2325                                 PointerType::getUnqual(FieldIntTy),
2326                                 "", LI);
2327    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2328
2329    // If SrcField is a fp or vector of the right size but that isn't an
2330    // integer type, bitcast to an integer so we can shift it.
2331    if (SrcField->getType() != FieldIntTy)
2332      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2333
2334    // Zero extend the field to be the same size as the final alloca so that
2335    // we can shift and insert it.
2336    if (SrcField->getType() != ResultVal->getType())
2337      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2338
2339    // Determine the number of bits to shift SrcField.
2340    uint64_t Shift;
2341    if (Layout) // Struct case.
2342      Shift = Layout->getElementOffsetInBits(i);
2343    else  // Array case.
2344      Shift = i*ArrayEltBitOffset;
2345
2346    if (TD->isBigEndian())
2347      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2348
2349    if (Shift) {
2350      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2351      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2352    }
2353
2354    // Don't create an 'or x, 0' on the first iteration.
2355    if (!isa<Constant>(ResultVal) ||
2356        !cast<Constant>(ResultVal)->isNullValue())
2357      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2358    else
2359      ResultVal = SrcField;
2360  }
2361
2362  // Handle tail padding by truncating the result
2363  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2364    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2365
2366  LI->replaceAllUsesWith(ResultVal);
2367  DeadInsts.push_back(LI);
2368}
2369
2370/// HasPadding - Return true if the specified type has any structure or
2371/// alignment padding in between the elements that would be split apart
2372/// by SROA; return false otherwise.
2373static bool HasPadding(const Type *Ty, const TargetData &TD) {
2374  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2375    Ty = ATy->getElementType();
2376    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2377  }
2378
2379  // SROA currently handles only Arrays and Structs.
2380  const StructType *STy = cast<StructType>(Ty);
2381  const StructLayout *SL = TD.getStructLayout(STy);
2382  unsigned PrevFieldBitOffset = 0;
2383  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2384    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2385
2386    // Check to see if there is any padding between this element and the
2387    // previous one.
2388    if (i) {
2389      unsigned PrevFieldEnd =
2390        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2391      if (PrevFieldEnd < FieldBitOffset)
2392        return true;
2393    }
2394    PrevFieldBitOffset = FieldBitOffset;
2395  }
2396  // Check for tail padding.
2397  if (unsigned EltCount = STy->getNumElements()) {
2398    unsigned PrevFieldEnd = PrevFieldBitOffset +
2399      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2400    if (PrevFieldEnd < SL->getSizeInBits())
2401      return true;
2402  }
2403  return false;
2404}
2405
2406/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2407/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2408/// or 1 if safe after canonicalization has been performed.
2409bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2410  // Loop over the use list of the alloca.  We can only transform it if all of
2411  // the users are safe to transform.
2412  AllocaInfo Info(AI);
2413
2414  isSafeForScalarRepl(AI, 0, Info);
2415  if (Info.isUnsafe) {
2416    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2417    return false;
2418  }
2419
2420  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2421  // source and destination, we have to be careful.  In particular, the memcpy
2422  // could be moving around elements that live in structure padding of the LLVM
2423  // types, but may actually be used.  In these cases, we refuse to promote the
2424  // struct.
2425  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2426      HasPadding(AI->getAllocatedType(), *TD))
2427    return false;
2428
2429  // If the alloca never has an access to just *part* of it, but is accessed
2430  // via loads and stores, then we should use ConvertToScalarInfo to promote
2431  // the alloca instead of promoting each piece at a time and inserting fission
2432  // and fusion code.
2433  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2434    // If the struct/array just has one element, use basic SRoA.
2435    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2436      if (ST->getNumElements() > 1) return false;
2437    } else {
2438      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2439        return false;
2440    }
2441  }
2442
2443  return true;
2444}
2445
2446
2447
2448/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2449/// some part of a constant global variable.  This intentionally only accepts
2450/// constant expressions because we don't can't rewrite arbitrary instructions.
2451static bool PointsToConstantGlobal(Value *V) {
2452  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2453    return GV->isConstant();
2454  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2455    if (CE->getOpcode() == Instruction::BitCast ||
2456        CE->getOpcode() == Instruction::GetElementPtr)
2457      return PointsToConstantGlobal(CE->getOperand(0));
2458  return false;
2459}
2460
2461/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2462/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2463/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2464/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2465/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2466/// the alloca, and if the source pointer is a pointer to a constant global, we
2467/// can optimize this.
2468static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2469                                           bool isOffset) {
2470  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2471    User *U = cast<Instruction>(*UI);
2472
2473    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2474      // Ignore non-volatile loads, they are always ok.
2475      if (LI->isVolatile()) return false;
2476      continue;
2477    }
2478
2479    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2480      // If uses of the bitcast are ok, we are ok.
2481      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2482        return false;
2483      continue;
2484    }
2485    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2486      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2487      // doesn't, it does.
2488      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2489                                         isOffset || !GEP->hasAllZeroIndices()))
2490        return false;
2491      continue;
2492    }
2493
2494    if (CallSite CS = U) {
2495      // If this is the function being called then we treat it like a load and
2496      // ignore it.
2497      if (CS.isCallee(UI))
2498        continue;
2499
2500      // If this is a readonly/readnone call site, then we know it is just a
2501      // load (but one that potentially returns the value itself), so we can
2502      // ignore it if we know that the value isn't captured.
2503      unsigned ArgNo = CS.getArgumentNo(UI);
2504      if (CS.onlyReadsMemory() &&
2505          (CS.getInstruction()->use_empty() ||
2506           CS.paramHasAttr(ArgNo+1, Attribute::NoCapture)))
2507        continue;
2508
2509      // If this is being passed as a byval argument, the caller is making a
2510      // copy, so it is only a read of the alloca.
2511      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2512        continue;
2513    }
2514
2515    // If this is isn't our memcpy/memmove, reject it as something we can't
2516    // handle.
2517    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2518    if (MI == 0)
2519      return false;
2520
2521    // If the transfer is using the alloca as a source of the transfer, then
2522    // ignore it since it is a load (unless the transfer is volatile).
2523    if (UI.getOperandNo() == 1) {
2524      if (MI->isVolatile()) return false;
2525      continue;
2526    }
2527
2528    // If we already have seen a copy, reject the second one.
2529    if (TheCopy) return false;
2530
2531    // If the pointer has been offset from the start of the alloca, we can't
2532    // safely handle this.
2533    if (isOffset) return false;
2534
2535    // If the memintrinsic isn't using the alloca as the dest, reject it.
2536    if (UI.getOperandNo() != 0) return false;
2537
2538    // If the source of the memcpy/move is not a constant global, reject it.
2539    if (!PointsToConstantGlobal(MI->getSource()))
2540      return false;
2541
2542    // Otherwise, the transform is safe.  Remember the copy instruction.
2543    TheCopy = MI;
2544  }
2545  return true;
2546}
2547
2548/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2549/// modified by a copy from a constant global.  If we can prove this, we can
2550/// replace any uses of the alloca with uses of the global directly.
2551MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2552  MemTransferInst *TheCopy = 0;
2553  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2554    return TheCopy;
2555  return 0;
2556}
2557