ScalarReplAggregates.cpp revision ac9dcb94dde5f166ee29372385c0e3b695227ab4
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/Pass.h"
28#include "llvm/Instructions.h"
29#include "llvm/Analysis/Dominators.h"
30#include "llvm/Target/TargetData.h"
31#include "llvm/Transforms/Utils/PromoteMemToReg.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/GetElementPtrTypeIterator.h"
34#include "llvm/Support/MathExtras.h"
35#include "llvm/Support/Compiler.h"
36#include "llvm/ADT/SmallVector.h"
37#include "llvm/ADT/Statistic.h"
38#include "llvm/ADT/StringExtras.h"
39using namespace llvm;
40
41STATISTIC(NumReplaced,  "Number of allocas broken up");
42STATISTIC(NumPromoted,  "Number of allocas promoted");
43STATISTIC(NumConverted, "Number of aggregates converted to scalar");
44
45namespace {
46  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
47    bool runOnFunction(Function &F);
48
49    bool performScalarRepl(Function &F);
50    bool performPromotion(Function &F);
51
52    // getAnalysisUsage - This pass does not require any passes, but we know it
53    // will not alter the CFG, so say so.
54    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
55      AU.addRequired<DominatorTree>();
56      AU.addRequired<DominanceFrontier>();
57      AU.addRequired<TargetData>();
58      AU.setPreservesCFG();
59    }
60
61  private:
62    int isSafeElementUse(Value *Ptr);
63    int isSafeUseOfAllocation(Instruction *User);
64    int isSafeAllocaToScalarRepl(AllocationInst *AI);
65    void CanonicalizeAllocaUsers(AllocationInst *AI);
66    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
67
68    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
69    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
70    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
71  };
72
73  RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
74}
75
76// Public interface to the ScalarReplAggregates pass
77FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }
78
79
80bool SROA::runOnFunction(Function &F) {
81  bool Changed = performPromotion(F);
82  while (1) {
83    bool LocalChange = performScalarRepl(F);
84    if (!LocalChange) break;   // No need to repromote if no scalarrepl
85    Changed = true;
86    LocalChange = performPromotion(F);
87    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
88  }
89
90  return Changed;
91}
92
93
94bool SROA::performPromotion(Function &F) {
95  std::vector<AllocaInst*> Allocas;
96  const TargetData &TD = getAnalysis<TargetData>();
97  DominatorTree     &DT = getAnalysis<DominatorTree>();
98  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
99
100  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
101
102  bool Changed = false;
103
104  while (1) {
105    Allocas.clear();
106
107    // Find allocas that are safe to promote, by looking at all instructions in
108    // the entry node
109    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
110      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
111        if (isAllocaPromotable(AI, TD))
112          Allocas.push_back(AI);
113
114    if (Allocas.empty()) break;
115
116    PromoteMemToReg(Allocas, DT, DF, TD);
117    NumPromoted += Allocas.size();
118    Changed = true;
119  }
120
121  return Changed;
122}
123
124// performScalarRepl - This algorithm is a simple worklist driven algorithm,
125// which runs on all of the malloc/alloca instructions in the function, removing
126// them if they are only used by getelementptr instructions.
127//
128bool SROA::performScalarRepl(Function &F) {
129  std::vector<AllocationInst*> WorkList;
130
131  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
132  BasicBlock &BB = F.getEntryBlock();
133  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
134    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
135      WorkList.push_back(A);
136
137  // Process the worklist
138  bool Changed = false;
139  while (!WorkList.empty()) {
140    AllocationInst *AI = WorkList.back();
141    WorkList.pop_back();
142
143    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
144    // with unused elements.
145    if (AI->use_empty()) {
146      AI->eraseFromParent();
147      continue;
148    }
149
150    // If we can turn this aggregate value (potentially with casts) into a
151    // simple scalar value that can be mem2reg'd into a register value.
152    bool IsNotTrivial = false;
153    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
154      if (IsNotTrivial && ActualType != Type::VoidTy) {
155        ConvertToScalar(AI, ActualType);
156        Changed = true;
157        continue;
158      }
159
160    // We cannot transform the allocation instruction if it is an array
161    // allocation (allocations OF arrays are ok though), and an allocation of a
162    // scalar value cannot be decomposed at all.
163    //
164    if (AI->isArrayAllocation() ||
165        (!isa<StructType>(AI->getAllocatedType()) &&
166         !isa<ArrayType>(AI->getAllocatedType()))) continue;
167
168    // Check that all of the users of the allocation are capable of being
169    // transformed.
170    switch (isSafeAllocaToScalarRepl(AI)) {
171    default: assert(0 && "Unexpected value!");
172    case 0:  // Not safe to scalar replace.
173      continue;
174    case 1:  // Safe, but requires cleanup/canonicalizations first
175      CanonicalizeAllocaUsers(AI);
176    case 3:  // Safe to scalar replace.
177      break;
178    }
179
180    DOUT << "Found inst to xform: " << *AI;
181    Changed = true;
182
183    std::vector<AllocaInst*> ElementAllocas;
184    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
185      ElementAllocas.reserve(ST->getNumContainedTypes());
186      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
187        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
188                                        AI->getAlignment(),
189                                        AI->getName() + "." + utostr(i), AI);
190        ElementAllocas.push_back(NA);
191        WorkList.push_back(NA);  // Add to worklist for recursive processing
192      }
193    } else {
194      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
195      ElementAllocas.reserve(AT->getNumElements());
196      const Type *ElTy = AT->getElementType();
197      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
198        AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
199                                        AI->getName() + "." + utostr(i), AI);
200        ElementAllocas.push_back(NA);
201        WorkList.push_back(NA);  // Add to worklist for recursive processing
202      }
203    }
204
205    // Now that we have created the alloca instructions that we want to use,
206    // expand the getelementptr instructions to use them.
207    //
208    while (!AI->use_empty()) {
209      Instruction *User = cast<Instruction>(AI->use_back());
210      GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
211      // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
212      unsigned Idx =
213         (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
214
215      assert(Idx < ElementAllocas.size() && "Index out of range?");
216      AllocaInst *AllocaToUse = ElementAllocas[Idx];
217
218      Value *RepValue;
219      if (GEPI->getNumOperands() == 3) {
220        // Do not insert a new getelementptr instruction with zero indices, only
221        // to have it optimized out later.
222        RepValue = AllocaToUse;
223      } else {
224        // We are indexing deeply into the structure, so we still need a
225        // getelement ptr instruction to finish the indexing.  This may be
226        // expanded itself once the worklist is rerun.
227        //
228        SmallVector<Value*, 8> NewArgs;
229        NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
230        NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
231        RepValue = new GetElementPtrInst(AllocaToUse, &NewArgs[0],
232                                         NewArgs.size(), "", GEPI);
233        RepValue->takeName(GEPI);
234      }
235
236      // Move all of the users over to the new GEP.
237      GEPI->replaceAllUsesWith(RepValue);
238      // Delete the old GEP
239      GEPI->eraseFromParent();
240    }
241
242    // Finally, delete the Alloca instruction
243    AI->eraseFromParent();
244    NumReplaced++;
245  }
246
247  return Changed;
248}
249
250
251/// isSafeElementUse - Check to see if this use is an allowed use for a
252/// getelementptr instruction of an array aggregate allocation.
253///
254int SROA::isSafeElementUse(Value *Ptr) {
255  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
256       I != E; ++I) {
257    Instruction *User = cast<Instruction>(*I);
258    switch (User->getOpcode()) {
259    case Instruction::Load:  break;
260    case Instruction::Store:
261      // Store is ok if storing INTO the pointer, not storing the pointer
262      if (User->getOperand(0) == Ptr) return 0;
263      break;
264    case Instruction::GetElementPtr: {
265      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
266      if (GEP->getNumOperands() > 1) {
267        if (!isa<Constant>(GEP->getOperand(1)) ||
268            !cast<Constant>(GEP->getOperand(1))->isNullValue())
269          return 0;  // Using pointer arithmetic to navigate the array...
270      }
271      if (!isSafeElementUse(GEP)) return 0;
272      break;
273    }
274    default:
275      DOUT << "  Transformation preventing inst: " << *User;
276      return 0;
277    }
278  }
279  return 3;  // All users look ok :)
280}
281
282/// AllUsersAreLoads - Return true if all users of this value are loads.
283static bool AllUsersAreLoads(Value *Ptr) {
284  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
285       I != E; ++I)
286    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
287      return false;
288  return true;
289}
290
291/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
292/// aggregate allocation.
293///
294int SROA::isSafeUseOfAllocation(Instruction *User) {
295  if (!isa<GetElementPtrInst>(User)) return 0;
296
297  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
298  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
299
300  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
301  if (I == E ||
302      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
303    return 0;
304
305  ++I;
306  if (I == E) return 0;  // ran out of GEP indices??
307
308  // If this is a use of an array allocation, do a bit more checking for sanity.
309  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
310    uint64_t NumElements = AT->getNumElements();
311
312    if (isa<ConstantInt>(I.getOperand())) {
313      // Check to make sure that index falls within the array.  If not,
314      // something funny is going on, so we won't do the optimization.
315      //
316      if (cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue() >= NumElements)
317        return 0;
318
319      // We cannot scalar repl this level of the array unless any array
320      // sub-indices are in-range constants.  In particular, consider:
321      // A[0][i].  We cannot know that the user isn't doing invalid things like
322      // allowing i to index an out-of-range subscript that accesses A[1].
323      //
324      // Scalar replacing *just* the outer index of the array is probably not
325      // going to be a win anyway, so just give up.
326      for (++I; I != E && (isa<ArrayType>(*I) || isa<VectorType>(*I)); ++I) {
327        uint64_t NumElements;
328        if (const ArrayType *SubArrayTy = dyn_cast<ArrayType>(*I))
329          NumElements = SubArrayTy->getNumElements();
330        else
331          NumElements = cast<VectorType>(*I)->getNumElements();
332
333        if (!isa<ConstantInt>(I.getOperand())) return 0;
334        if (cast<ConstantInt>(I.getOperand())->getZExtValue() >= NumElements)
335          return 0;
336      }
337
338    } else {
339      // If this is an array index and the index is not constant, we cannot
340      // promote... that is unless the array has exactly one or two elements in
341      // it, in which case we CAN promote it, but we have to canonicalize this
342      // out if this is the only problem.
343      if ((NumElements == 1 || NumElements == 2) &&
344          AllUsersAreLoads(GEPI))
345        return 1;  // Canonicalization required!
346      return 0;
347    }
348  }
349
350  // If there are any non-simple uses of this getelementptr, make sure to reject
351  // them.
352  return isSafeElementUse(GEPI);
353}
354
355/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
356/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
357/// or 1 if safe after canonicalization has been performed.
358///
359int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
360  // Loop over the use list of the alloca.  We can only transform it if all of
361  // the users are safe to transform.
362  //
363  int isSafe = 3;
364  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
365       I != E; ++I) {
366    isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I));
367    if (isSafe == 0) {
368      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
369      return 0;
370    }
371  }
372  // If we require cleanup, isSafe is now 1, otherwise it is 3.
373  return isSafe;
374}
375
376/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
377/// allocation, but only if cleaned up, perform the cleanups required.
378void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
379  // At this point, we know that the end result will be SROA'd and promoted, so
380  // we can insert ugly code if required so long as sroa+mem2reg will clean it
381  // up.
382  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
383       UI != E; ) {
384    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(*UI++);
385    gep_type_iterator I = gep_type_begin(GEPI);
386    ++I;
387
388    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
389      uint64_t NumElements = AT->getNumElements();
390
391      if (!isa<ConstantInt>(I.getOperand())) {
392        if (NumElements == 1) {
393          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
394        } else {
395          assert(NumElements == 2 && "Unhandled case!");
396          // All users of the GEP must be loads.  At each use of the GEP, insert
397          // two loads of the appropriate indexed GEP and select between them.
398          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
399                              Constant::getNullValue(I.getOperand()->getType()),
400             "isone", GEPI);
401          // Insert the new GEP instructions, which are properly indexed.
402          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
403          Indices[1] = Constant::getNullValue(Type::Int32Ty);
404          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0),
405                                                 &Indices[0], Indices.size(),
406                                                 GEPI->getName()+".0", GEPI);
407          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
408          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0),
409                                                &Indices[0], Indices.size(),
410                                                GEPI->getName()+".1", GEPI);
411          // Replace all loads of the variable index GEP with loads from both
412          // indexes and a select.
413          while (!GEPI->use_empty()) {
414            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
415            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
416            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
417            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
418            LI->replaceAllUsesWith(R);
419            LI->eraseFromParent();
420          }
421          GEPI->eraseFromParent();
422        }
423      }
424    }
425  }
426}
427
428/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
429/// types are incompatible, return true, otherwise update Accum and return
430/// false.
431///
432/// There are three cases we handle here:
433///   1) An effectively-integer union, where the pieces are stored into as
434///      smaller integers (common with byte swap and other idioms).
435///   2) A union of vector types of the same size and potentially its elements.
436///      Here we turn element accesses into insert/extract element operations.
437///   3) A union of scalar types, such as int/float or int/pointer.  Here we
438///      merge together into integers, allowing the xform to work with #1 as
439///      well.
440static bool MergeInType(const Type *In, const Type *&Accum,
441                        const TargetData &TD) {
442  // If this is our first type, just use it.
443  const VectorType *PTy;
444  if (Accum == Type::VoidTy || In == Accum) {
445    Accum = In;
446  } else if (In == Type::VoidTy) {
447    // Noop.
448  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
449    // Otherwise pick whichever type is larger.
450    if (cast<IntegerType>(In)->getBitWidth() >
451        cast<IntegerType>(Accum)->getBitWidth())
452      Accum = In;
453  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
454    // Pointer unions just stay as one of the pointers.
455  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
456    if ((PTy = dyn_cast<VectorType>(Accum)) &&
457        PTy->getElementType() == In) {
458      // Accum is a vector, and we are accessing an element: ok.
459    } else if ((PTy = dyn_cast<VectorType>(In)) &&
460               PTy->getElementType() == Accum) {
461      // In is a vector, and accum is an element: ok, remember In.
462      Accum = In;
463    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
464               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
465      // Two vectors of the same size: keep Accum.
466    } else {
467      // Cannot insert an short into a <4 x int> or handle
468      // <2 x int> -> <4 x int>
469      return true;
470    }
471  } else {
472    // Pointer/FP/Integer unions merge together as integers.
473    switch (Accum->getTypeID()) {
474    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
475    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
476    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
477    default:
478      assert(Accum->isInteger() && "Unknown FP type!");
479      break;
480    }
481
482    switch (In->getTypeID()) {
483    case Type::PointerTyID: In = TD.getIntPtrType(); break;
484    case Type::FloatTyID:   In = Type::Int32Ty; break;
485    case Type::DoubleTyID:  In = Type::Int64Ty; break;
486    default:
487      assert(In->isInteger() && "Unknown FP type!");
488      break;
489    }
490    return MergeInType(In, Accum, TD);
491  }
492  return false;
493}
494
495/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
496/// as big as the specified type.  If there is no suitable type, this returns
497/// null.
498const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
499  if (NumBits > 64) return 0;
500  if (NumBits > 32) return Type::Int64Ty;
501  if (NumBits > 16) return Type::Int32Ty;
502  if (NumBits > 8) return Type::Int16Ty;
503  return Type::Int8Ty;
504}
505
506/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
507/// single scalar integer type, return that type.  Further, if the use is not
508/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
509/// there are no uses of this pointer, return Type::VoidTy to differentiate from
510/// failure.
511///
512const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
513  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
514  const TargetData &TD = getAnalysis<TargetData>();
515  const PointerType *PTy = cast<PointerType>(V->getType());
516
517  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
518    Instruction *User = cast<Instruction>(*UI);
519
520    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
521      if (MergeInType(LI->getType(), UsedType, TD))
522        return 0;
523
524    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
525      // Storing the pointer, not into the value?
526      if (SI->getOperand(0) == V) return 0;
527
528      // NOTE: We could handle storing of FP imms into integers here!
529
530      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
531        return 0;
532    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
533      IsNotTrivial = true;
534      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
535      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
536    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
537      // Check to see if this is stepping over an element: GEP Ptr, int C
538      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
539        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
540        unsigned ElSize = TD.getTypeSize(PTy->getElementType());
541        unsigned BitOffset = Idx*ElSize*8;
542        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
543
544        IsNotTrivial = true;
545        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
546        if (SubElt == 0) return 0;
547        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
548          const Type *NewTy =
549            getUIntAtLeastAsBitAs(TD.getTypeSize(SubElt)*8+BitOffset);
550          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
551          continue;
552        }
553      } else if (GEP->getNumOperands() == 3 &&
554                 isa<ConstantInt>(GEP->getOperand(1)) &&
555                 isa<ConstantInt>(GEP->getOperand(2)) &&
556                 cast<Constant>(GEP->getOperand(1))->isNullValue()) {
557        // We are stepping into an element, e.g. a structure or an array:
558        // GEP Ptr, int 0, uint C
559        const Type *AggTy = PTy->getElementType();
560        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
561
562        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
563          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
564        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
565          // Getting an element of the packed vector.
566          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
567
568          // Merge in the vector type.
569          if (MergeInType(VectorTy, UsedType, TD)) return 0;
570
571          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
572          if (SubTy == 0) return 0;
573
574          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
575            return 0;
576
577          // We'll need to change this to an insert/extract element operation.
578          IsNotTrivial = true;
579          continue;    // Everything looks ok
580
581        } else if (isa<StructType>(AggTy)) {
582          // Structs are always ok.
583        } else {
584          return 0;
585        }
586        const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
587        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
588        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
589        if (SubTy == 0) return 0;
590        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
591          return 0;
592        continue;    // Everything looks ok
593      }
594      return 0;
595    } else {
596      // Cannot handle this!
597      return 0;
598    }
599  }
600
601  return UsedType;
602}
603
604/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
605/// predicate and is non-trivial.  Convert it to something that can be trivially
606/// promoted into a register by mem2reg.
607void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
608  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
609       << *ActualTy << "\n";
610  ++NumConverted;
611
612  BasicBlock *EntryBlock = AI->getParent();
613  assert(EntryBlock == &EntryBlock->getParent()->front() &&
614         "Not in the entry block!");
615  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
616
617  // Create and insert the alloca.
618  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
619                                     EntryBlock->begin());
620  ConvertUsesToScalar(AI, NewAI, 0);
621  delete AI;
622}
623
624
625/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
626/// directly.  This happens when we are converting an "integer union" to a
627/// single integer scalar, or when we are converting a "vector union" to a
628/// vector with insert/extractelement instructions.
629///
630/// Offset is an offset from the original alloca, in bits that need to be
631/// shifted to the right.  By the end of this, there should be no uses of Ptr.
632void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
633  bool isVectorInsert = isa<VectorType>(NewAI->getType()->getElementType());
634  const TargetData &TD = getAnalysis<TargetData>();
635  while (!Ptr->use_empty()) {
636    Instruction *User = cast<Instruction>(Ptr->use_back());
637
638    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
639      // The load is a bit extract from NewAI shifted right by Offset bits.
640      Value *NV = new LoadInst(NewAI, LI->getName(), LI);
641      if (NV->getType() != LI->getType()) {
642        if (const VectorType *PTy = dyn_cast<VectorType>(NV->getType())) {
643          // If the result alloca is a vector type, this is either an element
644          // access or a bitcast to another vector type.
645          if (isa<VectorType>(LI->getType())) {
646            NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
647          } else {
648            // Must be an element access.
649            unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
650            NV = new ExtractElementInst(
651                           NV, ConstantInt::get(Type::Int32Ty, Elt), "tmp", LI);
652          }
653        } else if (isa<PointerType>(NV->getType())) {
654          assert(isa<PointerType>(LI->getType()));
655          // Must be ptr->ptr cast.  Anything else would result in NV being
656          // an integer.
657          NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
658        } else {
659          assert(NV->getType()->isInteger() && "Unknown promotion!");
660          if (Offset && Offset < TD.getTypeSize(NV->getType())*8) {
661            NV = BinaryOperator::createLShr(NV,
662                                        ConstantInt::get(NV->getType(), Offset),
663                                        LI->getName(), LI);
664          }
665
666          // If the result is an integer, this is a trunc or bitcast.
667          if (LI->getType()->isInteger()) {
668            NV = CastInst::createTruncOrBitCast(NV, LI->getType(),
669                                                LI->getName(), LI);
670          } else if (LI->getType()->isFloatingPoint()) {
671            // If needed, truncate the integer to the appropriate size.
672            if (NV->getType()->getPrimitiveSizeInBits() >
673                LI->getType()->getPrimitiveSizeInBits()) {
674              switch (LI->getType()->getTypeID()) {
675              default: assert(0 && "Unknown FP type!");
676              case Type::FloatTyID:
677                NV = new TruncInst(NV, Type::Int32Ty, LI->getName(), LI);
678                break;
679              case Type::DoubleTyID:
680                NV = new TruncInst(NV, Type::Int64Ty, LI->getName(), LI);
681                break;
682              }
683            }
684
685            // Then do a bitcast.
686            NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
687          } else {
688            // Otherwise must be a pointer.
689            NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
690          }
691        }
692      }
693      LI->replaceAllUsesWith(NV);
694      LI->eraseFromParent();
695    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
696      assert(SI->getOperand(0) != Ptr && "Consistency error!");
697
698      // Convert the stored type to the actual type, shift it left to insert
699      // then 'or' into place.
700      Value *SV = SI->getOperand(0);
701      const Type *AllocaType = NewAI->getType()->getElementType();
702      if (SV->getType() != AllocaType) {
703        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
704
705        if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
706          // If the result alloca is a vector type, this is either an element
707          // access or a bitcast to another vector type.
708          if (isa<VectorType>(SV->getType())) {
709            SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
710          } else {
711            // Must be an element insertion.
712            unsigned Elt = Offset/(TD.getTypeSize(PTy->getElementType())*8);
713            SV = new InsertElementInst(Old, SV,
714                                       ConstantInt::get(Type::Int32Ty, Elt),
715                                       "tmp", SI);
716          }
717        } else {
718          // If SV is a float, convert it to the appropriate integer type.
719          // If it is a pointer, do the same, and also handle ptr->ptr casts
720          // here.
721          switch (SV->getType()->getTypeID()) {
722          default:
723            assert(!SV->getType()->isFloatingPoint() && "Unknown FP type!");
724            break;
725          case Type::FloatTyID:
726            SV = new BitCastInst(SV, Type::Int32Ty, SV->getName(), SI);
727            break;
728          case Type::DoubleTyID:
729            SV = new BitCastInst(SV, Type::Int64Ty, SV->getName(), SI);
730            break;
731          case Type::PointerTyID:
732            if (isa<PointerType>(AllocaType))
733              SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
734            else
735              SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
736            break;
737          }
738
739          unsigned SrcSize = TD.getTypeSize(SV->getType())*8;
740
741          // Always zero extend the value if needed.
742          if (SV->getType() != AllocaType)
743            SV = CastInst::createZExtOrBitCast(SV, AllocaType,
744                                               SV->getName(), SI);
745          if (Offset && Offset < AllocaType->getPrimitiveSizeInBits())
746            SV = BinaryOperator::createShl(SV,
747                                        ConstantInt::get(SV->getType(), Offset),
748                                        SV->getName()+".adj", SI);
749          // Mask out the bits we are about to insert from the old value.
750          unsigned TotalBits = TD.getTypeSize(SV->getType())*8;
751          if (TotalBits != SrcSize) {
752            assert(TotalBits > SrcSize);
753            uint64_t Mask = ~(((1ULL << SrcSize)-1) << Offset);
754            Mask = Mask & cast<IntegerType>(SV->getType())->getBitMask();
755            Old = BinaryOperator::createAnd(Old,
756                                        ConstantInt::get(Old->getType(), Mask),
757                                            Old->getName()+".mask", SI);
758            SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
759          }
760        }
761      }
762      new StoreInst(SV, NewAI, SI);
763      SI->eraseFromParent();
764
765    } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
766      unsigned NewOff = Offset;
767      const TargetData &TD = getAnalysis<TargetData>();
768      if (TD.isBigEndian() && !isVectorInsert) {
769        // Adjust the pointer.  For example, storing 16-bits into a 32-bit
770        // alloca with just a cast makes it modify the top 16-bits.
771        const Type *SrcTy = cast<PointerType>(Ptr->getType())->getElementType();
772        const Type *DstTy = cast<PointerType>(CI->getType())->getElementType();
773        int PtrDiffBits = TD.getTypeSize(SrcTy)*8-TD.getTypeSize(DstTy)*8;
774        NewOff += PtrDiffBits;
775      }
776      ConvertUsesToScalar(CI, NewAI, NewOff);
777      CI->eraseFromParent();
778    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
779      const PointerType *AggPtrTy =
780        cast<PointerType>(GEP->getOperand(0)->getType());
781      const TargetData &TD = getAnalysis<TargetData>();
782      unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
783
784      // Check to see if this is stepping over an element: GEP Ptr, int C
785      unsigned NewOffset = Offset;
786      if (GEP->getNumOperands() == 2) {
787        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
788        unsigned BitOffset = Idx*AggSizeInBits;
789
790        if (TD.isLittleEndian() || isVectorInsert)
791          NewOffset += BitOffset;
792        else
793          NewOffset -= BitOffset;
794
795      } else if (GEP->getNumOperands() == 3) {
796        // We know that operand #2 is zero.
797        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
798        const Type *AggTy = AggPtrTy->getElementType();
799        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
800          unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;
801
802          if (TD.isLittleEndian() || isVectorInsert)
803            NewOffset += ElSizeBits*Idx;
804          else
805            NewOffset += AggSizeInBits-ElSizeBits*(Idx+1);
806        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
807          unsigned EltBitOffset =
808            TD.getStructLayout(STy)->getElementOffset(Idx)*8;
809
810          if (TD.isLittleEndian() || isVectorInsert)
811            NewOffset += EltBitOffset;
812          else {
813            const PointerType *ElPtrTy = cast<PointerType>(GEP->getType());
814            unsigned ElSizeBits = TD.getTypeSize(ElPtrTy->getElementType())*8;
815            NewOffset += AggSizeInBits-(EltBitOffset+ElSizeBits);
816          }
817
818        } else {
819          assert(0 && "Unsupported operation!");
820          abort();
821        }
822      } else {
823        assert(0 && "Unsupported operation!");
824        abort();
825      }
826      ConvertUsesToScalar(GEP, NewAI, NewOffset);
827      GEP->eraseFromParent();
828    } else {
829      assert(0 && "Unsupported operation!");
830      abort();
831    }
832  }
833}
834