ScalarReplAggregates.cpp revision be0761c8202405cdd33f1103d262c0aa97895a8e
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/Dominators.h"
34#include "llvm/Analysis/Loads.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Transforms/Utils/PromoteMemToReg.h"
38#include "llvm/Transforms/Utils/Local.h"
39#include "llvm/Transforms/Utils/SSAUpdater.h"
40#include "llvm/Support/CallSite.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/ErrorHandling.h"
43#include "llvm/Support/GetElementPtrTypeIterator.h"
44#include "llvm/Support/IRBuilder.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/raw_ostream.h"
47#include "llvm/ADT/SetVector.h"
48#include "llvm/ADT/SmallVector.h"
49#include "llvm/ADT/Statistic.h"
50using namespace llvm;
51
52STATISTIC(NumReplaced,  "Number of allocas broken up");
53STATISTIC(NumPromoted,  "Number of allocas promoted");
54STATISTIC(NumAdjusted,  "Number of scalar allocas adjusted to allow promotion");
55STATISTIC(NumConverted, "Number of aggregates converted to scalar");
56STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
57
58namespace {
59  struct SROA : public FunctionPass {
60    SROA(int T, bool hasDT, char &ID)
61      : FunctionPass(ID), HasDomTree(hasDT) {
62      if (T == -1)
63        SRThreshold = 128;
64      else
65        SRThreshold = T;
66    }
67
68    bool runOnFunction(Function &F);
69
70    bool performScalarRepl(Function &F);
71    bool performPromotion(Function &F);
72
73  private:
74    bool HasDomTree;
75    TargetData *TD;
76
77    /// DeadInsts - Keep track of instructions we have made dead, so that
78    /// we can remove them after we are done working.
79    SmallVector<Value*, 32> DeadInsts;
80
81    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82    /// information about the uses.  All these fields are initialized to false
83    /// and set to true when something is learned.
84    struct AllocaInfo {
85      /// The alloca to promote.
86      AllocaInst *AI;
87
88      /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
89      /// looping and avoid redundant work.
90      SmallPtrSet<PHINode*, 8> CheckedPHIs;
91
92      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
93      bool isUnsafe : 1;
94
95      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
96      bool isMemCpySrc : 1;
97
98      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
99      bool isMemCpyDst : 1;
100
101      /// hasSubelementAccess - This is true if a subelement of the alloca is
102      /// ever accessed, or false if the alloca is only accessed with mem
103      /// intrinsics or load/store that only access the entire alloca at once.
104      bool hasSubelementAccess : 1;
105
106      /// hasALoadOrStore - This is true if there are any loads or stores to it.
107      /// The alloca may just be accessed with memcpy, for example, which would
108      /// not set this.
109      bool hasALoadOrStore : 1;
110
111      explicit AllocaInfo(AllocaInst *ai)
112        : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
113          hasSubelementAccess(false), hasALoadOrStore(false) {}
114    };
115
116    unsigned SRThreshold;
117
118    void MarkUnsafe(AllocaInfo &I, Instruction *User) {
119      I.isUnsafe = true;
120      DEBUG(dbgs() << "  Transformation preventing inst: " << *User << '\n');
121    }
122
123    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
124
125    void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
126    void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
127                                         AllocaInfo &Info);
128    void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
129    void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
130                         const Type *MemOpType, bool isStore, AllocaInfo &Info,
131                         Instruction *TheAccess, bool AllowWholeAccess);
132    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
133    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
134                                  const Type *&IdxTy);
135
136    void DoScalarReplacement(AllocaInst *AI,
137                             std::vector<AllocaInst*> &WorkList);
138    void DeleteDeadInstructions();
139
140    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
141                              SmallVector<AllocaInst*, 32> &NewElts);
142    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
143                        SmallVector<AllocaInst*, 32> &NewElts);
144    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
145                    SmallVector<AllocaInst*, 32> &NewElts);
146    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
147                                      AllocaInst *AI,
148                                      SmallVector<AllocaInst*, 32> &NewElts);
149    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
150                                       SmallVector<AllocaInst*, 32> &NewElts);
151    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
152                                      SmallVector<AllocaInst*, 32> &NewElts);
153
154    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
155  };
156
157  // SROA_DT - SROA that uses DominatorTree.
158  struct SROA_DT : public SROA {
159    static char ID;
160  public:
161    SROA_DT(int T = -1) : SROA(T, true, ID) {
162      initializeSROA_DTPass(*PassRegistry::getPassRegistry());
163    }
164
165    // getAnalysisUsage - This pass does not require any passes, but we know it
166    // will not alter the CFG, so say so.
167    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
168      AU.addRequired<DominatorTree>();
169      AU.setPreservesCFG();
170    }
171  };
172
173  // SROA_SSAUp - SROA that uses SSAUpdater.
174  struct SROA_SSAUp : public SROA {
175    static char ID;
176  public:
177    SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
178      initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
179    }
180
181    // getAnalysisUsage - This pass does not require any passes, but we know it
182    // will not alter the CFG, so say so.
183    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
184      AU.setPreservesCFG();
185    }
186  };
187
188}
189
190char SROA_DT::ID = 0;
191char SROA_SSAUp::ID = 0;
192
193INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
194                "Scalar Replacement of Aggregates (DT)", false, false)
195INITIALIZE_PASS_DEPENDENCY(DominatorTree)
196INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
197                "Scalar Replacement of Aggregates (DT)", false, false)
198
199INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
200                      "Scalar Replacement of Aggregates (SSAUp)", false, false)
201INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
202                    "Scalar Replacement of Aggregates (SSAUp)", false, false)
203
204// Public interface to the ScalarReplAggregates pass
205FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
206                                                   bool UseDomTree) {
207  if (UseDomTree)
208    return new SROA_DT(Threshold);
209  return new SROA_SSAUp(Threshold);
210}
211
212
213//===----------------------------------------------------------------------===//
214// Convert To Scalar Optimization.
215//===----------------------------------------------------------------------===//
216
217namespace {
218/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
219/// optimization, which scans the uses of an alloca and determines if it can
220/// rewrite it in terms of a single new alloca that can be mem2reg'd.
221class ConvertToScalarInfo {
222  /// AllocaSize - The size of the alloca being considered in bytes.
223  unsigned AllocaSize;
224  const TargetData &TD;
225
226  /// IsNotTrivial - This is set to true if there is some access to the object
227  /// which means that mem2reg can't promote it.
228  bool IsNotTrivial;
229
230  /// VectorTy - This tracks the type that we should promote the vector to if
231  /// it is possible to turn it into a vector.  This starts out null, and if it
232  /// isn't possible to turn into a vector type, it gets set to VoidTy.
233  const Type *VectorTy;
234
235  /// HadAVector - True if there is at least one vector access to the alloca.
236  /// We don't want to turn random arrays into vectors and use vector element
237  /// insert/extract, but if there are element accesses to something that is
238  /// also declared as a vector, we do want to promote to a vector.
239  bool HadAVector;
240
241  /// HadNonMemTransferAccess - True if there is at least one access to the
242  /// alloca that is not a MemTransferInst.  We don't want to turn structs into
243  /// large integers unless there is some potential for optimization.
244  bool HadNonMemTransferAccess;
245
246public:
247  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
248    : AllocaSize(Size), TD(td), IsNotTrivial(false), VectorTy(0),
249      HadAVector(false), HadNonMemTransferAccess(false) { }
250
251  AllocaInst *TryConvert(AllocaInst *AI);
252
253private:
254  bool CanConvertToScalar(Value *V, uint64_t Offset);
255  void MergeInType(const Type *In, uint64_t Offset, bool IsLoadOrStore);
256  bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
257  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
258
259  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
260                                    uint64_t Offset, IRBuilder<> &Builder);
261  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
262                                   uint64_t Offset, IRBuilder<> &Builder);
263};
264} // end anonymous namespace.
265
266
267/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
268/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
269/// alloca if possible or null if not.
270AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
271  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
272  // out.
273  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
274    return 0;
275
276  // If we were able to find a vector type that can handle this with
277  // insert/extract elements, and if there was at least one use that had
278  // a vector type, promote this to a vector.  We don't want to promote
279  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
280  // we just get a lot of insert/extracts.  If at least one vector is
281  // involved, then we probably really do have a union of vector/array.
282  const Type *NewTy;
283  if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
284    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
285          << *VectorTy << '\n');
286    NewTy = VectorTy;  // Use the vector type.
287  } else {
288    unsigned BitWidth = AllocaSize * 8;
289    if (!HadAVector && !HadNonMemTransferAccess &&
290        !TD.fitsInLegalInteger(BitWidth))
291      return 0;
292
293    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
294    // Create and insert the integer alloca.
295    NewTy = IntegerType::get(AI->getContext(), BitWidth);
296  }
297  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
298  ConvertUsesToScalar(AI, NewAI, 0);
299  return NewAI;
300}
301
302/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
303/// so far at the offset specified by Offset (which is specified in bytes).
304///
305/// There are three cases we handle here:
306///   1) A union of vector types of the same size and potentially its elements.
307///      Here we turn element accesses into insert/extract element operations.
308///      This promotes a <4 x float> with a store of float to the third element
309///      into a <4 x float> that uses insert element.
310///   2) A union of vector types with power-of-2 size differences, e.g. a float,
311///      <2 x float> and <4 x float>.  Here we turn element accesses into insert
312///      and extract element operations, and <2 x float> accesses into a cast to
313///      <2 x double>, an extract, and a cast back to <2 x float>.
314///   3) A fully general blob of memory, which we turn into some (potentially
315///      large) integer type with extract and insert operations where the loads
316///      and stores would mutate the memory.  We mark this by setting VectorTy
317///      to VoidTy.
318void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset,
319                                      bool IsLoadOrStore) {
320  // If we already decided to turn this into a blob of integer memory, there is
321  // nothing to be done.
322  if (VectorTy && VectorTy->isVoidTy())
323    return;
324
325  // If this could be contributing to a vector, analyze it.
326
327  // If the In type is a vector that is the same size as the alloca, see if it
328  // matches the existing VecTy.
329  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
330    if (MergeInVectorType(VInTy, Offset))
331      return;
332  } else if (In->isFloatTy() || In->isDoubleTy() ||
333             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
334              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
335    // Full width accesses can be ignored, because they can always be turned
336    // into bitcasts.
337    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
338    if (IsLoadOrStore && EltSize == AllocaSize)
339      return;
340    // If we're accessing something that could be an element of a vector, see
341    // if the implied vector agrees with what we already have and if Offset is
342    // compatible with it.
343    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
344        (VectorTy == 0 ||
345         cast<VectorType>(VectorTy)->getElementType()
346               ->getPrimitiveSizeInBits()/8 == EltSize)) {
347      if (VectorTy == 0)
348        VectorTy = VectorType::get(In, AllocaSize/EltSize);
349      return;
350    }
351  }
352
353  // Otherwise, we have a case that we can't handle with an optimized vector
354  // form.  We can still turn this into a large integer.
355  VectorTy = Type::getVoidTy(In->getContext());
356}
357
358/// MergeInVectorType - Handles the vector case of MergeInType, returning true
359/// if the type was successfully merged and false otherwise.
360bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
361                                            uint64_t Offset) {
362  // Remember if we saw a vector type.
363  HadAVector = true;
364
365  // TODO: Support nonzero offsets?
366  if (Offset != 0)
367    return false;
368
369  // Only allow vectors that are a power-of-2 away from the size of the alloca.
370  if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
371    return false;
372
373  // If this the first vector we see, remember the type so that we know the
374  // element size.
375  if (!VectorTy) {
376    VectorTy = VInTy;
377    return true;
378  }
379
380  unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
381  unsigned InBitWidth = VInTy->getBitWidth();
382
383  // Vectors of the same size can be converted using a simple bitcast.
384  if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
385    return true;
386
387  const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
388  const Type *InElementTy = cast<VectorType>(VInTy)->getElementType();
389
390  // Do not allow mixed integer and floating-point accesses from vectors of
391  // different sizes.
392  if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
393    return false;
394
395  if (ElementTy->isFloatingPointTy()) {
396    // Only allow floating-point vectors of different sizes if they have the
397    // same element type.
398    // TODO: This could be loosened a bit, but would anything benefit?
399    if (ElementTy != InElementTy)
400      return false;
401
402    // There are no arbitrary-precision floating-point types, which limits the
403    // number of legal vector types with larger element types that we can form
404    // to bitcast and extract a subvector.
405    // TODO: We could support some more cases with mixed fp128 and double here.
406    if (!(BitWidth == 64 || BitWidth == 128) ||
407        !(InBitWidth == 64 || InBitWidth == 128))
408      return false;
409  } else {
410    assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
411                                       "or floating-point.");
412    unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
413    unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
414
415    // Do not allow integer types smaller than a byte or types whose widths are
416    // not a multiple of a byte.
417    if (BitWidth < 8 || InBitWidth < 8 ||
418        BitWidth % 8 != 0 || InBitWidth % 8 != 0)
419      return false;
420  }
421
422  // Pick the largest of the two vector types.
423  if (InBitWidth > BitWidth)
424    VectorTy = VInTy;
425
426  return true;
427}
428
429/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
430/// its accesses to a single vector type, return true and set VecTy to
431/// the new type.  If we could convert the alloca into a single promotable
432/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
433/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
434/// is the current offset from the base of the alloca being analyzed.
435///
436/// If we see at least one access to the value that is as a vector type, set the
437/// SawVec flag.
438bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
439  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
440    Instruction *User = cast<Instruction>(*UI);
441
442    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
443      // Don't break volatile loads.
444      if (LI->isVolatile())
445        return false;
446      // Don't touch MMX operations.
447      if (LI->getType()->isX86_MMXTy())
448        return false;
449      HadNonMemTransferAccess = true;
450      MergeInType(LI->getType(), Offset, true);
451      continue;
452    }
453
454    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
455      // Storing the pointer, not into the value?
456      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
457      // Don't touch MMX operations.
458      if (SI->getOperand(0)->getType()->isX86_MMXTy())
459        return false;
460      HadNonMemTransferAccess = true;
461      MergeInType(SI->getOperand(0)->getType(), Offset, true);
462      continue;
463    }
464
465    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
466      IsNotTrivial = true;  // Can't be mem2reg'd.
467      if (!CanConvertToScalar(BCI, Offset))
468        return false;
469      continue;
470    }
471
472    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
473      // If this is a GEP with a variable indices, we can't handle it.
474      if (!GEP->hasAllConstantIndices())
475        return false;
476
477      // Compute the offset that this GEP adds to the pointer.
478      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
479      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
480                                               &Indices[0], Indices.size());
481      // See if all uses can be converted.
482      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
483        return false;
484      IsNotTrivial = true;  // Can't be mem2reg'd.
485      HadNonMemTransferAccess = true;
486      continue;
487    }
488
489    // If this is a constant sized memset of a constant value (e.g. 0) we can
490    // handle it.
491    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
492      // Store of constant value and constant size.
493      if (!isa<ConstantInt>(MSI->getValue()) ||
494          !isa<ConstantInt>(MSI->getLength()))
495        return false;
496      IsNotTrivial = true;  // Can't be mem2reg'd.
497      HadNonMemTransferAccess = true;
498      continue;
499    }
500
501    // If this is a memcpy or memmove into or out of the whole allocation, we
502    // can handle it like a load or store of the scalar type.
503    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
504      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
505      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
506        return false;
507
508      IsNotTrivial = true;  // Can't be mem2reg'd.
509      continue;
510    }
511
512    // Otherwise, we cannot handle this!
513    return false;
514  }
515
516  return true;
517}
518
519/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
520/// directly.  This happens when we are converting an "integer union" to a
521/// single integer scalar, or when we are converting a "vector union" to a
522/// vector with insert/extractelement instructions.
523///
524/// Offset is an offset from the original alloca, in bits that need to be
525/// shifted to the right.  By the end of this, there should be no uses of Ptr.
526void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
527                                              uint64_t Offset) {
528  while (!Ptr->use_empty()) {
529    Instruction *User = cast<Instruction>(Ptr->use_back());
530
531    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
532      ConvertUsesToScalar(CI, NewAI, Offset);
533      CI->eraseFromParent();
534      continue;
535    }
536
537    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
538      // Compute the offset that this GEP adds to the pointer.
539      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
540      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
541                                               &Indices[0], Indices.size());
542      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
543      GEP->eraseFromParent();
544      continue;
545    }
546
547    IRBuilder<> Builder(User);
548
549    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
550      // The load is a bit extract from NewAI shifted right by Offset bits.
551      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
552      Value *NewLoadVal
553        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
554      LI->replaceAllUsesWith(NewLoadVal);
555      LI->eraseFromParent();
556      continue;
557    }
558
559    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
560      assert(SI->getOperand(0) != Ptr && "Consistency error!");
561      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
562      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
563                                             Builder);
564      Builder.CreateStore(New, NewAI);
565      SI->eraseFromParent();
566
567      // If the load we just inserted is now dead, then the inserted store
568      // overwrote the entire thing.
569      if (Old->use_empty())
570        Old->eraseFromParent();
571      continue;
572    }
573
574    // If this is a constant sized memset of a constant value (e.g. 0) we can
575    // transform it into a store of the expanded constant value.
576    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
577      assert(MSI->getRawDest() == Ptr && "Consistency error!");
578      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
579      if (NumBytes != 0) {
580        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
581
582        // Compute the value replicated the right number of times.
583        APInt APVal(NumBytes*8, Val);
584
585        // Splat the value if non-zero.
586        if (Val)
587          for (unsigned i = 1; i != NumBytes; ++i)
588            APVal |= APVal << 8;
589
590        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
591        Value *New = ConvertScalar_InsertValue(
592                                    ConstantInt::get(User->getContext(), APVal),
593                                               Old, Offset, Builder);
594        Builder.CreateStore(New, NewAI);
595
596        // If the load we just inserted is now dead, then the memset overwrote
597        // the entire thing.
598        if (Old->use_empty())
599          Old->eraseFromParent();
600      }
601      MSI->eraseFromParent();
602      continue;
603    }
604
605    // If this is a memcpy or memmove into or out of the whole allocation, we
606    // can handle it like a load or store of the scalar type.
607    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
608      assert(Offset == 0 && "must be store to start of alloca");
609
610      // If the source and destination are both to the same alloca, then this is
611      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
612      // as appropriate.
613      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
614
615      if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
616        // Dest must be OrigAI, change this to be a load from the original
617        // pointer (bitcasted), then a store to our new alloca.
618        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
619        Value *SrcPtr = MTI->getSource();
620        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
621        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
622        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
623          AIPTy = PointerType::get(AIPTy->getElementType(),
624                                   SPTy->getAddressSpace());
625        }
626        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
627
628        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
629        SrcVal->setAlignment(MTI->getAlignment());
630        Builder.CreateStore(SrcVal, NewAI);
631      } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
632        // Src must be OrigAI, change this to be a load from NewAI then a store
633        // through the original dest pointer (bitcasted).
634        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
635        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
636
637        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
638        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
639        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
640          AIPTy = PointerType::get(AIPTy->getElementType(),
641                                   DPTy->getAddressSpace());
642        }
643        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
644
645        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
646        NewStore->setAlignment(MTI->getAlignment());
647      } else {
648        // Noop transfer. Src == Dst
649      }
650
651      MTI->eraseFromParent();
652      continue;
653    }
654
655    llvm_unreachable("Unsupported operation!");
656  }
657}
658
659/// getScaledElementType - Gets a scaled element type for a partial vector
660/// access of an alloca. The input type must be an integer or float, and
661/// the resulting type must be an integer, float or double.
662static const Type *getScaledElementType(const Type *OldTy,
663                                        unsigned NewBitWidth) {
664  assert((OldTy->isIntegerTy() || OldTy->isFloatTy()) && "Partial vector "
665         "accesses must be scaled from integer or float elements.");
666
667  LLVMContext &Context = OldTy->getContext();
668
669  if (OldTy->isIntegerTy())
670    return Type::getIntNTy(Context, NewBitWidth);
671  if (NewBitWidth == 32)
672    return Type::getFloatTy(Context);
673  if (NewBitWidth == 64)
674    return Type::getDoubleTy(Context);
675
676  llvm_unreachable("Invalid type for a partial vector access of an alloca!");
677}
678
679/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
680/// or vector value FromVal, extracting the bits from the offset specified by
681/// Offset.  This returns the value, which is of type ToType.
682///
683/// This happens when we are converting an "integer union" to a single
684/// integer scalar, or when we are converting a "vector union" to a vector with
685/// insert/extractelement instructions.
686///
687/// Offset is an offset from the original alloca, in bits that need to be
688/// shifted to the right.
689Value *ConvertToScalarInfo::
690ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
691                           uint64_t Offset, IRBuilder<> &Builder) {
692  // If the load is of the whole new alloca, no conversion is needed.
693  const Type *FromType = FromVal->getType();
694  if (FromType == ToType && Offset == 0)
695    return FromVal;
696
697  // If the result alloca is a vector type, this is either an element
698  // access or a bitcast to another vector type of the same size.
699  if (const VectorType *VTy = dyn_cast<VectorType>(FromType)) {
700    unsigned ToTypeSize = TD.getTypeAllocSize(ToType);
701    if (ToTypeSize == AllocaSize) {
702      if (FromType->getPrimitiveSizeInBits() ==
703          ToType->getPrimitiveSizeInBits())
704        return Builder.CreateBitCast(FromVal, ToType, "tmp");
705      else {
706        // Vectors with the same element type can have the same allocation
707        // size but different primitive sizes (e.g., <3 x i32> and <4 x i32>)
708        // In this case, use a shuffle vector instead of a bit cast.
709        const VectorType *ToVTy = dyn_cast<VectorType>(ToType);
710        assert(ToVTy && (ToVTy->getElementType() == VTy->getElementType()) &&
711               "Vectors must have the same element type");
712        LLVMContext &Context = FromVal->getContext();
713        Value *UnV = UndefValue::get(FromType);
714        unsigned numEltsFrom = VTy->getNumElements();
715        unsigned numEltsTo = ToVTy->getNumElements();
716
717        SmallVector<Constant*, 3> Args;
718        unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
719        unsigned i;
720        for (i=0; i != minNumElts; ++i)
721          Args.push_back(ConstantInt::get(Type::getInt32Ty(Context), i));
722
723        if (i < numEltsTo) {
724          Constant* UnC = UndefValue::get(Type::getInt32Ty(Context));
725          for (; i != numEltsTo; ++i)
726            Args.push_back(UnC);
727        }
728        Constant *Mask = ConstantVector::get(Args);
729        return Builder.CreateShuffleVector(FromVal, UnV, Mask, "tmpV");
730      }
731    }
732
733    if (ToType->isVectorTy()) {
734      assert(isPowerOf2_64(AllocaSize / ToTypeSize) &&
735             "Partial vector access of an alloca must have a power-of-2 size "
736             "ratio.");
737      assert(Offset == 0 && "Can't extract a value of a smaller vector type "
738                            "from a nonzero offset.");
739
740      const Type *ToElementTy = cast<VectorType>(ToType)->getElementType();
741      const Type *CastElementTy = getScaledElementType(ToElementTy,
742                                                       ToTypeSize * 8);
743      unsigned NumCastVectorElements = AllocaSize / ToTypeSize;
744
745      LLVMContext &Context = FromVal->getContext();
746      const Type *CastTy = VectorType::get(CastElementTy,
747                                           NumCastVectorElements);
748      Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
749      Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
750                                        Type::getInt32Ty(Context), 0), "tmp");
751      return Builder.CreateBitCast(Extract, ToType, "tmp");
752    }
753
754    // Otherwise it must be an element access.
755    unsigned Elt = 0;
756    if (Offset) {
757      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
758      Elt = Offset/EltSize;
759      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
760    }
761    // Return the element extracted out of it.
762    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
763                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
764    if (V->getType() != ToType)
765      V = Builder.CreateBitCast(V, ToType, "tmp");
766    return V;
767  }
768
769  // If ToType is a first class aggregate, extract out each of the pieces and
770  // use insertvalue's to form the FCA.
771  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
772    const StructLayout &Layout = *TD.getStructLayout(ST);
773    Value *Res = UndefValue::get(ST);
774    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
775      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
776                                        Offset+Layout.getElementOffsetInBits(i),
777                                              Builder);
778      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
779    }
780    return Res;
781  }
782
783  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
784    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
785    Value *Res = UndefValue::get(AT);
786    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
787      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
788                                              Offset+i*EltSize, Builder);
789      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
790    }
791    return Res;
792  }
793
794  // Otherwise, this must be a union that was converted to an integer value.
795  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
796
797  // If this is a big-endian system and the load is narrower than the
798  // full alloca type, we need to do a shift to get the right bits.
799  int ShAmt = 0;
800  if (TD.isBigEndian()) {
801    // On big-endian machines, the lowest bit is stored at the bit offset
802    // from the pointer given by getTypeStoreSizeInBits.  This matters for
803    // integers with a bitwidth that is not a multiple of 8.
804    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
805            TD.getTypeStoreSizeInBits(ToType) - Offset;
806  } else {
807    ShAmt = Offset;
808  }
809
810  // Note: we support negative bitwidths (with shl) which are not defined.
811  // We do this to support (f.e.) loads off the end of a structure where
812  // only some bits are used.
813  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
814    FromVal = Builder.CreateLShr(FromVal,
815                                 ConstantInt::get(FromVal->getType(),
816                                                           ShAmt), "tmp");
817  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
818    FromVal = Builder.CreateShl(FromVal,
819                                ConstantInt::get(FromVal->getType(),
820                                                          -ShAmt), "tmp");
821
822  // Finally, unconditionally truncate the integer to the right width.
823  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
824  if (LIBitWidth < NTy->getBitWidth())
825    FromVal =
826      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
827                                                    LIBitWidth), "tmp");
828  else if (LIBitWidth > NTy->getBitWidth())
829    FromVal =
830       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
831                                                    LIBitWidth), "tmp");
832
833  // If the result is an integer, this is a trunc or bitcast.
834  if (ToType->isIntegerTy()) {
835    // Should be done.
836  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
837    // Just do a bitcast, we know the sizes match up.
838    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
839  } else {
840    // Otherwise must be a pointer.
841    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
842  }
843  assert(FromVal->getType() == ToType && "Didn't convert right?");
844  return FromVal;
845}
846
847/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
848/// or vector value "Old" at the offset specified by Offset.
849///
850/// This happens when we are converting an "integer union" to a
851/// single integer scalar, or when we are converting a "vector union" to a
852/// vector with insert/extractelement instructions.
853///
854/// Offset is an offset from the original alloca, in bits that need to be
855/// shifted to the right.
856Value *ConvertToScalarInfo::
857ConvertScalar_InsertValue(Value *SV, Value *Old,
858                          uint64_t Offset, IRBuilder<> &Builder) {
859  // Convert the stored type to the actual type, shift it left to insert
860  // then 'or' into place.
861  const Type *AllocaType = Old->getType();
862  LLVMContext &Context = Old->getContext();
863
864  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
865    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
866    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
867
868    // Changing the whole vector with memset or with an access of a different
869    // vector type?
870    if (ValSize == VecSize) {
871      if (VTy->getPrimitiveSizeInBits() ==
872          SV->getType()->getPrimitiveSizeInBits())
873        return Builder.CreateBitCast(SV, AllocaType, "tmp");
874      else {
875        // Vectors with the same element type can have the same allocation
876        // size but different primitive sizes (e.g., <3 x i32> and <4 x i32>)
877        // In this case, use a shuffle vector instead of a bit cast.
878        const VectorType *SVVTy = dyn_cast<VectorType>(SV->getType());
879        assert(SVVTy && (SVVTy->getElementType() == VTy->getElementType()) &&
880               "Vectors must have the same element type");
881        Value *UnV = UndefValue::get(SVVTy);
882        unsigned numEltsFrom = SVVTy->getNumElements();
883        unsigned numEltsTo = VTy->getNumElements();
884
885        SmallVector<Constant*, 3> Args;
886        unsigned minNumElts = std::min(numEltsFrom, numEltsTo);
887        unsigned i;
888        for (i=0; i != minNumElts; ++i)
889          Args.push_back(ConstantInt::get(Type::getInt32Ty(Context), i));
890
891        if (i < numEltsTo) {
892          Constant* UnC = UndefValue::get(Type::getInt32Ty(Context));
893          for (; i != numEltsTo; ++i)
894            Args.push_back(UnC);
895        }
896        Constant *Mask = ConstantVector::get(Args);
897        return Builder.CreateShuffleVector(SV, UnV, Mask, "tmpV");
898      }
899    }
900
901    if (SV->getType()->isVectorTy() && isPowerOf2_64(VecSize / ValSize)) {
902      assert(Offset == 0 && "Can't insert a value of a smaller vector type at "
903                            "a nonzero offset.");
904
905      const Type *ToElementTy =
906        cast<VectorType>(SV->getType())->getElementType();
907      const Type *CastElementTy = getScaledElementType(ToElementTy, ValSize);
908      unsigned NumCastVectorElements = VecSize / ValSize;
909
910      LLVMContext &Context = SV->getContext();
911      const Type *OldCastTy = VectorType::get(CastElementTy,
912                                              NumCastVectorElements);
913      Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
914
915      Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
916      Value *Insert =
917        Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
918                                    Type::getInt32Ty(Context), 0), "tmp");
919      return Builder.CreateBitCast(Insert, AllocaType, "tmp");
920    }
921
922    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
923
924    // Must be an element insertion.
925    unsigned Elt = Offset/EltSize;
926
927    if (SV->getType() != VTy->getElementType())
928      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
929
930    SV = Builder.CreateInsertElement(Old, SV,
931                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
932                                     "tmp");
933    return SV;
934  }
935
936  // If SV is a first-class aggregate value, insert each value recursively.
937  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
938    const StructLayout &Layout = *TD.getStructLayout(ST);
939    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
940      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
941      Old = ConvertScalar_InsertValue(Elt, Old,
942                                      Offset+Layout.getElementOffsetInBits(i),
943                                      Builder);
944    }
945    return Old;
946  }
947
948  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
949    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
950    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
951      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
952      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
953    }
954    return Old;
955  }
956
957  // If SV is a float, convert it to the appropriate integer type.
958  // If it is a pointer, do the same.
959  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
960  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
961  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
962  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
963  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
964    SV = Builder.CreateBitCast(SV,
965                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
966  else if (SV->getType()->isPointerTy())
967    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
968
969  // Zero extend or truncate the value if needed.
970  if (SV->getType() != AllocaType) {
971    if (SV->getType()->getPrimitiveSizeInBits() <
972             AllocaType->getPrimitiveSizeInBits())
973      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
974    else {
975      // Truncation may be needed if storing more than the alloca can hold
976      // (undefined behavior).
977      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
978      SrcWidth = DestWidth;
979      SrcStoreWidth = DestStoreWidth;
980    }
981  }
982
983  // If this is a big-endian system and the store is narrower than the
984  // full alloca type, we need to do a shift to get the right bits.
985  int ShAmt = 0;
986  if (TD.isBigEndian()) {
987    // On big-endian machines, the lowest bit is stored at the bit offset
988    // from the pointer given by getTypeStoreSizeInBits.  This matters for
989    // integers with a bitwidth that is not a multiple of 8.
990    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
991  } else {
992    ShAmt = Offset;
993  }
994
995  // Note: we support negative bitwidths (with shr) which are not defined.
996  // We do this to support (f.e.) stores off the end of a structure where
997  // only some bits in the structure are set.
998  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
999  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1000    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
1001                           ShAmt), "tmp");
1002    Mask <<= ShAmt;
1003  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1004    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
1005                            -ShAmt), "tmp");
1006    Mask = Mask.lshr(-ShAmt);
1007  }
1008
1009  // Mask out the bits we are about to insert from the old value, and or
1010  // in the new bits.
1011  if (SrcWidth != DestWidth) {
1012    assert(DestWidth > SrcWidth);
1013    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
1014    SV = Builder.CreateOr(Old, SV, "ins");
1015  }
1016  return SV;
1017}
1018
1019
1020//===----------------------------------------------------------------------===//
1021// SRoA Driver
1022//===----------------------------------------------------------------------===//
1023
1024
1025bool SROA::runOnFunction(Function &F) {
1026  TD = getAnalysisIfAvailable<TargetData>();
1027
1028  bool Changed = performPromotion(F);
1029
1030  // FIXME: ScalarRepl currently depends on TargetData more than it
1031  // theoretically needs to. It should be refactored in order to support
1032  // target-independent IR. Until this is done, just skip the actual
1033  // scalar-replacement portion of this pass.
1034  if (!TD) return Changed;
1035
1036  while (1) {
1037    bool LocalChange = performScalarRepl(F);
1038    if (!LocalChange) break;   // No need to repromote if no scalarrepl
1039    Changed = true;
1040    LocalChange = performPromotion(F);
1041    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
1042  }
1043
1044  return Changed;
1045}
1046
1047namespace {
1048class AllocaPromoter : public LoadAndStorePromoter {
1049  AllocaInst *AI;
1050public:
1051  AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
1052    : LoadAndStorePromoter(Insts, S), AI(0) {}
1053
1054  void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
1055    // Remember which alloca we're promoting (for isInstInList).
1056    this->AI = AI;
1057    LoadAndStorePromoter::run(Insts);
1058    AI->eraseFromParent();
1059  }
1060
1061  virtual bool isInstInList(Instruction *I,
1062                            const SmallVectorImpl<Instruction*> &Insts) const {
1063    if (LoadInst *LI = dyn_cast<LoadInst>(I))
1064      return LI->getOperand(0) == AI;
1065    return cast<StoreInst>(I)->getPointerOperand() == AI;
1066  }
1067};
1068} // end anon namespace
1069
1070/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
1071/// subsequently loaded can be rewritten to load both input pointers and then
1072/// select between the result, allowing the load of the alloca to be promoted.
1073/// From this:
1074///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1075///   %V = load i32* %P2
1076/// to:
1077///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1078///   %V2 = load i32* %Other
1079///   %V = select i1 %cond, i32 %V1, i32 %V2
1080///
1081/// We can do this to a select if its only uses are loads and if the operand to
1082/// the select can be loaded unconditionally.
1083static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1084  bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1085  bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1086
1087  for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1088       UI != UE; ++UI) {
1089    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1090    if (LI == 0 || LI->isVolatile()) return false;
1091
1092    // Both operands to the select need to be dereferencable, either absolutely
1093    // (e.g. allocas) or at this point because we can see other accesses to it.
1094    if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1095                                                    LI->getAlignment(), TD))
1096      return false;
1097    if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1098                                                    LI->getAlignment(), TD))
1099      return false;
1100  }
1101
1102  return true;
1103}
1104
1105/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1106/// subsequently loaded can be rewritten to load both input pointers in the pred
1107/// blocks and then PHI the results, allowing the load of the alloca to be
1108/// promoted.
1109/// From this:
1110///   %P2 = phi [i32* %Alloca, i32* %Other]
1111///   %V = load i32* %P2
1112/// to:
1113///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1114///   ...
1115///   %V2 = load i32* %Other
1116///   ...
1117///   %V = phi [i32 %V1, i32 %V2]
1118///
1119/// We can do this to a select if its only uses are loads and if the operand to
1120/// the select can be loaded unconditionally.
1121static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1122  // For now, we can only do this promotion if the load is in the same block as
1123  // the PHI, and if there are no stores between the phi and load.
1124  // TODO: Allow recursive phi users.
1125  // TODO: Allow stores.
1126  BasicBlock *BB = PN->getParent();
1127  unsigned MaxAlign = 0;
1128  for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1129       UI != UE; ++UI) {
1130    LoadInst *LI = dyn_cast<LoadInst>(*UI);
1131    if (LI == 0 || LI->isVolatile()) return false;
1132
1133    // For now we only allow loads in the same block as the PHI.  This is a
1134    // common case that happens when instcombine merges two loads through a PHI.
1135    if (LI->getParent() != BB) return false;
1136
1137    // Ensure that there are no instructions between the PHI and the load that
1138    // could store.
1139    for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1140      if (BBI->mayWriteToMemory())
1141        return false;
1142
1143    MaxAlign = std::max(MaxAlign, LI->getAlignment());
1144  }
1145
1146  // Okay, we know that we have one or more loads in the same block as the PHI.
1147  // We can transform this if it is safe to push the loads into the predecessor
1148  // blocks.  The only thing to watch out for is that we can't put a possibly
1149  // trapping load in the predecessor if it is a critical edge.
1150  for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1151    BasicBlock *Pred = PN->getIncomingBlock(i);
1152
1153    // If the predecessor has a single successor, then the edge isn't critical.
1154    if (Pred->getTerminator()->getNumSuccessors() == 1)
1155      continue;
1156
1157    Value *InVal = PN->getIncomingValue(i);
1158
1159    // If the InVal is an invoke in the pred, we can't put a load on the edge.
1160    if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1161      if (II->getParent() == Pred)
1162        return false;
1163
1164    // If this pointer is always safe to load, or if we can prove that there is
1165    // already a load in the block, then we can move the load to the pred block.
1166    if (InVal->isDereferenceablePointer() ||
1167        isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1168      continue;
1169
1170    return false;
1171  }
1172
1173  return true;
1174}
1175
1176
1177/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1178/// direct (non-volatile) loads and stores to it.  If the alloca is close but
1179/// not quite there, this will transform the code to allow promotion.  As such,
1180/// it is a non-pure predicate.
1181static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1182  SetVector<Instruction*, SmallVector<Instruction*, 4>,
1183            SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1184
1185  for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1186       UI != UE; ++UI) {
1187    User *U = *UI;
1188    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1189      if (LI->isVolatile())
1190        return false;
1191      continue;
1192    }
1193
1194    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1195      if (SI->getOperand(0) == AI || SI->isVolatile())
1196        return false;   // Don't allow a store OF the AI, only INTO the AI.
1197      continue;
1198    }
1199
1200    if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1201      // If the condition being selected on is a constant, fold the select, yes
1202      // this does (rarely) happen early on.
1203      if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1204        Value *Result = SI->getOperand(1+CI->isZero());
1205        SI->replaceAllUsesWith(Result);
1206        SI->eraseFromParent();
1207
1208        // This is very rare and we just scrambled the use list of AI, start
1209        // over completely.
1210        return tryToMakeAllocaBePromotable(AI, TD);
1211      }
1212
1213      // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1214      // loads, then we can transform this by rewriting the select.
1215      if (!isSafeSelectToSpeculate(SI, TD))
1216        return false;
1217
1218      InstsToRewrite.insert(SI);
1219      continue;
1220    }
1221
1222    if (PHINode *PN = dyn_cast<PHINode>(U)) {
1223      if (PN->use_empty()) {  // Dead PHIs can be stripped.
1224        InstsToRewrite.insert(PN);
1225        continue;
1226      }
1227
1228      // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1229      // in the pred blocks, then we can transform this by rewriting the PHI.
1230      if (!isSafePHIToSpeculate(PN, TD))
1231        return false;
1232
1233      InstsToRewrite.insert(PN);
1234      continue;
1235    }
1236
1237    return false;
1238  }
1239
1240  // If there are no instructions to rewrite, then all uses are load/stores and
1241  // we're done!
1242  if (InstsToRewrite.empty())
1243    return true;
1244
1245  // If we have instructions that need to be rewritten for this to be promotable
1246  // take care of it now.
1247  for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
1248    if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1249      // Selects in InstsToRewrite only have load uses.  Rewrite each as two
1250      // loads with a new select.
1251      while (!SI->use_empty()) {
1252        LoadInst *LI = cast<LoadInst>(SI->use_back());
1253
1254        IRBuilder<> Builder(LI);
1255        LoadInst *TrueLoad =
1256          Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1257        LoadInst *FalseLoad =
1258          Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1259
1260        // Transfer alignment and TBAA info if present.
1261        TrueLoad->setAlignment(LI->getAlignment());
1262        FalseLoad->setAlignment(LI->getAlignment());
1263        if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1264          TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1265          FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1266        }
1267
1268        Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1269        V->takeName(LI);
1270        LI->replaceAllUsesWith(V);
1271        LI->eraseFromParent();
1272      }
1273
1274      // Now that all the loads are gone, the select is gone too.
1275      SI->eraseFromParent();
1276      continue;
1277    }
1278
1279    // Otherwise, we have a PHI node which allows us to push the loads into the
1280    // predecessors.
1281    PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1282    if (PN->use_empty()) {
1283      PN->eraseFromParent();
1284      continue;
1285    }
1286
1287    const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1288    PHINode *NewPN = PHINode::Create(LoadTy, PN->getNumIncomingValues(),
1289                                     PN->getName()+".ld", PN);
1290
1291    // Get the TBAA tag and alignment to use from one of the loads.  It doesn't
1292    // matter which one we get and if any differ, it doesn't matter.
1293    LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1294    MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1295    unsigned Align = SomeLoad->getAlignment();
1296
1297    // Rewrite all loads of the PN to use the new PHI.
1298    while (!PN->use_empty()) {
1299      LoadInst *LI = cast<LoadInst>(PN->use_back());
1300      LI->replaceAllUsesWith(NewPN);
1301      LI->eraseFromParent();
1302    }
1303
1304    // Inject loads into all of the pred blocks.  Keep track of which blocks we
1305    // insert them into in case we have multiple edges from the same block.
1306    DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1307
1308    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1309      BasicBlock *Pred = PN->getIncomingBlock(i);
1310      LoadInst *&Load = InsertedLoads[Pred];
1311      if (Load == 0) {
1312        Load = new LoadInst(PN->getIncomingValue(i),
1313                            PN->getName() + "." + Pred->getName(),
1314                            Pred->getTerminator());
1315        Load->setAlignment(Align);
1316        if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1317      }
1318
1319      NewPN->addIncoming(Load, Pred);
1320    }
1321
1322    PN->eraseFromParent();
1323  }
1324
1325  ++NumAdjusted;
1326  return true;
1327}
1328
1329
1330bool SROA::performPromotion(Function &F) {
1331  std::vector<AllocaInst*> Allocas;
1332  DominatorTree *DT = 0;
1333  if (HasDomTree)
1334    DT = &getAnalysis<DominatorTree>();
1335
1336  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
1337
1338  bool Changed = false;
1339  SmallVector<Instruction*, 64> Insts;
1340  while (1) {
1341    Allocas.clear();
1342
1343    // Find allocas that are safe to promote, by looking at all instructions in
1344    // the entry node
1345    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1346      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
1347        if (tryToMakeAllocaBePromotable(AI, TD))
1348          Allocas.push_back(AI);
1349
1350    if (Allocas.empty()) break;
1351
1352    if (HasDomTree)
1353      PromoteMemToReg(Allocas, *DT);
1354    else {
1355      SSAUpdater SSA;
1356      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1357        AllocaInst *AI = Allocas[i];
1358
1359        // Build list of instructions to promote.
1360        for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1361             UI != E; ++UI)
1362          Insts.push_back(cast<Instruction>(*UI));
1363
1364        AllocaPromoter(Insts, SSA).run(AI, Insts);
1365        Insts.clear();
1366      }
1367    }
1368    NumPromoted += Allocas.size();
1369    Changed = true;
1370  }
1371
1372  return Changed;
1373}
1374
1375
1376/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1377/// SROA.  It must be a struct or array type with a small number of elements.
1378static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1379  const Type *T = AI->getAllocatedType();
1380  // Do not promote any struct into more than 32 separate vars.
1381  if (const StructType *ST = dyn_cast<StructType>(T))
1382    return ST->getNumElements() <= 32;
1383  // Arrays are much less likely to be safe for SROA; only consider
1384  // them if they are very small.
1385  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1386    return AT->getNumElements() <= 8;
1387  return false;
1388}
1389
1390
1391// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1392// which runs on all of the malloc/alloca instructions in the function, removing
1393// them if they are only used by getelementptr instructions.
1394//
1395bool SROA::performScalarRepl(Function &F) {
1396  std::vector<AllocaInst*> WorkList;
1397
1398  // Scan the entry basic block, adding allocas to the worklist.
1399  BasicBlock &BB = F.getEntryBlock();
1400  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1401    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1402      WorkList.push_back(A);
1403
1404  // Process the worklist
1405  bool Changed = false;
1406  while (!WorkList.empty()) {
1407    AllocaInst *AI = WorkList.back();
1408    WorkList.pop_back();
1409
1410    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1411    // with unused elements.
1412    if (AI->use_empty()) {
1413      AI->eraseFromParent();
1414      Changed = true;
1415      continue;
1416    }
1417
1418    // If this alloca is impossible for us to promote, reject it early.
1419    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1420      continue;
1421
1422    // Check to see if this allocation is only modified by a memcpy/memmove from
1423    // a constant global.  If this is the case, we can change all users to use
1424    // the constant global instead.  This is commonly produced by the CFE by
1425    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1426    // is only subsequently read.
1427    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1428      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1429      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1430      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1431      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1432      TheCopy->eraseFromParent();  // Don't mutate the global.
1433      AI->eraseFromParent();
1434      ++NumGlobals;
1435      Changed = true;
1436      continue;
1437    }
1438
1439    // Check to see if we can perform the core SROA transformation.  We cannot
1440    // transform the allocation instruction if it is an array allocation
1441    // (allocations OF arrays are ok though), and an allocation of a scalar
1442    // value cannot be decomposed at all.
1443    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1444
1445    // Do not promote [0 x %struct].
1446    if (AllocaSize == 0) continue;
1447
1448    // Do not promote any struct whose size is too big.
1449    if (AllocaSize > SRThreshold) continue;
1450
1451    // If the alloca looks like a good candidate for scalar replacement, and if
1452    // all its users can be transformed, then split up the aggregate into its
1453    // separate elements.
1454    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1455      DoScalarReplacement(AI, WorkList);
1456      Changed = true;
1457      continue;
1458    }
1459
1460    // If we can turn this aggregate value (potentially with casts) into a
1461    // simple scalar value that can be mem2reg'd into a register value.
1462    // IsNotTrivial tracks whether this is something that mem2reg could have
1463    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1464    // that we can't just check based on the type: the alloca may be of an i32
1465    // but that has pointer arithmetic to set byte 3 of it or something.
1466    if (AllocaInst *NewAI =
1467          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1468      NewAI->takeName(AI);
1469      AI->eraseFromParent();
1470      ++NumConverted;
1471      Changed = true;
1472      continue;
1473    }
1474
1475    // Otherwise, couldn't process this alloca.
1476  }
1477
1478  return Changed;
1479}
1480
1481/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1482/// predicate, do SROA now.
1483void SROA::DoScalarReplacement(AllocaInst *AI,
1484                               std::vector<AllocaInst*> &WorkList) {
1485  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1486  SmallVector<AllocaInst*, 32> ElementAllocas;
1487  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1488    ElementAllocas.reserve(ST->getNumContainedTypes());
1489    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1490      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1491                                      AI->getAlignment(),
1492                                      AI->getName() + "." + Twine(i), AI);
1493      ElementAllocas.push_back(NA);
1494      WorkList.push_back(NA);  // Add to worklist for recursive processing
1495    }
1496  } else {
1497    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1498    ElementAllocas.reserve(AT->getNumElements());
1499    const Type *ElTy = AT->getElementType();
1500    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1501      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1502                                      AI->getName() + "." + Twine(i), AI);
1503      ElementAllocas.push_back(NA);
1504      WorkList.push_back(NA);  // Add to worklist for recursive processing
1505    }
1506  }
1507
1508  // Now that we have created the new alloca instructions, rewrite all the
1509  // uses of the old alloca.
1510  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1511
1512  // Now erase any instructions that were made dead while rewriting the alloca.
1513  DeleteDeadInstructions();
1514  AI->eraseFromParent();
1515
1516  ++NumReplaced;
1517}
1518
1519/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1520/// recursively including all their operands that become trivially dead.
1521void SROA::DeleteDeadInstructions() {
1522  while (!DeadInsts.empty()) {
1523    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1524
1525    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1526      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1527        // Zero out the operand and see if it becomes trivially dead.
1528        // (But, don't add allocas to the dead instruction list -- they are
1529        // already on the worklist and will be deleted separately.)
1530        *OI = 0;
1531        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1532          DeadInsts.push_back(U);
1533      }
1534
1535    I->eraseFromParent();
1536  }
1537}
1538
1539/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1540/// performing scalar replacement of alloca AI.  The results are flagged in
1541/// the Info parameter.  Offset indicates the position within AI that is
1542/// referenced by this instruction.
1543void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
1544                               AllocaInfo &Info) {
1545  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1546    Instruction *User = cast<Instruction>(*UI);
1547
1548    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1549      isSafeForScalarRepl(BC, Offset, Info);
1550    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1551      uint64_t GEPOffset = Offset;
1552      isSafeGEP(GEPI, GEPOffset, Info);
1553      if (!Info.isUnsafe)
1554        isSafeForScalarRepl(GEPI, GEPOffset, Info);
1555    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1556      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1557      if (Length == 0)
1558        return MarkUnsafe(Info, User);
1559      isSafeMemAccess(Offset, Length->getZExtValue(), 0,
1560                      UI.getOperandNo() == 0, Info, MI,
1561                      true /*AllowWholeAccess*/);
1562    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1563      if (LI->isVolatile())
1564        return MarkUnsafe(Info, User);
1565      const Type *LIType = LI->getType();
1566      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1567                      LIType, false, Info, LI, true /*AllowWholeAccess*/);
1568      Info.hasALoadOrStore = true;
1569
1570    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1571      // Store is ok if storing INTO the pointer, not storing the pointer
1572      if (SI->isVolatile() || SI->getOperand(0) == I)
1573        return MarkUnsafe(Info, User);
1574
1575      const Type *SIType = SI->getOperand(0)->getType();
1576      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1577                      SIType, true, Info, SI, true /*AllowWholeAccess*/);
1578      Info.hasALoadOrStore = true;
1579    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1580      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1581    } else {
1582      return MarkUnsafe(Info, User);
1583    }
1584    if (Info.isUnsafe) return;
1585  }
1586}
1587
1588
1589/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1590/// derived from the alloca, we can often still split the alloca into elements.
1591/// This is useful if we have a large alloca where one element is phi'd
1592/// together somewhere: we can SRoA and promote all the other elements even if
1593/// we end up not being able to promote this one.
1594///
1595/// All we require is that the uses of the PHI do not index into other parts of
1596/// the alloca.  The most important use case for this is single load and stores
1597/// that are PHI'd together, which can happen due to code sinking.
1598void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1599                                           AllocaInfo &Info) {
1600  // If we've already checked this PHI, don't do it again.
1601  if (PHINode *PN = dyn_cast<PHINode>(I))
1602    if (!Info.CheckedPHIs.insert(PN))
1603      return;
1604
1605  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1606    Instruction *User = cast<Instruction>(*UI);
1607
1608    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1609      isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1610    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1611      // Only allow "bitcast" GEPs for simplicity.  We could generalize this,
1612      // but would have to prove that we're staying inside of an element being
1613      // promoted.
1614      if (!GEPI->hasAllZeroIndices())
1615        return MarkUnsafe(Info, User);
1616      isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1617    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1618      if (LI->isVolatile())
1619        return MarkUnsafe(Info, User);
1620      const Type *LIType = LI->getType();
1621      isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1622                      LIType, false, Info, LI, false /*AllowWholeAccess*/);
1623      Info.hasALoadOrStore = true;
1624
1625    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1626      // Store is ok if storing INTO the pointer, not storing the pointer
1627      if (SI->isVolatile() || SI->getOperand(0) == I)
1628        return MarkUnsafe(Info, User);
1629
1630      const Type *SIType = SI->getOperand(0)->getType();
1631      isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1632                      SIType, true, Info, SI, false /*AllowWholeAccess*/);
1633      Info.hasALoadOrStore = true;
1634    } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1635      isSafePHISelectUseForScalarRepl(User, Offset, Info);
1636    } else {
1637      return MarkUnsafe(Info, User);
1638    }
1639    if (Info.isUnsafe) return;
1640  }
1641}
1642
1643/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1644/// replacement.  It is safe when all the indices are constant, in-bounds
1645/// references, and when the resulting offset corresponds to an element within
1646/// the alloca type.  The results are flagged in the Info parameter.  Upon
1647/// return, Offset is adjusted as specified by the GEP indices.
1648void SROA::isSafeGEP(GetElementPtrInst *GEPI,
1649                     uint64_t &Offset, AllocaInfo &Info) {
1650  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1651  if (GEPIt == E)
1652    return;
1653
1654  // Walk through the GEP type indices, checking the types that this indexes
1655  // into.
1656  for (; GEPIt != E; ++GEPIt) {
1657    // Ignore struct elements, no extra checking needed for these.
1658    if ((*GEPIt)->isStructTy())
1659      continue;
1660
1661    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1662    if (!IdxVal)
1663      return MarkUnsafe(Info, GEPI);
1664  }
1665
1666  // Compute the offset due to this GEP and check if the alloca has a
1667  // component element at that offset.
1668  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1669  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1670                                 &Indices[0], Indices.size());
1671  if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
1672    MarkUnsafe(Info, GEPI);
1673}
1674
1675/// isHomogeneousAggregate - Check if type T is a struct or array containing
1676/// elements of the same type (which is always true for arrays).  If so,
1677/// return true with NumElts and EltTy set to the number of elements and the
1678/// element type, respectively.
1679static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1680                                   const Type *&EltTy) {
1681  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1682    NumElts = AT->getNumElements();
1683    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1684    return true;
1685  }
1686  if (const StructType *ST = dyn_cast<StructType>(T)) {
1687    NumElts = ST->getNumContainedTypes();
1688    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1689    for (unsigned n = 1; n < NumElts; ++n) {
1690      if (ST->getContainedType(n) != EltTy)
1691        return false;
1692    }
1693    return true;
1694  }
1695  return false;
1696}
1697
1698/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1699/// "homogeneous" aggregates with the same element type and number of elements.
1700static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1701  if (T1 == T2)
1702    return true;
1703
1704  unsigned NumElts1, NumElts2;
1705  const Type *EltTy1, *EltTy2;
1706  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1707      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1708      NumElts1 == NumElts2 &&
1709      EltTy1 == EltTy2)
1710    return true;
1711
1712  return false;
1713}
1714
1715/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1716/// alloca or has an offset and size that corresponds to a component element
1717/// within it.  The offset checked here may have been formed from a GEP with a
1718/// pointer bitcasted to a different type.
1719///
1720/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1721/// unit.  If false, it only allows accesses known to be in a single element.
1722void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
1723                           const Type *MemOpType, bool isStore,
1724                           AllocaInfo &Info, Instruction *TheAccess,
1725                           bool AllowWholeAccess) {
1726  // Check if this is a load/store of the entire alloca.
1727  if (Offset == 0 && AllowWholeAccess &&
1728      MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
1729    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1730    // loads/stores (which are essentially the same as the MemIntrinsics with
1731    // regard to copying padding between elements).  But, if an alloca is
1732    // flagged as both a source and destination of such operations, we'll need
1733    // to check later for padding between elements.
1734    if (!MemOpType || MemOpType->isIntegerTy()) {
1735      if (isStore)
1736        Info.isMemCpyDst = true;
1737      else
1738        Info.isMemCpySrc = true;
1739      return;
1740    }
1741    // This is also safe for references using a type that is compatible with
1742    // the type of the alloca, so that loads/stores can be rewritten using
1743    // insertvalue/extractvalue.
1744    if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
1745      Info.hasSubelementAccess = true;
1746      return;
1747    }
1748  }
1749  // Check if the offset/size correspond to a component within the alloca type.
1750  const Type *T = Info.AI->getAllocatedType();
1751  if (TypeHasComponent(T, Offset, MemSize)) {
1752    Info.hasSubelementAccess = true;
1753    return;
1754  }
1755
1756  return MarkUnsafe(Info, TheAccess);
1757}
1758
1759/// TypeHasComponent - Return true if T has a component type with the
1760/// specified offset and size.  If Size is zero, do not check the size.
1761bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1762  const Type *EltTy;
1763  uint64_t EltSize;
1764  if (const StructType *ST = dyn_cast<StructType>(T)) {
1765    const StructLayout *Layout = TD->getStructLayout(ST);
1766    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1767    EltTy = ST->getContainedType(EltIdx);
1768    EltSize = TD->getTypeAllocSize(EltTy);
1769    Offset -= Layout->getElementOffset(EltIdx);
1770  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1771    EltTy = AT->getElementType();
1772    EltSize = TD->getTypeAllocSize(EltTy);
1773    if (Offset >= AT->getNumElements() * EltSize)
1774      return false;
1775    Offset %= EltSize;
1776  } else {
1777    return false;
1778  }
1779  if (Offset == 0 && (Size == 0 || EltSize == Size))
1780    return true;
1781  // Check if the component spans multiple elements.
1782  if (Offset + Size > EltSize)
1783    return false;
1784  return TypeHasComponent(EltTy, Offset, Size);
1785}
1786
1787/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1788/// the instruction I, which references it, to use the separate elements.
1789/// Offset indicates the position within AI that is referenced by this
1790/// instruction.
1791void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1792                                SmallVector<AllocaInst*, 32> &NewElts) {
1793  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1794    Use &TheUse = UI.getUse();
1795    Instruction *User = cast<Instruction>(*UI++);
1796
1797    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1798      RewriteBitCast(BC, AI, Offset, NewElts);
1799      continue;
1800    }
1801
1802    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1803      RewriteGEP(GEPI, AI, Offset, NewElts);
1804      continue;
1805    }
1806
1807    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1808      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1809      uint64_t MemSize = Length->getZExtValue();
1810      if (Offset == 0 &&
1811          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1812        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1813      // Otherwise the intrinsic can only touch a single element and the
1814      // address operand will be updated, so nothing else needs to be done.
1815      continue;
1816    }
1817
1818    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1819      const Type *LIType = LI->getType();
1820
1821      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1822        // Replace:
1823        //   %res = load { i32, i32 }* %alloc
1824        // with:
1825        //   %load.0 = load i32* %alloc.0
1826        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1827        //   %load.1 = load i32* %alloc.1
1828        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1829        // (Also works for arrays instead of structs)
1830        Value *Insert = UndefValue::get(LIType);
1831        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1832          Value *Load = new LoadInst(NewElts[i], "load", LI);
1833          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1834        }
1835        LI->replaceAllUsesWith(Insert);
1836        DeadInsts.push_back(LI);
1837      } else if (LIType->isIntegerTy() &&
1838                 TD->getTypeAllocSize(LIType) ==
1839                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1840        // If this is a load of the entire alloca to an integer, rewrite it.
1841        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1842      }
1843      continue;
1844    }
1845
1846    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1847      Value *Val = SI->getOperand(0);
1848      const Type *SIType = Val->getType();
1849      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1850        // Replace:
1851        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1852        // with:
1853        //   %val.0 = extractvalue { i32, i32 } %val, 0
1854        //   store i32 %val.0, i32* %alloc.0
1855        //   %val.1 = extractvalue { i32, i32 } %val, 1
1856        //   store i32 %val.1, i32* %alloc.1
1857        // (Also works for arrays instead of structs)
1858        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1859          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1860          new StoreInst(Extract, NewElts[i], SI);
1861        }
1862        DeadInsts.push_back(SI);
1863      } else if (SIType->isIntegerTy() &&
1864                 TD->getTypeAllocSize(SIType) ==
1865                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1866        // If this is a store of the entire alloca from an integer, rewrite it.
1867        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1868      }
1869      continue;
1870    }
1871
1872    if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1873      // If we have a PHI user of the alloca itself (as opposed to a GEP or
1874      // bitcast) we have to rewrite it.  GEP and bitcast uses will be RAUW'd to
1875      // the new pointer.
1876      if (!isa<AllocaInst>(I)) continue;
1877
1878      assert(Offset == 0 && NewElts[0] &&
1879             "Direct alloca use should have a zero offset");
1880
1881      // If we have a use of the alloca, we know the derived uses will be
1882      // utilizing just the first element of the scalarized result.  Insert a
1883      // bitcast of the first alloca before the user as required.
1884      AllocaInst *NewAI = NewElts[0];
1885      BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1886      NewAI->moveBefore(BCI);
1887      TheUse = BCI;
1888      continue;
1889    }
1890  }
1891}
1892
1893/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1894/// and recursively continue updating all of its uses.
1895void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1896                          SmallVector<AllocaInst*, 32> &NewElts) {
1897  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1898  if (BC->getOperand(0) != AI)
1899    return;
1900
1901  // The bitcast references the original alloca.  Replace its uses with
1902  // references to the first new element alloca.
1903  Instruction *Val = NewElts[0];
1904  if (Val->getType() != BC->getDestTy()) {
1905    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1906    Val->takeName(BC);
1907  }
1908  BC->replaceAllUsesWith(Val);
1909  DeadInsts.push_back(BC);
1910}
1911
1912/// FindElementAndOffset - Return the index of the element containing Offset
1913/// within the specified type, which must be either a struct or an array.
1914/// Sets T to the type of the element and Offset to the offset within that
1915/// element.  IdxTy is set to the type of the index result to be used in a
1916/// GEP instruction.
1917uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1918                                    const Type *&IdxTy) {
1919  uint64_t Idx = 0;
1920  if (const StructType *ST = dyn_cast<StructType>(T)) {
1921    const StructLayout *Layout = TD->getStructLayout(ST);
1922    Idx = Layout->getElementContainingOffset(Offset);
1923    T = ST->getContainedType(Idx);
1924    Offset -= Layout->getElementOffset(Idx);
1925    IdxTy = Type::getInt32Ty(T->getContext());
1926    return Idx;
1927  }
1928  const ArrayType *AT = cast<ArrayType>(T);
1929  T = AT->getElementType();
1930  uint64_t EltSize = TD->getTypeAllocSize(T);
1931  Idx = Offset / EltSize;
1932  Offset -= Idx * EltSize;
1933  IdxTy = Type::getInt64Ty(T->getContext());
1934  return Idx;
1935}
1936
1937/// RewriteGEP - Check if this GEP instruction moves the pointer across
1938/// elements of the alloca that are being split apart, and if so, rewrite
1939/// the GEP to be relative to the new element.
1940void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1941                      SmallVector<AllocaInst*, 32> &NewElts) {
1942  uint64_t OldOffset = Offset;
1943  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1944  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1945                                 &Indices[0], Indices.size());
1946
1947  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1948
1949  const Type *T = AI->getAllocatedType();
1950  const Type *IdxTy;
1951  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1952  if (GEPI->getOperand(0) == AI)
1953    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1954
1955  T = AI->getAllocatedType();
1956  uint64_t EltOffset = Offset;
1957  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1958
1959  // If this GEP does not move the pointer across elements of the alloca
1960  // being split, then it does not needs to be rewritten.
1961  if (Idx == OldIdx)
1962    return;
1963
1964  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1965  SmallVector<Value*, 8> NewArgs;
1966  NewArgs.push_back(Constant::getNullValue(i32Ty));
1967  while (EltOffset != 0) {
1968    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1969    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1970  }
1971  Instruction *Val = NewElts[Idx];
1972  if (NewArgs.size() > 1) {
1973    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1974                                            NewArgs.end(), "", GEPI);
1975    Val->takeName(GEPI);
1976  }
1977  if (Val->getType() != GEPI->getType())
1978    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1979  GEPI->replaceAllUsesWith(Val);
1980  DeadInsts.push_back(GEPI);
1981}
1982
1983/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1984/// Rewrite it to copy or set the elements of the scalarized memory.
1985void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1986                                        AllocaInst *AI,
1987                                        SmallVector<AllocaInst*, 32> &NewElts) {
1988  // If this is a memcpy/memmove, construct the other pointer as the
1989  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1990  // that doesn't have anything to do with the alloca that we are promoting. For
1991  // memset, this Value* stays null.
1992  Value *OtherPtr = 0;
1993  unsigned MemAlignment = MI->getAlignment();
1994  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1995    if (Inst == MTI->getRawDest())
1996      OtherPtr = MTI->getRawSource();
1997    else {
1998      assert(Inst == MTI->getRawSource());
1999      OtherPtr = MTI->getRawDest();
2000    }
2001  }
2002
2003  // If there is an other pointer, we want to convert it to the same pointer
2004  // type as AI has, so we can GEP through it safely.
2005  if (OtherPtr) {
2006    unsigned AddrSpace =
2007      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
2008
2009    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
2010    // optimization, but it's also required to detect the corner case where
2011    // both pointer operands are referencing the same memory, and where
2012    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
2013    // function is only called for mem intrinsics that access the whole
2014    // aggregate, so non-zero GEPs are not an issue here.)
2015    OtherPtr = OtherPtr->stripPointerCasts();
2016
2017    // Copying the alloca to itself is a no-op: just delete it.
2018    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
2019      // This code will run twice for a no-op memcpy -- once for each operand.
2020      // Put only one reference to MI on the DeadInsts list.
2021      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
2022             E = DeadInsts.end(); I != E; ++I)
2023        if (*I == MI) return;
2024      DeadInsts.push_back(MI);
2025      return;
2026    }
2027
2028    // If the pointer is not the right type, insert a bitcast to the right
2029    // type.
2030    const Type *NewTy =
2031      PointerType::get(AI->getType()->getElementType(), AddrSpace);
2032
2033    if (OtherPtr->getType() != NewTy)
2034      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
2035  }
2036
2037  // Process each element of the aggregate.
2038  bool SROADest = MI->getRawDest() == Inst;
2039
2040  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
2041
2042  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2043    // If this is a memcpy/memmove, emit a GEP of the other element address.
2044    Value *OtherElt = 0;
2045    unsigned OtherEltAlign = MemAlignment;
2046
2047    if (OtherPtr) {
2048      Value *Idx[2] = { Zero,
2049                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
2050      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
2051                                              OtherPtr->getName()+"."+Twine(i),
2052                                                   MI);
2053      uint64_t EltOffset;
2054      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
2055      const Type *OtherTy = OtherPtrTy->getElementType();
2056      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
2057        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
2058      } else {
2059        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
2060        EltOffset = TD->getTypeAllocSize(EltTy)*i;
2061      }
2062
2063      // The alignment of the other pointer is the guaranteed alignment of the
2064      // element, which is affected by both the known alignment of the whole
2065      // mem intrinsic and the alignment of the element.  If the alignment of
2066      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
2067      // known alignment is just 4 bytes.
2068      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
2069    }
2070
2071    Value *EltPtr = NewElts[i];
2072    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
2073
2074    // If we got down to a scalar, insert a load or store as appropriate.
2075    if (EltTy->isSingleValueType()) {
2076      if (isa<MemTransferInst>(MI)) {
2077        if (SROADest) {
2078          // From Other to Alloca.
2079          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2080          new StoreInst(Elt, EltPtr, MI);
2081        } else {
2082          // From Alloca to Other.
2083          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2084          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2085        }
2086        continue;
2087      }
2088      assert(isa<MemSetInst>(MI));
2089
2090      // If the stored element is zero (common case), just store a null
2091      // constant.
2092      Constant *StoreVal;
2093      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
2094        if (CI->isZero()) {
2095          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
2096        } else {
2097          // If EltTy is a vector type, get the element type.
2098          const Type *ValTy = EltTy->getScalarType();
2099
2100          // Construct an integer with the right value.
2101          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2102          APInt OneVal(EltSize, CI->getZExtValue());
2103          APInt TotalVal(OneVal);
2104          // Set each byte.
2105          for (unsigned i = 0; 8*i < EltSize; ++i) {
2106            TotalVal = TotalVal.shl(8);
2107            TotalVal |= OneVal;
2108          }
2109
2110          // Convert the integer value to the appropriate type.
2111          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
2112          if (ValTy->isPointerTy())
2113            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
2114          else if (ValTy->isFloatingPointTy())
2115            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
2116          assert(StoreVal->getType() == ValTy && "Type mismatch!");
2117
2118          // If the requested value was a vector constant, create it.
2119          if (EltTy != ValTy) {
2120            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2121            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
2122            StoreVal = ConstantVector::get(Elts);
2123          }
2124        }
2125        new StoreInst(StoreVal, EltPtr, MI);
2126        continue;
2127      }
2128      // Otherwise, if we're storing a byte variable, use a memset call for
2129      // this element.
2130    }
2131
2132    unsigned EltSize = TD->getTypeAllocSize(EltTy);
2133
2134    IRBuilder<> Builder(MI);
2135
2136    // Finally, insert the meminst for this element.
2137    if (isa<MemSetInst>(MI)) {
2138      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2139                           MI->isVolatile());
2140    } else {
2141      assert(isa<MemTransferInst>(MI));
2142      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
2143      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
2144
2145      if (isa<MemCpyInst>(MI))
2146        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2147      else
2148        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
2149    }
2150  }
2151  DeadInsts.push_back(MI);
2152}
2153
2154/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
2155/// overwrites the entire allocation.  Extract out the pieces of the stored
2156/// integer and store them individually.
2157void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
2158                                         SmallVector<AllocaInst*, 32> &NewElts){
2159  // Extract each element out of the integer according to its structure offset
2160  // and store the element value to the individual alloca.
2161  Value *SrcVal = SI->getOperand(0);
2162  const Type *AllocaEltTy = AI->getAllocatedType();
2163  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2164
2165  IRBuilder<> Builder(SI);
2166
2167  // Handle tail padding by extending the operand
2168  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
2169    SrcVal = Builder.CreateZExt(SrcVal,
2170                            IntegerType::get(SI->getContext(), AllocaSizeBits));
2171
2172  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
2173               << '\n');
2174
2175  // There are two forms here: AI could be an array or struct.  Both cases
2176  // have different ways to compute the element offset.
2177  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2178    const StructLayout *Layout = TD->getStructLayout(EltSTy);
2179
2180    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2181      // Get the number of bits to shift SrcVal to get the value.
2182      const Type *FieldTy = EltSTy->getElementType(i);
2183      uint64_t Shift = Layout->getElementOffsetInBits(i);
2184
2185      if (TD->isBigEndian())
2186        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
2187
2188      Value *EltVal = SrcVal;
2189      if (Shift) {
2190        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2191        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2192      }
2193
2194      // Truncate down to an integer of the right size.
2195      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2196
2197      // Ignore zero sized fields like {}, they obviously contain no data.
2198      if (FieldSizeBits == 0) continue;
2199
2200      if (FieldSizeBits != AllocaSizeBits)
2201        EltVal = Builder.CreateTrunc(EltVal,
2202                             IntegerType::get(SI->getContext(), FieldSizeBits));
2203      Value *DestField = NewElts[i];
2204      if (EltVal->getType() == FieldTy) {
2205        // Storing to an integer field of this size, just do it.
2206      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
2207        // Bitcast to the right element type (for fp/vector values).
2208        EltVal = Builder.CreateBitCast(EltVal, FieldTy);
2209      } else {
2210        // Otherwise, bitcast the dest pointer (for aggregates).
2211        DestField = Builder.CreateBitCast(DestField,
2212                                     PointerType::getUnqual(EltVal->getType()));
2213      }
2214      new StoreInst(EltVal, DestField, SI);
2215    }
2216
2217  } else {
2218    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2219    const Type *ArrayEltTy = ATy->getElementType();
2220    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2221    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2222
2223    uint64_t Shift;
2224
2225    if (TD->isBigEndian())
2226      Shift = AllocaSizeBits-ElementOffset;
2227    else
2228      Shift = 0;
2229
2230    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2231      // Ignore zero sized fields like {}, they obviously contain no data.
2232      if (ElementSizeBits == 0) continue;
2233
2234      Value *EltVal = SrcVal;
2235      if (Shift) {
2236        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
2237        EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
2238      }
2239
2240      // Truncate down to an integer of the right size.
2241      if (ElementSizeBits != AllocaSizeBits)
2242        EltVal = Builder.CreateTrunc(EltVal,
2243                                     IntegerType::get(SI->getContext(),
2244                                                      ElementSizeBits));
2245      Value *DestField = NewElts[i];
2246      if (EltVal->getType() == ArrayEltTy) {
2247        // Storing to an integer field of this size, just do it.
2248      } else if (ArrayEltTy->isFloatingPointTy() ||
2249                 ArrayEltTy->isVectorTy()) {
2250        // Bitcast to the right element type (for fp/vector values).
2251        EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
2252      } else {
2253        // Otherwise, bitcast the dest pointer (for aggregates).
2254        DestField = Builder.CreateBitCast(DestField,
2255                                     PointerType::getUnqual(EltVal->getType()));
2256      }
2257      new StoreInst(EltVal, DestField, SI);
2258
2259      if (TD->isBigEndian())
2260        Shift -= ElementOffset;
2261      else
2262        Shift += ElementOffset;
2263    }
2264  }
2265
2266  DeadInsts.push_back(SI);
2267}
2268
2269/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
2270/// an integer.  Load the individual pieces to form the aggregate value.
2271void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
2272                                        SmallVector<AllocaInst*, 32> &NewElts) {
2273  // Extract each element out of the NewElts according to its structure offset
2274  // and form the result value.
2275  const Type *AllocaEltTy = AI->getAllocatedType();
2276  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
2277
2278  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
2279               << '\n');
2280
2281  // There are two forms here: AI could be an array or struct.  Both cases
2282  // have different ways to compute the element offset.
2283  const StructLayout *Layout = 0;
2284  uint64_t ArrayEltBitOffset = 0;
2285  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2286    Layout = TD->getStructLayout(EltSTy);
2287  } else {
2288    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
2289    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
2290  }
2291
2292  Value *ResultVal =
2293    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
2294
2295  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2296    // Load the value from the alloca.  If the NewElt is an aggregate, cast
2297    // the pointer to an integer of the same size before doing the load.
2298    Value *SrcField = NewElts[i];
2299    const Type *FieldTy =
2300      cast<PointerType>(SrcField->getType())->getElementType();
2301    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
2302
2303    // Ignore zero sized fields like {}, they obviously contain no data.
2304    if (FieldSizeBits == 0) continue;
2305
2306    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
2307                                                     FieldSizeBits);
2308    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2309        !FieldTy->isVectorTy())
2310      SrcField = new BitCastInst(SrcField,
2311                                 PointerType::getUnqual(FieldIntTy),
2312                                 "", LI);
2313    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2314
2315    // If SrcField is a fp or vector of the right size but that isn't an
2316    // integer type, bitcast to an integer so we can shift it.
2317    if (SrcField->getType() != FieldIntTy)
2318      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2319
2320    // Zero extend the field to be the same size as the final alloca so that
2321    // we can shift and insert it.
2322    if (SrcField->getType() != ResultVal->getType())
2323      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
2324
2325    // Determine the number of bits to shift SrcField.
2326    uint64_t Shift;
2327    if (Layout) // Struct case.
2328      Shift = Layout->getElementOffsetInBits(i);
2329    else  // Array case.
2330      Shift = i*ArrayEltBitOffset;
2331
2332    if (TD->isBigEndian())
2333      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
2334
2335    if (Shift) {
2336      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
2337      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2338    }
2339
2340    // Don't create an 'or x, 0' on the first iteration.
2341    if (!isa<Constant>(ResultVal) ||
2342        !cast<Constant>(ResultVal)->isNullValue())
2343      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2344    else
2345      ResultVal = SrcField;
2346  }
2347
2348  // Handle tail padding by truncating the result
2349  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2350    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2351
2352  LI->replaceAllUsesWith(ResultVal);
2353  DeadInsts.push_back(LI);
2354}
2355
2356/// HasPadding - Return true if the specified type has any structure or
2357/// alignment padding in between the elements that would be split apart
2358/// by SROA; return false otherwise.
2359static bool HasPadding(const Type *Ty, const TargetData &TD) {
2360  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2361    Ty = ATy->getElementType();
2362    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
2363  }
2364
2365  // SROA currently handles only Arrays and Structs.
2366  const StructType *STy = cast<StructType>(Ty);
2367  const StructLayout *SL = TD.getStructLayout(STy);
2368  unsigned PrevFieldBitOffset = 0;
2369  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2370    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2371
2372    // Check to see if there is any padding between this element and the
2373    // previous one.
2374    if (i) {
2375      unsigned PrevFieldEnd =
2376        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2377      if (PrevFieldEnd < FieldBitOffset)
2378        return true;
2379    }
2380    PrevFieldBitOffset = FieldBitOffset;
2381  }
2382  // Check for tail padding.
2383  if (unsigned EltCount = STy->getNumElements()) {
2384    unsigned PrevFieldEnd = PrevFieldBitOffset +
2385      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2386    if (PrevFieldEnd < SL->getSizeInBits())
2387      return true;
2388  }
2389  return false;
2390}
2391
2392/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2393/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
2394/// or 1 if safe after canonicalization has been performed.
2395bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
2396  // Loop over the use list of the alloca.  We can only transform it if all of
2397  // the users are safe to transform.
2398  AllocaInfo Info(AI);
2399
2400  isSafeForScalarRepl(AI, 0, Info);
2401  if (Info.isUnsafe) {
2402    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
2403    return false;
2404  }
2405
2406  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
2407  // source and destination, we have to be careful.  In particular, the memcpy
2408  // could be moving around elements that live in structure padding of the LLVM
2409  // types, but may actually be used.  In these cases, we refuse to promote the
2410  // struct.
2411  if (Info.isMemCpySrc && Info.isMemCpyDst &&
2412      HasPadding(AI->getAllocatedType(), *TD))
2413    return false;
2414
2415  // If the alloca never has an access to just *part* of it, but is accessed
2416  // via loads and stores, then we should use ConvertToScalarInfo to promote
2417  // the alloca instead of promoting each piece at a time and inserting fission
2418  // and fusion code.
2419  if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2420    // If the struct/array just has one element, use basic SRoA.
2421    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2422      if (ST->getNumElements() > 1) return false;
2423    } else {
2424      if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2425        return false;
2426    }
2427  }
2428
2429  return true;
2430}
2431
2432
2433
2434/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2435/// some part of a constant global variable.  This intentionally only accepts
2436/// constant expressions because we don't can't rewrite arbitrary instructions.
2437static bool PointsToConstantGlobal(Value *V) {
2438  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2439    return GV->isConstant();
2440  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
2441    if (CE->getOpcode() == Instruction::BitCast ||
2442        CE->getOpcode() == Instruction::GetElementPtr)
2443      return PointsToConstantGlobal(CE->getOperand(0));
2444  return false;
2445}
2446
2447/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2448/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
2449/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
2450/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2451/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
2452/// the alloca, and if the source pointer is a pointer to a constant global, we
2453/// can optimize this.
2454static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
2455                                           bool isOffset) {
2456  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
2457    User *U = cast<Instruction>(*UI);
2458
2459    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
2460      // Ignore non-volatile loads, they are always ok.
2461      if (LI->isVolatile()) return false;
2462      continue;
2463    }
2464
2465    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
2466      // If uses of the bitcast are ok, we are ok.
2467      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2468        return false;
2469      continue;
2470    }
2471    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
2472      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
2473      // doesn't, it does.
2474      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2475                                         isOffset || !GEP->hasAllZeroIndices()))
2476        return false;
2477      continue;
2478    }
2479
2480    if (CallSite CS = U) {
2481      // If this is a readonly/readnone call site, then we know it is just a
2482      // load and we can ignore it.
2483      if (CS.onlyReadsMemory())
2484        continue;
2485
2486      // If this is the function being called then we treat it like a load and
2487      // ignore it.
2488      if (CS.isCallee(UI))
2489        continue;
2490
2491      // If this is being passed as a byval argument, the caller is making a
2492      // copy, so it is only a read of the alloca.
2493      unsigned ArgNo = CS.getArgumentNo(UI);
2494      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2495        continue;
2496    }
2497
2498    // If this is isn't our memcpy/memmove, reject it as something we can't
2499    // handle.
2500    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2501    if (MI == 0)
2502      return false;
2503
2504    // If the transfer is using the alloca as a source of the transfer, then
2505    // ignore it since it is a load (unless the transfer is volatile).
2506    if (UI.getOperandNo() == 1) {
2507      if (MI->isVolatile()) return false;
2508      continue;
2509    }
2510
2511    // If we already have seen a copy, reject the second one.
2512    if (TheCopy) return false;
2513
2514    // If the pointer has been offset from the start of the alloca, we can't
2515    // safely handle this.
2516    if (isOffset) return false;
2517
2518    // If the memintrinsic isn't using the alloca as the dest, reject it.
2519    if (UI.getOperandNo() != 0) return false;
2520
2521    // If the source of the memcpy/move is not a constant global, reject it.
2522    if (!PointsToConstantGlobal(MI->getSource()))
2523      return false;
2524
2525    // Otherwise, the transform is safe.  Remember the copy instruction.
2526    TheCopy = MI;
2527  }
2528  return true;
2529}
2530
2531/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2532/// modified by a copy from a constant global.  If we can prove this, we can
2533/// replace any uses of the alloca with uses of the global directly.
2534MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2535  MemTransferInst *TheCopy = 0;
2536  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2537    return TheCopy;
2538  return 0;
2539}
2540