ScalarReplAggregates.cpp revision c0bc547c99bd97088e950b3074d917091abe3f51
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced,  "Number of allocas broken up");
44STATISTIC(NumPromoted,  "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
47
48namespace {
49  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50    static char ID; // Pass identification, replacement for typeid
51    explicit SROA(signed T = -1) : FunctionPass(&ID) {
52      if (T == -1)
53        SRThreshold = 128;
54      else
55        SRThreshold = T;
56    }
57
58    bool runOnFunction(Function &F);
59
60    bool performScalarRepl(Function &F);
61    bool performPromotion(Function &F);
62
63    // getAnalysisUsage - This pass does not require any passes, but we know it
64    // will not alter the CFG, so say so.
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<DominatorTree>();
67      AU.addRequired<DominanceFrontier>();
68      AU.addRequired<TargetData>();
69      AU.setPreservesCFG();
70    }
71
72  private:
73    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
74    /// information about the uses.  All these fields are initialized to false
75    /// and set to true when something is learned.
76    struct AllocaInfo {
77      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
78      bool isUnsafe : 1;
79
80      /// needsCanon - This is set to true if there is some use of the alloca
81      /// that requires canonicalization.
82      bool needsCanon : 1;
83
84      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
85      bool isMemCpySrc : 1;
86
87      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
88      bool isMemCpyDst : 1;
89
90      AllocaInfo()
91        : isUnsafe(false), needsCanon(false),
92          isMemCpySrc(false), isMemCpyDst(false) {}
93    };
94
95    unsigned SRThreshold;
96
97    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
98
99    int isSafeAllocaToScalarRepl(AllocationInst *AI);
100
101    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
102                               AllocaInfo &Info);
103    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
104                         AllocaInfo &Info);
105    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
106                                        unsigned OpNo, AllocaInfo &Info);
107    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
108                                        AllocaInfo &Info);
109
110    void DoScalarReplacement(AllocationInst *AI,
111                             std::vector<AllocationInst*> &WorkList);
112    void CanonicalizeAllocaUsers(AllocationInst *AI);
113    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
114
115    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
116                                    SmallVector<AllocaInst*, 32> &NewElts);
117
118    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
119    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
120    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
121    Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
122                                     unsigned Offset);
123    Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
124                                      unsigned Offset);
125    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
126  };
127}
128
129char SROA::ID = 0;
130static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
131
132// Public interface to the ScalarReplAggregates pass
133FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
134  return new SROA(Threshold);
135}
136
137
138bool SROA::runOnFunction(Function &F) {
139  bool Changed = performPromotion(F);
140  while (1) {
141    bool LocalChange = performScalarRepl(F);
142    if (!LocalChange) break;   // No need to repromote if no scalarrepl
143    Changed = true;
144    LocalChange = performPromotion(F);
145    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
146  }
147
148  return Changed;
149}
150
151
152bool SROA::performPromotion(Function &F) {
153  std::vector<AllocaInst*> Allocas;
154  DominatorTree         &DT = getAnalysis<DominatorTree>();
155  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
156
157  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
158
159  bool Changed = false;
160
161  while (1) {
162    Allocas.clear();
163
164    // Find allocas that are safe to promote, by looking at all instructions in
165    // the entry node
166    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
167      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
168        if (isAllocaPromotable(AI))
169          Allocas.push_back(AI);
170
171    if (Allocas.empty()) break;
172
173    PromoteMemToReg(Allocas, DT, DF);
174    NumPromoted += Allocas.size();
175    Changed = true;
176  }
177
178  return Changed;
179}
180
181/// getNumSAElements - Return the number of elements in the specific struct or
182/// array.
183static uint64_t getNumSAElements(const Type *T) {
184  if (const StructType *ST = dyn_cast<StructType>(T))
185    return ST->getNumElements();
186  return cast<ArrayType>(T)->getNumElements();
187}
188
189// performScalarRepl - This algorithm is a simple worklist driven algorithm,
190// which runs on all of the malloc/alloca instructions in the function, removing
191// them if they are only used by getelementptr instructions.
192//
193bool SROA::performScalarRepl(Function &F) {
194  std::vector<AllocationInst*> WorkList;
195
196  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
197  BasicBlock &BB = F.getEntryBlock();
198  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
199    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
200      WorkList.push_back(A);
201
202  const TargetData &TD = getAnalysis<TargetData>();
203
204  // Process the worklist
205  bool Changed = false;
206  while (!WorkList.empty()) {
207    AllocationInst *AI = WorkList.back();
208    WorkList.pop_back();
209
210    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
211    // with unused elements.
212    if (AI->use_empty()) {
213      AI->eraseFromParent();
214      continue;
215    }
216
217    // If we can turn this aggregate value (potentially with casts) into a
218    // simple scalar value that can be mem2reg'd into a register value.
219    bool IsNotTrivial = false;
220    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
221      if (IsNotTrivial && ActualType != Type::VoidTy) {
222        ConvertToScalar(AI, ActualType);
223        Changed = true;
224        continue;
225      }
226
227    // Check to see if we can perform the core SROA transformation.  We cannot
228    // transform the allocation instruction if it is an array allocation
229    // (allocations OF arrays are ok though), and an allocation of a scalar
230    // value cannot be decomposed at all.
231    if (!AI->isArrayAllocation() &&
232        (isa<StructType>(AI->getAllocatedType()) ||
233         isa<ArrayType>(AI->getAllocatedType())) &&
234        AI->getAllocatedType()->isSized() &&
235        // Do not promote any struct whose size is larger than "128" bytes.
236        TD.getABITypeSize(AI->getAllocatedType()) < SRThreshold &&
237        // Do not promote any struct into more than "32" separate vars.
238        getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
239      // Check that all of the users of the allocation are capable of being
240      // transformed.
241      switch (isSafeAllocaToScalarRepl(AI)) {
242      default: assert(0 && "Unexpected value!");
243      case 0:  // Not safe to scalar replace.
244        break;
245      case 1:  // Safe, but requires cleanup/canonicalizations first
246        CanonicalizeAllocaUsers(AI);
247        // FALL THROUGH.
248      case 3:  // Safe to scalar replace.
249        DoScalarReplacement(AI, WorkList);
250        Changed = true;
251        continue;
252      }
253    }
254
255    // Check to see if this allocation is only modified by a memcpy/memmove from
256    // a constant global.  If this is the case, we can change all users to use
257    // the constant global instead.  This is commonly produced by the CFE by
258    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
259    // is only subsequently read.
260    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
261      DOUT << "Found alloca equal to global: " << *AI;
262      DOUT << "  memcpy = " << *TheCopy;
263      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
264      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
265      TheCopy->eraseFromParent();  // Don't mutate the global.
266      AI->eraseFromParent();
267      ++NumGlobals;
268      Changed = true;
269      continue;
270    }
271
272    // Otherwise, couldn't process this.
273  }
274
275  return Changed;
276}
277
278/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
279/// predicate, do SROA now.
280void SROA::DoScalarReplacement(AllocationInst *AI,
281                               std::vector<AllocationInst*> &WorkList) {
282  DOUT << "Found inst to SROA: " << *AI;
283  SmallVector<AllocaInst*, 32> ElementAllocas;
284  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
285    ElementAllocas.reserve(ST->getNumContainedTypes());
286    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
287      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
288                                      AI->getAlignment(),
289                                      AI->getName() + "." + utostr(i), AI);
290      ElementAllocas.push_back(NA);
291      WorkList.push_back(NA);  // Add to worklist for recursive processing
292    }
293  } else {
294    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
295    ElementAllocas.reserve(AT->getNumElements());
296    const Type *ElTy = AT->getElementType();
297    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
298      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
299                                      AI->getName() + "." + utostr(i), AI);
300      ElementAllocas.push_back(NA);
301      WorkList.push_back(NA);  // Add to worklist for recursive processing
302    }
303  }
304
305  // Now that we have created the alloca instructions that we want to use,
306  // expand the getelementptr instructions to use them.
307  //
308  while (!AI->use_empty()) {
309    Instruction *User = cast<Instruction>(AI->use_back());
310    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
311      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
312      BCInst->eraseFromParent();
313      continue;
314    }
315
316    // Replace:
317    //   %res = load { i32, i32 }* %alloc
318    // with:
319    //   %load.0 = load i32* %alloc.0
320    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
321    //   %load.1 = load i32* %alloc.1
322    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
323    // (Also works for arrays instead of structs)
324    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
325      Value *Insert = UndefValue::get(LI->getType());
326      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
327        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
328        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
329      }
330      LI->replaceAllUsesWith(Insert);
331      LI->eraseFromParent();
332      continue;
333    }
334
335    // Replace:
336    //   store { i32, i32 } %val, { i32, i32 }* %alloc
337    // with:
338    //   %val.0 = extractvalue { i32, i32 } %val, 0
339    //   store i32 %val.0, i32* %alloc.0
340    //   %val.1 = extractvalue { i32, i32 } %val, 1
341    //   store i32 %val.1, i32* %alloc.1
342    // (Also works for arrays instead of structs)
343    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
344      Value *Val = SI->getOperand(0);
345      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
346        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
347        new StoreInst(Extract, ElementAllocas[i], SI);
348      }
349      SI->eraseFromParent();
350      continue;
351    }
352
353    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
354    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
355    unsigned Idx =
356       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
357
358    assert(Idx < ElementAllocas.size() && "Index out of range?");
359    AllocaInst *AllocaToUse = ElementAllocas[Idx];
360
361    Value *RepValue;
362    if (GEPI->getNumOperands() == 3) {
363      // Do not insert a new getelementptr instruction with zero indices, only
364      // to have it optimized out later.
365      RepValue = AllocaToUse;
366    } else {
367      // We are indexing deeply into the structure, so we still need a
368      // getelement ptr instruction to finish the indexing.  This may be
369      // expanded itself once the worklist is rerun.
370      //
371      SmallVector<Value*, 8> NewArgs;
372      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
373      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
374      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
375                                           NewArgs.end(), "", GEPI);
376      RepValue->takeName(GEPI);
377    }
378
379    // If this GEP is to the start of the aggregate, check for memcpys.
380    if (Idx == 0) {
381      bool IsStartOfAggregateGEP = true;
382      for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i) {
383        if (!isa<ConstantInt>(GEPI->getOperand(i))) {
384          IsStartOfAggregateGEP = false;
385          break;
386        }
387        if (!cast<ConstantInt>(GEPI->getOperand(i))->isZero()) {
388          IsStartOfAggregateGEP = false;
389          break;
390        }
391      }
392
393      if (IsStartOfAggregateGEP)
394        RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
395    }
396
397
398    // Move all of the users over to the new GEP.
399    GEPI->replaceAllUsesWith(RepValue);
400    // Delete the old GEP
401    GEPI->eraseFromParent();
402  }
403
404  // Finally, delete the Alloca instruction
405  AI->eraseFromParent();
406  NumReplaced++;
407}
408
409
410/// isSafeElementUse - Check to see if this use is an allowed use for a
411/// getelementptr instruction of an array aggregate allocation.  isFirstElt
412/// indicates whether Ptr is known to the start of the aggregate.
413///
414void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
415                            AllocaInfo &Info) {
416  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
417       I != E; ++I) {
418    Instruction *User = cast<Instruction>(*I);
419    switch (User->getOpcode()) {
420    case Instruction::Load:  break;
421    case Instruction::Store:
422      // Store is ok if storing INTO the pointer, not storing the pointer
423      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
424      break;
425    case Instruction::GetElementPtr: {
426      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
427      bool AreAllZeroIndices = isFirstElt;
428      if (GEP->getNumOperands() > 1) {
429        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
430            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
431          // Using pointer arithmetic to navigate the array.
432          return MarkUnsafe(Info);
433
434        if (AreAllZeroIndices) {
435          for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) {
436            if (!isa<ConstantInt>(GEP->getOperand(i)) ||
437                !cast<ConstantInt>(GEP->getOperand(i))->isZero()) {
438              AreAllZeroIndices = false;
439              break;
440            }
441          }
442        }
443      }
444      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
445      if (Info.isUnsafe) return;
446      break;
447    }
448    case Instruction::BitCast:
449      if (isFirstElt) {
450        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
451        if (Info.isUnsafe) return;
452        break;
453      }
454      DOUT << "  Transformation preventing inst: " << *User;
455      return MarkUnsafe(Info);
456    case Instruction::Call:
457      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
458        if (isFirstElt) {
459          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
460          if (Info.isUnsafe) return;
461          break;
462        }
463      }
464      DOUT << "  Transformation preventing inst: " << *User;
465      return MarkUnsafe(Info);
466    default:
467      DOUT << "  Transformation preventing inst: " << *User;
468      return MarkUnsafe(Info);
469    }
470  }
471  return;  // All users look ok :)
472}
473
474/// AllUsersAreLoads - Return true if all users of this value are loads.
475static bool AllUsersAreLoads(Value *Ptr) {
476  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
477       I != E; ++I)
478    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
479      return false;
480  return true;
481}
482
483/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
484/// aggregate allocation.
485///
486void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
487                                 AllocaInfo &Info) {
488  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
489    return isSafeUseOfBitCastedAllocation(C, AI, Info);
490
491  if (isa<LoadInst>(User))
492    return; // Loads (returning a first class aggregrate) are always rewritable
493
494  if (isa<StoreInst>(User) && User->getOperand(0) != AI)
495    return; // Store is ok if storing INTO the pointer, not storing the pointer
496
497  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
498  if (GEPI == 0)
499    return MarkUnsafe(Info);
500
501  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
502
503  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
504  if (I == E ||
505      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
506    return MarkUnsafe(Info);
507  }
508
509  ++I;
510  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
511
512  bool IsAllZeroIndices = true;
513
514  // If the first index is a non-constant index into an array, see if we can
515  // handle it as a special case.
516  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
517    if (!isa<ConstantInt>(I.getOperand())) {
518      IsAllZeroIndices = 0;
519      uint64_t NumElements = AT->getNumElements();
520
521      // If this is an array index and the index is not constant, we cannot
522      // promote... that is unless the array has exactly one or two elements in
523      // it, in which case we CAN promote it, but we have to canonicalize this
524      // out if this is the only problem.
525      if ((NumElements == 1 || NumElements == 2) &&
526          AllUsersAreLoads(GEPI)) {
527        Info.needsCanon = true;
528        return;  // Canonicalization required!
529      }
530      return MarkUnsafe(Info);
531    }
532  }
533
534  // Walk through the GEP type indices, checking the types that this indexes
535  // into.
536  for (; I != E; ++I) {
537    // Ignore struct elements, no extra checking needed for these.
538    if (isa<StructType>(*I))
539      continue;
540
541    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
542    if (!IdxVal) return MarkUnsafe(Info);
543
544    // Are all indices still zero?
545    IsAllZeroIndices &= IdxVal->isZero();
546
547    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
548      // This GEP indexes an array.  Verify that this is an in-range constant
549      // integer. Specifically, consider A[0][i]. We cannot know that the user
550      // isn't doing invalid things like allowing i to index an out-of-range
551      // subscript that accesses A[1].  Because of this, we have to reject SROA
552      // of any accesses into structs where any of the components are variables.
553      if (IdxVal->getZExtValue() >= AT->getNumElements())
554        return MarkUnsafe(Info);
555    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
556      if (IdxVal->getZExtValue() >= VT->getNumElements())
557        return MarkUnsafe(Info);
558    }
559  }
560
561  // If there are any non-simple uses of this getelementptr, make sure to reject
562  // them.
563  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
564}
565
566/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
567/// intrinsic can be promoted by SROA.  At this point, we know that the operand
568/// of the memintrinsic is a pointer to the beginning of the allocation.
569void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
570                                          unsigned OpNo, AllocaInfo &Info) {
571  // If not constant length, give up.
572  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
573  if (!Length) return MarkUnsafe(Info);
574
575  // If not the whole aggregate, give up.
576  const TargetData &TD = getAnalysis<TargetData>();
577  if (Length->getZExtValue() !=
578      TD.getABITypeSize(AI->getType()->getElementType()))
579    return MarkUnsafe(Info);
580
581  // We only know about memcpy/memset/memmove.
582  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
583    return MarkUnsafe(Info);
584
585  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
586  // into or out of the aggregate.
587  if (OpNo == 1)
588    Info.isMemCpyDst = true;
589  else {
590    assert(OpNo == 2);
591    Info.isMemCpySrc = true;
592  }
593}
594
595/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
596/// are
597void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
598                                          AllocaInfo &Info) {
599  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
600       UI != E; ++UI) {
601    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
602      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
603    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
604      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
605    } else {
606      return MarkUnsafe(Info);
607    }
608    if (Info.isUnsafe) return;
609  }
610}
611
612/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
613/// to its first element.  Transform users of the cast to use the new values
614/// instead.
615void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
616                                      SmallVector<AllocaInst*, 32> &NewElts) {
617  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
618  const TargetData &TD = getAnalysis<TargetData>();
619
620  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
621  while (UI != UE) {
622    if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
623      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
624      ++UI;
625      BCU->eraseFromParent();
626      continue;
627    }
628
629    // Otherwise, must be memcpy/memmove/memset of the entire aggregate.  Split
630    // into one per element.
631    MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
632
633    // If it's not a mem intrinsic, it must be some other user of a gep of the
634    // first pointer.  Just leave these alone.
635    if (!MI) {
636      ++UI;
637      continue;
638    }
639
640    // If this is a memcpy/memmove, construct the other pointer as the
641    // appropriate type.
642    Value *OtherPtr = 0;
643    if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
644      if (BCInst == MCI->getRawDest())
645        OtherPtr = MCI->getRawSource();
646      else {
647        assert(BCInst == MCI->getRawSource());
648        OtherPtr = MCI->getRawDest();
649      }
650    } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
651      if (BCInst == MMI->getRawDest())
652        OtherPtr = MMI->getRawSource();
653      else {
654        assert(BCInst == MMI->getRawSource());
655        OtherPtr = MMI->getRawDest();
656      }
657    }
658
659    // If there is an other pointer, we want to convert it to the same pointer
660    // type as AI has, so we can GEP through it.
661    if (OtherPtr) {
662      // It is likely that OtherPtr is a bitcast, if so, remove it.
663      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
664        OtherPtr = BC->getOperand(0);
665      // All zero GEPs are effectively casts
666      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
667        if (GEP->hasAllZeroIndices())
668          OtherPtr = GEP->getOperand(0);
669
670      if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
671        if (BCE->getOpcode() == Instruction::BitCast)
672          OtherPtr = BCE->getOperand(0);
673
674      // If the pointer is not the right type, insert a bitcast to the right
675      // type.
676      if (OtherPtr->getType() != AI->getType())
677        OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
678                                   MI);
679    }
680
681    // Process each element of the aggregate.
682    Value *TheFn = MI->getOperand(0);
683    const Type *BytePtrTy = MI->getRawDest()->getType();
684    bool SROADest = MI->getRawDest() == BCInst;
685
686    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
687      // If this is a memcpy/memmove, emit a GEP of the other element address.
688      Value *OtherElt = 0;
689      if (OtherPtr) {
690        Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
691        OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
692                                           OtherPtr->getNameStr()+"."+utostr(i),
693                                             MI);
694      }
695
696      Value *EltPtr = NewElts[i];
697      const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
698
699      // If we got down to a scalar, insert a load or store as appropriate.
700      if (EltTy->isSingleValueType()) {
701        if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
702          Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
703                                    MI);
704          new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
705          continue;
706        } else {
707          assert(isa<MemSetInst>(MI));
708
709          // If the stored element is zero (common case), just store a null
710          // constant.
711          Constant *StoreVal;
712          if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
713            if (CI->isZero()) {
714              StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
715            } else {
716              // If EltTy is a vector type, get the element type.
717              const Type *ValTy = EltTy;
718              if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
719                ValTy = VTy->getElementType();
720
721              // Construct an integer with the right value.
722              unsigned EltSize = TD.getTypeSizeInBits(ValTy);
723              APInt OneVal(EltSize, CI->getZExtValue());
724              APInt TotalVal(OneVal);
725              // Set each byte.
726              for (unsigned i = 0; 8*i < EltSize; ++i) {
727                TotalVal = TotalVal.shl(8);
728                TotalVal |= OneVal;
729              }
730
731              // Convert the integer value to the appropriate type.
732              StoreVal = ConstantInt::get(TotalVal);
733              if (isa<PointerType>(ValTy))
734                StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
735              else if (ValTy->isFloatingPoint())
736                StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
737              assert(StoreVal->getType() == ValTy && "Type mismatch!");
738
739              // If the requested value was a vector constant, create it.
740              if (EltTy != ValTy) {
741                unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
742                SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
743                StoreVal = ConstantVector::get(&Elts[0], NumElts);
744              }
745            }
746            new StoreInst(StoreVal, EltPtr, MI);
747            continue;
748          }
749          // Otherwise, if we're storing a byte variable, use a memset call for
750          // this element.
751        }
752      }
753
754      // Cast the element pointer to BytePtrTy.
755      if (EltPtr->getType() != BytePtrTy)
756        EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
757
758      // Cast the other pointer (if we have one) to BytePtrTy.
759      if (OtherElt && OtherElt->getType() != BytePtrTy)
760        OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
761                                   MI);
762
763      unsigned EltSize = TD.getABITypeSize(EltTy);
764
765      // Finally, insert the meminst for this element.
766      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
767        Value *Ops[] = {
768          SROADest ? EltPtr : OtherElt,  // Dest ptr
769          SROADest ? OtherElt : EltPtr,  // Src ptr
770          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
771          Zero  // Align
772        };
773        CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
774      } else {
775        assert(isa<MemSetInst>(MI));
776        Value *Ops[] = {
777          EltPtr, MI->getOperand(2),  // Dest, Value,
778          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
779          Zero  // Align
780        };
781        CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
782      }
783    }
784
785    // Finally, MI is now dead, as we've modified its actions to occur on all of
786    // the elements of the aggregate.
787    ++UI;
788    MI->eraseFromParent();
789  }
790}
791
792/// HasPadding - Return true if the specified type has any structure or
793/// alignment padding, false otherwise.
794static bool HasPadding(const Type *Ty, const TargetData &TD) {
795  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
796    const StructLayout *SL = TD.getStructLayout(STy);
797    unsigned PrevFieldBitOffset = 0;
798    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
799      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
800
801      // Padding in sub-elements?
802      if (HasPadding(STy->getElementType(i), TD))
803        return true;
804
805      // Check to see if there is any padding between this element and the
806      // previous one.
807      if (i) {
808        unsigned PrevFieldEnd =
809        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
810        if (PrevFieldEnd < FieldBitOffset)
811          return true;
812      }
813
814      PrevFieldBitOffset = FieldBitOffset;
815    }
816
817    //  Check for tail padding.
818    if (unsigned EltCount = STy->getNumElements()) {
819      unsigned PrevFieldEnd = PrevFieldBitOffset +
820                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
821      if (PrevFieldEnd < SL->getSizeInBits())
822        return true;
823    }
824
825  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
826    return HasPadding(ATy->getElementType(), TD);
827  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
828    return HasPadding(VTy->getElementType(), TD);
829  }
830  return TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
831}
832
833/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
834/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
835/// or 1 if safe after canonicalization has been performed.
836///
837int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
838  // Loop over the use list of the alloca.  We can only transform it if all of
839  // the users are safe to transform.
840  AllocaInfo Info;
841
842  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
843       I != E; ++I) {
844    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
845    if (Info.isUnsafe) {
846      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
847      return 0;
848    }
849  }
850
851  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
852  // source and destination, we have to be careful.  In particular, the memcpy
853  // could be moving around elements that live in structure padding of the LLVM
854  // types, but may actually be used.  In these cases, we refuse to promote the
855  // struct.
856  if (Info.isMemCpySrc && Info.isMemCpyDst &&
857      HasPadding(AI->getType()->getElementType(), getAnalysis<TargetData>()))
858    return 0;
859
860  // If we require cleanup, return 1, otherwise return 3.
861  return Info.needsCanon ? 1 : 3;
862}
863
864/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
865/// allocation, but only if cleaned up, perform the cleanups required.
866void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
867  // At this point, we know that the end result will be SROA'd and promoted, so
868  // we can insert ugly code if required so long as sroa+mem2reg will clean it
869  // up.
870  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
871       UI != E; ) {
872    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
873    if (!GEPI) continue;
874    gep_type_iterator I = gep_type_begin(GEPI);
875    ++I;
876
877    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
878      uint64_t NumElements = AT->getNumElements();
879
880      if (!isa<ConstantInt>(I.getOperand())) {
881        if (NumElements == 1) {
882          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
883        } else {
884          assert(NumElements == 2 && "Unhandled case!");
885          // All users of the GEP must be loads.  At each use of the GEP, insert
886          // two loads of the appropriate indexed GEP and select between them.
887          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
888                              Constant::getNullValue(I.getOperand()->getType()),
889             "isone", GEPI);
890          // Insert the new GEP instructions, which are properly indexed.
891          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
892          Indices[1] = Constant::getNullValue(Type::Int32Ty);
893          Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
894                                                     Indices.begin(),
895                                                     Indices.end(),
896                                                     GEPI->getName()+".0", GEPI);
897          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
898          Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
899                                                    Indices.begin(),
900                                                    Indices.end(),
901                                                    GEPI->getName()+".1", GEPI);
902          // Replace all loads of the variable index GEP with loads from both
903          // indexes and a select.
904          while (!GEPI->use_empty()) {
905            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
906            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
907            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
908            Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
909            LI->replaceAllUsesWith(R);
910            LI->eraseFromParent();
911          }
912          GEPI->eraseFromParent();
913        }
914      }
915    }
916  }
917}
918
919/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
920/// types are incompatible, return true, otherwise update Accum and return
921/// false.
922///
923/// There are three cases we handle here:
924///   1) An effectively-integer union, where the pieces are stored into as
925///      smaller integers (common with byte swap and other idioms).
926///   2) A union of vector types of the same size and potentially its elements.
927///      Here we turn element accesses into insert/extract element operations.
928///   3) A union of scalar types, such as int/float or int/pointer.  Here we
929///      merge together into integers, allowing the xform to work with #1 as
930///      well.
931static bool MergeInType(const Type *In, const Type *&Accum,
932                        const TargetData &TD) {
933  // If this is our first type, just use it.
934  const VectorType *PTy;
935  if (Accum == Type::VoidTy || In == Accum) {
936    Accum = In;
937  } else if (In == Type::VoidTy) {
938    // Noop.
939  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
940    // Otherwise pick whichever type is larger.
941    if (cast<IntegerType>(In)->getBitWidth() >
942        cast<IntegerType>(Accum)->getBitWidth())
943      Accum = In;
944  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
945    // Pointer unions just stay as one of the pointers.
946  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
947    if ((PTy = dyn_cast<VectorType>(Accum)) &&
948        PTy->getElementType() == In) {
949      // Accum is a vector, and we are accessing an element: ok.
950    } else if ((PTy = dyn_cast<VectorType>(In)) &&
951               PTy->getElementType() == Accum) {
952      // In is a vector, and accum is an element: ok, remember In.
953      Accum = In;
954    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
955               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
956      // Two vectors of the same size: keep Accum.
957    } else {
958      // Cannot insert an short into a <4 x int> or handle
959      // <2 x int> -> <4 x int>
960      return true;
961    }
962  } else {
963    // Pointer/FP/Integer unions merge together as integers.
964    switch (Accum->getTypeID()) {
965    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
966    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
967    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
968    case Type::X86_FP80TyID:  return true;
969    case Type::FP128TyID: return true;
970    case Type::PPC_FP128TyID: return true;
971    default:
972      assert(Accum->isInteger() && "Unknown FP type!");
973      break;
974    }
975
976    switch (In->getTypeID()) {
977    case Type::PointerTyID: In = TD.getIntPtrType(); break;
978    case Type::FloatTyID:   In = Type::Int32Ty; break;
979    case Type::DoubleTyID:  In = Type::Int64Ty; break;
980    case Type::X86_FP80TyID:  return true;
981    case Type::FP128TyID: return true;
982    case Type::PPC_FP128TyID: return true;
983    default:
984      assert(In->isInteger() && "Unknown FP type!");
985      break;
986    }
987    return MergeInType(In, Accum, TD);
988  }
989  return false;
990}
991
992/// getUIntAtLeastAsBigAs - Return an unsigned integer type that is at least
993/// as big as the specified type.  If there is no suitable type, this returns
994/// null.
995const Type *getUIntAtLeastAsBigAs(unsigned NumBits) {
996  if (NumBits > 64) return 0;
997  if (NumBits > 32) return Type::Int64Ty;
998  if (NumBits > 16) return Type::Int32Ty;
999  if (NumBits > 8) return Type::Int16Ty;
1000  return Type::Int8Ty;
1001}
1002
1003/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
1004/// single scalar integer type, return that type.  Further, if the use is not
1005/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
1006/// there are no uses of this pointer, return Type::VoidTy to differentiate from
1007/// failure.
1008///
1009const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
1010  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
1011  const TargetData &TD = getAnalysis<TargetData>();
1012  const PointerType *PTy = cast<PointerType>(V->getType());
1013
1014  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1015    Instruction *User = cast<Instruction>(*UI);
1016
1017    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1018      // FIXME: Loads of a first class aggregrate value could be converted to a
1019      // series of loads and insertvalues
1020      if (!LI->getType()->isSingleValueType())
1021        return 0;
1022
1023      if (MergeInType(LI->getType(), UsedType, TD))
1024        return 0;
1025
1026    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1027      // Storing the pointer, not into the value?
1028      if (SI->getOperand(0) == V) return 0;
1029
1030      // FIXME: Stores of a first class aggregrate value could be converted to a
1031      // series of extractvalues and stores
1032      if (!SI->getOperand(0)->getType()->isSingleValueType())
1033        return 0;
1034
1035      // NOTE: We could handle storing of FP imms into integers here!
1036
1037      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
1038        return 0;
1039    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1040      IsNotTrivial = true;
1041      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
1042      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
1043    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1044      // Check to see if this is stepping over an element: GEP Ptr, int C
1045      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
1046        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1047        unsigned ElSize = TD.getABITypeSize(PTy->getElementType());
1048        unsigned BitOffset = Idx*ElSize*8;
1049        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
1050
1051        IsNotTrivial = true;
1052        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
1053        if (SubElt == 0) return 0;
1054        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
1055          const Type *NewTy =
1056            getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(SubElt)+BitOffset);
1057          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
1058          continue;
1059        }
1060      } else if (GEP->getNumOperands() == 3 &&
1061                 isa<ConstantInt>(GEP->getOperand(1)) &&
1062                 isa<ConstantInt>(GEP->getOperand(2)) &&
1063                 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
1064        // We are stepping into an element, e.g. a structure or an array:
1065        // GEP Ptr, int 0, uint C
1066        const Type *AggTy = PTy->getElementType();
1067        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1068
1069        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
1070          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
1071        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
1072          // Getting an element of the vector.
1073          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
1074
1075          // Merge in the vector type.
1076          if (MergeInType(VectorTy, UsedType, TD)) return 0;
1077
1078          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1079          if (SubTy == 0) return 0;
1080
1081          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1082            return 0;
1083
1084          // We'll need to change this to an insert/extract element operation.
1085          IsNotTrivial = true;
1086          continue;    // Everything looks ok
1087
1088        } else if (isa<StructType>(AggTy)) {
1089          // Structs are always ok.
1090        } else {
1091          return 0;
1092        }
1093        const Type *NTy = getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(AggTy));
1094        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
1095        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1096        if (SubTy == 0) return 0;
1097        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1098          return 0;
1099        continue;    // Everything looks ok
1100      }
1101      return 0;
1102    } else {
1103      // Cannot handle this!
1104      return 0;
1105    }
1106  }
1107
1108  return UsedType;
1109}
1110
1111/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1112/// predicate and is non-trivial.  Convert it to something that can be trivially
1113/// promoted into a register by mem2reg.
1114void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1115  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
1116       << *ActualTy << "\n";
1117  ++NumConverted;
1118
1119  BasicBlock *EntryBlock = AI->getParent();
1120  assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
1121         "Not in the entry block!");
1122  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
1123
1124  // Create and insert the alloca.
1125  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1126                                     EntryBlock->begin());
1127  ConvertUsesToScalar(AI, NewAI, 0);
1128  delete AI;
1129}
1130
1131
1132/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1133/// directly.  This happens when we are converting an "integer union" to a
1134/// single integer scalar, or when we are converting a "vector union" to a
1135/// vector with insert/extractelement instructions.
1136///
1137/// Offset is an offset from the original alloca, in bits that need to be
1138/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1139void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
1140  while (!Ptr->use_empty()) {
1141    Instruction *User = cast<Instruction>(Ptr->use_back());
1142
1143    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1144      Value *NV = ConvertUsesOfLoadToScalar(LI, NewAI, Offset);
1145      LI->replaceAllUsesWith(NV);
1146      LI->eraseFromParent();
1147    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1148      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1149
1150      Value *SV = ConvertUsesOfStoreToScalar(SI, NewAI, Offset);
1151      new StoreInst(SV, NewAI, SI);
1152      SI->eraseFromParent();
1153
1154    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1155      ConvertUsesToScalar(CI, NewAI, Offset);
1156      CI->eraseFromParent();
1157    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1158      const PointerType *AggPtrTy =
1159        cast<PointerType>(GEP->getOperand(0)->getType());
1160      const TargetData &TD = getAnalysis<TargetData>();
1161      unsigned AggSizeInBits =
1162        TD.getABITypeSizeInBits(AggPtrTy->getElementType());
1163
1164      // Check to see if this is stepping over an element: GEP Ptr, int C
1165      unsigned NewOffset = Offset;
1166      if (GEP->getNumOperands() == 2) {
1167        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1168        unsigned BitOffset = Idx*AggSizeInBits;
1169
1170        NewOffset += BitOffset;
1171      } else if (GEP->getNumOperands() == 3) {
1172        // We know that operand #2 is zero.
1173        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1174        const Type *AggTy = AggPtrTy->getElementType();
1175        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1176          unsigned ElSizeBits =
1177            TD.getABITypeSizeInBits(SeqTy->getElementType());
1178
1179          NewOffset += ElSizeBits*Idx;
1180        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
1181          unsigned EltBitOffset =
1182            TD.getStructLayout(STy)->getElementOffsetInBits(Idx);
1183
1184          NewOffset += EltBitOffset;
1185        } else {
1186          assert(0 && "Unsupported operation!");
1187          abort();
1188        }
1189      } else {
1190        assert(0 && "Unsupported operation!");
1191        abort();
1192      }
1193      ConvertUsesToScalar(GEP, NewAI, NewOffset);
1194      GEP->eraseFromParent();
1195    } else {
1196      assert(0 && "Unsupported operation!");
1197      abort();
1198    }
1199  }
1200}
1201
1202/// ConvertUsesOfLoadToScalar - Convert all of the users the specified load to
1203/// use the new alloca directly, returning the value that should replace the
1204/// load.  This happens when we are converting an "integer union" to a
1205/// single integer scalar, or when we are converting a "vector union" to a
1206/// vector with insert/extractelement instructions.
1207///
1208/// Offset is an offset from the original alloca, in bits that need to be
1209/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1210Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
1211                                       unsigned Offset) {
1212  // The load is a bit extract from NewAI shifted right by Offset bits.
1213  Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1214
1215  if (NV->getType() == LI->getType() && Offset == 0) {
1216    // We win, no conversion needed.
1217    return NV;
1218  }
1219
1220  // If the result type of the 'union' is a pointer, then this must be ptr->ptr
1221  // cast.  Anything else would result in NV being an integer.
1222  if (isa<PointerType>(NV->getType())) {
1223    assert(isa<PointerType>(LI->getType()));
1224    return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1225  }
1226
1227  if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
1228    // If the result alloca is a vector type, this is either an element
1229    // access or a bitcast to another vector type.
1230    if (isa<VectorType>(LI->getType()))
1231      return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1232
1233    // Otherwise it must be an element access.
1234    const TargetData &TD = getAnalysis<TargetData>();
1235    unsigned Elt = 0;
1236    if (Offset) {
1237      unsigned EltSize = TD.getABITypeSizeInBits(VTy->getElementType());
1238      Elt = Offset/EltSize;
1239      Offset -= EltSize*Elt;
1240    }
1241    NV = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
1242                                "tmp", LI);
1243
1244    // If we're done, return this element.
1245    if (NV->getType() == LI->getType() && Offset == 0)
1246      return NV;
1247  }
1248
1249  const IntegerType *NTy = cast<IntegerType>(NV->getType());
1250
1251  // If this is a big-endian system and the load is narrower than the
1252  // full alloca type, we need to do a shift to get the right bits.
1253  int ShAmt = 0;
1254  const TargetData &TD = getAnalysis<TargetData>();
1255  if (TD.isBigEndian()) {
1256    // On big-endian machines, the lowest bit is stored at the bit offset
1257    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1258    // integers with a bitwidth that is not a multiple of 8.
1259    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
1260    TD.getTypeStoreSizeInBits(LI->getType()) - Offset;
1261  } else {
1262    ShAmt = Offset;
1263  }
1264
1265  // Note: we support negative bitwidths (with shl) which are not defined.
1266  // We do this to support (f.e.) loads off the end of a structure where
1267  // only some bits are used.
1268  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1269    NV = BinaryOperator::CreateLShr(NV,
1270                                    ConstantInt::get(NV->getType(),ShAmt),
1271                                    LI->getName(), LI);
1272  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1273    NV = BinaryOperator::CreateShl(NV,
1274                                   ConstantInt::get(NV->getType(),-ShAmt),
1275                                   LI->getName(), LI);
1276
1277  // Finally, unconditionally truncate the integer to the right width.
1278  unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
1279  if (LIBitWidth < NTy->getBitWidth())
1280    NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1281                       LI->getName(), LI);
1282
1283  // If the result is an integer, this is a trunc or bitcast.
1284  if (isa<IntegerType>(LI->getType())) {
1285    // Should be done.
1286  } else if (LI->getType()->isFloatingPoint()) {
1287    // Just do a bitcast, we know the sizes match up.
1288    NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1289  } else {
1290    // Otherwise must be a pointer.
1291    NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1292  }
1293  assert(NV->getType() == LI->getType() && "Didn't convert right?");
1294  return NV;
1295}
1296
1297
1298/// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
1299/// pair of the new alloca directly, returning the value that should be stored
1300/// to the alloca.  This happens when we are converting an "integer union" to a
1301/// single integer scalar, or when we are converting a "vector union" to a
1302/// vector with insert/extractelement instructions.
1303///
1304/// Offset is an offset from the original alloca, in bits that need to be
1305/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1306Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
1307                                        unsigned Offset) {
1308
1309  // Convert the stored type to the actual type, shift it left to insert
1310  // then 'or' into place.
1311  Value *SV = SI->getOperand(0);
1312  const Type *AllocaType = NewAI->getType()->getElementType();
1313  if (SV->getType() == AllocaType && Offset == 0) {
1314    // All is well.
1315  } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1316    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1317
1318    // If the result alloca is a vector type, this is either an element
1319    // access or a bitcast to another vector type.
1320    if (isa<VectorType>(SV->getType())) {
1321      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1322    } else {
1323      // Must be an element insertion.
1324      const TargetData &TD = getAnalysis<TargetData>();
1325      unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
1326      SV = InsertElementInst::Create(Old, SV,
1327                                     ConstantInt::get(Type::Int32Ty, Elt),
1328                                     "tmp", SI);
1329    }
1330  } else if (isa<PointerType>(AllocaType)) {
1331    // If the alloca type is a pointer, then all the elements must be
1332    // pointers.
1333    if (SV->getType() != AllocaType)
1334      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1335  } else {
1336    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1337
1338    // If SV is a float, convert it to the appropriate integer type.
1339    // If it is a pointer, do the same, and also handle ptr->ptr casts
1340    // here.
1341    const TargetData &TD = getAnalysis<TargetData>();
1342    unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1343    unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
1344    unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
1345    unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
1346    if (SV->getType()->isFloatingPoint())
1347      SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1348                           SV->getName(), SI);
1349    else if (isa<PointerType>(SV->getType()))
1350      SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
1351
1352    // Always zero extend the value if needed.
1353    if (SV->getType() != AllocaType)
1354      SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1355
1356    // If this is a big-endian system and the store is narrower than the
1357    // full alloca type, we need to do a shift to get the right bits.
1358    int ShAmt = 0;
1359    if (TD.isBigEndian()) {
1360      // On big-endian machines, the lowest bit is stored at the bit offset
1361      // from the pointer given by getTypeStoreSizeInBits.  This matters for
1362      // integers with a bitwidth that is not a multiple of 8.
1363      ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1364    } else {
1365      ShAmt = Offset;
1366    }
1367
1368    // Note: we support negative bitwidths (with shr) which are not defined.
1369    // We do this to support (f.e.) stores off the end of a structure where
1370    // only some bits in the structure are set.
1371    APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1372    if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1373      SV = BinaryOperator::CreateShl(SV,
1374                                     ConstantInt::get(SV->getType(), ShAmt),
1375                                     SV->getName(), SI);
1376      Mask <<= ShAmt;
1377    } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1378      SV = BinaryOperator::CreateLShr(SV,
1379                                      ConstantInt::get(SV->getType(),-ShAmt),
1380                                      SV->getName(), SI);
1381      Mask = Mask.lshr(ShAmt);
1382    }
1383
1384    // Mask out the bits we are about to insert from the old value, and or
1385    // in the new bits.
1386    if (SrcWidth != DestWidth) {
1387      assert(DestWidth > SrcWidth);
1388      Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
1389                                      Old->getName()+".mask", SI);
1390      SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI);
1391    }
1392  }
1393  return SV;
1394}
1395
1396
1397
1398/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1399/// some part of a constant global variable.  This intentionally only accepts
1400/// constant expressions because we don't can't rewrite arbitrary instructions.
1401static bool PointsToConstantGlobal(Value *V) {
1402  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1403    return GV->isConstant();
1404  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1405    if (CE->getOpcode() == Instruction::BitCast ||
1406        CE->getOpcode() == Instruction::GetElementPtr)
1407      return PointsToConstantGlobal(CE->getOperand(0));
1408  return false;
1409}
1410
1411/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1412/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1413/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1414/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1415/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1416/// the alloca, and if the source pointer is a pointer to a constant  global, we
1417/// can optimize this.
1418static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1419                                           bool isOffset) {
1420  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1421    if (isa<LoadInst>(*UI)) {
1422      // Ignore loads, they are always ok.
1423      continue;
1424    }
1425    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1426      // If uses of the bitcast are ok, we are ok.
1427      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1428        return false;
1429      continue;
1430    }
1431    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1432      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1433      // doesn't, it does.
1434      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1435                                         isOffset || !GEP->hasAllZeroIndices()))
1436        return false;
1437      continue;
1438    }
1439
1440    // If this is isn't our memcpy/memmove, reject it as something we can't
1441    // handle.
1442    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1443      return false;
1444
1445    // If we already have seen a copy, reject the second one.
1446    if (TheCopy) return false;
1447
1448    // If the pointer has been offset from the start of the alloca, we can't
1449    // safely handle this.
1450    if (isOffset) return false;
1451
1452    // If the memintrinsic isn't using the alloca as the dest, reject it.
1453    if (UI.getOperandNo() != 1) return false;
1454
1455    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1456
1457    // If the source of the memcpy/move is not a constant global, reject it.
1458    if (!PointsToConstantGlobal(MI->getOperand(2)))
1459      return false;
1460
1461    // Otherwise, the transform is safe.  Remember the copy instruction.
1462    TheCopy = MI;
1463  }
1464  return true;
1465}
1466
1467/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1468/// modified by a copy from a constant global.  If we can prove this, we can
1469/// replace any uses of the alloca with uses of the global directly.
1470Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1471  Instruction *TheCopy = 0;
1472  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1473    return TheCopy;
1474  return 0;
1475}
1476