ScalarReplAggregates.cpp revision c23197a26f34f559ea9797de51e187087c039c42
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Pass.h"
32#include "llvm/Analysis/Dominators.h"
33#include "llvm/Target/TargetData.h"
34#include "llvm/Transforms/Utils/PromoteMemToReg.h"
35#include "llvm/Transforms/Utils/Local.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/ErrorHandling.h"
38#include "llvm/Support/GetElementPtrTypeIterator.h"
39#include "llvm/Support/IRBuilder.h"
40#include "llvm/Support/MathExtras.h"
41#include "llvm/Support/Compiler.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/StringExtras.h"
45using namespace llvm;
46
47STATISTIC(NumReplaced,  "Number of allocas broken up");
48STATISTIC(NumPromoted,  "Number of allocas promoted");
49STATISTIC(NumConverted, "Number of aggregates converted to scalar");
50STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
51
52namespace {
53  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
54    static char ID; // Pass identification, replacement for typeid
55    explicit SROA(signed T = -1) : FunctionPass(&ID) {
56      if (T == -1)
57        SRThreshold = 128;
58      else
59        SRThreshold = T;
60    }
61
62    bool runOnFunction(Function &F);
63
64    bool performScalarRepl(Function &F);
65    bool performPromotion(Function &F);
66
67    // getAnalysisUsage - This pass does not require any passes, but we know it
68    // will not alter the CFG, so say so.
69    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
70      AU.addRequired<DominatorTree>();
71      AU.addRequired<DominanceFrontier>();
72      AU.addRequired<TargetData>();
73      AU.setPreservesCFG();
74    }
75
76  private:
77    TargetData *TD;
78
79    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
80    /// information about the uses.  All these fields are initialized to false
81    /// and set to true when something is learned.
82    struct AllocaInfo {
83      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
84      bool isUnsafe : 1;
85
86      /// needsCleanup - This is set to true if there is some use of the alloca
87      /// that requires cleanup.
88      bool needsCleanup : 1;
89
90      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
91      bool isMemCpySrc : 1;
92
93      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
94      bool isMemCpyDst : 1;
95
96      AllocaInfo()
97        : isUnsafe(false), needsCleanup(false),
98          isMemCpySrc(false), isMemCpyDst(false) {}
99    };
100
101    unsigned SRThreshold;
102
103    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
104
105    int isSafeAllocaToScalarRepl(AllocationInst *AI);
106
107    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
108                               AllocaInfo &Info);
109    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
110                         AllocaInfo &Info);
111    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
112                                        unsigned OpNo, AllocaInfo &Info);
113    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
114                                        AllocaInfo &Info);
115
116    void DoScalarReplacement(AllocationInst *AI,
117                             std::vector<AllocationInst*> &WorkList);
118    void CleanupGEP(GetElementPtrInst *GEP);
119    void CleanupAllocaUsers(AllocationInst *AI);
120    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
121
122    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
123                                    SmallVector<AllocaInst*, 32> &NewElts);
124
125    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
126                                      AllocationInst *AI,
127                                      SmallVector<AllocaInst*, 32> &NewElts);
128    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocationInst *AI,
129                                       SmallVector<AllocaInst*, 32> &NewElts);
130    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
131                                      SmallVector<AllocaInst*, 32> &NewElts);
132
133    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
134                            bool &SawVec, uint64_t Offset, unsigned AllocaSize);
135    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
136    Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
137                                     uint64_t Offset, IRBuilder<> &Builder);
138    Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
139                                     uint64_t Offset, IRBuilder<> &Builder);
140    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
141  };
142}
143
144char SROA::ID = 0;
145static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
146
147// Public interface to the ScalarReplAggregates pass
148FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
149  return new SROA(Threshold);
150}
151
152
153bool SROA::runOnFunction(Function &F) {
154  TD = &getAnalysis<TargetData>();
155
156  bool Changed = performPromotion(F);
157  while (1) {
158    bool LocalChange = performScalarRepl(F);
159    if (!LocalChange) break;   // No need to repromote if no scalarrepl
160    Changed = true;
161    LocalChange = performPromotion(F);
162    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
163  }
164
165  return Changed;
166}
167
168
169bool SROA::performPromotion(Function &F) {
170  std::vector<AllocaInst*> Allocas;
171  DominatorTree         &DT = getAnalysis<DominatorTree>();
172  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
173
174  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
175
176  bool Changed = false;
177
178  while (1) {
179    Allocas.clear();
180
181    // Find allocas that are safe to promote, by looking at all instructions in
182    // the entry node
183    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
184      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
185        if (isAllocaPromotable(AI))
186          Allocas.push_back(AI);
187
188    if (Allocas.empty()) break;
189
190    PromoteMemToReg(Allocas, DT, DF, Context);
191    NumPromoted += Allocas.size();
192    Changed = true;
193  }
194
195  return Changed;
196}
197
198/// getNumSAElements - Return the number of elements in the specific struct or
199/// array.
200static uint64_t getNumSAElements(const Type *T) {
201  if (const StructType *ST = dyn_cast<StructType>(T))
202    return ST->getNumElements();
203  return cast<ArrayType>(T)->getNumElements();
204}
205
206// performScalarRepl - This algorithm is a simple worklist driven algorithm,
207// which runs on all of the malloc/alloca instructions in the function, removing
208// them if they are only used by getelementptr instructions.
209//
210bool SROA::performScalarRepl(Function &F) {
211  std::vector<AllocationInst*> WorkList;
212
213  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
214  BasicBlock &BB = F.getEntryBlock();
215  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
216    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
217      WorkList.push_back(A);
218
219  // Process the worklist
220  bool Changed = false;
221  while (!WorkList.empty()) {
222    AllocationInst *AI = WorkList.back();
223    WorkList.pop_back();
224
225    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
226    // with unused elements.
227    if (AI->use_empty()) {
228      AI->eraseFromParent();
229      continue;
230    }
231
232    // If this alloca is impossible for us to promote, reject it early.
233    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
234      continue;
235
236    // Check to see if this allocation is only modified by a memcpy/memmove from
237    // a constant global.  If this is the case, we can change all users to use
238    // the constant global instead.  This is commonly produced by the CFE by
239    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
240    // is only subsequently read.
241    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
242      DOUT << "Found alloca equal to global: " << *AI;
243      DOUT << "  memcpy = " << *TheCopy;
244      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
245      AI->replaceAllUsesWith(
246                        Context->getConstantExprBitCast(TheSrc, AI->getType()));
247      TheCopy->eraseFromParent();  // Don't mutate the global.
248      AI->eraseFromParent();
249      ++NumGlobals;
250      Changed = true;
251      continue;
252    }
253
254    // Check to see if we can perform the core SROA transformation.  We cannot
255    // transform the allocation instruction if it is an array allocation
256    // (allocations OF arrays are ok though), and an allocation of a scalar
257    // value cannot be decomposed at all.
258    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
259
260    // Do not promote any struct whose size is too big.
261    if (AllocaSize > SRThreshold) continue;
262
263    if ((isa<StructType>(AI->getAllocatedType()) ||
264         isa<ArrayType>(AI->getAllocatedType())) &&
265        // Do not promote any struct into more than "32" separate vars.
266        getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
267      // Check that all of the users of the allocation are capable of being
268      // transformed.
269      switch (isSafeAllocaToScalarRepl(AI)) {
270      default: llvm_unreachable("Unexpected value!");
271      case 0:  // Not safe to scalar replace.
272        break;
273      case 1:  // Safe, but requires cleanup/canonicalizations first
274        CleanupAllocaUsers(AI);
275        // FALL THROUGH.
276      case 3:  // Safe to scalar replace.
277        DoScalarReplacement(AI, WorkList);
278        Changed = true;
279        continue;
280      }
281    }
282
283    // If we can turn this aggregate value (potentially with casts) into a
284    // simple scalar value that can be mem2reg'd into a register value.
285    // IsNotTrivial tracks whether this is something that mem2reg could have
286    // promoted itself.  If so, we don't want to transform it needlessly.  Note
287    // that we can't just check based on the type: the alloca may be of an i32
288    // but that has pointer arithmetic to set byte 3 of it or something.
289    bool IsNotTrivial = false;
290    const Type *VectorTy = 0;
291    bool HadAVector = false;
292    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
293                           0, unsigned(AllocaSize)) && IsNotTrivial) {
294      AllocaInst *NewAI;
295      // If we were able to find a vector type that can handle this with
296      // insert/extract elements, and if there was at least one use that had
297      // a vector type, promote this to a vector.  We don't want to promote
298      // random stuff that doesn't use vectors (e.g. <9 x double>) because then
299      // we just get a lot of insert/extracts.  If at least one vector is
300      // involved, then we probably really do have a union of vector/array.
301      if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
302        DOUT << "CONVERT TO VECTOR: " << *AI << "  TYPE = " << *VectorTy <<"\n";
303
304        // Create and insert the vector alloca.
305        NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
306        ConvertUsesToScalar(AI, NewAI, 0);
307      } else {
308        DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
309
310        // Create and insert the integer alloca.
311        const Type *NewTy = Context->getIntegerType(AllocaSize*8);
312        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
313        ConvertUsesToScalar(AI, NewAI, 0);
314      }
315      NewAI->takeName(AI);
316      AI->eraseFromParent();
317      ++NumConverted;
318      Changed = true;
319      continue;
320    }
321
322    // Otherwise, couldn't process this alloca.
323  }
324
325  return Changed;
326}
327
328/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
329/// predicate, do SROA now.
330void SROA::DoScalarReplacement(AllocationInst *AI,
331                               std::vector<AllocationInst*> &WorkList) {
332  DOUT << "Found inst to SROA: " << *AI;
333  SmallVector<AllocaInst*, 32> ElementAllocas;
334  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
335    ElementAllocas.reserve(ST->getNumContainedTypes());
336    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
337      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
338                                      AI->getAlignment(),
339                                      AI->getName() + "." + utostr(i), AI);
340      ElementAllocas.push_back(NA);
341      WorkList.push_back(NA);  // Add to worklist for recursive processing
342    }
343  } else {
344    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
345    ElementAllocas.reserve(AT->getNumElements());
346    const Type *ElTy = AT->getElementType();
347    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
348      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
349                                      AI->getName() + "." + utostr(i), AI);
350      ElementAllocas.push_back(NA);
351      WorkList.push_back(NA);  // Add to worklist for recursive processing
352    }
353  }
354
355  // Now that we have created the alloca instructions that we want to use,
356  // expand the getelementptr instructions to use them.
357  //
358  while (!AI->use_empty()) {
359    Instruction *User = cast<Instruction>(AI->use_back());
360    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
361      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
362      BCInst->eraseFromParent();
363      continue;
364    }
365
366    // Replace:
367    //   %res = load { i32, i32 }* %alloc
368    // with:
369    //   %load.0 = load i32* %alloc.0
370    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
371    //   %load.1 = load i32* %alloc.1
372    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
373    // (Also works for arrays instead of structs)
374    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
375      Value *Insert = Context->getUndef(LI->getType());
376      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
377        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
378        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
379      }
380      LI->replaceAllUsesWith(Insert);
381      LI->eraseFromParent();
382      continue;
383    }
384
385    // Replace:
386    //   store { i32, i32 } %val, { i32, i32 }* %alloc
387    // with:
388    //   %val.0 = extractvalue { i32, i32 } %val, 0
389    //   store i32 %val.0, i32* %alloc.0
390    //   %val.1 = extractvalue { i32, i32 } %val, 1
391    //   store i32 %val.1, i32* %alloc.1
392    // (Also works for arrays instead of structs)
393    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
394      Value *Val = SI->getOperand(0);
395      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
396        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
397        new StoreInst(Extract, ElementAllocas[i], SI);
398      }
399      SI->eraseFromParent();
400      continue;
401    }
402
403    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
404    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
405    unsigned Idx =
406       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
407
408    assert(Idx < ElementAllocas.size() && "Index out of range?");
409    AllocaInst *AllocaToUse = ElementAllocas[Idx];
410
411    Value *RepValue;
412    if (GEPI->getNumOperands() == 3) {
413      // Do not insert a new getelementptr instruction with zero indices, only
414      // to have it optimized out later.
415      RepValue = AllocaToUse;
416    } else {
417      // We are indexing deeply into the structure, so we still need a
418      // getelement ptr instruction to finish the indexing.  This may be
419      // expanded itself once the worklist is rerun.
420      //
421      SmallVector<Value*, 8> NewArgs;
422      NewArgs.push_back(Context->getNullValue(Type::Int32Ty));
423      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
424      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
425                                           NewArgs.end(), "", GEPI);
426      RepValue->takeName(GEPI);
427    }
428
429    // If this GEP is to the start of the aggregate, check for memcpys.
430    if (Idx == 0 && GEPI->hasAllZeroIndices())
431      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
432
433    // Move all of the users over to the new GEP.
434    GEPI->replaceAllUsesWith(RepValue);
435    // Delete the old GEP
436    GEPI->eraseFromParent();
437  }
438
439  // Finally, delete the Alloca instruction
440  AI->eraseFromParent();
441  NumReplaced++;
442}
443
444
445/// isSafeElementUse - Check to see if this use is an allowed use for a
446/// getelementptr instruction of an array aggregate allocation.  isFirstElt
447/// indicates whether Ptr is known to the start of the aggregate.
448///
449void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
450                            AllocaInfo &Info) {
451  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
452       I != E; ++I) {
453    Instruction *User = cast<Instruction>(*I);
454    switch (User->getOpcode()) {
455    case Instruction::Load:  break;
456    case Instruction::Store:
457      // Store is ok if storing INTO the pointer, not storing the pointer
458      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
459      break;
460    case Instruction::GetElementPtr: {
461      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
462      bool AreAllZeroIndices = isFirstElt;
463      if (GEP->getNumOperands() > 1) {
464        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
465            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
466          // Using pointer arithmetic to navigate the array.
467          return MarkUnsafe(Info);
468
469        if (AreAllZeroIndices)
470          AreAllZeroIndices = GEP->hasAllZeroIndices();
471      }
472      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
473      if (Info.isUnsafe) return;
474      break;
475    }
476    case Instruction::BitCast:
477      if (isFirstElt) {
478        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
479        if (Info.isUnsafe) return;
480        break;
481      }
482      DOUT << "  Transformation preventing inst: " << *User;
483      return MarkUnsafe(Info);
484    case Instruction::Call:
485      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
486        if (isFirstElt) {
487          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
488          if (Info.isUnsafe) return;
489          break;
490        }
491      }
492      DOUT << "  Transformation preventing inst: " << *User;
493      return MarkUnsafe(Info);
494    default:
495      DOUT << "  Transformation preventing inst: " << *User;
496      return MarkUnsafe(Info);
497    }
498  }
499  return;  // All users look ok :)
500}
501
502/// AllUsersAreLoads - Return true if all users of this value are loads.
503static bool AllUsersAreLoads(Value *Ptr) {
504  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
505       I != E; ++I)
506    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
507      return false;
508  return true;
509}
510
511/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
512/// aggregate allocation.
513///
514void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
515                                 AllocaInfo &Info) {
516  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
517    return isSafeUseOfBitCastedAllocation(C, AI, Info);
518
519  if (LoadInst *LI = dyn_cast<LoadInst>(User))
520    if (!LI->isVolatile())
521      return;// Loads (returning a first class aggregrate) are always rewritable
522
523  if (StoreInst *SI = dyn_cast<StoreInst>(User))
524    if (!SI->isVolatile() && SI->getOperand(0) != AI)
525      return;// Store is ok if storing INTO the pointer, not storing the pointer
526
527  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
528  if (GEPI == 0)
529    return MarkUnsafe(Info);
530
531  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
532
533  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
534  if (I == E ||
535      I.getOperand() != Context->getNullValue(I.getOperand()->getType())) {
536    return MarkUnsafe(Info);
537  }
538
539  ++I;
540  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
541
542  bool IsAllZeroIndices = true;
543
544  // If the first index is a non-constant index into an array, see if we can
545  // handle it as a special case.
546  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
547    if (!isa<ConstantInt>(I.getOperand())) {
548      IsAllZeroIndices = 0;
549      uint64_t NumElements = AT->getNumElements();
550
551      // If this is an array index and the index is not constant, we cannot
552      // promote... that is unless the array has exactly one or two elements in
553      // it, in which case we CAN promote it, but we have to canonicalize this
554      // out if this is the only problem.
555      if ((NumElements == 1 || NumElements == 2) &&
556          AllUsersAreLoads(GEPI)) {
557        Info.needsCleanup = true;
558        return;  // Canonicalization required!
559      }
560      return MarkUnsafe(Info);
561    }
562  }
563
564  // Walk through the GEP type indices, checking the types that this indexes
565  // into.
566  for (; I != E; ++I) {
567    // Ignore struct elements, no extra checking needed for these.
568    if (isa<StructType>(*I))
569      continue;
570
571    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
572    if (!IdxVal) return MarkUnsafe(Info);
573
574    // Are all indices still zero?
575    IsAllZeroIndices &= IdxVal->isZero();
576
577    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
578      // This GEP indexes an array.  Verify that this is an in-range constant
579      // integer. Specifically, consider A[0][i]. We cannot know that the user
580      // isn't doing invalid things like allowing i to index an out-of-range
581      // subscript that accesses A[1].  Because of this, we have to reject SROA
582      // of any accesses into structs where any of the components are variables.
583      if (IdxVal->getZExtValue() >= AT->getNumElements())
584        return MarkUnsafe(Info);
585    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
586      if (IdxVal->getZExtValue() >= VT->getNumElements())
587        return MarkUnsafe(Info);
588    }
589  }
590
591  // If there are any non-simple uses of this getelementptr, make sure to reject
592  // them.
593  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
594}
595
596/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
597/// intrinsic can be promoted by SROA.  At this point, we know that the operand
598/// of the memintrinsic is a pointer to the beginning of the allocation.
599void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
600                                          unsigned OpNo, AllocaInfo &Info) {
601  // If not constant length, give up.
602  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
603  if (!Length) return MarkUnsafe(Info);
604
605  // If not the whole aggregate, give up.
606  if (Length->getZExtValue() !=
607      TD->getTypeAllocSize(AI->getType()->getElementType()))
608    return MarkUnsafe(Info);
609
610  // We only know about memcpy/memset/memmove.
611  if (!isa<MemIntrinsic>(MI))
612    return MarkUnsafe(Info);
613
614  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
615  // into or out of the aggregate.
616  if (OpNo == 1)
617    Info.isMemCpyDst = true;
618  else {
619    assert(OpNo == 2);
620    Info.isMemCpySrc = true;
621  }
622}
623
624/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
625/// are
626void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
627                                          AllocaInfo &Info) {
628  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
629       UI != E; ++UI) {
630    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
631      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
632    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
633      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
634    } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
635      if (SI->isVolatile())
636        return MarkUnsafe(Info);
637
638      // If storing the entire alloca in one chunk through a bitcasted pointer
639      // to integer, we can transform it.  This happens (for example) when you
640      // cast a {i32,i32}* to i64* and store through it.  This is similar to the
641      // memcpy case and occurs in various "byval" cases and emulated memcpys.
642      if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
643          TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
644          TD->getTypeAllocSize(AI->getType()->getElementType())) {
645        Info.isMemCpyDst = true;
646        continue;
647      }
648      return MarkUnsafe(Info);
649    } else if (LoadInst *LI = dyn_cast<LoadInst>(UI)) {
650      if (LI->isVolatile())
651        return MarkUnsafe(Info);
652
653      // If loading the entire alloca in one chunk through a bitcasted pointer
654      // to integer, we can transform it.  This happens (for example) when you
655      // cast a {i32,i32}* to i64* and load through it.  This is similar to the
656      // memcpy case and occurs in various "byval" cases and emulated memcpys.
657      if (isa<IntegerType>(LI->getType()) &&
658          TD->getTypeAllocSize(LI->getType()) ==
659          TD->getTypeAllocSize(AI->getType()->getElementType())) {
660        Info.isMemCpySrc = true;
661        continue;
662      }
663      return MarkUnsafe(Info);
664    } else if (isa<DbgInfoIntrinsic>(UI)) {
665      // If one user is DbgInfoIntrinsic then check if all users are
666      // DbgInfoIntrinsics.
667      if (OnlyUsedByDbgInfoIntrinsics(BC)) {
668        Info.needsCleanup = true;
669        return;
670      }
671      else
672        MarkUnsafe(Info);
673    }
674    else {
675      return MarkUnsafe(Info);
676    }
677    if (Info.isUnsafe) return;
678  }
679}
680
681/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
682/// to its first element.  Transform users of the cast to use the new values
683/// instead.
684void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
685                                      SmallVector<AllocaInst*, 32> &NewElts) {
686  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
687  while (UI != UE) {
688    Instruction *User = cast<Instruction>(*UI++);
689    if (BitCastInst *BCU = dyn_cast<BitCastInst>(User)) {
690      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
691      if (BCU->use_empty()) BCU->eraseFromParent();
692      continue;
693    }
694
695    if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
696      // This must be memcpy/memmove/memset of the entire aggregate.
697      // Split into one per element.
698      RewriteMemIntrinUserOfAlloca(MI, BCInst, AI, NewElts);
699      continue;
700    }
701
702    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
703      // If this is a store of the entire alloca from an integer, rewrite it.
704      RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
705      continue;
706    }
707
708    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
709      // If this is a load of the entire alloca to an integer, rewrite it.
710      RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
711      continue;
712    }
713
714    // Otherwise it must be some other user of a gep of the first pointer.  Just
715    // leave these alone.
716    continue;
717  }
718}
719
720/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
721/// Rewrite it to copy or set the elements of the scalarized memory.
722void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *BCInst,
723                                        AllocationInst *AI,
724                                        SmallVector<AllocaInst*, 32> &NewElts) {
725
726  // If this is a memcpy/memmove, construct the other pointer as the
727  // appropriate type.  The "Other" pointer is the pointer that goes to memory
728  // that doesn't have anything to do with the alloca that we are promoting. For
729  // memset, this Value* stays null.
730  Value *OtherPtr = 0;
731  unsigned MemAlignment = MI->getAlignment();
732  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
733    if (BCInst == MTI->getRawDest())
734      OtherPtr = MTI->getRawSource();
735    else {
736      assert(BCInst == MTI->getRawSource());
737      OtherPtr = MTI->getRawDest();
738    }
739  }
740
741  // If there is an other pointer, we want to convert it to the same pointer
742  // type as AI has, so we can GEP through it safely.
743  if (OtherPtr) {
744    // It is likely that OtherPtr is a bitcast, if so, remove it.
745    if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
746      OtherPtr = BC->getOperand(0);
747    // All zero GEPs are effectively bitcasts.
748    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
749      if (GEP->hasAllZeroIndices())
750        OtherPtr = GEP->getOperand(0);
751
752    if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
753      if (BCE->getOpcode() == Instruction::BitCast)
754        OtherPtr = BCE->getOperand(0);
755
756    // If the pointer is not the right type, insert a bitcast to the right
757    // type.
758    if (OtherPtr->getType() != AI->getType())
759      OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
760                                 MI);
761  }
762
763  // Process each element of the aggregate.
764  Value *TheFn = MI->getOperand(0);
765  const Type *BytePtrTy = MI->getRawDest()->getType();
766  bool SROADest = MI->getRawDest() == BCInst;
767
768  Constant *Zero = Context->getNullValue(Type::Int32Ty);
769
770  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
771    // If this is a memcpy/memmove, emit a GEP of the other element address.
772    Value *OtherElt = 0;
773    unsigned OtherEltAlign = MemAlignment;
774
775    if (OtherPtr) {
776      Value *Idx[2] = { Zero, Context->getConstantInt(Type::Int32Ty, i) };
777      OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
778                                           OtherPtr->getNameStr()+"."+utostr(i),
779                                           MI);
780      uint64_t EltOffset;
781      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
782      if (const StructType *ST =
783            dyn_cast<StructType>(OtherPtrTy->getElementType())) {
784        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
785      } else {
786        const Type *EltTy =
787          cast<SequentialType>(OtherPtr->getType())->getElementType();
788        EltOffset = TD->getTypeAllocSize(EltTy)*i;
789      }
790
791      // The alignment of the other pointer is the guaranteed alignment of the
792      // element, which is affected by both the known alignment of the whole
793      // mem intrinsic and the alignment of the element.  If the alignment of
794      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
795      // known alignment is just 4 bytes.
796      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
797    }
798
799    Value *EltPtr = NewElts[i];
800    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
801
802    // If we got down to a scalar, insert a load or store as appropriate.
803    if (EltTy->isSingleValueType()) {
804      if (isa<MemTransferInst>(MI)) {
805        if (SROADest) {
806          // From Other to Alloca.
807          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
808          new StoreInst(Elt, EltPtr, MI);
809        } else {
810          // From Alloca to Other.
811          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
812          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
813        }
814        continue;
815      }
816      assert(isa<MemSetInst>(MI));
817
818      // If the stored element is zero (common case), just store a null
819      // constant.
820      Constant *StoreVal;
821      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
822        if (CI->isZero()) {
823          StoreVal = Context->getNullValue(EltTy);  // 0.0, null, 0, <0,0>
824        } else {
825          // If EltTy is a vector type, get the element type.
826          const Type *ValTy = EltTy->getScalarType();
827
828          // Construct an integer with the right value.
829          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
830          APInt OneVal(EltSize, CI->getZExtValue());
831          APInt TotalVal(OneVal);
832          // Set each byte.
833          for (unsigned i = 0; 8*i < EltSize; ++i) {
834            TotalVal = TotalVal.shl(8);
835            TotalVal |= OneVal;
836          }
837
838          // Convert the integer value to the appropriate type.
839          StoreVal = Context->getConstantInt(TotalVal);
840          if (isa<PointerType>(ValTy))
841            StoreVal = Context->getConstantExprIntToPtr(StoreVal, ValTy);
842          else if (ValTy->isFloatingPoint())
843            StoreVal = Context->getConstantExprBitCast(StoreVal, ValTy);
844          assert(StoreVal->getType() == ValTy && "Type mismatch!");
845
846          // If the requested value was a vector constant, create it.
847          if (EltTy != ValTy) {
848            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
849            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
850            StoreVal = Context->getConstantVector(&Elts[0], NumElts);
851          }
852        }
853        new StoreInst(StoreVal, EltPtr, MI);
854        continue;
855      }
856      // Otherwise, if we're storing a byte variable, use a memset call for
857      // this element.
858    }
859
860    // Cast the element pointer to BytePtrTy.
861    if (EltPtr->getType() != BytePtrTy)
862      EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
863
864    // Cast the other pointer (if we have one) to BytePtrTy.
865    if (OtherElt && OtherElt->getType() != BytePtrTy)
866      OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
867                                 MI);
868
869    unsigned EltSize = TD->getTypeAllocSize(EltTy);
870
871    // Finally, insert the meminst for this element.
872    if (isa<MemTransferInst>(MI)) {
873      Value *Ops[] = {
874        SROADest ? EltPtr : OtherElt,  // Dest ptr
875        SROADest ? OtherElt : EltPtr,  // Src ptr
876        Context->getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size
877        Context->getConstantInt(Type::Int32Ty, OtherEltAlign)  // Align
878      };
879      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
880    } else {
881      assert(isa<MemSetInst>(MI));
882      Value *Ops[] = {
883        EltPtr, MI->getOperand(2),  // Dest, Value,
884        Context->getConstantInt(MI->getOperand(3)->getType(), EltSize), // Size
885        Zero  // Align
886      };
887      CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
888    }
889  }
890  MI->eraseFromParent();
891}
892
893/// RewriteStoreUserOfWholeAlloca - We found an store of an integer that
894/// overwrites the entire allocation.  Extract out the pieces of the stored
895/// integer and store them individually.
896void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI,
897                                         AllocationInst *AI,
898                                         SmallVector<AllocaInst*, 32> &NewElts){
899  // Extract each element out of the integer according to its structure offset
900  // and store the element value to the individual alloca.
901  Value *SrcVal = SI->getOperand(0);
902  const Type *AllocaEltTy = AI->getType()->getElementType();
903  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
904
905  // If this isn't a store of an integer to the whole alloca, it may be a store
906  // to the first element.  Just ignore the store in this case and normal SROA
907  // will handle it.
908  if (!isa<IntegerType>(SrcVal->getType()) ||
909      TD->getTypeAllocSizeInBits(SrcVal->getType()) != AllocaSizeBits)
910    return;
911  // Handle tail padding by extending the operand
912  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
913    SrcVal = new ZExtInst(SrcVal,
914                          Context->getIntegerType(AllocaSizeBits), "", SI);
915
916  DOUT << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << *SI;
917
918  // There are two forms here: AI could be an array or struct.  Both cases
919  // have different ways to compute the element offset.
920  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
921    const StructLayout *Layout = TD->getStructLayout(EltSTy);
922
923    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
924      // Get the number of bits to shift SrcVal to get the value.
925      const Type *FieldTy = EltSTy->getElementType(i);
926      uint64_t Shift = Layout->getElementOffsetInBits(i);
927
928      if (TD->isBigEndian())
929        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
930
931      Value *EltVal = SrcVal;
932      if (Shift) {
933        Value *ShiftVal = Context->getConstantInt(EltVal->getType(), Shift);
934        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
935                                            "sroa.store.elt", SI);
936      }
937
938      // Truncate down to an integer of the right size.
939      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
940
941      // Ignore zero sized fields like {}, they obviously contain no data.
942      if (FieldSizeBits == 0) continue;
943
944      if (FieldSizeBits != AllocaSizeBits)
945        EltVal = new TruncInst(EltVal,
946                               Context->getIntegerType(FieldSizeBits), "", SI);
947      Value *DestField = NewElts[i];
948      if (EltVal->getType() == FieldTy) {
949        // Storing to an integer field of this size, just do it.
950      } else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
951        // Bitcast to the right element type (for fp/vector values).
952        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
953      } else {
954        // Otherwise, bitcast the dest pointer (for aggregates).
955        DestField = new BitCastInst(DestField,
956                              Context->getPointerTypeUnqual(EltVal->getType()),
957                                    "", SI);
958      }
959      new StoreInst(EltVal, DestField, SI);
960    }
961
962  } else {
963    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
964    const Type *ArrayEltTy = ATy->getElementType();
965    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
966    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
967
968    uint64_t Shift;
969
970    if (TD->isBigEndian())
971      Shift = AllocaSizeBits-ElementOffset;
972    else
973      Shift = 0;
974
975    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
976      // Ignore zero sized fields like {}, they obviously contain no data.
977      if (ElementSizeBits == 0) continue;
978
979      Value *EltVal = SrcVal;
980      if (Shift) {
981        Value *ShiftVal = Context->getConstantInt(EltVal->getType(), Shift);
982        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
983                                            "sroa.store.elt", SI);
984      }
985
986      // Truncate down to an integer of the right size.
987      if (ElementSizeBits != AllocaSizeBits)
988        EltVal = new TruncInst(EltVal,
989                               Context->getIntegerType(ElementSizeBits),"",SI);
990      Value *DestField = NewElts[i];
991      if (EltVal->getType() == ArrayEltTy) {
992        // Storing to an integer field of this size, just do it.
993      } else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
994        // Bitcast to the right element type (for fp/vector values).
995        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
996      } else {
997        // Otherwise, bitcast the dest pointer (for aggregates).
998        DestField = new BitCastInst(DestField,
999                              Context->getPointerTypeUnqual(EltVal->getType()),
1000                                    "", SI);
1001      }
1002      new StoreInst(EltVal, DestField, SI);
1003
1004      if (TD->isBigEndian())
1005        Shift -= ElementOffset;
1006      else
1007        Shift += ElementOffset;
1008    }
1009  }
1010
1011  SI->eraseFromParent();
1012}
1013
1014/// RewriteLoadUserOfWholeAlloca - We found an load of the entire allocation to
1015/// an integer.  Load the individual pieces to form the aggregate value.
1016void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
1017                                        SmallVector<AllocaInst*, 32> &NewElts) {
1018  // Extract each element out of the NewElts according to its structure offset
1019  // and form the result value.
1020  const Type *AllocaEltTy = AI->getType()->getElementType();
1021  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1022
1023  // If this isn't a load of the whole alloca to an integer, it may be a load
1024  // of the first element.  Just ignore the load in this case and normal SROA
1025  // will handle it.
1026  if (!isa<IntegerType>(LI->getType()) ||
1027      TD->getTypeAllocSizeInBits(LI->getType()) != AllocaSizeBits)
1028    return;
1029
1030  DOUT << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << *LI;
1031
1032  // There are two forms here: AI could be an array or struct.  Both cases
1033  // have different ways to compute the element offset.
1034  const StructLayout *Layout = 0;
1035  uint64_t ArrayEltBitOffset = 0;
1036  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1037    Layout = TD->getStructLayout(EltSTy);
1038  } else {
1039    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1040    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1041  }
1042
1043  Value *ResultVal =
1044                 Context->getNullValue(Context->getIntegerType(AllocaSizeBits));
1045
1046  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1047    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1048    // the pointer to an integer of the same size before doing the load.
1049    Value *SrcField = NewElts[i];
1050    const Type *FieldTy =
1051      cast<PointerType>(SrcField->getType())->getElementType();
1052    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1053
1054    // Ignore zero sized fields like {}, they obviously contain no data.
1055    if (FieldSizeBits == 0) continue;
1056
1057    const IntegerType *FieldIntTy = Context->getIntegerType(FieldSizeBits);
1058    if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
1059        !isa<VectorType>(FieldTy))
1060      SrcField = new BitCastInst(SrcField,
1061                                 Context->getPointerTypeUnqual(FieldIntTy),
1062                                 "", LI);
1063    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1064
1065    // If SrcField is a fp or vector of the right size but that isn't an
1066    // integer type, bitcast to an integer so we can shift it.
1067    if (SrcField->getType() != FieldIntTy)
1068      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1069
1070    // Zero extend the field to be the same size as the final alloca so that
1071    // we can shift and insert it.
1072    if (SrcField->getType() != ResultVal->getType())
1073      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1074
1075    // Determine the number of bits to shift SrcField.
1076    uint64_t Shift;
1077    if (Layout) // Struct case.
1078      Shift = Layout->getElementOffsetInBits(i);
1079    else  // Array case.
1080      Shift = i*ArrayEltBitOffset;
1081
1082    if (TD->isBigEndian())
1083      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1084
1085    if (Shift) {
1086      Value *ShiftVal = Context->getConstantInt(SrcField->getType(), Shift);
1087      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1088    }
1089
1090    ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1091  }
1092
1093  // Handle tail padding by truncating the result
1094  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1095    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1096
1097  LI->replaceAllUsesWith(ResultVal);
1098  LI->eraseFromParent();
1099}
1100
1101
1102/// HasPadding - Return true if the specified type has any structure or
1103/// alignment padding, false otherwise.
1104static bool HasPadding(const Type *Ty, const TargetData &TD) {
1105  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1106    const StructLayout *SL = TD.getStructLayout(STy);
1107    unsigned PrevFieldBitOffset = 0;
1108    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1109      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1110
1111      // Padding in sub-elements?
1112      if (HasPadding(STy->getElementType(i), TD))
1113        return true;
1114
1115      // Check to see if there is any padding between this element and the
1116      // previous one.
1117      if (i) {
1118        unsigned PrevFieldEnd =
1119        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1120        if (PrevFieldEnd < FieldBitOffset)
1121          return true;
1122      }
1123
1124      PrevFieldBitOffset = FieldBitOffset;
1125    }
1126
1127    //  Check for tail padding.
1128    if (unsigned EltCount = STy->getNumElements()) {
1129      unsigned PrevFieldEnd = PrevFieldBitOffset +
1130                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1131      if (PrevFieldEnd < SL->getSizeInBits())
1132        return true;
1133    }
1134
1135  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1136    return HasPadding(ATy->getElementType(), TD);
1137  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1138    return HasPadding(VTy->getElementType(), TD);
1139  }
1140  return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1141}
1142
1143/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1144/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1145/// or 1 if safe after canonicalization has been performed.
1146///
1147int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
1148  // Loop over the use list of the alloca.  We can only transform it if all of
1149  // the users are safe to transform.
1150  AllocaInfo Info;
1151
1152  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
1153       I != E; ++I) {
1154    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
1155    if (Info.isUnsafe) {
1156      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
1157      return 0;
1158    }
1159  }
1160
1161  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1162  // source and destination, we have to be careful.  In particular, the memcpy
1163  // could be moving around elements that live in structure padding of the LLVM
1164  // types, but may actually be used.  In these cases, we refuse to promote the
1165  // struct.
1166  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1167      HasPadding(AI->getType()->getElementType(), *TD))
1168    return 0;
1169
1170  // If we require cleanup, return 1, otherwise return 3.
1171  return Info.needsCleanup ? 1 : 3;
1172}
1173
1174/// CleanupGEP - GEP is used by an Alloca, which can be prompted after the GEP
1175/// is canonicalized here.
1176void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
1177  gep_type_iterator I = gep_type_begin(GEPI);
1178  ++I;
1179
1180  const ArrayType *AT = dyn_cast<ArrayType>(*I);
1181  if (!AT)
1182    return;
1183
1184  uint64_t NumElements = AT->getNumElements();
1185
1186  if (isa<ConstantInt>(I.getOperand()))
1187    return;
1188
1189  if (NumElements == 1) {
1190    GEPI->setOperand(2, Context->getNullValue(Type::Int32Ty));
1191    return;
1192  }
1193
1194  assert(NumElements == 2 && "Unhandled case!");
1195  // All users of the GEP must be loads.  At each use of the GEP, insert
1196  // two loads of the appropriate indexed GEP and select between them.
1197  Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
1198                              Context->getNullValue(I.getOperand()->getType()),
1199                              "isone");
1200  // Insert the new GEP instructions, which are properly indexed.
1201  SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
1202  Indices[1] = Context->getNullValue(Type::Int32Ty);
1203  Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1204                                             Indices.begin(),
1205                                             Indices.end(),
1206                                             GEPI->getName()+".0", GEPI);
1207  Indices[1] = Context->getConstantInt(Type::Int32Ty, 1);
1208  Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
1209                                            Indices.begin(),
1210                                            Indices.end(),
1211                                            GEPI->getName()+".1", GEPI);
1212  // Replace all loads of the variable index GEP with loads from both
1213  // indexes and a select.
1214  while (!GEPI->use_empty()) {
1215    LoadInst *LI = cast<LoadInst>(GEPI->use_back());
1216    Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
1217    Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
1218    Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
1219    LI->replaceAllUsesWith(R);
1220    LI->eraseFromParent();
1221  }
1222  GEPI->eraseFromParent();
1223}
1224
1225
1226/// CleanupAllocaUsers - If SROA reported that it can promote the specified
1227/// allocation, but only if cleaned up, perform the cleanups required.
1228void SROA::CleanupAllocaUsers(AllocationInst *AI) {
1229  // At this point, we know that the end result will be SROA'd and promoted, so
1230  // we can insert ugly code if required so long as sroa+mem2reg will clean it
1231  // up.
1232  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1233       UI != E; ) {
1234    User *U = *UI++;
1235    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
1236      CleanupGEP(GEPI);
1237    else {
1238      Instruction *I = cast<Instruction>(U);
1239      SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
1240      if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
1241        // Safe to remove debug info uses.
1242        while (!DbgInUses.empty()) {
1243          DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
1244          DI->eraseFromParent();
1245        }
1246        I->eraseFromParent();
1247      }
1248    }
1249  }
1250}
1251
1252/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
1253/// the offset specified by Offset (which is specified in bytes).
1254///
1255/// There are two cases we handle here:
1256///   1) A union of vector types of the same size and potentially its elements.
1257///      Here we turn element accesses into insert/extract element operations.
1258///      This promotes a <4 x float> with a store of float to the third element
1259///      into a <4 x float> that uses insert element.
1260///   2) A fully general blob of memory, which we turn into some (potentially
1261///      large) integer type with extract and insert operations where the loads
1262///      and stores would mutate the memory.
1263static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
1264                        unsigned AllocaSize, const TargetData &TD,
1265                        LLVMContext *Context) {
1266  // If this could be contributing to a vector, analyze it.
1267  if (VecTy != Type::VoidTy) { // either null or a vector type.
1268
1269    // If the In type is a vector that is the same size as the alloca, see if it
1270    // matches the existing VecTy.
1271    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
1272      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
1273        // If we're storing/loading a vector of the right size, allow it as a
1274        // vector.  If this the first vector we see, remember the type so that
1275        // we know the element size.
1276        if (VecTy == 0)
1277          VecTy = VInTy;
1278        return;
1279      }
1280    } else if (In == Type::FloatTy || In == Type::DoubleTy ||
1281               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
1282                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
1283      // If we're accessing something that could be an element of a vector, see
1284      // if the implied vector agrees with what we already have and if Offset is
1285      // compatible with it.
1286      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
1287      if (Offset % EltSize == 0 &&
1288          AllocaSize % EltSize == 0 &&
1289          (VecTy == 0 ||
1290           cast<VectorType>(VecTy)->getElementType()
1291                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
1292        if (VecTy == 0)
1293          VecTy = Context->getVectorType(In, AllocaSize/EltSize);
1294        return;
1295      }
1296    }
1297  }
1298
1299  // Otherwise, we have a case that we can't handle with an optimized vector
1300  // form.  We can still turn this into a large integer.
1301  VecTy = Type::VoidTy;
1302}
1303
1304/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
1305/// its accesses to use a to single vector type, return true, and set VecTy to
1306/// the new type.  If we could convert the alloca into a single promotable
1307/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
1308/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
1309/// is the current offset from the base of the alloca being analyzed.
1310///
1311/// If we see at least one access to the value that is as a vector type, set the
1312/// SawVec flag.
1313///
1314bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
1315                              bool &SawVec, uint64_t Offset,
1316                              unsigned AllocaSize) {
1317  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1318    Instruction *User = cast<Instruction>(*UI);
1319
1320    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1321      // Don't break volatile loads.
1322      if (LI->isVolatile())
1323        return false;
1324      MergeInType(LI->getType(), Offset, VecTy, AllocaSize, *TD, Context);
1325      SawVec |= isa<VectorType>(LI->getType());
1326      continue;
1327    }
1328
1329    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1330      // Storing the pointer, not into the value?
1331      if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
1332      MergeInType(SI->getOperand(0)->getType(), Offset,
1333                  VecTy, AllocaSize, *TD, Context);
1334      SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
1335      continue;
1336    }
1337
1338    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
1339      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
1340                              AllocaSize))
1341        return false;
1342      IsNotTrivial = true;
1343      continue;
1344    }
1345
1346    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1347      // If this is a GEP with a variable indices, we can't handle it.
1348      if (!GEP->hasAllConstantIndices())
1349        return false;
1350
1351      // Compute the offset that this GEP adds to the pointer.
1352      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1353      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1354                                                &Indices[0], Indices.size());
1355      // See if all uses can be converted.
1356      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
1357                              AllocaSize))
1358        return false;
1359      IsNotTrivial = true;
1360      continue;
1361    }
1362
1363    // If this is a constant sized memset of a constant value (e.g. 0) we can
1364    // handle it.
1365    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1366      // Store of constant value and constant size.
1367      if (isa<ConstantInt>(MSI->getValue()) &&
1368          isa<ConstantInt>(MSI->getLength())) {
1369        IsNotTrivial = true;
1370        continue;
1371      }
1372    }
1373
1374    // If this is a memcpy or memmove into or out of the whole allocation, we
1375    // can handle it like a load or store of the scalar type.
1376    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1377      if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
1378        if (Len->getZExtValue() == AllocaSize && Offset == 0) {
1379          IsNotTrivial = true;
1380          continue;
1381        }
1382    }
1383
1384    // Ignore dbg intrinsic.
1385    if (isa<DbgInfoIntrinsic>(User))
1386      continue;
1387
1388    // Otherwise, we cannot handle this!
1389    return false;
1390  }
1391
1392  return true;
1393}
1394
1395
1396/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1397/// directly.  This happens when we are converting an "integer union" to a
1398/// single integer scalar, or when we are converting a "vector union" to a
1399/// vector with insert/extractelement instructions.
1400///
1401/// Offset is an offset from the original alloca, in bits that need to be
1402/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1403void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
1404  while (!Ptr->use_empty()) {
1405    Instruction *User = cast<Instruction>(Ptr->use_back());
1406
1407    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1408      ConvertUsesToScalar(CI, NewAI, Offset);
1409      CI->eraseFromParent();
1410      continue;
1411    }
1412
1413    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1414      // Compute the offset that this GEP adds to the pointer.
1415      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
1416      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
1417                                                &Indices[0], Indices.size());
1418      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
1419      GEP->eraseFromParent();
1420      continue;
1421    }
1422
1423    IRBuilder<> Builder(User->getParent(), User);
1424
1425    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1426      // The load is a bit extract from NewAI shifted right by Offset bits.
1427      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
1428      Value *NewLoadVal
1429        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
1430      LI->replaceAllUsesWith(NewLoadVal);
1431      LI->eraseFromParent();
1432      continue;
1433    }
1434
1435    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1436      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1437      Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
1438      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
1439                                             Builder);
1440      Builder.CreateStore(New, NewAI);
1441      SI->eraseFromParent();
1442      continue;
1443    }
1444
1445    // If this is a constant sized memset of a constant value (e.g. 0) we can
1446    // transform it into a store of the expanded constant value.
1447    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
1448      assert(MSI->getRawDest() == Ptr && "Consistency error!");
1449      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
1450      if (NumBytes != 0) {
1451        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
1452
1453        // Compute the value replicated the right number of times.
1454        APInt APVal(NumBytes*8, Val);
1455
1456        // Splat the value if non-zero.
1457        if (Val)
1458          for (unsigned i = 1; i != NumBytes; ++i)
1459            APVal |= APVal << 8;
1460
1461        Value *Old = Builder.CreateLoad(NewAI, (NewAI->getName()+".in").c_str());
1462        Value *New = ConvertScalar_InsertValue(Context->getConstantInt(APVal),
1463                                               Old, Offset, Builder);
1464        Builder.CreateStore(New, NewAI);
1465      }
1466      MSI->eraseFromParent();
1467      continue;
1468    }
1469
1470    // If this is a memcpy or memmove into or out of the whole allocation, we
1471    // can handle it like a load or store of the scalar type.
1472    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
1473      assert(Offset == 0 && "must be store to start of alloca");
1474
1475      // If the source and destination are both to the same alloca, then this is
1476      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
1477      // as appropriate.
1478      AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
1479
1480      if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
1481        // Dest must be OrigAI, change this to be a load from the original
1482        // pointer (bitcasted), then a store to our new alloca.
1483        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
1484        Value *SrcPtr = MTI->getSource();
1485        SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
1486
1487        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
1488        SrcVal->setAlignment(MTI->getAlignment());
1489        Builder.CreateStore(SrcVal, NewAI);
1490      } else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
1491        // Src must be OrigAI, change this to be a load from NewAI then a store
1492        // through the original dest pointer (bitcasted).
1493        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
1494        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
1495
1496        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
1497        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
1498        NewStore->setAlignment(MTI->getAlignment());
1499      } else {
1500        // Noop transfer. Src == Dst
1501      }
1502
1503
1504      MTI->eraseFromParent();
1505      continue;
1506    }
1507
1508    // If user is a dbg info intrinsic then it is safe to remove it.
1509    if (isa<DbgInfoIntrinsic>(User)) {
1510      User->eraseFromParent();
1511      continue;
1512    }
1513
1514    llvm_unreachable("Unsupported operation!");
1515  }
1516}
1517
1518/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
1519/// or vector value FromVal, extracting the bits from the offset specified by
1520/// Offset.  This returns the value, which is of type ToType.
1521///
1522/// This happens when we are converting an "integer union" to a single
1523/// integer scalar, or when we are converting a "vector union" to a vector with
1524/// insert/extractelement instructions.
1525///
1526/// Offset is an offset from the original alloca, in bits that need to be
1527/// shifted to the right.
1528Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
1529                                        uint64_t Offset, IRBuilder<> &Builder) {
1530  // If the load is of the whole new alloca, no conversion is needed.
1531  if (FromVal->getType() == ToType && Offset == 0)
1532    return FromVal;
1533
1534  // If the result alloca is a vector type, this is either an element
1535  // access or a bitcast to another vector type of the same size.
1536  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
1537    if (isa<VectorType>(ToType))
1538      return Builder.CreateBitCast(FromVal, ToType, "tmp");
1539
1540    // Otherwise it must be an element access.
1541    unsigned Elt = 0;
1542    if (Offset) {
1543      unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1544      Elt = Offset/EltSize;
1545      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
1546    }
1547    // Return the element extracted out of it.
1548    Value *V = Builder.CreateExtractElement(FromVal,
1549                                    Context->getConstantInt(Type::Int32Ty,Elt),
1550                                            "tmp");
1551    if (V->getType() != ToType)
1552      V = Builder.CreateBitCast(V, ToType, "tmp");
1553    return V;
1554  }
1555
1556  // If ToType is a first class aggregate, extract out each of the pieces and
1557  // use insertvalue's to form the FCA.
1558  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
1559    const StructLayout &Layout = *TD->getStructLayout(ST);
1560    Value *Res = Context->getUndef(ST);
1561    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1562      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
1563                                        Offset+Layout.getElementOffsetInBits(i),
1564                                              Builder);
1565      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1566    }
1567    return Res;
1568  }
1569
1570  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
1571    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1572    Value *Res = Context->getUndef(AT);
1573    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1574      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
1575                                              Offset+i*EltSize, Builder);
1576      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
1577    }
1578    return Res;
1579  }
1580
1581  // Otherwise, this must be a union that was converted to an integer value.
1582  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
1583
1584  // If this is a big-endian system and the load is narrower than the
1585  // full alloca type, we need to do a shift to get the right bits.
1586  int ShAmt = 0;
1587  if (TD->isBigEndian()) {
1588    // On big-endian machines, the lowest bit is stored at the bit offset
1589    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1590    // integers with a bitwidth that is not a multiple of 8.
1591    ShAmt = TD->getTypeStoreSizeInBits(NTy) -
1592            TD->getTypeStoreSizeInBits(ToType) - Offset;
1593  } else {
1594    ShAmt = Offset;
1595  }
1596
1597  // Note: we support negative bitwidths (with shl) which are not defined.
1598  // We do this to support (f.e.) loads off the end of a structure where
1599  // only some bits are used.
1600  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1601    FromVal = Builder.CreateLShr(FromVal,
1602                                 Context->getConstantInt(FromVal->getType(),
1603                                                           ShAmt), "tmp");
1604  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1605    FromVal = Builder.CreateShl(FromVal,
1606                                Context->getConstantInt(FromVal->getType(),
1607                                                          -ShAmt), "tmp");
1608
1609  // Finally, unconditionally truncate the integer to the right width.
1610  unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
1611  if (LIBitWidth < NTy->getBitWidth())
1612    FromVal =
1613      Builder.CreateTrunc(FromVal, Context->getIntegerType(LIBitWidth), "tmp");
1614  else if (LIBitWidth > NTy->getBitWidth())
1615    FromVal =
1616       Builder.CreateZExt(FromVal, Context->getIntegerType(LIBitWidth), "tmp");
1617
1618  // If the result is an integer, this is a trunc or bitcast.
1619  if (isa<IntegerType>(ToType)) {
1620    // Should be done.
1621  } else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
1622    // Just do a bitcast, we know the sizes match up.
1623    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
1624  } else {
1625    // Otherwise must be a pointer.
1626    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
1627  }
1628  assert(FromVal->getType() == ToType && "Didn't convert right?");
1629  return FromVal;
1630}
1631
1632
1633/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
1634/// or vector value "Old" at the offset specified by Offset.
1635///
1636/// This happens when we are converting an "integer union" to a
1637/// single integer scalar, or when we are converting a "vector union" to a
1638/// vector with insert/extractelement instructions.
1639///
1640/// Offset is an offset from the original alloca, in bits that need to be
1641/// shifted to the right.
1642Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
1643                                       uint64_t Offset, IRBuilder<> &Builder) {
1644
1645  // Convert the stored type to the actual type, shift it left to insert
1646  // then 'or' into place.
1647  const Type *AllocaType = Old->getType();
1648
1649  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
1650    uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
1651    uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
1652
1653    // Changing the whole vector with memset or with an access of a different
1654    // vector type?
1655    if (ValSize == VecSize)
1656      return Builder.CreateBitCast(SV, AllocaType, "tmp");
1657
1658    uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
1659
1660    // Must be an element insertion.
1661    unsigned Elt = Offset/EltSize;
1662
1663    if (SV->getType() != VTy->getElementType())
1664      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
1665
1666    SV = Builder.CreateInsertElement(Old, SV,
1667                                   Context->getConstantInt(Type::Int32Ty, Elt),
1668                                     "tmp");
1669    return SV;
1670  }
1671
1672  // If SV is a first-class aggregate value, insert each value recursively.
1673  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
1674    const StructLayout &Layout = *TD->getStructLayout(ST);
1675    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1676      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1677      Old = ConvertScalar_InsertValue(Elt, Old,
1678                                      Offset+Layout.getElementOffsetInBits(i),
1679                                      Builder);
1680    }
1681    return Old;
1682  }
1683
1684  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
1685    uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
1686    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1687      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
1688      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
1689    }
1690    return Old;
1691  }
1692
1693  // If SV is a float, convert it to the appropriate integer type.
1694  // If it is a pointer, do the same.
1695  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
1696  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
1697  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
1698  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
1699  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
1700    SV = Builder.CreateBitCast(SV, Context->getIntegerType(SrcWidth), "tmp");
1701  else if (isa<PointerType>(SV->getType()))
1702    SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(), "tmp");
1703
1704  // Zero extend or truncate the value if needed.
1705  if (SV->getType() != AllocaType) {
1706    if (SV->getType()->getPrimitiveSizeInBits() <
1707             AllocaType->getPrimitiveSizeInBits())
1708      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
1709    else {
1710      // Truncation may be needed if storing more than the alloca can hold
1711      // (undefined behavior).
1712      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
1713      SrcWidth = DestWidth;
1714      SrcStoreWidth = DestStoreWidth;
1715    }
1716  }
1717
1718  // If this is a big-endian system and the store is narrower than the
1719  // full alloca type, we need to do a shift to get the right bits.
1720  int ShAmt = 0;
1721  if (TD->isBigEndian()) {
1722    // On big-endian machines, the lowest bit is stored at the bit offset
1723    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1724    // integers with a bitwidth that is not a multiple of 8.
1725    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1726  } else {
1727    ShAmt = Offset;
1728  }
1729
1730  // Note: we support negative bitwidths (with shr) which are not defined.
1731  // We do this to support (f.e.) stores off the end of a structure where
1732  // only some bits in the structure are set.
1733  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1734  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1735    SV = Builder.CreateShl(SV, Context->getConstantInt(SV->getType(),
1736                           ShAmt), "tmp");
1737    Mask <<= ShAmt;
1738  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1739    SV = Builder.CreateLShr(SV, Context->getConstantInt(SV->getType(),
1740                            -ShAmt), "tmp");
1741    Mask = Mask.lshr(-ShAmt);
1742  }
1743
1744  // Mask out the bits we are about to insert from the old value, and or
1745  // in the new bits.
1746  if (SrcWidth != DestWidth) {
1747    assert(DestWidth > SrcWidth);
1748    Old = Builder.CreateAnd(Old, Context->getConstantInt(~Mask), "mask");
1749    SV = Builder.CreateOr(Old, SV, "ins");
1750  }
1751  return SV;
1752}
1753
1754
1755
1756/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1757/// some part of a constant global variable.  This intentionally only accepts
1758/// constant expressions because we don't can't rewrite arbitrary instructions.
1759static bool PointsToConstantGlobal(Value *V) {
1760  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1761    return GV->isConstant();
1762  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1763    if (CE->getOpcode() == Instruction::BitCast ||
1764        CE->getOpcode() == Instruction::GetElementPtr)
1765      return PointsToConstantGlobal(CE->getOperand(0));
1766  return false;
1767}
1768
1769/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1770/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1771/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1772/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1773/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1774/// the alloca, and if the source pointer is a pointer to a constant  global, we
1775/// can optimize this.
1776static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1777                                           bool isOffset) {
1778  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1779    if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
1780      // Ignore non-volatile loads, they are always ok.
1781      if (!LI->isVolatile())
1782        continue;
1783
1784    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1785      // If uses of the bitcast are ok, we are ok.
1786      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1787        return false;
1788      continue;
1789    }
1790    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1791      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1792      // doesn't, it does.
1793      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1794                                         isOffset || !GEP->hasAllZeroIndices()))
1795        return false;
1796      continue;
1797    }
1798
1799    // If this is isn't our memcpy/memmove, reject it as something we can't
1800    // handle.
1801    if (!isa<MemTransferInst>(*UI))
1802      return false;
1803
1804    // If we already have seen a copy, reject the second one.
1805    if (TheCopy) return false;
1806
1807    // If the pointer has been offset from the start of the alloca, we can't
1808    // safely handle this.
1809    if (isOffset) return false;
1810
1811    // If the memintrinsic isn't using the alloca as the dest, reject it.
1812    if (UI.getOperandNo() != 1) return false;
1813
1814    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1815
1816    // If the source of the memcpy/move is not a constant global, reject it.
1817    if (!PointsToConstantGlobal(MI->getOperand(2)))
1818      return false;
1819
1820    // Otherwise, the transform is safe.  Remember the copy instruction.
1821    TheCopy = MI;
1822  }
1823  return true;
1824}
1825
1826/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1827/// modified by a copy from a constant global.  If we can prove this, we can
1828/// replace any uses of the alloca with uses of the global directly.
1829Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1830  Instruction *TheCopy = 0;
1831  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1832    return TheCopy;
1833  return 0;
1834}
1835