ScalarReplAggregates.cpp revision d356a7ee0ed7744857dcf497cb20b0128770fb0f
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/Pass.h"
31#include "llvm/Analysis/Dominators.h"
32#include "llvm/Target/TargetData.h"
33#include "llvm/Transforms/Utils/PromoteMemToReg.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/GetElementPtrTypeIterator.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Compiler.h"
38#include "llvm/ADT/SmallVector.h"
39#include "llvm/ADT/Statistic.h"
40#include "llvm/ADT/StringExtras.h"
41using namespace llvm;
42
43STATISTIC(NumReplaced,  "Number of allocas broken up");
44STATISTIC(NumPromoted,  "Number of allocas promoted");
45STATISTIC(NumConverted, "Number of aggregates converted to scalar");
46STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
47
48namespace {
49  struct VISIBILITY_HIDDEN SROA : public FunctionPass {
50    static char ID; // Pass identification, replacement for typeid
51    explicit SROA(signed T = -1) : FunctionPass(&ID) {
52      if (T == -1)
53        SRThreshold = 128;
54      else
55        SRThreshold = T;
56    }
57
58    bool runOnFunction(Function &F);
59
60    bool performScalarRepl(Function &F);
61    bool performPromotion(Function &F);
62
63    // getAnalysisUsage - This pass does not require any passes, but we know it
64    // will not alter the CFG, so say so.
65    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
66      AU.addRequired<DominatorTree>();
67      AU.addRequired<DominanceFrontier>();
68      AU.addRequired<TargetData>();
69      AU.setPreservesCFG();
70    }
71
72  private:
73    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
74    /// information about the uses.  All these fields are initialized to false
75    /// and set to true when something is learned.
76    struct AllocaInfo {
77      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
78      bool isUnsafe : 1;
79
80      /// needsCanon - This is set to true if there is some use of the alloca
81      /// that requires canonicalization.
82      bool needsCanon : 1;
83
84      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
85      bool isMemCpySrc : 1;
86
87      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
88      bool isMemCpyDst : 1;
89
90      AllocaInfo()
91        : isUnsafe(false), needsCanon(false),
92          isMemCpySrc(false), isMemCpyDst(false) {}
93    };
94
95    unsigned SRThreshold;
96
97    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
98
99    int isSafeAllocaToScalarRepl(AllocationInst *AI);
100
101    void isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
102                               AllocaInfo &Info);
103    void isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
104                         AllocaInfo &Info);
105    void isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
106                                        unsigned OpNo, AllocaInfo &Info);
107    void isSafeUseOfBitCastedAllocation(BitCastInst *User, AllocationInst *AI,
108                                        AllocaInfo &Info);
109
110    void DoScalarReplacement(AllocationInst *AI,
111                             std::vector<AllocationInst*> &WorkList);
112    void CanonicalizeAllocaUsers(AllocationInst *AI);
113    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
114
115    void RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
116                                    SmallVector<AllocaInst*, 32> &NewElts);
117
118    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
119    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
120    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
121    Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
122                                     unsigned Offset);
123    Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
124                                      unsigned Offset);
125    static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
126  };
127}
128
129char SROA::ID = 0;
130static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
131
132// Public interface to the ScalarReplAggregates pass
133FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
134  return new SROA(Threshold);
135}
136
137
138bool SROA::runOnFunction(Function &F) {
139  bool Changed = performPromotion(F);
140  while (1) {
141    bool LocalChange = performScalarRepl(F);
142    if (!LocalChange) break;   // No need to repromote if no scalarrepl
143    Changed = true;
144    LocalChange = performPromotion(F);
145    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
146  }
147
148  return Changed;
149}
150
151
152bool SROA::performPromotion(Function &F) {
153  std::vector<AllocaInst*> Allocas;
154  DominatorTree         &DT = getAnalysis<DominatorTree>();
155  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
156
157  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
158
159  bool Changed = false;
160
161  while (1) {
162    Allocas.clear();
163
164    // Find allocas that are safe to promote, by looking at all instructions in
165    // the entry node
166    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
167      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
168        if (isAllocaPromotable(AI))
169          Allocas.push_back(AI);
170
171    if (Allocas.empty()) break;
172
173    PromoteMemToReg(Allocas, DT, DF);
174    NumPromoted += Allocas.size();
175    Changed = true;
176  }
177
178  return Changed;
179}
180
181/// getNumSAElements - Return the number of elements in the specific struct or
182/// array.
183static uint64_t getNumSAElements(const Type *T) {
184  if (const StructType *ST = dyn_cast<StructType>(T))
185    return ST->getNumElements();
186  return cast<ArrayType>(T)->getNumElements();
187}
188
189// performScalarRepl - This algorithm is a simple worklist driven algorithm,
190// which runs on all of the malloc/alloca instructions in the function, removing
191// them if they are only used by getelementptr instructions.
192//
193bool SROA::performScalarRepl(Function &F) {
194  std::vector<AllocationInst*> WorkList;
195
196  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
197  BasicBlock &BB = F.getEntryBlock();
198  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
199    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
200      WorkList.push_back(A);
201
202  const TargetData &TD = getAnalysis<TargetData>();
203
204  // Process the worklist
205  bool Changed = false;
206  while (!WorkList.empty()) {
207    AllocationInst *AI = WorkList.back();
208    WorkList.pop_back();
209
210    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
211    // with unused elements.
212    if (AI->use_empty()) {
213      AI->eraseFromParent();
214      continue;
215    }
216
217    // If we can turn this aggregate value (potentially with casts) into a
218    // simple scalar value that can be mem2reg'd into a register value.
219    bool IsNotTrivial = false;
220    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
221      if (IsNotTrivial && ActualType != Type::VoidTy) {
222        ConvertToScalar(AI, ActualType);
223        Changed = true;
224        continue;
225      }
226
227    // Check to see if we can perform the core SROA transformation.  We cannot
228    // transform the allocation instruction if it is an array allocation
229    // (allocations OF arrays are ok though), and an allocation of a scalar
230    // value cannot be decomposed at all.
231    if (!AI->isArrayAllocation() &&
232        (isa<StructType>(AI->getAllocatedType()) ||
233         isa<ArrayType>(AI->getAllocatedType())) &&
234        AI->getAllocatedType()->isSized() &&
235        // Do not promote any struct whose size is larger than "128" bytes.
236        TD.getABITypeSize(AI->getAllocatedType()) < SRThreshold &&
237        // Do not promote any struct into more than "32" separate vars.
238        getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
239      // Check that all of the users of the allocation are capable of being
240      // transformed.
241      switch (isSafeAllocaToScalarRepl(AI)) {
242      default: assert(0 && "Unexpected value!");
243      case 0:  // Not safe to scalar replace.
244        break;
245      case 1:  // Safe, but requires cleanup/canonicalizations first
246        CanonicalizeAllocaUsers(AI);
247        // FALL THROUGH.
248      case 3:  // Safe to scalar replace.
249        DoScalarReplacement(AI, WorkList);
250        Changed = true;
251        continue;
252      }
253    }
254
255    // Check to see if this allocation is only modified by a memcpy/memmove from
256    // a constant global.  If this is the case, we can change all users to use
257    // the constant global instead.  This is commonly produced by the CFE by
258    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
259    // is only subsequently read.
260    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
261      DOUT << "Found alloca equal to global: " << *AI;
262      DOUT << "  memcpy = " << *TheCopy;
263      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
264      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
265      TheCopy->eraseFromParent();  // Don't mutate the global.
266      AI->eraseFromParent();
267      ++NumGlobals;
268      Changed = true;
269      continue;
270    }
271
272    // Otherwise, couldn't process this.
273  }
274
275  return Changed;
276}
277
278/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
279/// predicate, do SROA now.
280void SROA::DoScalarReplacement(AllocationInst *AI,
281                               std::vector<AllocationInst*> &WorkList) {
282  DOUT << "Found inst to SROA: " << *AI;
283  SmallVector<AllocaInst*, 32> ElementAllocas;
284  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
285    ElementAllocas.reserve(ST->getNumContainedTypes());
286    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
287      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
288                                      AI->getAlignment(),
289                                      AI->getName() + "." + utostr(i), AI);
290      ElementAllocas.push_back(NA);
291      WorkList.push_back(NA);  // Add to worklist for recursive processing
292    }
293  } else {
294    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
295    ElementAllocas.reserve(AT->getNumElements());
296    const Type *ElTy = AT->getElementType();
297    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
298      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
299                                      AI->getName() + "." + utostr(i), AI);
300      ElementAllocas.push_back(NA);
301      WorkList.push_back(NA);  // Add to worklist for recursive processing
302    }
303  }
304
305  // Now that we have created the alloca instructions that we want to use,
306  // expand the getelementptr instructions to use them.
307  //
308  while (!AI->use_empty()) {
309    Instruction *User = cast<Instruction>(AI->use_back());
310    if (BitCastInst *BCInst = dyn_cast<BitCastInst>(User)) {
311      RewriteBitCastUserOfAlloca(BCInst, AI, ElementAllocas);
312      BCInst->eraseFromParent();
313      continue;
314    }
315
316    // Replace:
317    //   %res = load { i32, i32 }* %alloc
318    // with:
319    //   %load.0 = load i32* %alloc.0
320    //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
321    //   %load.1 = load i32* %alloc.1
322    //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
323    // (Also works for arrays instead of structs)
324    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
325      Value *Insert = UndefValue::get(LI->getType());
326      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
327        Value *Load = new LoadInst(ElementAllocas[i], "load", LI);
328        Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
329      }
330      LI->replaceAllUsesWith(Insert);
331      LI->eraseFromParent();
332      continue;
333    }
334
335    // Replace:
336    //   store { i32, i32 } %val, { i32, i32 }* %alloc
337    // with:
338    //   %val.0 = extractvalue { i32, i32 } %val, 0
339    //   store i32 %val.0, i32* %alloc.0
340    //   %val.1 = extractvalue { i32, i32 } %val, 1
341    //   store i32 %val.1, i32* %alloc.1
342    // (Also works for arrays instead of structs)
343    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
344      Value *Val = SI->getOperand(0);
345      for (unsigned i = 0, e = ElementAllocas.size(); i != e; ++i) {
346        Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
347        new StoreInst(Extract, ElementAllocas[i], SI);
348      }
349      SI->eraseFromParent();
350      continue;
351    }
352
353    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
354    // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
355    unsigned Idx =
356       (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
357
358    assert(Idx < ElementAllocas.size() && "Index out of range?");
359    AllocaInst *AllocaToUse = ElementAllocas[Idx];
360
361    Value *RepValue;
362    if (GEPI->getNumOperands() == 3) {
363      // Do not insert a new getelementptr instruction with zero indices, only
364      // to have it optimized out later.
365      RepValue = AllocaToUse;
366    } else {
367      // We are indexing deeply into the structure, so we still need a
368      // getelement ptr instruction to finish the indexing.  This may be
369      // expanded itself once the worklist is rerun.
370      //
371      SmallVector<Value*, 8> NewArgs;
372      NewArgs.push_back(Constant::getNullValue(Type::Int32Ty));
373      NewArgs.append(GEPI->op_begin()+3, GEPI->op_end());
374      RepValue = GetElementPtrInst::Create(AllocaToUse, NewArgs.begin(),
375                                           NewArgs.end(), "", GEPI);
376      RepValue->takeName(GEPI);
377    }
378
379    // If this GEP is to the start of the aggregate, check for memcpys.
380    if (Idx == 0 && GEPI->hasAllZeroIndices())
381      RewriteBitCastUserOfAlloca(GEPI, AI, ElementAllocas);
382
383    // Move all of the users over to the new GEP.
384    GEPI->replaceAllUsesWith(RepValue);
385    // Delete the old GEP
386    GEPI->eraseFromParent();
387  }
388
389  // Finally, delete the Alloca instruction
390  AI->eraseFromParent();
391  NumReplaced++;
392}
393
394
395/// isSafeElementUse - Check to see if this use is an allowed use for a
396/// getelementptr instruction of an array aggregate allocation.  isFirstElt
397/// indicates whether Ptr is known to the start of the aggregate.
398///
399void SROA::isSafeElementUse(Value *Ptr, bool isFirstElt, AllocationInst *AI,
400                            AllocaInfo &Info) {
401  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
402       I != E; ++I) {
403    Instruction *User = cast<Instruction>(*I);
404    switch (User->getOpcode()) {
405    case Instruction::Load:  break;
406    case Instruction::Store:
407      // Store is ok if storing INTO the pointer, not storing the pointer
408      if (User->getOperand(0) == Ptr) return MarkUnsafe(Info);
409      break;
410    case Instruction::GetElementPtr: {
411      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
412      bool AreAllZeroIndices = isFirstElt;
413      if (GEP->getNumOperands() > 1) {
414        if (!isa<ConstantInt>(GEP->getOperand(1)) ||
415            !cast<ConstantInt>(GEP->getOperand(1))->isZero())
416          // Using pointer arithmetic to navigate the array.
417          return MarkUnsafe(Info);
418
419        if (AreAllZeroIndices)
420          AreAllZeroIndices = GEP->hasAllZeroIndices();
421      }
422      isSafeElementUse(GEP, AreAllZeroIndices, AI, Info);
423      if (Info.isUnsafe) return;
424      break;
425    }
426    case Instruction::BitCast:
427      if (isFirstElt) {
428        isSafeUseOfBitCastedAllocation(cast<BitCastInst>(User), AI, Info);
429        if (Info.isUnsafe) return;
430        break;
431      }
432      DOUT << "  Transformation preventing inst: " << *User;
433      return MarkUnsafe(Info);
434    case Instruction::Call:
435      if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
436        if (isFirstElt) {
437          isSafeMemIntrinsicOnAllocation(MI, AI, I.getOperandNo(), Info);
438          if (Info.isUnsafe) return;
439          break;
440        }
441      }
442      DOUT << "  Transformation preventing inst: " << *User;
443      return MarkUnsafe(Info);
444    default:
445      DOUT << "  Transformation preventing inst: " << *User;
446      return MarkUnsafe(Info);
447    }
448  }
449  return;  // All users look ok :)
450}
451
452/// AllUsersAreLoads - Return true if all users of this value are loads.
453static bool AllUsersAreLoads(Value *Ptr) {
454  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
455       I != E; ++I)
456    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
457      return false;
458  return true;
459}
460
461/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
462/// aggregate allocation.
463///
464void SROA::isSafeUseOfAllocation(Instruction *User, AllocationInst *AI,
465                                 AllocaInfo &Info) {
466  if (BitCastInst *C = dyn_cast<BitCastInst>(User))
467    return isSafeUseOfBitCastedAllocation(C, AI, Info);
468
469  if (isa<LoadInst>(User))
470    return; // Loads (returning a first class aggregrate) are always rewritable
471
472  if (isa<StoreInst>(User) && User->getOperand(0) != AI)
473    return; // Store is ok if storing INTO the pointer, not storing the pointer
474
475  GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User);
476  if (GEPI == 0)
477    return MarkUnsafe(Info);
478
479  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
480
481  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
482  if (I == E ||
483      I.getOperand() != Constant::getNullValue(I.getOperand()->getType())) {
484    return MarkUnsafe(Info);
485  }
486
487  ++I;
488  if (I == E) return MarkUnsafe(Info);  // ran out of GEP indices??
489
490  bool IsAllZeroIndices = true;
491
492  // If the first index is a non-constant index into an array, see if we can
493  // handle it as a special case.
494  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
495    if (!isa<ConstantInt>(I.getOperand())) {
496      IsAllZeroIndices = 0;
497      uint64_t NumElements = AT->getNumElements();
498
499      // If this is an array index and the index is not constant, we cannot
500      // promote... that is unless the array has exactly one or two elements in
501      // it, in which case we CAN promote it, but we have to canonicalize this
502      // out if this is the only problem.
503      if ((NumElements == 1 || NumElements == 2) &&
504          AllUsersAreLoads(GEPI)) {
505        Info.needsCanon = true;
506        return;  // Canonicalization required!
507      }
508      return MarkUnsafe(Info);
509    }
510  }
511
512  // Walk through the GEP type indices, checking the types that this indexes
513  // into.
514  for (; I != E; ++I) {
515    // Ignore struct elements, no extra checking needed for these.
516    if (isa<StructType>(*I))
517      continue;
518
519    ConstantInt *IdxVal = dyn_cast<ConstantInt>(I.getOperand());
520    if (!IdxVal) return MarkUnsafe(Info);
521
522    // Are all indices still zero?
523    IsAllZeroIndices &= IdxVal->isZero();
524
525    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
526      // This GEP indexes an array.  Verify that this is an in-range constant
527      // integer. Specifically, consider A[0][i]. We cannot know that the user
528      // isn't doing invalid things like allowing i to index an out-of-range
529      // subscript that accesses A[1].  Because of this, we have to reject SROA
530      // of any accesses into structs where any of the components are variables.
531      if (IdxVal->getZExtValue() >= AT->getNumElements())
532        return MarkUnsafe(Info);
533    } else if (const VectorType *VT = dyn_cast<VectorType>(*I)) {
534      if (IdxVal->getZExtValue() >= VT->getNumElements())
535        return MarkUnsafe(Info);
536    }
537  }
538
539  // If there are any non-simple uses of this getelementptr, make sure to reject
540  // them.
541  return isSafeElementUse(GEPI, IsAllZeroIndices, AI, Info);
542}
543
544/// isSafeMemIntrinsicOnAllocation - Return true if the specified memory
545/// intrinsic can be promoted by SROA.  At this point, we know that the operand
546/// of the memintrinsic is a pointer to the beginning of the allocation.
547void SROA::isSafeMemIntrinsicOnAllocation(MemIntrinsic *MI, AllocationInst *AI,
548                                          unsigned OpNo, AllocaInfo &Info) {
549  // If not constant length, give up.
550  ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
551  if (!Length) return MarkUnsafe(Info);
552
553  // If not the whole aggregate, give up.
554  const TargetData &TD = getAnalysis<TargetData>();
555  if (Length->getZExtValue() !=
556      TD.getABITypeSize(AI->getType()->getElementType()))
557    return MarkUnsafe(Info);
558
559  // We only know about memcpy/memset/memmove.
560  if (!isa<MemCpyInst>(MI) && !isa<MemSetInst>(MI) && !isa<MemMoveInst>(MI))
561    return MarkUnsafe(Info);
562
563  // Otherwise, we can transform it.  Determine whether this is a memcpy/set
564  // into or out of the aggregate.
565  if (OpNo == 1)
566    Info.isMemCpyDst = true;
567  else {
568    assert(OpNo == 2);
569    Info.isMemCpySrc = true;
570  }
571}
572
573/// isSafeUseOfBitCastedAllocation - Return true if all users of this bitcast
574/// are
575void SROA::isSafeUseOfBitCastedAllocation(BitCastInst *BC, AllocationInst *AI,
576                                          AllocaInfo &Info) {
577  for (Value::use_iterator UI = BC->use_begin(), E = BC->use_end();
578       UI != E; ++UI) {
579    if (BitCastInst *BCU = dyn_cast<BitCastInst>(UI)) {
580      isSafeUseOfBitCastedAllocation(BCU, AI, Info);
581    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
582      isSafeMemIntrinsicOnAllocation(MI, AI, UI.getOperandNo(), Info);
583    } else {
584      return MarkUnsafe(Info);
585    }
586    if (Info.isUnsafe) return;
587  }
588}
589
590/// RewriteBitCastUserOfAlloca - BCInst (transitively) bitcasts AI, or indexes
591/// to its first element.  Transform users of the cast to use the new values
592/// instead.
593void SROA::RewriteBitCastUserOfAlloca(Instruction *BCInst, AllocationInst *AI,
594                                      SmallVector<AllocaInst*, 32> &NewElts) {
595  Constant *Zero = Constant::getNullValue(Type::Int32Ty);
596  const TargetData &TD = getAnalysis<TargetData>();
597
598  Value::use_iterator UI = BCInst->use_begin(), UE = BCInst->use_end();
599  while (UI != UE) {
600    if (BitCastInst *BCU = dyn_cast<BitCastInst>(*UI)) {
601      RewriteBitCastUserOfAlloca(BCU, AI, NewElts);
602      ++UI;
603      BCU->eraseFromParent();
604      continue;
605    }
606
607    // Otherwise, must be memcpy/memmove/memset of the entire aggregate.  Split
608    // into one per element.
609    MemIntrinsic *MI = dyn_cast<MemIntrinsic>(*UI);
610
611    // If it's not a mem intrinsic, it must be some other user of a gep of the
612    // first pointer.  Just leave these alone.
613    if (!MI) {
614      ++UI;
615      continue;
616    }
617
618    // If this is a memcpy/memmove, construct the other pointer as the
619    // appropriate type.
620    Value *OtherPtr = 0;
621    if (MemCpyInst *MCI = dyn_cast<MemCpyInst>(MI)) {
622      if (BCInst == MCI->getRawDest())
623        OtherPtr = MCI->getRawSource();
624      else {
625        assert(BCInst == MCI->getRawSource());
626        OtherPtr = MCI->getRawDest();
627      }
628    } else if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
629      if (BCInst == MMI->getRawDest())
630        OtherPtr = MMI->getRawSource();
631      else {
632        assert(BCInst == MMI->getRawSource());
633        OtherPtr = MMI->getRawDest();
634      }
635    }
636
637    // If there is an other pointer, we want to convert it to the same pointer
638    // type as AI has, so we can GEP through it.
639    if (OtherPtr) {
640      // It is likely that OtherPtr is a bitcast, if so, remove it.
641      if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr))
642        OtherPtr = BC->getOperand(0);
643      // All zero GEPs are effectively bitcasts.
644      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr))
645        if (GEP->hasAllZeroIndices())
646          OtherPtr = GEP->getOperand(0);
647
648      if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
649        if (BCE->getOpcode() == Instruction::BitCast)
650          OtherPtr = BCE->getOperand(0);
651
652      // If the pointer is not the right type, insert a bitcast to the right
653      // type.
654      if (OtherPtr->getType() != AI->getType())
655        OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
656                                   MI);
657    }
658
659    // Process each element of the aggregate.
660    Value *TheFn = MI->getOperand(0);
661    const Type *BytePtrTy = MI->getRawDest()->getType();
662    bool SROADest = MI->getRawDest() == BCInst;
663
664    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
665      // If this is a memcpy/memmove, emit a GEP of the other element address.
666      Value *OtherElt = 0;
667      if (OtherPtr) {
668        Value *Idx[2] = { Zero, ConstantInt::get(Type::Int32Ty, i) };
669        OtherElt = GetElementPtrInst::Create(OtherPtr, Idx, Idx + 2,
670                                           OtherPtr->getNameStr()+"."+utostr(i),
671                                             MI);
672      }
673
674      Value *EltPtr = NewElts[i];
675      const Type *EltTy =cast<PointerType>(EltPtr->getType())->getElementType();
676
677      // If we got down to a scalar, insert a load or store as appropriate.
678      if (EltTy->isSingleValueType()) {
679        if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
680          Value *Elt = new LoadInst(SROADest ? OtherElt : EltPtr, "tmp",
681                                    MI);
682          new StoreInst(Elt, SROADest ? EltPtr : OtherElt, MI);
683          continue;
684        } else {
685          assert(isa<MemSetInst>(MI));
686
687          // If the stored element is zero (common case), just store a null
688          // constant.
689          Constant *StoreVal;
690          if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
691            if (CI->isZero()) {
692              StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
693            } else {
694              // If EltTy is a vector type, get the element type.
695              const Type *ValTy = EltTy;
696              if (const VectorType *VTy = dyn_cast<VectorType>(ValTy))
697                ValTy = VTy->getElementType();
698
699              // Construct an integer with the right value.
700              unsigned EltSize = TD.getTypeSizeInBits(ValTy);
701              APInt OneVal(EltSize, CI->getZExtValue());
702              APInt TotalVal(OneVal);
703              // Set each byte.
704              for (unsigned i = 0; 8*i < EltSize; ++i) {
705                TotalVal = TotalVal.shl(8);
706                TotalVal |= OneVal;
707              }
708
709              // Convert the integer value to the appropriate type.
710              StoreVal = ConstantInt::get(TotalVal);
711              if (isa<PointerType>(ValTy))
712                StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
713              else if (ValTy->isFloatingPoint())
714                StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
715              assert(StoreVal->getType() == ValTy && "Type mismatch!");
716
717              // If the requested value was a vector constant, create it.
718              if (EltTy != ValTy) {
719                unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
720                SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
721                StoreVal = ConstantVector::get(&Elts[0], NumElts);
722              }
723            }
724            new StoreInst(StoreVal, EltPtr, MI);
725            continue;
726          }
727          // Otherwise, if we're storing a byte variable, use a memset call for
728          // this element.
729        }
730      }
731
732      // Cast the element pointer to BytePtrTy.
733      if (EltPtr->getType() != BytePtrTy)
734        EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
735
736      // Cast the other pointer (if we have one) to BytePtrTy.
737      if (OtherElt && OtherElt->getType() != BytePtrTy)
738        OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
739                                   MI);
740
741      unsigned EltSize = TD.getABITypeSize(EltTy);
742
743      // Finally, insert the meminst for this element.
744      if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
745        Value *Ops[] = {
746          SROADest ? EltPtr : OtherElt,  // Dest ptr
747          SROADest ? OtherElt : EltPtr,  // Src ptr
748          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
749          Zero  // Align
750        };
751        CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
752      } else {
753        assert(isa<MemSetInst>(MI));
754        Value *Ops[] = {
755          EltPtr, MI->getOperand(2),  // Dest, Value,
756          ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
757          Zero  // Align
758        };
759        CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
760      }
761    }
762
763    // Finally, MI is now dead, as we've modified its actions to occur on all of
764    // the elements of the aggregate.
765    ++UI;
766    MI->eraseFromParent();
767  }
768}
769
770/// HasPadding - Return true if the specified type has any structure or
771/// alignment padding, false otherwise.
772static bool HasPadding(const Type *Ty, const TargetData &TD) {
773  if (const StructType *STy = dyn_cast<StructType>(Ty)) {
774    const StructLayout *SL = TD.getStructLayout(STy);
775    unsigned PrevFieldBitOffset = 0;
776    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
777      unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
778
779      // Padding in sub-elements?
780      if (HasPadding(STy->getElementType(i), TD))
781        return true;
782
783      // Check to see if there is any padding between this element and the
784      // previous one.
785      if (i) {
786        unsigned PrevFieldEnd =
787        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
788        if (PrevFieldEnd < FieldBitOffset)
789          return true;
790      }
791
792      PrevFieldBitOffset = FieldBitOffset;
793    }
794
795    //  Check for tail padding.
796    if (unsigned EltCount = STy->getNumElements()) {
797      unsigned PrevFieldEnd = PrevFieldBitOffset +
798                   TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
799      if (PrevFieldEnd < SL->getSizeInBits())
800        return true;
801    }
802
803  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
804    return HasPadding(ATy->getElementType(), TD);
805  } else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
806    return HasPadding(VTy->getElementType(), TD);
807  }
808  return TD.getTypeSizeInBits(Ty) != TD.getABITypeSizeInBits(Ty);
809}
810
811/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
812/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
813/// or 1 if safe after canonicalization has been performed.
814///
815int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
816  // Loop over the use list of the alloca.  We can only transform it if all of
817  // the users are safe to transform.
818  AllocaInfo Info;
819
820  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
821       I != E; ++I) {
822    isSafeUseOfAllocation(cast<Instruction>(*I), AI, Info);
823    if (Info.isUnsafe) {
824      DOUT << "Cannot transform: " << *AI << "  due to user: " << **I;
825      return 0;
826    }
827  }
828
829  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
830  // source and destination, we have to be careful.  In particular, the memcpy
831  // could be moving around elements that live in structure padding of the LLVM
832  // types, but may actually be used.  In these cases, we refuse to promote the
833  // struct.
834  if (Info.isMemCpySrc && Info.isMemCpyDst &&
835      HasPadding(AI->getType()->getElementType(), getAnalysis<TargetData>()))
836    return 0;
837
838  // If we require cleanup, return 1, otherwise return 3.
839  return Info.needsCanon ? 1 : 3;
840}
841
842/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
843/// allocation, but only if cleaned up, perform the cleanups required.
844void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
845  // At this point, we know that the end result will be SROA'd and promoted, so
846  // we can insert ugly code if required so long as sroa+mem2reg will clean it
847  // up.
848  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
849       UI != E; ) {
850    GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI++);
851    if (!GEPI) continue;
852    gep_type_iterator I = gep_type_begin(GEPI);
853    ++I;
854
855    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
856      uint64_t NumElements = AT->getNumElements();
857
858      if (!isa<ConstantInt>(I.getOperand())) {
859        if (NumElements == 1) {
860          GEPI->setOperand(2, Constant::getNullValue(Type::Int32Ty));
861        } else {
862          assert(NumElements == 2 && "Unhandled case!");
863          // All users of the GEP must be loads.  At each use of the GEP, insert
864          // two loads of the appropriate indexed GEP and select between them.
865          Value *IsOne = new ICmpInst(ICmpInst::ICMP_NE, I.getOperand(),
866                              Constant::getNullValue(I.getOperand()->getType()),
867             "isone", GEPI);
868          // Insert the new GEP instructions, which are properly indexed.
869          SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
870          Indices[1] = Constant::getNullValue(Type::Int32Ty);
871          Value *ZeroIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
872                                                     Indices.begin(),
873                                                     Indices.end(),
874                                                     GEPI->getName()+".0", GEPI);
875          Indices[1] = ConstantInt::get(Type::Int32Ty, 1);
876          Value *OneIdx = GetElementPtrInst::Create(GEPI->getOperand(0),
877                                                    Indices.begin(),
878                                                    Indices.end(),
879                                                    GEPI->getName()+".1", GEPI);
880          // Replace all loads of the variable index GEP with loads from both
881          // indexes and a select.
882          while (!GEPI->use_empty()) {
883            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
884            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
885            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
886            Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
887            LI->replaceAllUsesWith(R);
888            LI->eraseFromParent();
889          }
890          GEPI->eraseFromParent();
891        }
892      }
893    }
894  }
895}
896
897/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
898/// types are incompatible, return true, otherwise update Accum and return
899/// false.
900///
901/// There are three cases we handle here:
902///   1) An effectively-integer union, where the pieces are stored into as
903///      smaller integers (common with byte swap and other idioms).
904///   2) A union of vector types of the same size and potentially its elements.
905///      Here we turn element accesses into insert/extract element operations.
906///   3) A union of scalar types, such as int/float or int/pointer.  Here we
907///      merge together into integers, allowing the xform to work with #1 as
908///      well.
909static bool MergeInType(const Type *In, const Type *&Accum,
910                        const TargetData &TD) {
911  // If this is our first type, just use it.
912  const VectorType *PTy;
913  if (Accum == Type::VoidTy || In == Accum) {
914    Accum = In;
915  } else if (In == Type::VoidTy) {
916    // Noop.
917  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
918    // Otherwise pick whichever type is larger.
919    if (cast<IntegerType>(In)->getBitWidth() >
920        cast<IntegerType>(Accum)->getBitWidth())
921      Accum = In;
922  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
923    // Pointer unions just stay as one of the pointers.
924  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
925    if ((PTy = dyn_cast<VectorType>(Accum)) &&
926        PTy->getElementType() == In) {
927      // Accum is a vector, and we are accessing an element: ok.
928    } else if ((PTy = dyn_cast<VectorType>(In)) &&
929               PTy->getElementType() == Accum) {
930      // In is a vector, and accum is an element: ok, remember In.
931      Accum = In;
932    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
933               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
934      // Two vectors of the same size: keep Accum.
935    } else {
936      // Cannot insert an short into a <4 x int> or handle
937      // <2 x int> -> <4 x int>
938      return true;
939    }
940  } else {
941    // Pointer/FP/Integer unions merge together as integers.
942    switch (Accum->getTypeID()) {
943    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
944    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
945    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
946    case Type::X86_FP80TyID:  return true;
947    case Type::FP128TyID: return true;
948    case Type::PPC_FP128TyID: return true;
949    default:
950      assert(Accum->isInteger() && "Unknown FP type!");
951      break;
952    }
953
954    switch (In->getTypeID()) {
955    case Type::PointerTyID: In = TD.getIntPtrType(); break;
956    case Type::FloatTyID:   In = Type::Int32Ty; break;
957    case Type::DoubleTyID:  In = Type::Int64Ty; break;
958    case Type::X86_FP80TyID:  return true;
959    case Type::FP128TyID: return true;
960    case Type::PPC_FP128TyID: return true;
961    default:
962      assert(In->isInteger() && "Unknown FP type!");
963      break;
964    }
965    return MergeInType(In, Accum, TD);
966  }
967  return false;
968}
969
970/// getUIntAtLeastAsBigAs - Return an unsigned integer type that is at least
971/// as big as the specified type.  If there is no suitable type, this returns
972/// null.
973const Type *getUIntAtLeastAsBigAs(unsigned NumBits) {
974  if (NumBits > 64) return 0;
975  if (NumBits > 32) return Type::Int64Ty;
976  if (NumBits > 16) return Type::Int32Ty;
977  if (NumBits > 8) return Type::Int16Ty;
978  return Type::Int8Ty;
979}
980
981/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
982/// single scalar integer type, return that type.  Further, if the use is not
983/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
984/// there are no uses of this pointer, return Type::VoidTy to differentiate from
985/// failure.
986///
987const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
988  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
989  const TargetData &TD = getAnalysis<TargetData>();
990  const PointerType *PTy = cast<PointerType>(V->getType());
991
992  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
993    Instruction *User = cast<Instruction>(*UI);
994
995    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
996      // FIXME: Loads of a first class aggregrate value could be converted to a
997      // series of loads and insertvalues
998      if (!LI->getType()->isSingleValueType())
999        return 0;
1000
1001      if (MergeInType(LI->getType(), UsedType, TD))
1002        return 0;
1003
1004    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1005      // Storing the pointer, not into the value?
1006      if (SI->getOperand(0) == V) return 0;
1007
1008      // FIXME: Stores of a first class aggregrate value could be converted to a
1009      // series of extractvalues and stores
1010      if (!SI->getOperand(0)->getType()->isSingleValueType())
1011        return 0;
1012
1013      // NOTE: We could handle storing of FP imms into integers here!
1014
1015      if (MergeInType(SI->getOperand(0)->getType(), UsedType, TD))
1016        return 0;
1017    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1018      IsNotTrivial = true;
1019      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
1020      if (!SubTy || MergeInType(SubTy, UsedType, TD)) return 0;
1021    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1022      // Check to see if this is stepping over an element: GEP Ptr, int C
1023      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
1024        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1025        unsigned ElSize = TD.getABITypeSize(PTy->getElementType());
1026        unsigned BitOffset = Idx*ElSize*8;
1027        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
1028
1029        IsNotTrivial = true;
1030        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
1031        if (SubElt == 0) return 0;
1032        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
1033          const Type *NewTy =
1034            getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(SubElt)+BitOffset);
1035          if (NewTy == 0 || MergeInType(NewTy, UsedType, TD)) return 0;
1036          continue;
1037        }
1038      } else if (GEP->getNumOperands() == 3 &&
1039                 isa<ConstantInt>(GEP->getOperand(1)) &&
1040                 isa<ConstantInt>(GEP->getOperand(2)) &&
1041                 cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
1042        // We are stepping into an element, e.g. a structure or an array:
1043        // GEP Ptr, i32 0, i32 Cst
1044        const Type *AggTy = PTy->getElementType();
1045        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1046
1047        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
1048          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
1049        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
1050          // Getting an element of the vector.
1051          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
1052
1053          // Merge in the vector type.
1054          if (MergeInType(VectorTy, UsedType, TD)) return 0;
1055
1056          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1057          if (SubTy == 0) return 0;
1058
1059          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1060            return 0;
1061
1062          // We'll need to change this to an insert/extract element operation.
1063          IsNotTrivial = true;
1064          continue;    // Everything looks ok
1065
1066        } else if (isa<StructType>(AggTy)) {
1067          // Structs are always ok.
1068        } else {
1069          return 0;
1070        }
1071        const Type *NTy = getUIntAtLeastAsBigAs(TD.getABITypeSizeInBits(AggTy));
1072        if (NTy == 0 || MergeInType(NTy, UsedType, TD)) return 0;
1073        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
1074        if (SubTy == 0) return 0;
1075        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, TD))
1076          return 0;
1077        continue;    // Everything looks ok
1078      }
1079      return 0;
1080    } else {
1081      // Cannot handle this!
1082      return 0;
1083    }
1084  }
1085
1086  return UsedType;
1087}
1088
1089/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
1090/// predicate and is non-trivial.  Convert it to something that can be trivially
1091/// promoted into a register by mem2reg.
1092void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
1093  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
1094       << *ActualTy << "\n";
1095  ++NumConverted;
1096
1097  BasicBlock *EntryBlock = AI->getParent();
1098  assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
1099         "Not in the entry block!");
1100  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
1101
1102  // Create and insert the alloca.
1103  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
1104                                     EntryBlock->begin());
1105  ConvertUsesToScalar(AI, NewAI, 0);
1106  delete AI;
1107}
1108
1109
1110/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
1111/// directly.  This happens when we are converting an "integer union" to a
1112/// single integer scalar, or when we are converting a "vector union" to a
1113/// vector with insert/extractelement instructions.
1114///
1115/// Offset is an offset from the original alloca, in bits that need to be
1116/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1117void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
1118  while (!Ptr->use_empty()) {
1119    Instruction *User = cast<Instruction>(Ptr->use_back());
1120
1121    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1122      Value *NV = ConvertUsesOfLoadToScalar(LI, NewAI, Offset);
1123      LI->replaceAllUsesWith(NV);
1124      LI->eraseFromParent();
1125    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1126      assert(SI->getOperand(0) != Ptr && "Consistency error!");
1127
1128      Value *SV = ConvertUsesOfStoreToScalar(SI, NewAI, Offset);
1129      new StoreInst(SV, NewAI, SI);
1130      SI->eraseFromParent();
1131
1132    } else if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
1133      ConvertUsesToScalar(CI, NewAI, Offset);
1134      CI->eraseFromParent();
1135    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
1136      const PointerType *AggPtrTy =
1137        cast<PointerType>(GEP->getOperand(0)->getType());
1138      const TargetData &TD = getAnalysis<TargetData>();
1139      unsigned AggSizeInBits =
1140        TD.getABITypeSizeInBits(AggPtrTy->getElementType());
1141
1142      // Check to see if this is stepping over an element: GEP Ptr, int C
1143      unsigned NewOffset = Offset;
1144      if (GEP->getNumOperands() == 2) {
1145        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
1146        unsigned BitOffset = Idx*AggSizeInBits;
1147
1148        NewOffset += BitOffset;
1149      } else if (GEP->getNumOperands() == 3) {
1150        // We know that operand #2 is zero.
1151        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
1152        const Type *AggTy = AggPtrTy->getElementType();
1153        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
1154          unsigned ElSizeBits =
1155            TD.getABITypeSizeInBits(SeqTy->getElementType());
1156
1157          NewOffset += ElSizeBits*Idx;
1158        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
1159          unsigned EltBitOffset =
1160            TD.getStructLayout(STy)->getElementOffsetInBits(Idx);
1161
1162          NewOffset += EltBitOffset;
1163        } else {
1164          assert(0 && "Unsupported operation!");
1165          abort();
1166        }
1167      } else {
1168        assert(0 && "Unsupported operation!");
1169        abort();
1170      }
1171      ConvertUsesToScalar(GEP, NewAI, NewOffset);
1172      GEP->eraseFromParent();
1173    } else {
1174      assert(0 && "Unsupported operation!");
1175      abort();
1176    }
1177  }
1178}
1179
1180/// ConvertUsesOfLoadToScalar - Convert all of the users the specified load to
1181/// use the new alloca directly, returning the value that should replace the
1182/// load.  This happens when we are converting an "integer union" to a
1183/// single integer scalar, or when we are converting a "vector union" to a
1184/// vector with insert/extractelement instructions.
1185///
1186/// Offset is an offset from the original alloca, in bits that need to be
1187/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1188Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
1189                                       unsigned Offset) {
1190  // The load is a bit extract from NewAI shifted right by Offset bits.
1191  Value *NV = new LoadInst(NewAI, LI->getName(), LI);
1192
1193  if (NV->getType() == LI->getType() && Offset == 0) {
1194    // We win, no conversion needed.
1195    return NV;
1196  }
1197
1198  // If the result type of the 'union' is a pointer, then this must be ptr->ptr
1199  // cast.  Anything else would result in NV being an integer.
1200  if (isa<PointerType>(NV->getType())) {
1201    assert(isa<PointerType>(LI->getType()));
1202    return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1203  }
1204
1205  if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
1206    // If the result alloca is a vector type, this is either an element
1207    // access or a bitcast to another vector type.
1208    if (isa<VectorType>(LI->getType()))
1209      return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1210
1211    // Otherwise it must be an element access.
1212    const TargetData &TD = getAnalysis<TargetData>();
1213    unsigned Elt = 0;
1214    if (Offset) {
1215      unsigned EltSize = TD.getABITypeSizeInBits(VTy->getElementType());
1216      Elt = Offset/EltSize;
1217      Offset -= EltSize*Elt;
1218    }
1219    NV = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
1220                                "tmp", LI);
1221
1222    // If we're done, return this element.
1223    if (NV->getType() == LI->getType() && Offset == 0)
1224      return NV;
1225  }
1226
1227  const IntegerType *NTy = cast<IntegerType>(NV->getType());
1228
1229  // If this is a big-endian system and the load is narrower than the
1230  // full alloca type, we need to do a shift to get the right bits.
1231  int ShAmt = 0;
1232  const TargetData &TD = getAnalysis<TargetData>();
1233  if (TD.isBigEndian()) {
1234    // On big-endian machines, the lowest bit is stored at the bit offset
1235    // from the pointer given by getTypeStoreSizeInBits.  This matters for
1236    // integers with a bitwidth that is not a multiple of 8.
1237    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
1238    TD.getTypeStoreSizeInBits(LI->getType()) - Offset;
1239  } else {
1240    ShAmt = Offset;
1241  }
1242
1243  // Note: we support negative bitwidths (with shl) which are not defined.
1244  // We do this to support (f.e.) loads off the end of a structure where
1245  // only some bits are used.
1246  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
1247    NV = BinaryOperator::CreateLShr(NV,
1248                                    ConstantInt::get(NV->getType(),ShAmt),
1249                                    LI->getName(), LI);
1250  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
1251    NV = BinaryOperator::CreateShl(NV,
1252                                   ConstantInt::get(NV->getType(),-ShAmt),
1253                                   LI->getName(), LI);
1254
1255  // Finally, unconditionally truncate the integer to the right width.
1256  unsigned LIBitWidth = TD.getTypeSizeInBits(LI->getType());
1257  if (LIBitWidth < NTy->getBitWidth())
1258    NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
1259                       LI->getName(), LI);
1260
1261  // If the result is an integer, this is a trunc or bitcast.
1262  if (isa<IntegerType>(LI->getType())) {
1263    // Should be done.
1264  } else if (LI->getType()->isFloatingPoint()) {
1265    // Just do a bitcast, we know the sizes match up.
1266    NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
1267  } else {
1268    // Otherwise must be a pointer.
1269    NV = new IntToPtrInst(NV, LI->getType(), LI->getName(), LI);
1270  }
1271  assert(NV->getType() == LI->getType() && "Didn't convert right?");
1272  return NV;
1273}
1274
1275
1276/// ConvertUsesOfStoreToScalar - Convert the specified store to a load+store
1277/// pair of the new alloca directly, returning the value that should be stored
1278/// to the alloca.  This happens when we are converting an "integer union" to a
1279/// single integer scalar, or when we are converting a "vector union" to a
1280/// vector with insert/extractelement instructions.
1281///
1282/// Offset is an offset from the original alloca, in bits that need to be
1283/// shifted to the right.  By the end of this, there should be no uses of Ptr.
1284Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI,
1285                                        unsigned Offset) {
1286
1287  // Convert the stored type to the actual type, shift it left to insert
1288  // then 'or' into place.
1289  Value *SV = SI->getOperand(0);
1290  const Type *AllocaType = NewAI->getType()->getElementType();
1291  if (SV->getType() == AllocaType && Offset == 0) {
1292    // All is well.
1293  } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
1294    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1295
1296    // If the result alloca is a vector type, this is either an element
1297    // access or a bitcast to another vector type.
1298    if (isa<VectorType>(SV->getType())) {
1299      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1300    } else {
1301      // Must be an element insertion.
1302      const TargetData &TD = getAnalysis<TargetData>();
1303      unsigned Elt = Offset/TD.getABITypeSizeInBits(PTy->getElementType());
1304      SV = InsertElementInst::Create(Old, SV,
1305                                     ConstantInt::get(Type::Int32Ty, Elt),
1306                                     "tmp", SI);
1307    }
1308  } else if (isa<PointerType>(AllocaType)) {
1309    // If the alloca type is a pointer, then all the elements must be
1310    // pointers.
1311    if (SV->getType() != AllocaType)
1312      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
1313  } else {
1314    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
1315
1316    // If SV is a float, convert it to the appropriate integer type.
1317    // If it is a pointer, do the same, and also handle ptr->ptr casts
1318    // here.
1319    const TargetData &TD = getAnalysis<TargetData>();
1320    unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
1321    unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
1322    unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
1323    unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
1324    if (SV->getType()->isFloatingPoint())
1325      SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
1326                           SV->getName(), SI);
1327    else if (isa<PointerType>(SV->getType()))
1328      SV = new PtrToIntInst(SV, TD.getIntPtrType(), SV->getName(), SI);
1329
1330    // Always zero extend the value if needed.
1331    if (SV->getType() != AllocaType)
1332      SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
1333
1334    // If this is a big-endian system and the store is narrower than the
1335    // full alloca type, we need to do a shift to get the right bits.
1336    int ShAmt = 0;
1337    if (TD.isBigEndian()) {
1338      // On big-endian machines, the lowest bit is stored at the bit offset
1339      // from the pointer given by getTypeStoreSizeInBits.  This matters for
1340      // integers with a bitwidth that is not a multiple of 8.
1341      ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
1342    } else {
1343      ShAmt = Offset;
1344    }
1345
1346    // Note: we support negative bitwidths (with shr) which are not defined.
1347    // We do this to support (f.e.) stores off the end of a structure where
1348    // only some bits in the structure are set.
1349    APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
1350    if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
1351      SV = BinaryOperator::CreateShl(SV,
1352                                     ConstantInt::get(SV->getType(), ShAmt),
1353                                     SV->getName(), SI);
1354      Mask <<= ShAmt;
1355    } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
1356      SV = BinaryOperator::CreateLShr(SV,
1357                                      ConstantInt::get(SV->getType(),-ShAmt),
1358                                      SV->getName(), SI);
1359      Mask = Mask.lshr(ShAmt);
1360    }
1361
1362    // Mask out the bits we are about to insert from the old value, and or
1363    // in the new bits.
1364    if (SrcWidth != DestWidth) {
1365      assert(DestWidth > SrcWidth);
1366      Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
1367                                      Old->getName()+".mask", SI);
1368      SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI);
1369    }
1370  }
1371  return SV;
1372}
1373
1374
1375
1376/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1377/// some part of a constant global variable.  This intentionally only accepts
1378/// constant expressions because we don't can't rewrite arbitrary instructions.
1379static bool PointsToConstantGlobal(Value *V) {
1380  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1381    return GV->isConstant();
1382  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1383    if (CE->getOpcode() == Instruction::BitCast ||
1384        CE->getOpcode() == Instruction::GetElementPtr)
1385      return PointsToConstantGlobal(CE->getOperand(0));
1386  return false;
1387}
1388
1389/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1390/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1391/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1392/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1393/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1394/// the alloca, and if the source pointer is a pointer to a constant  global, we
1395/// can optimize this.
1396static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
1397                                           bool isOffset) {
1398  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1399    if (isa<LoadInst>(*UI)) {
1400      // Ignore loads, they are always ok.
1401      continue;
1402    }
1403    if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
1404      // If uses of the bitcast are ok, we are ok.
1405      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1406        return false;
1407      continue;
1408    }
1409    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
1410      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1411      // doesn't, it does.
1412      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1413                                         isOffset || !GEP->hasAllZeroIndices()))
1414        return false;
1415      continue;
1416    }
1417
1418    // If this is isn't our memcpy/memmove, reject it as something we can't
1419    // handle.
1420    if (!isa<MemCpyInst>(*UI) && !isa<MemMoveInst>(*UI))
1421      return false;
1422
1423    // If we already have seen a copy, reject the second one.
1424    if (TheCopy) return false;
1425
1426    // If the pointer has been offset from the start of the alloca, we can't
1427    // safely handle this.
1428    if (isOffset) return false;
1429
1430    // If the memintrinsic isn't using the alloca as the dest, reject it.
1431    if (UI.getOperandNo() != 1) return false;
1432
1433    MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
1434
1435    // If the source of the memcpy/move is not a constant global, reject it.
1436    if (!PointsToConstantGlobal(MI->getOperand(2)))
1437      return false;
1438
1439    // Otherwise, the transform is safe.  Remember the copy instruction.
1440    TheCopy = MI;
1441  }
1442  return true;
1443}
1444
1445/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
1446/// modified by a copy from a constant global.  If we can prove this, we can
1447/// replace any uses of the alloca with uses of the global directly.
1448Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocationInst *AI) {
1449  Instruction *TheCopy = 0;
1450  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
1451    return TheCopy;
1452  return 0;
1453}
1454