ScalarReplAggregates.cpp revision df4f226cdcbe853984ddda10aa0d53590d35b97e
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#include "llvm/Transforms/Scalar.h"
23#include "llvm/Constants.h"
24#include "llvm/DerivedTypes.h"
25#include "llvm/Function.h"
26#include "llvm/Pass.h"
27#include "llvm/Instructions.h"
28#include "llvm/Analysis/Dominators.h"
29#include "llvm/Target/TargetData.h"
30#include "llvm/Transforms/Utils/PromoteMemToReg.h"
31#include "llvm/Support/GetElementPtrTypeIterator.h"
32#include "llvm/Support/MathExtras.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringExtras.h"
36#include <iostream>
37using namespace llvm;
38
39namespace {
40  Statistic<> NumReplaced("scalarrepl", "Number of allocas broken up");
41  Statistic<> NumPromoted("scalarrepl", "Number of allocas promoted");
42  Statistic<> NumConverted("scalarrepl",
43                           "Number of aggregates converted to scalar");
44
45  struct SROA : public FunctionPass {
46    bool runOnFunction(Function &F);
47
48    bool performScalarRepl(Function &F);
49    bool performPromotion(Function &F);
50
51    // getAnalysisUsage - This pass does not require any passes, but we know it
52    // will not alter the CFG, so say so.
53    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
54      AU.addRequired<DominatorTree>();
55      AU.addRequired<DominanceFrontier>();
56      AU.addRequired<TargetData>();
57      AU.setPreservesCFG();
58    }
59
60  private:
61    int isSafeElementUse(Value *Ptr);
62    int isSafeUseOfAllocation(Instruction *User);
63    int isSafeAllocaToScalarRepl(AllocationInst *AI);
64    void CanonicalizeAllocaUsers(AllocationInst *AI);
65    AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocationInst *Base);
66
67    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
68    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
69    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
70  };
71
72  RegisterOpt<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
73}
74
75// Public interface to the ScalarReplAggregates pass
76FunctionPass *llvm::createScalarReplAggregatesPass() { return new SROA(); }
77
78
79bool SROA::runOnFunction(Function &F) {
80  bool Changed = performPromotion(F);
81  while (1) {
82    bool LocalChange = performScalarRepl(F);
83    if (!LocalChange) break;   // No need to repromote if no scalarrepl
84    Changed = true;
85    LocalChange = performPromotion(F);
86    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
87  }
88
89  return Changed;
90}
91
92
93bool SROA::performPromotion(Function &F) {
94  std::vector<AllocaInst*> Allocas;
95  const TargetData &TD = getAnalysis<TargetData>();
96  DominatorTree     &DT = getAnalysis<DominatorTree>();
97  DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
98
99  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
100
101  bool Changed = false;
102
103  while (1) {
104    Allocas.clear();
105
106    // Find allocas that are safe to promote, by looking at all instructions in
107    // the entry node
108    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
109      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
110        if (isAllocaPromotable(AI, TD))
111          Allocas.push_back(AI);
112
113    if (Allocas.empty()) break;
114
115    PromoteMemToReg(Allocas, DT, DF, TD);
116    NumPromoted += Allocas.size();
117    Changed = true;
118  }
119
120  return Changed;
121}
122
123// performScalarRepl - This algorithm is a simple worklist driven algorithm,
124// which runs on all of the malloc/alloca instructions in the function, removing
125// them if they are only used by getelementptr instructions.
126//
127bool SROA::performScalarRepl(Function &F) {
128  std::vector<AllocationInst*> WorkList;
129
130  // Scan the entry basic block, adding any alloca's and mallocs to the worklist
131  BasicBlock &BB = F.getEntryBlock();
132  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
133    if (AllocationInst *A = dyn_cast<AllocationInst>(I))
134      WorkList.push_back(A);
135
136  // Process the worklist
137  bool Changed = false;
138  while (!WorkList.empty()) {
139    AllocationInst *AI = WorkList.back();
140    WorkList.pop_back();
141
142    // If we can turn this aggregate value (potentially with casts) into a
143    // simple scalar value that can be mem2reg'd into a register value.
144    bool IsNotTrivial = false;
145    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
146      if (IsNotTrivial && ActualType != Type::VoidTy) {
147        ConvertToScalar(AI, ActualType);
148        Changed = true;
149        continue;
150      }
151
152    // We cannot transform the allocation instruction if it is an array
153    // allocation (allocations OF arrays are ok though), and an allocation of a
154    // scalar value cannot be decomposed at all.
155    //
156    if (AI->isArrayAllocation() ||
157        (!isa<StructType>(AI->getAllocatedType()) &&
158         !isa<ArrayType>(AI->getAllocatedType()))) continue;
159
160    // Check that all of the users of the allocation are capable of being
161    // transformed.
162    switch (isSafeAllocaToScalarRepl(AI)) {
163    default: assert(0 && "Unexpected value!");
164    case 0:  // Not safe to scalar replace.
165      continue;
166    case 1:  // Safe, but requires cleanup/canonicalizations first
167      CanonicalizeAllocaUsers(AI);
168    case 3:  // Safe to scalar replace.
169      break;
170    }
171
172    DEBUG(std::cerr << "Found inst to xform: " << *AI);
173    Changed = true;
174
175    std::vector<AllocaInst*> ElementAllocas;
176    if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
177      ElementAllocas.reserve(ST->getNumContainedTypes());
178      for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
179        AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
180                                        AI->getAlignment(),
181                                        AI->getName() + "." + utostr(i), AI);
182        ElementAllocas.push_back(NA);
183        WorkList.push_back(NA);  // Add to worklist for recursive processing
184      }
185    } else {
186      const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
187      ElementAllocas.reserve(AT->getNumElements());
188      const Type *ElTy = AT->getElementType();
189      for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
190        AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
191                                        AI->getName() + "." + utostr(i), AI);
192        ElementAllocas.push_back(NA);
193        WorkList.push_back(NA);  // Add to worklist for recursive processing
194      }
195    }
196
197    // Now that we have created the alloca instructions that we want to use,
198    // expand the getelementptr instructions to use them.
199    //
200    while (!AI->use_empty()) {
201      Instruction *User = cast<Instruction>(AI->use_back());
202      GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
203      // We now know that the GEP is of the form: GEP <ptr>, 0, <cst>
204      unsigned Idx =
205         (unsigned)cast<ConstantInt>(GEPI->getOperand(2))->getRawValue();
206
207      assert(Idx < ElementAllocas.size() && "Index out of range?");
208      AllocaInst *AllocaToUse = ElementAllocas[Idx];
209
210      Value *RepValue;
211      if (GEPI->getNumOperands() == 3) {
212        // Do not insert a new getelementptr instruction with zero indices, only
213        // to have it optimized out later.
214        RepValue = AllocaToUse;
215      } else {
216        // We are indexing deeply into the structure, so we still need a
217        // getelement ptr instruction to finish the indexing.  This may be
218        // expanded itself once the worklist is rerun.
219        //
220        std::string OldName = GEPI->getName();  // Steal the old name.
221        std::vector<Value*> NewArgs;
222        NewArgs.push_back(Constant::getNullValue(Type::IntTy));
223        NewArgs.insert(NewArgs.end(), GEPI->op_begin()+3, GEPI->op_end());
224        GEPI->setName("");
225        RepValue = new GetElementPtrInst(AllocaToUse, NewArgs, OldName, GEPI);
226      }
227
228      // Move all of the users over to the new GEP.
229      GEPI->replaceAllUsesWith(RepValue);
230      // Delete the old GEP
231      GEPI->eraseFromParent();
232    }
233
234    // Finally, delete the Alloca instruction
235    AI->getParent()->getInstList().erase(AI);
236    NumReplaced++;
237  }
238
239  return Changed;
240}
241
242
243/// isSafeElementUse - Check to see if this use is an allowed use for a
244/// getelementptr instruction of an array aggregate allocation.
245///
246int SROA::isSafeElementUse(Value *Ptr) {
247  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
248       I != E; ++I) {
249    Instruction *User = cast<Instruction>(*I);
250    switch (User->getOpcode()) {
251    case Instruction::Load:  break;
252    case Instruction::Store:
253      // Store is ok if storing INTO the pointer, not storing the pointer
254      if (User->getOperand(0) == Ptr) return 0;
255      break;
256    case Instruction::GetElementPtr: {
257      GetElementPtrInst *GEP = cast<GetElementPtrInst>(User);
258      if (GEP->getNumOperands() > 1) {
259        if (!isa<Constant>(GEP->getOperand(1)) ||
260            !cast<Constant>(GEP->getOperand(1))->isNullValue())
261          return 0;  // Using pointer arithmetic to navigate the array...
262      }
263      if (!isSafeElementUse(GEP)) return 0;
264      break;
265    }
266    default:
267      DEBUG(std::cerr << "  Transformation preventing inst: " << *User);
268      return 0;
269    }
270  }
271  return 3;  // All users look ok :)
272}
273
274/// AllUsersAreLoads - Return true if all users of this value are loads.
275static bool AllUsersAreLoads(Value *Ptr) {
276  for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
277       I != E; ++I)
278    if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
279      return false;
280  return true;
281}
282
283/// isSafeUseOfAllocation - Check to see if this user is an allowed use for an
284/// aggregate allocation.
285///
286int SROA::isSafeUseOfAllocation(Instruction *User) {
287  if (!isa<GetElementPtrInst>(User)) return 0;
288
289  GetElementPtrInst *GEPI = cast<GetElementPtrInst>(User);
290  gep_type_iterator I = gep_type_begin(GEPI), E = gep_type_end(GEPI);
291
292  // The GEP is not safe to transform if not of the form "GEP <ptr>, 0, <cst>".
293  if (I == E ||
294      I.getOperand() != Constant::getNullValue(I.getOperand()->getType()))
295    return 0;
296
297  ++I;
298  if (I == E) return 0;  // ran out of GEP indices??
299
300  // If this is a use of an array allocation, do a bit more checking for sanity.
301  if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
302    uint64_t NumElements = AT->getNumElements();
303
304    if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
305      // Check to make sure that index falls within the array.  If not,
306      // something funny is going on, so we won't do the optimization.
307      //
308      if (cast<ConstantInt>(GEPI->getOperand(2))->getRawValue() >= NumElements)
309        return 0;
310
311      // We cannot scalar repl this level of the array unless any array
312      // sub-indices are in-range constants.  In particular, consider:
313      // A[0][i].  We cannot know that the user isn't doing invalid things like
314      // allowing i to index an out-of-range subscript that accesses A[1].
315      //
316      // Scalar replacing *just* the outer index of the array is probably not
317      // going to be a win anyway, so just give up.
318      for (++I; I != E && isa<ArrayType>(*I); ++I) {
319        const ArrayType *SubArrayTy = cast<ArrayType>(*I);
320        uint64_t NumElements = SubArrayTy->getNumElements();
321        if (!isa<ConstantInt>(I.getOperand())) return 0;
322        if (cast<ConstantInt>(I.getOperand())->getRawValue() >= NumElements)
323          return 0;
324      }
325
326    } else {
327      // If this is an array index and the index is not constant, we cannot
328      // promote... that is unless the array has exactly one or two elements in
329      // it, in which case we CAN promote it, but we have to canonicalize this
330      // out if this is the only problem.
331      if ((NumElements == 1 || NumElements == 2) &&
332          AllUsersAreLoads(GEPI))
333        return 1;  // Canonicalization required!
334      return 0;
335    }
336  }
337
338  // If there are any non-simple uses of this getelementptr, make sure to reject
339  // them.
340  return isSafeElementUse(GEPI);
341}
342
343/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
344/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
345/// or 1 if safe after canonicalization has been performed.
346///
347int SROA::isSafeAllocaToScalarRepl(AllocationInst *AI) {
348  // Loop over the use list of the alloca.  We can only transform it if all of
349  // the users are safe to transform.
350  //
351  int isSafe = 3;
352  for (Value::use_iterator I = AI->use_begin(), E = AI->use_end();
353       I != E; ++I) {
354    isSafe &= isSafeUseOfAllocation(cast<Instruction>(*I));
355    if (isSafe == 0) {
356      DEBUG(std::cerr << "Cannot transform: " << *AI << "  due to user: "
357            << **I);
358      return 0;
359    }
360  }
361  // If we require cleanup, isSafe is now 1, otherwise it is 3.
362  return isSafe;
363}
364
365/// CanonicalizeAllocaUsers - If SROA reported that it can promote the specified
366/// allocation, but only if cleaned up, perform the cleanups required.
367void SROA::CanonicalizeAllocaUsers(AllocationInst *AI) {
368  // At this point, we know that the end result will be SROA'd and promoted, so
369  // we can insert ugly code if required so long as sroa+mem2reg will clean it
370  // up.
371  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
372       UI != E; ) {
373    GetElementPtrInst *GEPI = cast<GetElementPtrInst>(*UI++);
374    gep_type_iterator I = gep_type_begin(GEPI);
375    ++I;
376
377    if (const ArrayType *AT = dyn_cast<ArrayType>(*I)) {
378      uint64_t NumElements = AT->getNumElements();
379
380      if (!isa<ConstantInt>(I.getOperand())) {
381        if (NumElements == 1) {
382          GEPI->setOperand(2, Constant::getNullValue(Type::IntTy));
383        } else {
384          assert(NumElements == 2 && "Unhandled case!");
385          // All users of the GEP must be loads.  At each use of the GEP, insert
386          // two loads of the appropriate indexed GEP and select between them.
387          Value *IsOne = BinaryOperator::createSetNE(I.getOperand(),
388                              Constant::getNullValue(I.getOperand()->getType()),
389                                                     "isone", GEPI);
390          // Insert the new GEP instructions, which are properly indexed.
391          std::vector<Value*> Indices(GEPI->op_begin()+1, GEPI->op_end());
392          Indices[1] = Constant::getNullValue(Type::IntTy);
393          Value *ZeroIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
394                                                 GEPI->getName()+".0", GEPI);
395          Indices[1] = ConstantInt::get(Type::IntTy, 1);
396          Value *OneIdx = new GetElementPtrInst(GEPI->getOperand(0), Indices,
397                                                GEPI->getName()+".1", GEPI);
398          // Replace all loads of the variable index GEP with loads from both
399          // indexes and a select.
400          while (!GEPI->use_empty()) {
401            LoadInst *LI = cast<LoadInst>(GEPI->use_back());
402            Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
403            Value *One  = new LoadInst(OneIdx , LI->getName()+".1", LI);
404            Value *R = new SelectInst(IsOne, One, Zero, LI->getName(), LI);
405            LI->replaceAllUsesWith(R);
406            LI->eraseFromParent();
407          }
408          GEPI->eraseFromParent();
409        }
410      }
411    }
412  }
413}
414
415/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
416/// types are incompatible, return true, otherwise update Accum and return
417/// false.
418///
419/// There are two cases we handle here:
420///   1) An effectively integer union, where the pieces are stored into as
421///      smaller integers (common with byte swap and other idioms).
422///   2) A union of a vector and its elements.  Here we turn element accesses
423///      into insert/extract element operations.
424static bool MergeInType(const Type *In, const Type *&Accum) {
425  // If this is our first type, just use it.
426  const PackedType *PTy;
427  if (Accum == Type::VoidTy || In == Accum) {
428    Accum = In;
429  } else if (In->isIntegral() && Accum->isIntegral()) {   // integer union.
430    // Otherwise pick whichever type is larger.
431    if (In->getTypeID() > Accum->getTypeID())
432      Accum = In;
433  } else if ((PTy = dyn_cast<PackedType>(Accum)) &&
434             PTy->getElementType() == In) {
435    // Accum is a vector, and we are accessing an element: ok.
436  } else if ((PTy = dyn_cast<PackedType>(In)) &&
437             PTy->getElementType() == Accum) {
438    // In is a vector, and accum is an element: ok, remember In.
439    Accum = In;
440  } else {
441    return true;
442  }
443  return false;
444}
445
446/// getUIntAtLeastAsBitAs - Return an unsigned integer type that is at least
447/// as big as the specified type.  If there is no suitable type, this returns
448/// null.
449const Type *getUIntAtLeastAsBitAs(unsigned NumBits) {
450  if (NumBits > 64) return 0;
451  if (NumBits > 32) return Type::ULongTy;
452  if (NumBits > 16) return Type::UIntTy;
453  if (NumBits > 8) return Type::UShortTy;
454  return Type::UByteTy;
455}
456
457/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
458/// single scalar integer type, return that type.  Further, if the use is not
459/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
460/// there are no uses of this pointer, return Type::VoidTy to differentiate from
461/// failure.
462///
463const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
464  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
465  const TargetData &TD = getAnalysis<TargetData>();
466  const PointerType *PTy = cast<PointerType>(V->getType());
467
468  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
469    Instruction *User = cast<Instruction>(*UI);
470
471    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
472      if (MergeInType(LI->getType(), UsedType))
473        return 0;
474
475    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
476      // Storing the pointer, not the into the value?
477      if (SI->getOperand(0) == V) return 0;
478
479      // NOTE: We could handle storing of FP imms into integers here!
480
481      if (MergeInType(SI->getOperand(0)->getType(), UsedType))
482        return 0;
483    } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
484      if (!isa<PointerType>(CI->getType())) return 0;
485      IsNotTrivial = true;
486      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
487      if (!SubTy || MergeInType(SubTy, UsedType)) return 0;
488    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
489      // Check to see if this is stepping over an element: GEP Ptr, int C
490      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
491        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getRawValue();
492        unsigned ElSize = TD.getTypeSize(PTy->getElementType());
493        unsigned BitOffset = Idx*ElSize*8;
494        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
495
496        IsNotTrivial = true;
497        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
498        if (SubElt == 0) return 0;
499        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
500          const Type *NewTy =
501            getUIntAtLeastAsBitAs(SubElt->getPrimitiveSizeInBits()+BitOffset);
502          if (NewTy == 0 || MergeInType(NewTy, UsedType)) return 0;
503          continue;
504        }
505      } else if (GEP->getNumOperands() == 3 &&
506                 isa<ConstantInt>(GEP->getOperand(1)) &&
507                 isa<ConstantInt>(GEP->getOperand(2)) &&
508                 cast<Constant>(GEP->getOperand(1))->isNullValue()) {
509        // We are stepping into an element, e.g. a structure or an array:
510        // GEP Ptr, int 0, uint C
511        const Type *AggTy = PTy->getElementType();
512        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getRawValue();
513
514        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
515          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
516        } else if (const PackedType *PackedTy = dyn_cast<PackedType>(AggTy)) {
517          // Getting an element of the packed vector.
518          if (Idx >= PackedTy->getNumElements()) return 0;  // Out of range.
519
520          // Merge in the packed type.
521          if (MergeInType(PackedTy, UsedType)) return 0;
522
523          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
524          if (SubTy == 0) return 0;
525
526          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType))
527            return 0;
528
529          // We'll need to change this to an insert/extract element operation.
530          IsNotTrivial = true;
531          continue;    // Everything looks ok
532
533        } else if (isa<StructType>(AggTy)) {
534          // Structs are always ok.
535        } else {
536          return 0;
537        }
538        const Type *NTy = getUIntAtLeastAsBitAs(TD.getTypeSize(AggTy)*8);
539        if (NTy == 0 || MergeInType(NTy, UsedType)) return 0;
540        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
541        if (SubTy == 0) return 0;
542        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType))
543          return 0;
544        continue;    // Everything looks ok
545      }
546      return 0;
547    } else {
548      // Cannot handle this!
549      return 0;
550    }
551  }
552
553  return UsedType;
554}
555
556/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
557/// predicate and is non-trivial.  Convert it to something that can be trivially
558/// promoted into a register by mem2reg.
559void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
560  DEBUG(std::cerr << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
561                  << *ActualTy << "\n");
562  ++NumConverted;
563
564  BasicBlock *EntryBlock = AI->getParent();
565  assert(EntryBlock == &EntryBlock->getParent()->front() &&
566         "Not in the entry block!");
567  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
568
569  if (ActualTy->isInteger())
570    ActualTy = ActualTy->getUnsignedVersion();
571
572  // Create and insert the alloca.
573  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
574                                     EntryBlock->begin());
575  ConvertUsesToScalar(AI, NewAI, 0);
576  delete AI;
577}
578
579
580/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
581/// directly.  This happens when we are converting an "integer union" to a
582/// single integer scalar, or when we are converting a "vector union" to a
583/// vector with insert/extractelement instructions.
584///
585/// Offset is an offset from the original alloca, in bits that need to be
586/// shifted to the right.  By the end of this, there should be no uses of Ptr.
587void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
588  bool isVectorInsert = isa<PackedType>(NewAI->getType()->getElementType());
589  while (!Ptr->use_empty()) {
590    Instruction *User = cast<Instruction>(Ptr->use_back());
591
592    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
593      // The load is a bit extract from NewAI shifted right by Offset bits.
594      Value *NV = new LoadInst(NewAI, LI->getName(), LI);
595      if (NV->getType() != LI->getType()) {
596        if (const PackedType *PTy = dyn_cast<PackedType>(NV->getType())) {
597          // Must be an element access.
598          unsigned Elt = Offset/PTy->getElementType()->getPrimitiveSizeInBits();
599          NV = new ExtractElementInst(NV, ConstantUInt::get(Type::UIntTy, Elt),
600                                      "tmp", LI);
601        } else {
602          assert(NV->getType()->isInteger() && "Unknown promotion!");
603          if (Offset && Offset < NV->getType()->getPrimitiveSizeInBits())
604            NV = new ShiftInst(Instruction::Shr, NV,
605                               ConstantUInt::get(Type::UByteTy, Offset),
606                               LI->getName(), LI);
607          NV = new CastInst(NV, LI->getType(), LI->getName(), LI);
608        }
609      }
610      LI->replaceAllUsesWith(NV);
611      LI->eraseFromParent();
612    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
613      assert(SI->getOperand(0) != Ptr && "Consistency error!");
614
615      // Convert the stored type to the actual type, shift it left to insert
616      // then 'or' into place.
617      Value *SV = SI->getOperand(0);
618      const Type *AllocaType = NewAI->getType()->getElementType();
619      if (SV->getType() != AllocaType) {
620        Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
621
622        if (const PackedType *PTy = dyn_cast<PackedType>(AllocaType)) {
623          // Must be an element insertion.
624          unsigned Elt = Offset/PTy->getElementType()->getPrimitiveSizeInBits();
625          SV = new InsertElementInst(Old, SV,
626                                     ConstantUInt::get(Type::UIntTy, Elt),
627                                     "tmp", SI);
628        } else {
629          // If SV is signed, convert it to unsigned, so that the next cast zero
630          // extends the value.
631          if (SV->getType()->isSigned())
632            SV = new CastInst(SV, SV->getType()->getUnsignedVersion(),
633                              SV->getName(), SI);
634          SV = new CastInst(SV, Old->getType(), SV->getName(), SI);
635          if (Offset && Offset < SV->getType()->getPrimitiveSizeInBits())
636            SV = new ShiftInst(Instruction::Shl, SV,
637                               ConstantUInt::get(Type::UByteTy, Offset),
638                               SV->getName()+".adj", SI);
639          // Mask out the bits we are about to insert from the old value.
640          unsigned TotalBits = SV->getType()->getPrimitiveSizeInBits();
641          unsigned InsertBits =
642            SI->getOperand(0)->getType()->getPrimitiveSizeInBits();
643          if (TotalBits != InsertBits) {
644            assert(TotalBits > InsertBits);
645            uint64_t Mask = ~(((1ULL << InsertBits)-1) << Offset);
646            if (TotalBits != 64)
647              Mask = Mask & ((1ULL << TotalBits)-1);
648            Old = BinaryOperator::createAnd(Old,
649                                        ConstantUInt::get(Old->getType(), Mask),
650                                            Old->getName()+".mask", SI);
651            SV = BinaryOperator::createOr(Old, SV, SV->getName()+".ins", SI);
652          }
653        }
654      }
655      new StoreInst(SV, NewAI, SI);
656      SI->eraseFromParent();
657
658    } else if (CastInst *CI = dyn_cast<CastInst>(User)) {
659      unsigned NewOff = Offset;
660      const TargetData &TD = getAnalysis<TargetData>();
661      if (TD.isBigEndian() && !isVectorInsert) {
662        // Adjust the pointer.  For example, storing 16-bits into a 32-bit
663        // alloca with just a cast makes it modify the top 16-bits.
664        const Type *SrcTy = cast<PointerType>(Ptr->getType())->getElementType();
665        const Type *DstTy = cast<PointerType>(CI->getType())->getElementType();
666        int PtrDiffBits = TD.getTypeSize(SrcTy)*8-TD.getTypeSize(DstTy)*8;
667        NewOff += PtrDiffBits;
668      }
669      ConvertUsesToScalar(CI, NewAI, NewOff);
670      CI->eraseFromParent();
671    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
672      const PointerType *AggPtrTy =
673        cast<PointerType>(GEP->getOperand(0)->getType());
674      const TargetData &TD = getAnalysis<TargetData>();
675      unsigned AggSizeInBits = TD.getTypeSize(AggPtrTy->getElementType())*8;
676
677      // Check to see if this is stepping over an element: GEP Ptr, int C
678      unsigned NewOffset = Offset;
679      if (GEP->getNumOperands() == 2) {
680        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getRawValue();
681        unsigned BitOffset = Idx*AggSizeInBits;
682
683        if (TD.isLittleEndian() || isVectorInsert)
684          NewOffset += BitOffset;
685        else
686          NewOffset -= BitOffset;
687
688      } else if (GEP->getNumOperands() == 3) {
689        // We know that operand #2 is zero.
690        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getRawValue();
691        const Type *AggTy = AggPtrTy->getElementType();
692        if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
693          unsigned ElSizeBits = TD.getTypeSize(SeqTy->getElementType())*8;
694
695          if (TD.isLittleEndian() || isVectorInsert)
696            NewOffset += ElSizeBits*Idx;
697          else
698            NewOffset += AggSizeInBits-ElSizeBits*(Idx+1);
699        } else if (const StructType *STy = dyn_cast<StructType>(AggTy)) {
700          unsigned EltBitOffset = TD.getStructLayout(STy)->MemberOffsets[Idx]*8;
701
702          if (TD.isLittleEndian() || isVectorInsert)
703            NewOffset += EltBitOffset;
704          else {
705            const PointerType *ElPtrTy = cast<PointerType>(GEP->getType());
706            unsigned ElSizeBits = TD.getTypeSize(ElPtrTy->getElementType())*8;
707            NewOffset += AggSizeInBits-(EltBitOffset+ElSizeBits);
708          }
709
710        } else {
711          assert(0 && "Unsupported operation!");
712          abort();
713        }
714      } else {
715        assert(0 && "Unsupported operation!");
716        abort();
717      }
718      ConvertUsesToScalar(GEP, NewAI, NewOffset);
719      GEP->eraseFromParent();
720    } else {
721      assert(0 && "Unsupported operation!");
722      abort();
723    }
724  }
725}
726