ScalarReplAggregates.cpp revision e0a1a5ba91df6817f9ffae7af65ed0bda66f7620
1//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation.  This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
13// each member (if possible).  Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs.  As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
19//
20//===----------------------------------------------------------------------===//
21
22#define DEBUG_TYPE "scalarrepl"
23#include "llvm/Transforms/Scalar.h"
24#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
26#include "llvm/Function.h"
27#include "llvm/GlobalVariable.h"
28#include "llvm/Instructions.h"
29#include "llvm/IntrinsicInst.h"
30#include "llvm/LLVMContext.h"
31#include "llvm/Module.h"
32#include "llvm/Pass.h"
33#include "llvm/Analysis/DominanceFrontier.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/Target/TargetData.h"
36#include "llvm/Transforms/Utils/PromoteMemToReg.h"
37#include "llvm/Transforms/Utils/Local.h"
38#include "llvm/Transforms/Utils/SSAUpdater.h"
39#include "llvm/Support/CallSite.h"
40#include "llvm/Support/Debug.h"
41#include "llvm/Support/ErrorHandling.h"
42#include "llvm/Support/GetElementPtrTypeIterator.h"
43#include "llvm/Support/IRBuilder.h"
44#include "llvm/Support/MathExtras.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/ADT/Statistic.h"
48using namespace llvm;
49
50STATISTIC(NumReplaced,  "Number of allocas broken up");
51STATISTIC(NumPromoted,  "Number of allocas promoted");
52STATISTIC(NumConverted, "Number of aggregates converted to scalar");
53STATISTIC(NumGlobals,   "Number of allocas copied from constant global");
54
55enum {
56  UsePromoteMemToReg = 1
57};
58
59namespace {
60  struct SROA : public FunctionPass {
61    static char ID; // Pass identification, replacement for typeid
62    explicit SROA(signed T = -1) : FunctionPass(ID) {
63      initializeSROAPass(*PassRegistry::getPassRegistry());
64      if (T == -1)
65        SRThreshold = 128;
66      else
67        SRThreshold = T;
68    }
69
70    bool runOnFunction(Function &F);
71
72    bool performScalarRepl(Function &F);
73    bool performPromotion(Function &F);
74
75    // getAnalysisUsage - This pass does not require any passes, but we know it
76    // will not alter the CFG, so say so.
77    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78      if (UsePromoteMemToReg) {
79        AU.addRequired<DominatorTree>();
80        AU.addRequired<DominanceFrontier>();
81      }
82      AU.setPreservesCFG();
83    }
84
85  private:
86    TargetData *TD;
87
88    /// DeadInsts - Keep track of instructions we have made dead, so that
89    /// we can remove them after we are done working.
90    SmallVector<Value*, 32> DeadInsts;
91
92    /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
93    /// information about the uses.  All these fields are initialized to false
94    /// and set to true when something is learned.
95    struct AllocaInfo {
96      /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
97      bool isUnsafe : 1;
98
99      /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
100      bool isMemCpySrc : 1;
101
102      /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
103      bool isMemCpyDst : 1;
104
105      AllocaInfo()
106        : isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false) {}
107    };
108
109    unsigned SRThreshold;
110
111    void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
112
113    bool isSafeAllocaToScalarRepl(AllocaInst *AI);
114
115    void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
116                             AllocaInfo &Info);
117    void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
118                   AllocaInfo &Info);
119    void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
120                         const Type *MemOpType, bool isStore, AllocaInfo &Info);
121    bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
122    uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
123                                  const Type *&IdxTy);
124
125    void DoScalarReplacement(AllocaInst *AI,
126                             std::vector<AllocaInst*> &WorkList);
127    void DeleteDeadInstructions();
128
129    void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
130                              SmallVector<AllocaInst*, 32> &NewElts);
131    void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
132                        SmallVector<AllocaInst*, 32> &NewElts);
133    void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
134                    SmallVector<AllocaInst*, 32> &NewElts);
135    void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
136                                      AllocaInst *AI,
137                                      SmallVector<AllocaInst*, 32> &NewElts);
138    void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
139                                       SmallVector<AllocaInst*, 32> &NewElts);
140    void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
141                                      SmallVector<AllocaInst*, 32> &NewElts);
142
143    static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
144  };
145}
146
147char SROA::ID = 0;
148INITIALIZE_PASS_BEGIN(SROA, "scalarrepl",
149                "Scalar Replacement of Aggregates", false, false)
150INITIALIZE_PASS_DEPENDENCY(DominatorTree)
151INITIALIZE_PASS_DEPENDENCY(DominanceFrontier)
152INITIALIZE_PASS_END(SROA, "scalarrepl",
153                "Scalar Replacement of Aggregates", false, false)
154
155// Public interface to the ScalarReplAggregates pass
156FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
157  return new SROA(Threshold);
158}
159
160
161//===----------------------------------------------------------------------===//
162// Convert To Scalar Optimization.
163//===----------------------------------------------------------------------===//
164
165namespace {
166/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
167/// optimization, which scans the uses of an alloca and determines if it can
168/// rewrite it in terms of a single new alloca that can be mem2reg'd.
169class ConvertToScalarInfo {
170  /// AllocaSize - The size of the alloca being considered.
171  unsigned AllocaSize;
172  const TargetData &TD;
173
174  /// IsNotTrivial - This is set to true if there is some access to the object
175  /// which means that mem2reg can't promote it.
176  bool IsNotTrivial;
177
178  /// VectorTy - This tracks the type that we should promote the vector to if
179  /// it is possible to turn it into a vector.  This starts out null, and if it
180  /// isn't possible to turn into a vector type, it gets set to VoidTy.
181  const Type *VectorTy;
182
183  /// HadAVector - True if there is at least one vector access to the alloca.
184  /// We don't want to turn random arrays into vectors and use vector element
185  /// insert/extract, but if there are element accesses to something that is
186  /// also declared as a vector, we do want to promote to a vector.
187  bool HadAVector;
188
189public:
190  explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
191    : AllocaSize(Size), TD(td) {
192    IsNotTrivial = false;
193    VectorTy = 0;
194    HadAVector = false;
195  }
196
197  AllocaInst *TryConvert(AllocaInst *AI);
198
199private:
200  bool CanConvertToScalar(Value *V, uint64_t Offset);
201  void MergeInType(const Type *In, uint64_t Offset);
202  void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
203
204  Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
205                                    uint64_t Offset, IRBuilder<> &Builder);
206  Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
207                                   uint64_t Offset, IRBuilder<> &Builder);
208};
209} // end anonymous namespace.
210
211
212/// IsVerbotenVectorType - Return true if this is a vector type ScalarRepl isn't
213/// allowed to form.  We do this to avoid MMX types, which is a complete hack,
214/// but is required until the backend is fixed.
215static bool IsVerbotenVectorType(const VectorType *VTy, const Instruction *I) {
216  StringRef Triple(I->getParent()->getParent()->getParent()->getTargetTriple());
217  if (!Triple.startswith("i386") &&
218      !Triple.startswith("x86_64"))
219    return false;
220
221  // Reject all the MMX vector types.
222  switch (VTy->getNumElements()) {
223  default: return false;
224  case 1: return VTy->getElementType()->isIntegerTy(64);
225  case 2: return VTy->getElementType()->isIntegerTy(32);
226  case 4: return VTy->getElementType()->isIntegerTy(16);
227  case 8: return VTy->getElementType()->isIntegerTy(8);
228  }
229}
230
231
232/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
233/// rewrite it to be a new alloca which is mem2reg'able.  This returns the new
234/// alloca if possible or null if not.
235AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
236  // If we can't convert this scalar, or if mem2reg can trivially do it, bail
237  // out.
238  if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
239    return 0;
240
241  // If we were able to find a vector type that can handle this with
242  // insert/extract elements, and if there was at least one use that had
243  // a vector type, promote this to a vector.  We don't want to promote
244  // random stuff that doesn't use vectors (e.g. <9 x double>) because then
245  // we just get a lot of insert/extracts.  If at least one vector is
246  // involved, then we probably really do have a union of vector/array.
247  const Type *NewTy;
248  if (VectorTy && VectorTy->isVectorTy() && HadAVector &&
249      !IsVerbotenVectorType(cast<VectorType>(VectorTy), AI)) {
250    DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n  TYPE = "
251          << *VectorTy << '\n');
252    NewTy = VectorTy;  // Use the vector type.
253  } else {
254    DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
255    // Create and insert the integer alloca.
256    NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
257  }
258  AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
259  ConvertUsesToScalar(AI, NewAI, 0);
260  return NewAI;
261}
262
263/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
264/// so far at the offset specified by Offset (which is specified in bytes).
265///
266/// There are two cases we handle here:
267///   1) A union of vector types of the same size and potentially its elements.
268///      Here we turn element accesses into insert/extract element operations.
269///      This promotes a <4 x float> with a store of float to the third element
270///      into a <4 x float> that uses insert element.
271///   2) A fully general blob of memory, which we turn into some (potentially
272///      large) integer type with extract and insert operations where the loads
273///      and stores would mutate the memory.  We mark this by setting VectorTy
274///      to VoidTy.
275void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
276  // If we already decided to turn this into a blob of integer memory, there is
277  // nothing to be done.
278  if (VectorTy && VectorTy->isVoidTy())
279    return;
280
281  // If this could be contributing to a vector, analyze it.
282
283  // If the In type is a vector that is the same size as the alloca, see if it
284  // matches the existing VecTy.
285  if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
286    // Remember if we saw a vector type.
287    HadAVector = true;
288
289    if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
290      // If we're storing/loading a vector of the right size, allow it as a
291      // vector.  If this the first vector we see, remember the type so that
292      // we know the element size.  If this is a subsequent access, ignore it
293      // even if it is a differing type but the same size.  Worst case we can
294      // bitcast the resultant vectors.
295      if (VectorTy == 0)
296        VectorTy = VInTy;
297      return;
298    }
299  } else if (In->isFloatTy() || In->isDoubleTy() ||
300             (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
301              isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
302    // If we're accessing something that could be an element of a vector, see
303    // if the implied vector agrees with what we already have and if Offset is
304    // compatible with it.
305    unsigned EltSize = In->getPrimitiveSizeInBits()/8;
306    if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
307        (VectorTy == 0 ||
308         cast<VectorType>(VectorTy)->getElementType()
309               ->getPrimitiveSizeInBits()/8 == EltSize)) {
310      if (VectorTy == 0)
311        VectorTy = VectorType::get(In, AllocaSize/EltSize);
312      return;
313    }
314  }
315
316  // Otherwise, we have a case that we can't handle with an optimized vector
317  // form.  We can still turn this into a large integer.
318  VectorTy = Type::getVoidTy(In->getContext());
319}
320
321/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
322/// its accesses to a single vector type, return true and set VecTy to
323/// the new type.  If we could convert the alloca into a single promotable
324/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
325/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
326/// is the current offset from the base of the alloca being analyzed.
327///
328/// If we see at least one access to the value that is as a vector type, set the
329/// SawVec flag.
330bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
331  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
332    Instruction *User = cast<Instruction>(*UI);
333
334    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
335      // Don't break volatile loads.
336      if (LI->isVolatile())
337        return false;
338      // Don't touch MMX operations.
339      if (LI->getType()->isX86_MMXTy())
340        return false;
341      MergeInType(LI->getType(), Offset);
342      continue;
343    }
344
345    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
346      // Storing the pointer, not into the value?
347      if (SI->getOperand(0) == V || SI->isVolatile()) return false;
348      // Don't touch MMX operations.
349      if (SI->getOperand(0)->getType()->isX86_MMXTy())
350        return false;
351      MergeInType(SI->getOperand(0)->getType(), Offset);
352      continue;
353    }
354
355    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
356      IsNotTrivial = true;  // Can't be mem2reg'd.
357      if (!CanConvertToScalar(BCI, Offset))
358        return false;
359      continue;
360    }
361
362    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
363      // If this is a GEP with a variable indices, we can't handle it.
364      if (!GEP->hasAllConstantIndices())
365        return false;
366
367      // Compute the offset that this GEP adds to the pointer.
368      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
369      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
370                                               &Indices[0], Indices.size());
371      // See if all uses can be converted.
372      if (!CanConvertToScalar(GEP, Offset+GEPOffset))
373        return false;
374      IsNotTrivial = true;  // Can't be mem2reg'd.
375      continue;
376    }
377
378    // If this is a constant sized memset of a constant value (e.g. 0) we can
379    // handle it.
380    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
381      // Store of constant value and constant size.
382      if (!isa<ConstantInt>(MSI->getValue()) ||
383          !isa<ConstantInt>(MSI->getLength()))
384        return false;
385      IsNotTrivial = true;  // Can't be mem2reg'd.
386      continue;
387    }
388
389    // If this is a memcpy or memmove into or out of the whole allocation, we
390    // can handle it like a load or store of the scalar type.
391    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
392      ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
393      if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
394        return false;
395
396      IsNotTrivial = true;  // Can't be mem2reg'd.
397      continue;
398    }
399
400    // Otherwise, we cannot handle this!
401    return false;
402  }
403
404  return true;
405}
406
407/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
408/// directly.  This happens when we are converting an "integer union" to a
409/// single integer scalar, or when we are converting a "vector union" to a
410/// vector with insert/extractelement instructions.
411///
412/// Offset is an offset from the original alloca, in bits that need to be
413/// shifted to the right.  By the end of this, there should be no uses of Ptr.
414void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
415                                              uint64_t Offset) {
416  while (!Ptr->use_empty()) {
417    Instruction *User = cast<Instruction>(Ptr->use_back());
418
419    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
420      ConvertUsesToScalar(CI, NewAI, Offset);
421      CI->eraseFromParent();
422      continue;
423    }
424
425    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
426      // Compute the offset that this GEP adds to the pointer.
427      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
428      uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
429                                               &Indices[0], Indices.size());
430      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
431      GEP->eraseFromParent();
432      continue;
433    }
434
435    IRBuilder<> Builder(User);
436
437    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
438      // The load is a bit extract from NewAI shifted right by Offset bits.
439      Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
440      Value *NewLoadVal
441        = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
442      LI->replaceAllUsesWith(NewLoadVal);
443      LI->eraseFromParent();
444      continue;
445    }
446
447    if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
448      assert(SI->getOperand(0) != Ptr && "Consistency error!");
449      Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
450      Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
451                                             Builder);
452      Builder.CreateStore(New, NewAI);
453      SI->eraseFromParent();
454
455      // If the load we just inserted is now dead, then the inserted store
456      // overwrote the entire thing.
457      if (Old->use_empty())
458        Old->eraseFromParent();
459      continue;
460    }
461
462    // If this is a constant sized memset of a constant value (e.g. 0) we can
463    // transform it into a store of the expanded constant value.
464    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
465      assert(MSI->getRawDest() == Ptr && "Consistency error!");
466      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
467      if (NumBytes != 0) {
468        unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
469
470        // Compute the value replicated the right number of times.
471        APInt APVal(NumBytes*8, Val);
472
473        // Splat the value if non-zero.
474        if (Val)
475          for (unsigned i = 1; i != NumBytes; ++i)
476            APVal |= APVal << 8;
477
478        Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
479        Value *New = ConvertScalar_InsertValue(
480                                    ConstantInt::get(User->getContext(), APVal),
481                                               Old, Offset, Builder);
482        Builder.CreateStore(New, NewAI);
483
484        // If the load we just inserted is now dead, then the memset overwrote
485        // the entire thing.
486        if (Old->use_empty())
487          Old->eraseFromParent();
488      }
489      MSI->eraseFromParent();
490      continue;
491    }
492
493    // If this is a memcpy or memmove into or out of the whole allocation, we
494    // can handle it like a load or store of the scalar type.
495    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
496      assert(Offset == 0 && "must be store to start of alloca");
497
498      // If the source and destination are both to the same alloca, then this is
499      // a noop copy-to-self, just delete it.  Otherwise, emit a load and store
500      // as appropriate.
501      AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, 0));
502
503      if (GetUnderlyingObject(MTI->getSource(), 0) != OrigAI) {
504        // Dest must be OrigAI, change this to be a load from the original
505        // pointer (bitcasted), then a store to our new alloca.
506        assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
507        Value *SrcPtr = MTI->getSource();
508        const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
509        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
510        if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
511          AIPTy = PointerType::get(AIPTy->getElementType(),
512                                   SPTy->getAddressSpace());
513        }
514        SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
515
516        LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
517        SrcVal->setAlignment(MTI->getAlignment());
518        Builder.CreateStore(SrcVal, NewAI);
519      } else if (GetUnderlyingObject(MTI->getDest(), 0) != OrigAI) {
520        // Src must be OrigAI, change this to be a load from NewAI then a store
521        // through the original dest pointer (bitcasted).
522        assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
523        LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
524
525        const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
526        const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
527        if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
528          AIPTy = PointerType::get(AIPTy->getElementType(),
529                                   DPTy->getAddressSpace());
530        }
531        Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
532
533        StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
534        NewStore->setAlignment(MTI->getAlignment());
535      } else {
536        // Noop transfer. Src == Dst
537      }
538
539      MTI->eraseFromParent();
540      continue;
541    }
542
543    llvm_unreachable("Unsupported operation!");
544  }
545}
546
547/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
548/// or vector value FromVal, extracting the bits from the offset specified by
549/// Offset.  This returns the value, which is of type ToType.
550///
551/// This happens when we are converting an "integer union" to a single
552/// integer scalar, or when we are converting a "vector union" to a vector with
553/// insert/extractelement instructions.
554///
555/// Offset is an offset from the original alloca, in bits that need to be
556/// shifted to the right.
557Value *ConvertToScalarInfo::
558ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
559                           uint64_t Offset, IRBuilder<> &Builder) {
560  // If the load is of the whole new alloca, no conversion is needed.
561  if (FromVal->getType() == ToType && Offset == 0)
562    return FromVal;
563
564  // If the result alloca is a vector type, this is either an element
565  // access or a bitcast to another vector type of the same size.
566  if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
567    if (ToType->isVectorTy())
568      return Builder.CreateBitCast(FromVal, ToType, "tmp");
569
570    // Otherwise it must be an element access.
571    unsigned Elt = 0;
572    if (Offset) {
573      unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
574      Elt = Offset/EltSize;
575      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
576    }
577    // Return the element extracted out of it.
578    Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
579                    Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
580    if (V->getType() != ToType)
581      V = Builder.CreateBitCast(V, ToType, "tmp");
582    return V;
583  }
584
585  // If ToType is a first class aggregate, extract out each of the pieces and
586  // use insertvalue's to form the FCA.
587  if (const StructType *ST = dyn_cast<StructType>(ToType)) {
588    const StructLayout &Layout = *TD.getStructLayout(ST);
589    Value *Res = UndefValue::get(ST);
590    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
591      Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
592                                        Offset+Layout.getElementOffsetInBits(i),
593                                              Builder);
594      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
595    }
596    return Res;
597  }
598
599  if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
600    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
601    Value *Res = UndefValue::get(AT);
602    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
603      Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
604                                              Offset+i*EltSize, Builder);
605      Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
606    }
607    return Res;
608  }
609
610  // Otherwise, this must be a union that was converted to an integer value.
611  const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
612
613  // If this is a big-endian system and the load is narrower than the
614  // full alloca type, we need to do a shift to get the right bits.
615  int ShAmt = 0;
616  if (TD.isBigEndian()) {
617    // On big-endian machines, the lowest bit is stored at the bit offset
618    // from the pointer given by getTypeStoreSizeInBits.  This matters for
619    // integers with a bitwidth that is not a multiple of 8.
620    ShAmt = TD.getTypeStoreSizeInBits(NTy) -
621            TD.getTypeStoreSizeInBits(ToType) - Offset;
622  } else {
623    ShAmt = Offset;
624  }
625
626  // Note: we support negative bitwidths (with shl) which are not defined.
627  // We do this to support (f.e.) loads off the end of a structure where
628  // only some bits are used.
629  if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
630    FromVal = Builder.CreateLShr(FromVal,
631                                 ConstantInt::get(FromVal->getType(),
632                                                           ShAmt), "tmp");
633  else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
634    FromVal = Builder.CreateShl(FromVal,
635                                ConstantInt::get(FromVal->getType(),
636                                                          -ShAmt), "tmp");
637
638  // Finally, unconditionally truncate the integer to the right width.
639  unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
640  if (LIBitWidth < NTy->getBitWidth())
641    FromVal =
642      Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
643                                                    LIBitWidth), "tmp");
644  else if (LIBitWidth > NTy->getBitWidth())
645    FromVal =
646       Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
647                                                    LIBitWidth), "tmp");
648
649  // If the result is an integer, this is a trunc or bitcast.
650  if (ToType->isIntegerTy()) {
651    // Should be done.
652  } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
653    // Just do a bitcast, we know the sizes match up.
654    FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
655  } else {
656    // Otherwise must be a pointer.
657    FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
658  }
659  assert(FromVal->getType() == ToType && "Didn't convert right?");
660  return FromVal;
661}
662
663/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
664/// or vector value "Old" at the offset specified by Offset.
665///
666/// This happens when we are converting an "integer union" to a
667/// single integer scalar, or when we are converting a "vector union" to a
668/// vector with insert/extractelement instructions.
669///
670/// Offset is an offset from the original alloca, in bits that need to be
671/// shifted to the right.
672Value *ConvertToScalarInfo::
673ConvertScalar_InsertValue(Value *SV, Value *Old,
674                          uint64_t Offset, IRBuilder<> &Builder) {
675  // Convert the stored type to the actual type, shift it left to insert
676  // then 'or' into place.
677  const Type *AllocaType = Old->getType();
678  LLVMContext &Context = Old->getContext();
679
680  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
681    uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
682    uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
683
684    // Changing the whole vector with memset or with an access of a different
685    // vector type?
686    if (ValSize == VecSize)
687      return Builder.CreateBitCast(SV, AllocaType, "tmp");
688
689    uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
690
691    // Must be an element insertion.
692    unsigned Elt = Offset/EltSize;
693
694    if (SV->getType() != VTy->getElementType())
695      SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
696
697    SV = Builder.CreateInsertElement(Old, SV,
698                     ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
699                                     "tmp");
700    return SV;
701  }
702
703  // If SV is a first-class aggregate value, insert each value recursively.
704  if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
705    const StructLayout &Layout = *TD.getStructLayout(ST);
706    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
707      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
708      Old = ConvertScalar_InsertValue(Elt, Old,
709                                      Offset+Layout.getElementOffsetInBits(i),
710                                      Builder);
711    }
712    return Old;
713  }
714
715  if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
716    uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
717    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
718      Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
719      Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
720    }
721    return Old;
722  }
723
724  // If SV is a float, convert it to the appropriate integer type.
725  // If it is a pointer, do the same.
726  unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
727  unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
728  unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
729  unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
730  if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
731    SV = Builder.CreateBitCast(SV,
732                            IntegerType::get(SV->getContext(),SrcWidth), "tmp");
733  else if (SV->getType()->isPointerTy())
734    SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
735
736  // Zero extend or truncate the value if needed.
737  if (SV->getType() != AllocaType) {
738    if (SV->getType()->getPrimitiveSizeInBits() <
739             AllocaType->getPrimitiveSizeInBits())
740      SV = Builder.CreateZExt(SV, AllocaType, "tmp");
741    else {
742      // Truncation may be needed if storing more than the alloca can hold
743      // (undefined behavior).
744      SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
745      SrcWidth = DestWidth;
746      SrcStoreWidth = DestStoreWidth;
747    }
748  }
749
750  // If this is a big-endian system and the store is narrower than the
751  // full alloca type, we need to do a shift to get the right bits.
752  int ShAmt = 0;
753  if (TD.isBigEndian()) {
754    // On big-endian machines, the lowest bit is stored at the bit offset
755    // from the pointer given by getTypeStoreSizeInBits.  This matters for
756    // integers with a bitwidth that is not a multiple of 8.
757    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
758  } else {
759    ShAmt = Offset;
760  }
761
762  // Note: we support negative bitwidths (with shr) which are not defined.
763  // We do this to support (f.e.) stores off the end of a structure where
764  // only some bits in the structure are set.
765  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
766  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
767    SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
768                           ShAmt), "tmp");
769    Mask <<= ShAmt;
770  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
771    SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
772                            -ShAmt), "tmp");
773    Mask = Mask.lshr(-ShAmt);
774  }
775
776  // Mask out the bits we are about to insert from the old value, and or
777  // in the new bits.
778  if (SrcWidth != DestWidth) {
779    assert(DestWidth > SrcWidth);
780    Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
781    SV = Builder.CreateOr(Old, SV, "ins");
782  }
783  return SV;
784}
785
786
787//===----------------------------------------------------------------------===//
788// SRoA Driver
789//===----------------------------------------------------------------------===//
790
791
792bool SROA::runOnFunction(Function &F) {
793  TD = getAnalysisIfAvailable<TargetData>();
794
795  bool Changed = performPromotion(F);
796
797  // FIXME: ScalarRepl currently depends on TargetData more than it
798  // theoretically needs to. It should be refactored in order to support
799  // target-independent IR. Until this is done, just skip the actual
800  // scalar-replacement portion of this pass.
801  if (!TD) return Changed;
802
803  while (1) {
804    bool LocalChange = performScalarRepl(F);
805    if (!LocalChange) break;   // No need to repromote if no scalarrepl
806    Changed = true;
807    LocalChange = performPromotion(F);
808    if (!LocalChange) break;   // No need to re-scalarrepl if no promotion
809  }
810
811  return Changed;
812}
813
814/// PromoteAlloca - Promote an alloca to registers, using SSAUpdater.
815static void PromoteAlloca(AllocaInst *AI, SSAUpdater &SSA) {
816  SSA.Initialize(AI->getType()->getElementType(), AI->getName());
817
818  // First step: bucket up uses of the alloca by the block they occur in.
819  // This is important because we have to handle multiple defs/uses in a block
820  // ourselves: SSAUpdater is purely for cross-block references.
821  // FIXME: Want a TinyVector<Instruction*> since there is often 0/1 element.
822  DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
823
824  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
825       UI != E; ++UI) {
826    Instruction *User = cast<Instruction>(*UI);
827    UsesByBlock[User->getParent()].push_back(User);
828  }
829
830  // Okay, now we can iterate over all the blocks in the function with uses,
831  // processing them.  Keep track of which loads are loading a live-in value.
832  // Walk the uses in the use-list order to be determinstic.
833  SmallVector<LoadInst*, 32> LiveInLoads;
834  DenseMap<Value*, Value*> ReplacedLoads;
835
836  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
837       UI != E; ++UI) {
838    Instruction *User = cast<Instruction>(*UI);
839    BasicBlock *BB = User->getParent();
840    std::vector<Instruction*> &BlockUses = UsesByBlock[BB];
841
842    // If this block has already been processed, ignore this repeat use.
843    if (BlockUses.empty()) continue;
844
845    // Okay, this is the first use in the block.  If this block just has a
846    // single user in it, we can rewrite it trivially.
847    if (BlockUses.size() == 1) {
848      // If it is a store, it is a trivial def of the value in the block.
849      if (StoreInst *SI = dyn_cast<StoreInst>(User))
850        SSA.AddAvailableValue(BB, SI->getOperand(0));
851      else
852        // Otherwise it is a load, queue it to rewrite as a live-in load.
853        LiveInLoads.push_back(cast<LoadInst>(User));
854      BlockUses.clear();
855      continue;
856    }
857
858    // Otherwise, check to see if this block is all loads.
859    bool HasStore = false;
860    for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
861      if (isa<StoreInst>(BlockUses[i])) {
862        HasStore = true;
863        break;
864      }
865    }
866
867    // If so, we can queue them all as live in loads.  We don't have an
868    // efficient way to tell which on is first in the block and don't want to
869    // scan large blocks, so just add all loads as live ins.
870    if (!HasStore) {
871      for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
872        LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
873      BlockUses.clear();
874      continue;
875    }
876
877    // Otherwise, we have mixed loads and stores (or just a bunch of stores).
878    // Since SSAUpdater is purely for cross-block values, we need to determine
879    // the order of these instructions in the block.  If the first use in the
880    // block is a load, then it uses the live in value.  The last store defines
881    // the live out value.  We handle this by doing a linear scan of the block.
882    Value *StoredValue = 0;
883    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
884      if (LoadInst *L = dyn_cast<LoadInst>(II)) {
885        // If this is a load from an unrelated pointer, ignore it.
886        if (L->getOperand(0) != AI) continue;
887
888        // If we haven't seen a store yet, this is a live in use, otherwise
889        // use the stored value.
890        if (StoredValue) {
891          L->replaceAllUsesWith(StoredValue);
892          ReplacedLoads[L] = StoredValue;
893        } else {
894          LiveInLoads.push_back(L);
895        }
896        continue;
897      }
898
899      if (StoreInst *S = dyn_cast<StoreInst>(II)) {
900        // If this is a store to an unrelated pointer, ignore it.
901        if (S->getPointerOperand() != AI) continue;
902
903        // Remember that this is the active value in the block.
904        StoredValue = S->getOperand(0);
905      }
906    }
907
908    // The last stored value that happened is the live-out for the block.
909    assert(StoredValue && "Already checked that there is a store in block");
910    SSA.AddAvailableValue(BB, StoredValue);
911    BlockUses.clear();
912  }
913
914  // Okay, now we rewrite all loads that use live-in values in the loop,
915  // inserting PHI nodes as necessary.
916  for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
917    LoadInst *ALoad = LiveInLoads[i];
918    Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent());
919    ALoad->replaceAllUsesWith(NewVal);
920    ReplacedLoads[ALoad] = NewVal;
921  }
922
923  // Now that everything is rewritten, delete the old instructions from the
924  // function.  They should all be dead now.
925  for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); UI != E; ) {
926    Instruction *User = cast<Instruction>(*UI++);
927
928    // If this is a load that still has uses, then the load must have been added
929    // as a live value in the SSAUpdate data structure for a block (e.g. because
930    // the loaded value was stored later).  In this case, we need to recursively
931    // propagate the updates until we get to the real value.
932    if (!User->use_empty()) {
933      Value *NewVal = ReplacedLoads[User];
934      assert(NewVal && "not a replaced load?");
935
936      // Propagate down to the ultimate replacee.  The intermediately loads
937      // could theoretically already have been deleted, so we don't want to
938      // dereference the Value*'s.
939      DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
940      while (RLI != ReplacedLoads.end()) {
941        NewVal = RLI->second;
942        RLI = ReplacedLoads.find(NewVal);
943      }
944
945      User->replaceAllUsesWith(NewVal);
946    }
947
948    User->eraseFromParent();
949  }
950}
951
952
953bool SROA::performPromotion(Function &F) {
954  std::vector<AllocaInst*> Allocas;
955  DominatorTree *DT = 0;
956  DominanceFrontier *DF = 0;
957  if (UsePromoteMemToReg) {
958    DT = &getAnalysis<DominatorTree>();
959    DF = &getAnalysis<DominanceFrontier>();
960  }
961
962  BasicBlock &BB = F.getEntryBlock();  // Get the entry node for the function
963
964  bool Changed = false;
965
966  while (1) {
967    Allocas.clear();
968
969    // Find allocas that are safe to promote, by looking at all instructions in
970    // the entry node
971    for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
972      if (AllocaInst *AI = dyn_cast<AllocaInst>(I))       // Is it an alloca?
973        if (isAllocaPromotable(AI))
974          Allocas.push_back(AI);
975
976    if (Allocas.empty()) break;
977
978    if (UsePromoteMemToReg)
979      PromoteMemToReg(Allocas, *DT, *DF);
980    else {
981      SSAUpdater SSA;
982      for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
983        PromoteAlloca(Allocas[i], SSA);
984        Allocas[i]->eraseFromParent();
985      }
986    }
987    NumPromoted += Allocas.size();
988    Changed = true;
989  }
990
991  return Changed;
992}
993
994
995/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
996/// SROA.  It must be a struct or array type with a small number of elements.
997static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
998  const Type *T = AI->getAllocatedType();
999  // Do not promote any struct into more than 32 separate vars.
1000  if (const StructType *ST = dyn_cast<StructType>(T))
1001    return ST->getNumElements() <= 32;
1002  // Arrays are much less likely to be safe for SROA; only consider
1003  // them if they are very small.
1004  if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1005    return AT->getNumElements() <= 8;
1006  return false;
1007}
1008
1009
1010// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1011// which runs on all of the malloc/alloca instructions in the function, removing
1012// them if they are only used by getelementptr instructions.
1013//
1014bool SROA::performScalarRepl(Function &F) {
1015  std::vector<AllocaInst*> WorkList;
1016
1017  // Scan the entry basic block, adding allocas to the worklist.
1018  BasicBlock &BB = F.getEntryBlock();
1019  for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
1020    if (AllocaInst *A = dyn_cast<AllocaInst>(I))
1021      WorkList.push_back(A);
1022
1023  // Process the worklist
1024  bool Changed = false;
1025  while (!WorkList.empty()) {
1026    AllocaInst *AI = WorkList.back();
1027    WorkList.pop_back();
1028
1029    // Handle dead allocas trivially.  These can be formed by SROA'ing arrays
1030    // with unused elements.
1031    if (AI->use_empty()) {
1032      AI->eraseFromParent();
1033      Changed = true;
1034      continue;
1035    }
1036
1037    // If this alloca is impossible for us to promote, reject it early.
1038    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1039      continue;
1040
1041    // Check to see if this allocation is only modified by a memcpy/memmove from
1042    // a constant global.  If this is the case, we can change all users to use
1043    // the constant global instead.  This is commonly produced by the CFE by
1044    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1045    // is only subsequently read.
1046    if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
1047      DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1048      DEBUG(dbgs() << "  memcpy = " << *TheCopy << '\n');
1049      Constant *TheSrc = cast<Constant>(TheCopy->getSource());
1050      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
1051      TheCopy->eraseFromParent();  // Don't mutate the global.
1052      AI->eraseFromParent();
1053      ++NumGlobals;
1054      Changed = true;
1055      continue;
1056    }
1057
1058    // Check to see if we can perform the core SROA transformation.  We cannot
1059    // transform the allocation instruction if it is an array allocation
1060    // (allocations OF arrays are ok though), and an allocation of a scalar
1061    // value cannot be decomposed at all.
1062    uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
1063
1064    // Do not promote [0 x %struct].
1065    if (AllocaSize == 0) continue;
1066
1067    // Do not promote any struct whose size is too big.
1068    if (AllocaSize > SRThreshold) continue;
1069
1070    // If the alloca looks like a good candidate for scalar replacement, and if
1071    // all its users can be transformed, then split up the aggregate into its
1072    // separate elements.
1073    if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1074      DoScalarReplacement(AI, WorkList);
1075      Changed = true;
1076      continue;
1077    }
1078
1079    // If we can turn this aggregate value (potentially with casts) into a
1080    // simple scalar value that can be mem2reg'd into a register value.
1081    // IsNotTrivial tracks whether this is something that mem2reg could have
1082    // promoted itself.  If so, we don't want to transform it needlessly.  Note
1083    // that we can't just check based on the type: the alloca may be of an i32
1084    // but that has pointer arithmetic to set byte 3 of it or something.
1085    if (AllocaInst *NewAI =
1086          ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
1087      NewAI->takeName(AI);
1088      AI->eraseFromParent();
1089      ++NumConverted;
1090      Changed = true;
1091      continue;
1092    }
1093
1094    // Otherwise, couldn't process this alloca.
1095  }
1096
1097  return Changed;
1098}
1099
1100/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1101/// predicate, do SROA now.
1102void SROA::DoScalarReplacement(AllocaInst *AI,
1103                               std::vector<AllocaInst*> &WorkList) {
1104  DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
1105  SmallVector<AllocaInst*, 32> ElementAllocas;
1106  if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1107    ElementAllocas.reserve(ST->getNumContainedTypes());
1108    for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
1109      AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
1110                                      AI->getAlignment(),
1111                                      AI->getName() + "." + Twine(i), AI);
1112      ElementAllocas.push_back(NA);
1113      WorkList.push_back(NA);  // Add to worklist for recursive processing
1114    }
1115  } else {
1116    const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1117    ElementAllocas.reserve(AT->getNumElements());
1118    const Type *ElTy = AT->getElementType();
1119    for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
1120      AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
1121                                      AI->getName() + "." + Twine(i), AI);
1122      ElementAllocas.push_back(NA);
1123      WorkList.push_back(NA);  // Add to worklist for recursive processing
1124    }
1125  }
1126
1127  // Now that we have created the new alloca instructions, rewrite all the
1128  // uses of the old alloca.
1129  RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
1130
1131  // Now erase any instructions that were made dead while rewriting the alloca.
1132  DeleteDeadInstructions();
1133  AI->eraseFromParent();
1134
1135  ++NumReplaced;
1136}
1137
1138/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1139/// recursively including all their operands that become trivially dead.
1140void SROA::DeleteDeadInstructions() {
1141  while (!DeadInsts.empty()) {
1142    Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
1143
1144    for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1145      if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1146        // Zero out the operand and see if it becomes trivially dead.
1147        // (But, don't add allocas to the dead instruction list -- they are
1148        // already on the worklist and will be deleted separately.)
1149        *OI = 0;
1150        if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1151          DeadInsts.push_back(U);
1152      }
1153
1154    I->eraseFromParent();
1155  }
1156}
1157
1158/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1159/// performing scalar replacement of alloca AI.  The results are flagged in
1160/// the Info parameter.  Offset indicates the position within AI that is
1161/// referenced by this instruction.
1162void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1163                               AllocaInfo &Info) {
1164  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1165    Instruction *User = cast<Instruction>(*UI);
1166
1167    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1168      isSafeForScalarRepl(BC, AI, Offset, Info);
1169    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1170      uint64_t GEPOffset = Offset;
1171      isSafeGEP(GEPI, AI, GEPOffset, Info);
1172      if (!Info.isUnsafe)
1173        isSafeForScalarRepl(GEPI, AI, GEPOffset, Info);
1174    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1175      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1176      if (Length)
1177        isSafeMemAccess(AI, Offset, Length->getZExtValue(), 0,
1178                        UI.getOperandNo() == 0, Info);
1179      else
1180        MarkUnsafe(Info);
1181    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1182      if (!LI->isVolatile()) {
1183        const Type *LIType = LI->getType();
1184        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(LIType),
1185                        LIType, false, Info);
1186      } else
1187        MarkUnsafe(Info);
1188    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1189      // Store is ok if storing INTO the pointer, not storing the pointer
1190      if (!SI->isVolatile() && SI->getOperand(0) != I) {
1191        const Type *SIType = SI->getOperand(0)->getType();
1192        isSafeMemAccess(AI, Offset, TD->getTypeAllocSize(SIType),
1193                        SIType, true, Info);
1194      } else
1195        MarkUnsafe(Info);
1196    } else {
1197      DEBUG(errs() << "  Transformation preventing inst: " << *User << '\n');
1198      MarkUnsafe(Info);
1199    }
1200    if (Info.isUnsafe) return;
1201  }
1202}
1203
1204/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1205/// replacement.  It is safe when all the indices are constant, in-bounds
1206/// references, and when the resulting offset corresponds to an element within
1207/// the alloca type.  The results are flagged in the Info parameter.  Upon
1208/// return, Offset is adjusted as specified by the GEP indices.
1209void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
1210                     uint64_t &Offset, AllocaInfo &Info) {
1211  gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1212  if (GEPIt == E)
1213    return;
1214
1215  // Walk through the GEP type indices, checking the types that this indexes
1216  // into.
1217  for (; GEPIt != E; ++GEPIt) {
1218    // Ignore struct elements, no extra checking needed for these.
1219    if ((*GEPIt)->isStructTy())
1220      continue;
1221
1222    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1223    if (!IdxVal)
1224      return MarkUnsafe(Info);
1225  }
1226
1227  // Compute the offset due to this GEP and check if the alloca has a
1228  // component element at that offset.
1229  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1230  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1231                                 &Indices[0], Indices.size());
1232  if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
1233    MarkUnsafe(Info);
1234}
1235
1236/// isHomogeneousAggregate - Check if type T is a struct or array containing
1237/// elements of the same type (which is always true for arrays).  If so,
1238/// return true with NumElts and EltTy set to the number of elements and the
1239/// element type, respectively.
1240static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1241                                   const Type *&EltTy) {
1242  if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1243    NumElts = AT->getNumElements();
1244    EltTy = (NumElts == 0 ? 0 : AT->getElementType());
1245    return true;
1246  }
1247  if (const StructType *ST = dyn_cast<StructType>(T)) {
1248    NumElts = ST->getNumContainedTypes();
1249    EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
1250    for (unsigned n = 1; n < NumElts; ++n) {
1251      if (ST->getContainedType(n) != EltTy)
1252        return false;
1253    }
1254    return true;
1255  }
1256  return false;
1257}
1258
1259/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1260/// "homogeneous" aggregates with the same element type and number of elements.
1261static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1262  if (T1 == T2)
1263    return true;
1264
1265  unsigned NumElts1, NumElts2;
1266  const Type *EltTy1, *EltTy2;
1267  if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1268      isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1269      NumElts1 == NumElts2 &&
1270      EltTy1 == EltTy2)
1271    return true;
1272
1273  return false;
1274}
1275
1276/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1277/// alloca or has an offset and size that corresponds to a component element
1278/// within it.  The offset checked here may have been formed from a GEP with a
1279/// pointer bitcasted to a different type.
1280void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t MemSize,
1281                           const Type *MemOpType, bool isStore,
1282                           AllocaInfo &Info) {
1283  // Check if this is a load/store of the entire alloca.
1284  if (Offset == 0 && MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
1285    // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1286    // loads/stores (which are essentially the same as the MemIntrinsics with
1287    // regard to copying padding between elements).  But, if an alloca is
1288    // flagged as both a source and destination of such operations, we'll need
1289    // to check later for padding between elements.
1290    if (!MemOpType || MemOpType->isIntegerTy()) {
1291      if (isStore)
1292        Info.isMemCpyDst = true;
1293      else
1294        Info.isMemCpySrc = true;
1295      return;
1296    }
1297    // This is also safe for references using a type that is compatible with
1298    // the type of the alloca, so that loads/stores can be rewritten using
1299    // insertvalue/extractvalue.
1300    if (isCompatibleAggregate(MemOpType, AI->getAllocatedType()))
1301      return;
1302  }
1303  // Check if the offset/size correspond to a component within the alloca type.
1304  const Type *T = AI->getAllocatedType();
1305  if (TypeHasComponent(T, Offset, MemSize))
1306    return;
1307
1308  return MarkUnsafe(Info);
1309}
1310
1311/// TypeHasComponent - Return true if T has a component type with the
1312/// specified offset and size.  If Size is zero, do not check the size.
1313bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1314  const Type *EltTy;
1315  uint64_t EltSize;
1316  if (const StructType *ST = dyn_cast<StructType>(T)) {
1317    const StructLayout *Layout = TD->getStructLayout(ST);
1318    unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1319    EltTy = ST->getContainedType(EltIdx);
1320    EltSize = TD->getTypeAllocSize(EltTy);
1321    Offset -= Layout->getElementOffset(EltIdx);
1322  } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1323    EltTy = AT->getElementType();
1324    EltSize = TD->getTypeAllocSize(EltTy);
1325    if (Offset >= AT->getNumElements() * EltSize)
1326      return false;
1327    Offset %= EltSize;
1328  } else {
1329    return false;
1330  }
1331  if (Offset == 0 && (Size == 0 || EltSize == Size))
1332    return true;
1333  // Check if the component spans multiple elements.
1334  if (Offset + Size > EltSize)
1335    return false;
1336  return TypeHasComponent(EltTy, Offset, Size);
1337}
1338
1339/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1340/// the instruction I, which references it, to use the separate elements.
1341/// Offset indicates the position within AI that is referenced by this
1342/// instruction.
1343void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1344                                SmallVector<AllocaInst*, 32> &NewElts) {
1345  for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1346    Instruction *User = cast<Instruction>(*UI);
1347
1348    if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1349      RewriteBitCast(BC, AI, Offset, NewElts);
1350    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1351      RewriteGEP(GEPI, AI, Offset, NewElts);
1352    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
1353      ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1354      uint64_t MemSize = Length->getZExtValue();
1355      if (Offset == 0 &&
1356          MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1357        RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
1358      // Otherwise the intrinsic can only touch a single element and the
1359      // address operand will be updated, so nothing else needs to be done.
1360    } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1361      const Type *LIType = LI->getType();
1362      if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
1363        // Replace:
1364        //   %res = load { i32, i32 }* %alloc
1365        // with:
1366        //   %load.0 = load i32* %alloc.0
1367        //   %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1368        //   %load.1 = load i32* %alloc.1
1369        //   %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1370        // (Also works for arrays instead of structs)
1371        Value *Insert = UndefValue::get(LIType);
1372        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1373          Value *Load = new LoadInst(NewElts[i], "load", LI);
1374          Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1375        }
1376        LI->replaceAllUsesWith(Insert);
1377        DeadInsts.push_back(LI);
1378      } else if (LIType->isIntegerTy() &&
1379                 TD->getTypeAllocSize(LIType) ==
1380                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1381        // If this is a load of the entire alloca to an integer, rewrite it.
1382        RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1383      }
1384    } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1385      Value *Val = SI->getOperand(0);
1386      const Type *SIType = Val->getType();
1387      if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
1388        // Replace:
1389        //   store { i32, i32 } %val, { i32, i32 }* %alloc
1390        // with:
1391        //   %val.0 = extractvalue { i32, i32 } %val, 0
1392        //   store i32 %val.0, i32* %alloc.0
1393        //   %val.1 = extractvalue { i32, i32 } %val, 1
1394        //   store i32 %val.1, i32* %alloc.1
1395        // (Also works for arrays instead of structs)
1396        for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1397          Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1398          new StoreInst(Extract, NewElts[i], SI);
1399        }
1400        DeadInsts.push_back(SI);
1401      } else if (SIType->isIntegerTy() &&
1402                 TD->getTypeAllocSize(SIType) ==
1403                 TD->getTypeAllocSize(AI->getAllocatedType())) {
1404        // If this is a store of the entire alloca from an integer, rewrite it.
1405        RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1406      }
1407    }
1408  }
1409}
1410
1411/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1412/// and recursively continue updating all of its uses.
1413void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1414                          SmallVector<AllocaInst*, 32> &NewElts) {
1415  RewriteForScalarRepl(BC, AI, Offset, NewElts);
1416  if (BC->getOperand(0) != AI)
1417    return;
1418
1419  // The bitcast references the original alloca.  Replace its uses with
1420  // references to the first new element alloca.
1421  Instruction *Val = NewElts[0];
1422  if (Val->getType() != BC->getDestTy()) {
1423    Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1424    Val->takeName(BC);
1425  }
1426  BC->replaceAllUsesWith(Val);
1427  DeadInsts.push_back(BC);
1428}
1429
1430/// FindElementAndOffset - Return the index of the element containing Offset
1431/// within the specified type, which must be either a struct or an array.
1432/// Sets T to the type of the element and Offset to the offset within that
1433/// element.  IdxTy is set to the type of the index result to be used in a
1434/// GEP instruction.
1435uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1436                                    const Type *&IdxTy) {
1437  uint64_t Idx = 0;
1438  if (const StructType *ST = dyn_cast<StructType>(T)) {
1439    const StructLayout *Layout = TD->getStructLayout(ST);
1440    Idx = Layout->getElementContainingOffset(Offset);
1441    T = ST->getContainedType(Idx);
1442    Offset -= Layout->getElementOffset(Idx);
1443    IdxTy = Type::getInt32Ty(T->getContext());
1444    return Idx;
1445  }
1446  const ArrayType *AT = cast<ArrayType>(T);
1447  T = AT->getElementType();
1448  uint64_t EltSize = TD->getTypeAllocSize(T);
1449  Idx = Offset / EltSize;
1450  Offset -= Idx * EltSize;
1451  IdxTy = Type::getInt64Ty(T->getContext());
1452  return Idx;
1453}
1454
1455/// RewriteGEP - Check if this GEP instruction moves the pointer across
1456/// elements of the alloca that are being split apart, and if so, rewrite
1457/// the GEP to be relative to the new element.
1458void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1459                      SmallVector<AllocaInst*, 32> &NewElts) {
1460  uint64_t OldOffset = Offset;
1461  SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1462  Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1463                                 &Indices[0], Indices.size());
1464
1465  RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1466
1467  const Type *T = AI->getAllocatedType();
1468  const Type *IdxTy;
1469  uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
1470  if (GEPI->getOperand(0) == AI)
1471    OldIdx = ~0ULL; // Force the GEP to be rewritten.
1472
1473  T = AI->getAllocatedType();
1474  uint64_t EltOffset = Offset;
1475  uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
1476
1477  // If this GEP does not move the pointer across elements of the alloca
1478  // being split, then it does not needs to be rewritten.
1479  if (Idx == OldIdx)
1480    return;
1481
1482  const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1483  SmallVector<Value*, 8> NewArgs;
1484  NewArgs.push_back(Constant::getNullValue(i32Ty));
1485  while (EltOffset != 0) {
1486    uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1487    NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
1488  }
1489  Instruction *Val = NewElts[Idx];
1490  if (NewArgs.size() > 1) {
1491    Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1492                                            NewArgs.end(), "", GEPI);
1493    Val->takeName(GEPI);
1494  }
1495  if (Val->getType() != GEPI->getType())
1496    Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
1497  GEPI->replaceAllUsesWith(Val);
1498  DeadInsts.push_back(GEPI);
1499}
1500
1501/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1502/// Rewrite it to copy or set the elements of the scalarized memory.
1503void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
1504                                        AllocaInst *AI,
1505                                        SmallVector<AllocaInst*, 32> &NewElts) {
1506  // If this is a memcpy/memmove, construct the other pointer as the
1507  // appropriate type.  The "Other" pointer is the pointer that goes to memory
1508  // that doesn't have anything to do with the alloca that we are promoting. For
1509  // memset, this Value* stays null.
1510  Value *OtherPtr = 0;
1511  unsigned MemAlignment = MI->getAlignment();
1512  if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
1513    if (Inst == MTI->getRawDest())
1514      OtherPtr = MTI->getRawSource();
1515    else {
1516      assert(Inst == MTI->getRawSource());
1517      OtherPtr = MTI->getRawDest();
1518    }
1519  }
1520
1521  // If there is an other pointer, we want to convert it to the same pointer
1522  // type as AI has, so we can GEP through it safely.
1523  if (OtherPtr) {
1524    unsigned AddrSpace =
1525      cast<PointerType>(OtherPtr->getType())->getAddressSpace();
1526
1527    // Remove bitcasts and all-zero GEPs from OtherPtr.  This is an
1528    // optimization, but it's also required to detect the corner case where
1529    // both pointer operands are referencing the same memory, and where
1530    // OtherPtr may be a bitcast or GEP that currently being rewritten.  (This
1531    // function is only called for mem intrinsics that access the whole
1532    // aggregate, so non-zero GEPs are not an issue here.)
1533    OtherPtr = OtherPtr->stripPointerCasts();
1534
1535    // Copying the alloca to itself is a no-op: just delete it.
1536    if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1537      // This code will run twice for a no-op memcpy -- once for each operand.
1538      // Put only one reference to MI on the DeadInsts list.
1539      for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1540             E = DeadInsts.end(); I != E; ++I)
1541        if (*I == MI) return;
1542      DeadInsts.push_back(MI);
1543      return;
1544    }
1545
1546    // If the pointer is not the right type, insert a bitcast to the right
1547    // type.
1548    const Type *NewTy =
1549      PointerType::get(AI->getType()->getElementType(), AddrSpace);
1550
1551    if (OtherPtr->getType() != NewTy)
1552      OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
1553  }
1554
1555  // Process each element of the aggregate.
1556  bool SROADest = MI->getRawDest() == Inst;
1557
1558  Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
1559
1560  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1561    // If this is a memcpy/memmove, emit a GEP of the other element address.
1562    Value *OtherElt = 0;
1563    unsigned OtherEltAlign = MemAlignment;
1564
1565    if (OtherPtr) {
1566      Value *Idx[2] = { Zero,
1567                      ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
1568      OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
1569                                              OtherPtr->getName()+"."+Twine(i),
1570                                                   MI);
1571      uint64_t EltOffset;
1572      const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
1573      const Type *OtherTy = OtherPtrTy->getElementType();
1574      if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
1575        EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1576      } else {
1577        const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
1578        EltOffset = TD->getTypeAllocSize(EltTy)*i;
1579      }
1580
1581      // The alignment of the other pointer is the guaranteed alignment of the
1582      // element, which is affected by both the known alignment of the whole
1583      // mem intrinsic and the alignment of the element.  If the alignment of
1584      // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1585      // known alignment is just 4 bytes.
1586      OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
1587    }
1588
1589    Value *EltPtr = NewElts[i];
1590    const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
1591
1592    // If we got down to a scalar, insert a load or store as appropriate.
1593    if (EltTy->isSingleValueType()) {
1594      if (isa<MemTransferInst>(MI)) {
1595        if (SROADest) {
1596          // From Other to Alloca.
1597          Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
1598          new StoreInst(Elt, EltPtr, MI);
1599        } else {
1600          // From Alloca to Other.
1601          Value *Elt = new LoadInst(EltPtr, "tmp", MI);
1602          new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
1603        }
1604        continue;
1605      }
1606      assert(isa<MemSetInst>(MI));
1607
1608      // If the stored element is zero (common case), just store a null
1609      // constant.
1610      Constant *StoreVal;
1611      if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
1612        if (CI->isZero()) {
1613          StoreVal = Constant::getNullValue(EltTy);  // 0.0, null, 0, <0,0>
1614        } else {
1615          // If EltTy is a vector type, get the element type.
1616          const Type *ValTy = EltTy->getScalarType();
1617
1618          // Construct an integer with the right value.
1619          unsigned EltSize = TD->getTypeSizeInBits(ValTy);
1620          APInt OneVal(EltSize, CI->getZExtValue());
1621          APInt TotalVal(OneVal);
1622          // Set each byte.
1623          for (unsigned i = 0; 8*i < EltSize; ++i) {
1624            TotalVal = TotalVal.shl(8);
1625            TotalVal |= OneVal;
1626          }
1627
1628          // Convert the integer value to the appropriate type.
1629          StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
1630          if (ValTy->isPointerTy())
1631            StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
1632          else if (ValTy->isFloatingPointTy())
1633            StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
1634          assert(StoreVal->getType() == ValTy && "Type mismatch!");
1635
1636          // If the requested value was a vector constant, create it.
1637          if (EltTy != ValTy) {
1638            unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
1639            SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
1640            StoreVal = ConstantVector::get(&Elts[0], NumElts);
1641          }
1642        }
1643        new StoreInst(StoreVal, EltPtr, MI);
1644        continue;
1645      }
1646      // Otherwise, if we're storing a byte variable, use a memset call for
1647      // this element.
1648    }
1649
1650    unsigned EltSize = TD->getTypeAllocSize(EltTy);
1651
1652    IRBuilder<> Builder(MI);
1653
1654    // Finally, insert the meminst for this element.
1655    if (isa<MemSetInst>(MI)) {
1656      Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
1657                           MI->isVolatile());
1658    } else {
1659      assert(isa<MemTransferInst>(MI));
1660      Value *Dst = SROADest ? EltPtr : OtherElt;  // Dest ptr
1661      Value *Src = SROADest ? OtherElt : EltPtr;  // Src ptr
1662
1663      if (isa<MemCpyInst>(MI))
1664        Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
1665      else
1666        Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
1667    }
1668  }
1669  DeadInsts.push_back(MI);
1670}
1671
1672/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
1673/// overwrites the entire allocation.  Extract out the pieces of the stored
1674/// integer and store them individually.
1675void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
1676                                         SmallVector<AllocaInst*, 32> &NewElts){
1677  // Extract each element out of the integer according to its structure offset
1678  // and store the element value to the individual alloca.
1679  Value *SrcVal = SI->getOperand(0);
1680  const Type *AllocaEltTy = AI->getAllocatedType();
1681  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1682
1683  // Handle tail padding by extending the operand
1684  if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
1685    SrcVal = new ZExtInst(SrcVal,
1686                          IntegerType::get(SI->getContext(), AllocaSizeBits),
1687                          "", SI);
1688
1689  DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
1690               << '\n');
1691
1692  // There are two forms here: AI could be an array or struct.  Both cases
1693  // have different ways to compute the element offset.
1694  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1695    const StructLayout *Layout = TD->getStructLayout(EltSTy);
1696
1697    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1698      // Get the number of bits to shift SrcVal to get the value.
1699      const Type *FieldTy = EltSTy->getElementType(i);
1700      uint64_t Shift = Layout->getElementOffsetInBits(i);
1701
1702      if (TD->isBigEndian())
1703        Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
1704
1705      Value *EltVal = SrcVal;
1706      if (Shift) {
1707        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1708        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1709                                            "sroa.store.elt", SI);
1710      }
1711
1712      // Truncate down to an integer of the right size.
1713      uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1714
1715      // Ignore zero sized fields like {}, they obviously contain no data.
1716      if (FieldSizeBits == 0) continue;
1717
1718      if (FieldSizeBits != AllocaSizeBits)
1719        EltVal = new TruncInst(EltVal,
1720                             IntegerType::get(SI->getContext(), FieldSizeBits),
1721                              "", SI);
1722      Value *DestField = NewElts[i];
1723      if (EltVal->getType() == FieldTy) {
1724        // Storing to an integer field of this size, just do it.
1725      } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
1726        // Bitcast to the right element type (for fp/vector values).
1727        EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
1728      } else {
1729        // Otherwise, bitcast the dest pointer (for aggregates).
1730        DestField = new BitCastInst(DestField,
1731                              PointerType::getUnqual(EltVal->getType()),
1732                                    "", SI);
1733      }
1734      new StoreInst(EltVal, DestField, SI);
1735    }
1736
1737  } else {
1738    const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
1739    const Type *ArrayEltTy = ATy->getElementType();
1740    uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1741    uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
1742
1743    uint64_t Shift;
1744
1745    if (TD->isBigEndian())
1746      Shift = AllocaSizeBits-ElementOffset;
1747    else
1748      Shift = 0;
1749
1750    for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1751      // Ignore zero sized fields like {}, they obviously contain no data.
1752      if (ElementSizeBits == 0) continue;
1753
1754      Value *EltVal = SrcVal;
1755      if (Shift) {
1756        Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
1757        EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
1758                                            "sroa.store.elt", SI);
1759      }
1760
1761      // Truncate down to an integer of the right size.
1762      if (ElementSizeBits != AllocaSizeBits)
1763        EltVal = new TruncInst(EltVal,
1764                               IntegerType::get(SI->getContext(),
1765                                                ElementSizeBits), "", SI);
1766      Value *DestField = NewElts[i];
1767      if (EltVal->getType() == ArrayEltTy) {
1768        // Storing to an integer field of this size, just do it.
1769      } else if (ArrayEltTy->isFloatingPointTy() ||
1770                 ArrayEltTy->isVectorTy()) {
1771        // Bitcast to the right element type (for fp/vector values).
1772        EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
1773      } else {
1774        // Otherwise, bitcast the dest pointer (for aggregates).
1775        DestField = new BitCastInst(DestField,
1776                              PointerType::getUnqual(EltVal->getType()),
1777                                    "", SI);
1778      }
1779      new StoreInst(EltVal, DestField, SI);
1780
1781      if (TD->isBigEndian())
1782        Shift -= ElementOffset;
1783      else
1784        Shift += ElementOffset;
1785    }
1786  }
1787
1788  DeadInsts.push_back(SI);
1789}
1790
1791/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
1792/// an integer.  Load the individual pieces to form the aggregate value.
1793void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
1794                                        SmallVector<AllocaInst*, 32> &NewElts) {
1795  // Extract each element out of the NewElts according to its structure offset
1796  // and form the result value.
1797  const Type *AllocaEltTy = AI->getAllocatedType();
1798  uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
1799
1800  DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
1801               << '\n');
1802
1803  // There are two forms here: AI could be an array or struct.  Both cases
1804  // have different ways to compute the element offset.
1805  const StructLayout *Layout = 0;
1806  uint64_t ArrayEltBitOffset = 0;
1807  if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
1808    Layout = TD->getStructLayout(EltSTy);
1809  } else {
1810    const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
1811    ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
1812  }
1813
1814  Value *ResultVal =
1815    Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
1816
1817  for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1818    // Load the value from the alloca.  If the NewElt is an aggregate, cast
1819    // the pointer to an integer of the same size before doing the load.
1820    Value *SrcField = NewElts[i];
1821    const Type *FieldTy =
1822      cast<PointerType>(SrcField->getType())->getElementType();
1823    uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
1824
1825    // Ignore zero sized fields like {}, they obviously contain no data.
1826    if (FieldSizeBits == 0) continue;
1827
1828    const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
1829                                                     FieldSizeBits);
1830    if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
1831        !FieldTy->isVectorTy())
1832      SrcField = new BitCastInst(SrcField,
1833                                 PointerType::getUnqual(FieldIntTy),
1834                                 "", LI);
1835    SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
1836
1837    // If SrcField is a fp or vector of the right size but that isn't an
1838    // integer type, bitcast to an integer so we can shift it.
1839    if (SrcField->getType() != FieldIntTy)
1840      SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
1841
1842    // Zero extend the field to be the same size as the final alloca so that
1843    // we can shift and insert it.
1844    if (SrcField->getType() != ResultVal->getType())
1845      SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
1846
1847    // Determine the number of bits to shift SrcField.
1848    uint64_t Shift;
1849    if (Layout) // Struct case.
1850      Shift = Layout->getElementOffsetInBits(i);
1851    else  // Array case.
1852      Shift = i*ArrayEltBitOffset;
1853
1854    if (TD->isBigEndian())
1855      Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
1856
1857    if (Shift) {
1858      Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
1859      SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
1860    }
1861
1862    // Don't create an 'or x, 0' on the first iteration.
1863    if (!isa<Constant>(ResultVal) ||
1864        !cast<Constant>(ResultVal)->isNullValue())
1865      ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
1866    else
1867      ResultVal = SrcField;
1868  }
1869
1870  // Handle tail padding by truncating the result
1871  if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
1872    ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
1873
1874  LI->replaceAllUsesWith(ResultVal);
1875  DeadInsts.push_back(LI);
1876}
1877
1878/// HasPadding - Return true if the specified type has any structure or
1879/// alignment padding in between the elements that would be split apart
1880/// by SROA; return false otherwise.
1881static bool HasPadding(const Type *Ty, const TargetData &TD) {
1882  if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1883    Ty = ATy->getElementType();
1884    return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
1885  }
1886
1887  // SROA currently handles only Arrays and Structs.
1888  const StructType *STy = cast<StructType>(Ty);
1889  const StructLayout *SL = TD.getStructLayout(STy);
1890  unsigned PrevFieldBitOffset = 0;
1891  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1892    unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
1893
1894    // Check to see if there is any padding between this element and the
1895    // previous one.
1896    if (i) {
1897      unsigned PrevFieldEnd =
1898        PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
1899      if (PrevFieldEnd < FieldBitOffset)
1900        return true;
1901    }
1902    PrevFieldBitOffset = FieldBitOffset;
1903  }
1904  // Check for tail padding.
1905  if (unsigned EltCount = STy->getNumElements()) {
1906    unsigned PrevFieldEnd = PrevFieldBitOffset +
1907      TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
1908    if (PrevFieldEnd < SL->getSizeInBits())
1909      return true;
1910  }
1911  return false;
1912}
1913
1914/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
1915/// an aggregate can be broken down into elements.  Return 0 if not, 3 if safe,
1916/// or 1 if safe after canonicalization has been performed.
1917bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
1918  // Loop over the use list of the alloca.  We can only transform it if all of
1919  // the users are safe to transform.
1920  AllocaInfo Info;
1921
1922  isSafeForScalarRepl(AI, AI, 0, Info);
1923  if (Info.isUnsafe) {
1924    DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
1925    return false;
1926  }
1927
1928  // Okay, we know all the users are promotable.  If the aggregate is a memcpy
1929  // source and destination, we have to be careful.  In particular, the memcpy
1930  // could be moving around elements that live in structure padding of the LLVM
1931  // types, but may actually be used.  In these cases, we refuse to promote the
1932  // struct.
1933  if (Info.isMemCpySrc && Info.isMemCpyDst &&
1934      HasPadding(AI->getAllocatedType(), *TD))
1935    return false;
1936
1937  return true;
1938}
1939
1940
1941
1942/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
1943/// some part of a constant global variable.  This intentionally only accepts
1944/// constant expressions because we don't can't rewrite arbitrary instructions.
1945static bool PointsToConstantGlobal(Value *V) {
1946  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
1947    return GV->isConstant();
1948  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1949    if (CE->getOpcode() == Instruction::BitCast ||
1950        CE->getOpcode() == Instruction::GetElementPtr)
1951      return PointsToConstantGlobal(CE->getOperand(0));
1952  return false;
1953}
1954
1955/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
1956/// pointer to an alloca.  Ignore any reads of the pointer, return false if we
1957/// see any stores or other unknown uses.  If we see pointer arithmetic, keep
1958/// track of whether it moves the pointer (with isOffset) but otherwise traverse
1959/// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
1960/// the alloca, and if the source pointer is a pointer to a constant global, we
1961/// can optimize this.
1962static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
1963                                           bool isOffset) {
1964  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
1965    User *U = cast<Instruction>(*UI);
1966
1967    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1968      // Ignore non-volatile loads, they are always ok.
1969      if (LI->isVolatile()) return false;
1970      continue;
1971    }
1972
1973    if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
1974      // If uses of the bitcast are ok, we are ok.
1975      if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
1976        return false;
1977      continue;
1978    }
1979    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
1980      // If the GEP has all zero indices, it doesn't offset the pointer.  If it
1981      // doesn't, it does.
1982      if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
1983                                         isOffset || !GEP->hasAllZeroIndices()))
1984        return false;
1985      continue;
1986    }
1987
1988    if (CallSite CS = U) {
1989      // If this is a readonly/readnone call site, then we know it is just a
1990      // load and we can ignore it.
1991      if (CS.onlyReadsMemory())
1992        continue;
1993
1994      // If this is the function being called then we treat it like a load and
1995      // ignore it.
1996      if (CS.isCallee(UI))
1997        continue;
1998
1999      // If this is being passed as a byval argument, the caller is making a
2000      // copy, so it is only a read of the alloca.
2001      unsigned ArgNo = CS.getArgumentNo(UI);
2002      if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2003        continue;
2004    }
2005
2006    // If this is isn't our memcpy/memmove, reject it as something we can't
2007    // handle.
2008    MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2009    if (MI == 0)
2010      return false;
2011
2012    // If the transfer is using the alloca as a source of the transfer, then
2013    // ignore it since it is a load (unless the transfer is volatile).
2014    if (UI.getOperandNo() == 1) {
2015      if (MI->isVolatile()) return false;
2016      continue;
2017    }
2018
2019    // If we already have seen a copy, reject the second one.
2020    if (TheCopy) return false;
2021
2022    // If the pointer has been offset from the start of the alloca, we can't
2023    // safely handle this.
2024    if (isOffset) return false;
2025
2026    // If the memintrinsic isn't using the alloca as the dest, reject it.
2027    if (UI.getOperandNo() != 0) return false;
2028
2029    // If the source of the memcpy/move is not a constant global, reject it.
2030    if (!PointsToConstantGlobal(MI->getSource()))
2031      return false;
2032
2033    // Otherwise, the transform is safe.  Remember the copy instruction.
2034    TheCopy = MI;
2035  }
2036  return true;
2037}
2038
2039/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2040/// modified by a copy from a constant global.  If we can prove this, we can
2041/// replace any uses of the alloca with uses of the global directly.
2042MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2043  MemTransferInst *TheCopy = 0;
2044  if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2045    return TheCopy;
2046  return 0;
2047}
2048